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We analyze the effect of the Hall term in the magnetohydrodynamic turbulence under a strong

externally supported magnetic field, seeing how this changes the energy cascade, the

characteristic scales of the flow, and the dynamics of global magnitudes, with particular interest

in the dissipation. Numerical simulations of freely evolving three-dimensional reduced

magnetohydrodynamics are performed, for different values of the Hall parameter (the ratio of the

ion skin depth to the macroscopic scale of the turbulence) controlling the impact of the Hall

term. The Hall effect modifies the transfer of energy across scales, slowing down the transfer of

energy from the large scales up to the Hall scale (ion skin depth) and carrying faster the energy

from the Hall scale to smaller scales. The final outcome is an effective shift of the dissipation

scale to larger scales but also a development of smaller scales. Current sheets (fundamental

structures for energy dissipation) are affected in two ways by increasing the Hall effect, with a

widening but at the same time generating an internal structure within them. In the case where the

Hall term is sufficiently intense, the current sheet is fully delocalized. The effect appears to

reduce impulsive effects in the flow, making it less intermittent. VC 2012 American Institute of

Physics. [http://dx.doi.org/10.1063/1.4717728]

I. INTRODUCTION

Among various kinetic corrections to magnetohydrody-

namic models (MHD), the Hall effect1,2 has been considered

of particular importance in numerous studies: magnetic

reconnection,3–7 dynamo mechanisms,8 accretion disks,9,10

and physics of turbulent regimes11–14 are some of the main

examples. In this paper, we want to study the general effect

of the Hall term in magnetohydrodynamic turbulence in plas-

mas embedded in a strong uniform magnetic field, through

numerical simulations. We studied the effect of this term on

the dynamics of global magnitudes, the cascade of energy,

the characteristic scales, and the intermittency of the flow.

The MHD models (one-fluid models) are important frame-

works for the understanding of the large scale dynamics of a

plasma. However, these models fail to describe plasma phenom-

ena with characteristic length scales smaller than the ion skin

depth qii ¼ c=xpi (with xpi the ion plasma frequency and c the

speed of light). At this level, the Hall effect, which takes into

account the separation between electrons and ions, becomes rel-

evant. To describe this regime is common to use the Hall MHD

approximation, which considers two-fluid effects through a gen-

eralized Ohm’s law which includes the Hall current. In the pres-

ence of a strong external magnetic field, a new reduced model

has been proposed, the reduced magnetohydrodynamics

(RHMHD) model15–17. In this approximation, the fast compres-

sional Alfvén mode is eliminated, while the shear Alfvén and

the slow magnetosonic modes are retained.18 This new model

(RHMHD) is an extension (including the Hall effect) of the pre-

viously known RMHD model. The RMHD equations have been

used to investigate a variety of problems such as current sheet

formation,19,20 non-stationary reconnection,21,22 the dynamics of

coronal loops,23,24 and the development of turbulence.25 The

self-consistency of the RMHD approximation has been analyzed

in Ref. 26. Moreover, numerical simulations have studied the

validity of the RMHD equations by directly comparing its pre-

dictions with the compressible MHD equations in a turbulent re-

gime.27 In the same way, it has been studied the validity of the

RHMHDmodel.15

The control parameter (the Hall parameter) in this re-

gime is � ¼ qii=L, the ratio of the ion skin depth qii to the

characteristic (large) scale of the turbulence L. The influence

of the Hall term can then be studied by increasing the Hall

parameter in different simulations.

The organization of the paper is as follows: Section II

describes the sets of equations used and the codes to numeri-

cally integrate these equations. In Sec. III, we present the nu-

merical results: first, a comparison between simulations with

different Hall parameter is performed for some global mag-

nitudes; second, we study the energy spectra; and then, we

use different techniques to see the evolution of the character-

istic structures of the flow. Finally, in Sec. IV, we list our

conclusions.

II. EQUATIONS AND NUMERICAL SIMULATIONS

The compressible Hall MHD equations (dimensionless

version) are
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@q

@t
¼ �r � ðqVÞ; (2)

@A

@t
¼ V � B� �

J � B

q
�r/þ gr2

A; (3)

r � A ¼ 0; (4)

where V is the velocity field, x is the vorticity, J is the current,

B is the magnetic field, q is the density of plasma, and A and /

are the magnetic and electric potential. As indicated in Eq. (1),

we used the barotropic law for the fluid, p ¼ cte � qc (here p is

the pressure), in our case we consider c ¼ 5=3: MS is the sonic

Mach number, MA is the Alfven Mach number, � and f are the

viscosities, g is the resistivity, and � ¼ qii=L (qii is the ion skin

depth and L the characteristic scale of the turbulence) the Hall

coefficient. All these numbers are control parameters in the

numerical simulations. The Hall parameter � appears in front

of the Hall term in the dimensionless equations, expressing the

fact that the Hall term becomes important at scales smaller

than the ion skin depth qii.

A. RHMHD model

The RHMHD model derived in the work by Gomez

et al.16 and numerically tested by Martin et al.15 is a descrip-

tion of the two-fluid plasma dynamics in a strong external

magnetic field. The model assumes that the normalized (and

dimensionless) magnetic field is of the form (the external

field is along êz)

B ¼ êz þ dB; j dB j � a � 1; (5)

where a represents the typical tilt of magnetic field lines

with respect to the êz direction; thus, one expects

r? � 1; @z � a � 1: (6)

To ensure that the magnetic field B remains divergence free,

it is assumed that

B ¼ êz þr� ðaêz þ gêxÞ: (7)

The velocity field, in the more general case, can be decom-

posed as a superposition of a solenoidal part (incompressible

flow) plus the gradient of a scalar field (irrotational flow),

i.e.,

V ¼ r� ðuêz þ f êxÞ þ rw; (8)

where the potentials aðr; tÞ; gðr; tÞ;uðr; tÞ and f ðr; tÞ are all

assumed of order a � 1 and wðr; tÞ is of order a2, expressing
the possibility a slight compressibility (see details in Refs.

15–17). Introducing the expressions (7) and (8) in the com-

pressible set of Eqs. (1)–(4) and taking the terms up to first

and second order in a the RHMHD model is obtained
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where

x ¼ �r2
?u; (13)

j ¼ �r2
?a; (14)

b ¼ �@yg; (15)

u ¼ �@yf ; (16)

and the notation ½A;B� ¼ @xA@yB� @xB@yA is employed.

bp ¼ bc=ð1þ bcÞ is a function of the plasma “beta.”

We use this set of equations to study how the Hall effect

modifies the dynamics of magnetohydrodynamic turbulence

under a strong magnetic field.

B. Numerical codes

We use a pseudospectral code to solve the set of Eqs.

(9)–(12). Periodic boundary conditions are assumed in all

directions of a cube of side 2pL (where L � 1 is the initial

correlation length of the fluctuations, defined as the length

unit). In the codes, Fourier components of the fluctuations

are evolved in time, starting from a specified set of Fourier

modes (see Sec. III for the specific initial conditions), with

given total energy and random phases.

The same resolution is used in all simulations, 5122 in

the perpendicular directions to the external magnetic field

and 32 in the parallel direction (this is possible because the

structures that require high resolution only take place in the

directions perpendicular to the field), allowing four different

runs to be done with four different Hall coefficients. The ki-

netic and magnetic Reynolds numbers are defined as

R ¼ 1=�; Rm ¼ 1=g, based on unit initial rms velocity fluctu-

ation, unit length, and non-dimensional values for the viscos-

ity and diffusivity. Here, we used R ¼ Rm ¼ 1600

(� ¼ f ¼ 1=1600, g ¼ 1=1600) in all runs. We also consid-

ered a Mach number MS ¼ 1=4, Alfven number MA ¼ 1, and

the Hall coefficients � ¼ 0, 1/32, 1/16, and 1/8 in all runs.

A second-order Runge-Kutta time integration is per-

formed; the nonlinear terms are evaluated using the standard

pseudospectral procedure.28 The runs are freely evolved for

10 time units (the initial eddy turnover time is defined in

terms of the initial rms velocity fluctuation and unit length).

The magnetic field fluctuations were less than ten percent of

the external magnetic field value, so we are in the range of

validity of the RHMHD model.

III. RESULTS AND DISCUSSION

We performed simulations for four different Hall coeffi-

cients, � ¼ 0, 1/32, 1/16, and 1/8.

To generate the initial conditions, we consider initial

Fourier modes (for magnetic and velocity field fluctuations)
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in a shell in K-space 1 	 K 	 2 at low wavenumbers, with

constant amplitude and random phases. Only plane-polarized

fluctuations (transverse to the mean magnetic field) are

included, so these are (low- to high-frequency) Alfvén mode

fluctuations and not magnetosonic modes.

The runs performed throughout this paper do not contain

any magnetic or velocity stirring terms, so the RHMHD sys-

tem evolves freely.

We study the influence of the Hall term in global quanti-

ties associated with the dissipation. Figures 1 and 2 show the

mean square current density hJ2i and mean square vorticity

hx2i as function of time for � ¼ 0, 1/32, 1/16, 1/8. Both hJ2i
and hx2i show that as the Hall parameter is increased the

dissipation decreases (in the case of mean square vorticity,

this effect is considerably larger). Another remarkable effect

is the shift in the peaks of these functions: hJ2i and hx2i take
longer to reach its maximum with increasing �. The time of

the peak indicates the time where all spatial scales were

developed (and therefore turbulence is fully developed).

Figure 3 shows hJ2 þ x
2i as function of time, the differ-

ence between the peaks is more clear in this case. Here, we

see two effects that occur simultaneously as the Hall coeffi-

cient is increased: The decrease in the dissipation and the

delay in reaching the maximum point (and hence the time

that it takes to develop all the scales). The first effect will

have a direct impact on the dissipation scale of the respective

flows while the second shows how the Hall term modifies its

characteristic times.

It is relevant to note that the dissipation scale (1=Kdiss) is

related to the number of scales that develop in the flow. It is

common to consider that the decrease in the dissipation scale

increases the range of developed scales in the flow (usually

increases the size of the inertial range). In the same manner,

the increase in the scale of dissipation leads to a decrease in

the number of scales developed in the flow. However, it is

not always this case. The results that we will show below

indicate that the Hall term affects the total width of the dissi-

pation range decreasing mildly the Kdiss (and therefore

mildly increasing the dissipation scale) with the increase of

the �, at the same time the delays suffered by the dissipation

peaks is due to the development of a greater number of

scales in the dissipative range due to a major accumulation

of energy in these scales.

To quantify the dissipation scale (in Fourier space) of

the different flows, we use the conventional criteria29 given

by

Kdiss ¼
hx2i þ hJ2i

�2

� �1=4

: (17)

In Table I, the Hall scale is shown along with the dissipation

scale for each one of the flows. Here we see the decrease of

the Kdiss in quantitative form with the increase of the Hall coef-

ficient. Note that Kdiss < Kmax ¼ N=3 ¼ 170 means that the

FIG. 1. Current density, hJ2i, as function of time for � ¼ 0, 1/32, 1/16, and

1/8. The colors of these curves are black, violet, red, and green, respectively.

The thickness of the lines decreases proportionally to the value of �; thus,
the thicker line corresponds to � ¼ 0 and the finest line to � ¼ 1=8. The ver-
tical straight line indicates a particular time where all the scales have been

developed in all runs. Besides, in this time, the value of hJ2i is approxi-

mately the same for all runs. This particular time will be used to study the

different structures in the flows.

FIG. 2. Vorticity, hx2i, as function of time for � ¼ 0, 1/32, 1/16, and 1/8. We

are using the same convention of color/thickness than in Figure 1.

FIG. 3. hJ2 þ x
2i as function of time for � ¼ 0, 1/32, 1/16, and 1/8. We are

using the same convention of color/thickness than in Figure 1. The vertical

straight lines indicate the maximum value for each curve.
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runs are marginally resolved (see Wan et al.31 for more

demanding requirements if higher order statistic is performed).

The decrease of the global dissipation with the Hall pa-

rameter and the increase in the time of the peak development

cannot be understood by looking only at the temporal evolu-

tion of the global magnitudes. These effects could be due to

a change in the characteristic time of the energy flow or to

the development of small scale structures.

To better understand these issues, we study the energy

spectra and the size and shape of the structures generated in

the four runs. This helps us to see whether or not the Hall

effect produces the development of small scales and also to

understand this dynamic in terms of the energy distribution.

Looking at the spectra we can see the distribution of the

energy through different scales. Figure 4 compares the energy

spectra for all runs and Figure 5 shows a zoom around of the

Hall scales used. It is a reduced model, then we have used the

perpendicular spectra EðK?Þ with K? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2
x þ K2

y

q

.

As the Hall parameter is increased, the energy spectrum

is steeper at intermediate scales preceeding the dissipation

range. At the same time, there is an increase in the energy on

scales smaller (larger K) than the dissipation scale (see Figs.

4 and 5). The effect of the Hall term is then twofold: first,

there is a slow down of the energy transfer up to the Hall

scale, resulting in a steeper spectrum, and then, there seems

to be a driving of energy from the Hall scale up to the small

scales (see Ref. 30 for a study of how the Hall term affects

the transfer of energy at different scales). A shift of the effec-

tive dissipation scale to larger scales is then to be expected

(as indicated by the values of Kdiss given before) as well as a

decrease in the global dissipation values. At the same time,

since the Hall term increases the number of effective scales

on which the dynamics occurs (as evidenced by the extended

spectra at small scales), a longer time to reach the peak of

dissipation is expected, as previously shown.

We study the characteristic structures of the flow and the

effect of the Hall term by looking at the current density field.

Figures 6–9 show the parallel component of the current den-

sity in a perpendicular plane to the external magnetic field at a

given time for the different runs. The time was chosen in

which all scales have been developed for all the flows (this

TABLE I. Hall and dissipation scales for the different runs.

Run � KHall Kdiss

1 0 132.25

2 1/32 32 125.40

3 1/16 16 124.58

4 1/8 8 120.08

FIG. 4. Energy perpendicular spectra for � ¼ 0 (solid line), � ¼ 1=32
(dashed-dotted), � ¼ 1=16 (dashed), and � ¼ 1=8 (dotted). The vertical

straight lines indicate the different values of KHall ¼ 1=� for

� ¼ 1=32; 1=16; 1=8. The vertical straight dashed lines show the minimum

and the maximum values of the Kdiss (� ¼ 1=8 and � ¼ 0), through them we

can see the effect of the Hall term on the dissipation scale.

FIG. 5. Enlarged view of a section of the energy spectra (limited K). The

vertical straight lines indicate the different values of KHall ¼ 1=� for

� ¼ 1=32; 1=16; 1=8, these lines intersect each of the corresponding curves.

FIG. 6. Parallel component of the current density in a perpendicular plane

to the external magnetic field in the case with � ¼ 0. Tones indicate out of

plane current, with light tones¼ positive and dark tones¼ negative.
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time is indicated in Figure 1). Also, for this particular time,

the value of hJ2i is approximately the same for all the runs.

In Figure 6 (� ¼ 0), we can clearly distinguish the cur-

rent sheets that form in the flow. We have highlighted one of

the current sheets with a rectangle with dashed lines. This

structure is localized and well defined. Looking at the change

of this structure with the value of Hall parameter, we can see

two effects: first, a widening of the sheet and second an inter-

nal filamentation. The widening is very clear from Figure 6

with � ¼ 0 to Figure 7 with � ¼ 1=32 and the internal fila-

mentation starts to be seen in the Figure 8, with � ¼ 1=16,
where also the thickness has increased. In the case with

higher � ¼ 1=8, the current sheet is completely filamentated

and is hard to distinguish a clear structure at all.

These results are complementary to the results

observed in the spectra and global magnitudes and corrobo-

rate the idea that the Hall effect results in an effective shift

of the dissipation scale (current sheet thickness getting

larger) but also an increase in the dynamical scale range

(increase of filamentation).

To better quantify the effect we have just observed, we

plot the profile of the current density in the direction perpen-

dicular to the current sheet shown in Figures 6–9. These pro-

files are shown in Figure 10.

The net flow of current (the absolute value) is the same

within the clear lines (vertical outside lines). When � ¼ 0,

the current sheet is perfectly located (the dark lines mark the

original position of the current sheet when � ¼ 0) and it is

homogeneous (in the sense that we have a single well defined

peak). When � ¼ 1=32, the original sheet expands and two

sheets or filaments appear in their place (there are now two

peaks). For � ¼ 1=16, the width of the main sheet is greater,

and there is now a clear internal structure. In this case, the

ambiguity that arises is whether we have one or more sheets

of current (compare Figure 10 with 8) and hence the ambigu-

ity of whether we have a wider sheet or two thin sheets.

When � ¼ 1=8, there is no trace of the current sheet.
At this point, we should make an important observation

about the evolution of current sheets as a function of the Hall

parameter. As we saw there are two effects acting simultane-

ously, the widening of what could be considered the overall

structure of the sheet and the internal filamentation that this

suffers. In this way, it could be interpreted that the Hall

FIG. 7. Parallel component of the current density in a perpendicular plane

to the external magnetic field in the case with � ¼ 1=32. Tones indicate out
of plane current, with light tones¼ positive and dark tones¼ negative.

FIG. 8. Parallel component of the current density in a perpendicular plane

to the external magnetic field in the case with � ¼ 1=16. Tones indicate out
of plane current, with light tones¼ positive and dark tones¼ negative.

FIG. 9. Parallel component of the current density in a perpendicular plane

to the external magnetic field in the case with � ¼ 1=8. Tones indicate out of
plane current, with light tones¼ positive and dark tones¼ negative.
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effect widens the current sheets (if we see the entire structure

like the sheet) or on the other hand the Hall effect produces

finer sheets (considering that the small filaments are the

sheets). To remove the ambiguity (in semantics), we propose

to speak in terms of dissipation, so if the global structure dis-

sipates less energy as we increase the Hall parameter, we

will say that the sheet is being widened; otherwise, if more

energy is dissipated, we will say that the relation between

size and intensity of internal filaments allow us to identify

new current sheets. Our results agree with the first frame of

mind: as a function of dissipation the current sheets are wid-

ening and even more when � ¼ 1=8 there is no trace of any

structure that could be identified as a current sheet.

IV. CONCLUSIONS

We performed numerical simulations of magnetohydro-

dynamic turbulence in strong magnetic fields, including the

Hall effect, and varying the Hall parameter.

We found that the Hall term affects the scales that are sit-

uated between the Hall scale and the dissipation scale, result-

ing in a decrease in the accumulation of energy in this scale

range. The result is an effective shift of the dissipation scale

but also a transfer of energy to smaller scales. When the sepa-

ration between the Hall scale and the dissipation scale is

larger, an increasingly sharp steepening of the energy spec-

trum occurs at this range of scales. The final outcome is the

generation of smaller scales when the Hall scale increases.

Localized structures are destroyed by this effect, suffer-

ing a gradual filamentation with the increase of the Hall

scale. The latter effect is manifested, for example, in the wid-

ening of the current sheets and the formation of internal

structures within the sheets. At the same time, a decrease of

the total energy dissipated is observed.

The results presented here suggest that the Hall effect

reduces the intermittency; however, a more detailed study of

this property should be performed. We defer this to further

work.
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