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Abstract

Using a computationally driven approach, a class of inhibitors with picomolar potency known as

the catechol diethers were developed targeting the non-nucleoside binding pocket (NNBP) of

HIV-1 RT. Computational studies suggested that halogen bonding interactions between the C5

substituent of the inhibitor and backbone carbonyl of conserved residue Pro95 might be important.

While the recently reported crystal structures of the RT complexes confirmed the interactions with

the NNBP, they revealed the lack of a halogen bonding interaction with Pro95. In order to

understand the effects of substituents at the C5 position, we determined additional crystal

structures with 5-Br and 5-H derivatives. Using comparative structural analysis, we identified

several conformations of the ethoxy uracil dependent on the strength of a van der Waals

interaction with the Cγ of Pro95 and the C5 substitution. The 5-Cl and 5-F derivatives position the

ethoxy uracil to make more hydrogen bonds, while the larger 5-Br and smaller 5-H position the

ethoxy uracil to make fewer hydrogen bonds. EC50 values correlate with the trends observed in the

crystal structures. The influence of C5 substitutions on the ethoxy uracil conformation may have

strategic value, as future derivatives can possibly be modulated in order to gain additional

hydrogen bonding interactions with resistant variants of RT.
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Introduction

Highly active anti-retroviral therapy (HAART) is a major advancement in HIV-1 drug

discovery research that improves the quality and duration of life for patients. The majority of

antiretroviral therapies used in HAART target enzymes involved in infection and

replication, which include HIV-1 protease, integrase (IN), and reverse transcriptase (RT) (1–

3). Given the error prone nature of HIV-1 RT (4), antiretroviral drug discovery and
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development is an iterative process due to treatment failure from resistant strains and

bioavailability issues (5, 6). In addition to ours, several other research programs have

implemented a structure-based approach to develop new non-nucleoside reverse

transcriptase inhibitors (NNRTIs) with improved pharmacological and resistance profiles

(7–10). With the assistance of computational methods, a series of analogues known as the

catechol diethers, have been optimized with guidance from free energy perturbation (FEP)

calculations (11). Modifications suggested by the FEP calculations identified a lead scaffold

with picomolar potency in HIV-1 MT2 cellular assays (11). In order to complement the

computational studies, we previously determined two binary crystal structures in complex

with our leading picomolar inhibitors (12). Analysis of the crystal structures identified key

interactions made between the catechol diethers and the non-nucleoside binding pocket

(NNBP) of HIV-1 RT. Several van der Waals interactions made with residues in the NNBP,

in addition to multiple hydrogen bonds, all contribute to the picomolar potency of the

catechol diether class of compounds (12). Given the success of these inhibitors, we continue

to improve the catechol diether class of NNRTIs using structure-guided design.

In order to fully optimize the catechol diether series, additional considerations must be

addressed using a rational approach. To address resistance, one goal has been to optimize

our most potent catechol diethers to interact specifically with Pro95, an essential residue for

RT activity that is not prone to mutation by the HIV-1 virus (13, 14). Earlier computational

studies suggested that the carbonyl oxygen of Pro95 was capable of halogen bonding with a

5-Cl group of the cyanovinylphenyl substituent (11). However, analysis of the crystal

structure revealed that the distance between the carbonyl oxygen and the chlorine was too

far apart to make strong halogen bonding interactions (12). In order to probe the space near

the carbonyl oxygen of Pro95, we have determined two additional RT crystal structures in

complex with modified derivatives of the catechol diether series. These analogues include 5-

H and 5-Br substituents on the cyanovinyl aryl ring. Structural analysis identifies the 5-Cl

group as the most favorable substituent due to its optimal distance for van der Waals

interactions with Pro95, whereas smaller or bulkier substituents are too far away or cause

too much repulsion, respectively. In addition, comparison of these structures reveals a trend

in which the ethoxy uracil substituent can adopt multiple conformations. In each

conformation the hydrogen bonding interactions between the uracil and residues in the

NNBP groove region are altered: compounds with picomolar potency maintain more

hydrogen bonds than those with nanomolar potency. Interestingly, the strength of the van

der Waals interaction between Pro95 and the C5 substituent seem to correlate with the

observed phenomenon of the uracil hydrogen bond pattern. Thus, it appears that the

substituent on the C5 position significantly affects the conformation of the uracil-containing

side chain and thereby affects the interactions made between the compound and the binding

pocket.

The detailed comparison of all of these structures suggests that the ethoxy uracil substituent

is flexible—enabling the maintenance of potency against resistant strains—and that the

compounds can possibly be modulated at the C5 position of the cyanovinylphenyl group to

gain additional interactions. As observed in the FDA-approved NNRTI rilpivirine

(TMC278), flexibility is presumably a key compound feature that may improve performance
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against resistant variants of RT (8). From this knowledge, further compound development

targeting conserved residues such as Pro95 and promoting the optimal uracil side-chain

conformation will assist in our efforts to optimize the catechol diethers against limitations

such as resistance mutations.

Materials and Methods

The syntheses of compounds 1–4 have been reported previously (11, 12). Recombinant

RT52A enzyme was expressed and purified to homogeneity using methods described

previously (8, 12, 15). Crystals of RT52A in complex with 3 and 4 were prepared using

similar methods as the catechol diether complexes (12). The final optimized condition for

crystal growth consisted of 15% (w/v) PEG 8000, 100 mM ammonium sulfate, 15 mM

magnesium sulfate, 5 mM spermine, and 50 mM citric acid pH 5.5. Crystals were

transferred to a cryo-solution containing 27% (v/v) ethylene glycol and flash cooled with

liquid nitrogen.

Diffraction data for the RT:3 and RT:4 crystals were collected at Brookhaven NSLS on

beam line X29A. High-resolution data sets for the best diffracting crystals were scaled and

merged in space group C2 using HKL2000 (16). In order to obtain phases, molecular

replacement was performed with Phaser (17) using previously determined RT:1 (PDB code:

4H4M) as the search model (12). Alternatively, the structures could also be solved with

Difference Fourier Methods using the former RT:1 model as Fc since the RT:1–4 crystals

are isomorphous. Both solution methods yield identical structures for the RT:3 and RT:4
complex as suggested by low all atom rmsd (0.131 Å for RT:3, and 0.192 Å for RT:4) and

small differences in Rfree and Rwork (Table S1) for the final refined models. The program

Coot (18) was used for model building into the electron density. Maximum-likelihood

restrained refinement in Phenix (19) was used to refine the structure after each cycle of

model building until acceptable R-factors, geometry statistics (ideal rmsd for bonds and

angles), and Ramachandran statistics were achieved (Table S1). PyMOL molecular viewer

was used to visualize and analyze the structures (20). Iterative build omit σA-weighted

2mFo-Fc electron density maps were generated using Phenix Autobuild (21).

Results and Discussion

General Structure Details

Similar to the earlier catechol diether structures, the electron density (Figure 1, Figure S3)

reveals that RT is in the “open-cleft” conformation as observed in other NNRTI:RT crystal

structures (8, 12, 22). Consistent with other NNRTIs, the primer grip (residues 227–235)

shifts approximately 3–4 Å as a result of the catechol diether compounds binding near the

“tunnel” region of the NNBP (23). Using a Cα backbone alignment for the p66 subunits and

bound inhibitors, root mean square deviations (RMSD) were calculated comparing 4H4M
with the RT:3 and RT:4 structures. The RMSD values for the 4H4M/RT:3 and 4H4M/RT:4
structures are 0.415 and 0.890 Å, respectively. Previous structures of RT bound to

diarylpyrimidine inhibitors such as etravirine and rilpivirine reveal Tyr181 in the “up”

conformation maintaining interactions with the aryl rings of such inhibitors (8, 24). For all

of the catechol diether structures, Tyr181 is in the uncommon “down” conformation
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primarily to gain interactions with the catechol aryl ring (12). Besides the catechol diether

complexes, the down conformation of Tyr181 is also found in other structures such as the

RT:pyridinone derivative complex, PDB code 2BE2 (25). Previously, the 2BE2 crystal

structure was used for computational modeling and the Tyr181 “down” conformation was

accurately predicted upon catechol diether binding (11). The proximity of Tyr181 to the

catechol aryl ring in the crystal structures suggests that π-π stacking may influence the

“down” conformation observed in all of the catechol diether structures (Figure 2, Table 2).

In addition to the unconventional conformation of Tyr181, Pro95 is also observed in the

uncommon Cγ endo conformation, perhaps to avoid steric clash with the “down”

conformation of Tyr181. This places the catechol diether class of compounds within a more

optimal distance to interact with Pro95.

Analysis of the specific interactions made between the catechol diether compounds and the

NNBP continually inform our multidisciplinary drug design efforts targeting HIV-1 RT.

Comparison of all the catechol diether-RT crystal structures solved to date reveals a

conserved binding mode between the diaryl core and the hydrophobic residues of the NNBP

(Figure 2). Similar to the earlier structures, the diaryl core makes strong van der Waals

interactions with Pro95, Leu100, Val106, Val108, Val179, Tyr181, Tyr188, Trp229,

Leu234, and Tyr318, all residues within the p66 location of the NNBP. Most significantly,

the cyanovinyl substituent appears to make favorable interactions with Trp229 (Figure 2)

and is proximal to Pro95; these conserved residues are ideal for targeting in order to

counteract the effects of resistance mutations in the NNBP (13, 14, 26).

It should be noted that the best RT:4 crystals diffracted to amplitudes extending to 2.69 Å,

an improvement relative to the resolution of the other catechol diether structures (2.8–2.9

Å). The improvement in resolution for the RT:4 structure yields better overall electron

density for water molecules, specifically, those interacting with residues in the NNBP. In the

RT:4 structure, there is 2mFo-Fc electron density at 1.0 σ (Figure S3) for two coordinated

water molecules near the halogen atom (X) at the 5-position in the B-ring, forming two

water-mediated hydrogen bonds between the NH3 group of Lys103 and the hydroxyl group

of Tyr181 (Figure 1A). While these water molecules are not apparent in the lower resolution

structures, it seems likely that these water molecules are conserved and occupy the NNBP in

a similar manner. Higher resolution structures for 1 and 2 are being pursued using crystal

dehydration techniques and will provide a better solvent model to validate this hypothesis.

Interestingly, there is one water molecule present in the RT:TMC278 structure (PDB code

2ZD1) which is analogous to the one near the chlorine atom in the RT:4 structure (Figure

S1) (8). While these water molecules may be conserved in other NNRTI bound structures,

additional water-mediated hydrogen bonds between the B-ring halogen and Lys103 and

Tyr181 are unique to the catechol diether compounds and likely contribute to their low

nanomolar and picomolar potency.

Effects of Halogen Substitutions at the C5 position

Despite the apparent benefit from the halogens, the crystal structure for 1 revealed that the

chlorine did not participate in halogen bonding with the Pro95 carbonyl oxygen, a

possibility that had been raised by computational modeling (11, 12). Although halogen
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bonding does not appear to occur, the EC50 values suggest that the 5-Cl and 5-F derivatives

are optimal and replacement with heavier halogens such as Br does not improve potency

(Table 1), possibly due to spatial penalties on complexation (12). In order to fully address

this issue, we compared the crystal structure of RT:3 with earlier RT:catechol diether

structures to analyze various sizes of halogen substitutions at the C5 position. In the RT:3
crystal structure, the bromine substituent has very large electron density relative to the

chlorine and fluorine substituents at the C5 position in the RT:1 and RT:2 structures (Figure

1, Figure S3). The distance between the carbonyl oxygen of Pro95 and Br is 5.40 Å, even

further than the distance observed for Cl and F (4.70 and 4.80 Å) in the structures with 1 and

2, respectively. In addition, the C-O-Br angle is 96°, again far from the linear geometry for

an ideal halogen bond (12, 27). Thus, the bulkier Br atom may be too large to accommodate

the limited space near Pro95, Tyr188 and Trp229.

To further study the effect of the C5 substituent on the molecular interactions in the NNBP

and its effect on compound potency, we also analyzed the RT:4 crystal structure in detail.

This compound replaces the C5 halogen with hydrogen yet has very similar potency to RT:3
(Table 1). Adding the hydrogen atom to the C5 position of 4 in PyMOL (20) allowed us to

probe the space near Pro95. For better spatial interpretation, we viewed the C5 halogen/

hydrogen atom of the compounds and Pro95 as van der Waals spheres. The Cγ atom of

Pro95 is in close proximity to all of the C5 substituents (Figure 3). However, as the C5

substituent increases in size we see an increase in van der Waals contacts for the substituent

and the Cγ atom of Pro95. This is apparent in Figure 3 (Top) in which the van der Waals

spheres for these atoms get closer with larger C5 substituents and eventually maintain an

optimal interaction distance (ca. 3.4 Å) with the 5-Cl of 1. Conversely, the larger Br atom in

3 seems to have a “repulsive effect” in which both the Cγ of Pro95 and the 5-Br atom

slightly shift apart (interaction distance is 3.6 Å) from one another to avoid steric clash. The

repulsive effect of the 5-Br with Pro95 results in a reorientation of the ethoxy uracil to

accommodate the limited space in the pocket. In essence, the C5 substituents and their

interaction with the Cγ atom of Pro95 follow a Lennard-Jones potential (28), in which the 5-

Cl yields the optimal interaction distance for a van der Waals interaction. The smaller

substituents also follow this trend in which the 5-H of 4 makes the weakest van der Waals

contacts (interaction distance ca. 3.8 Å) and the 5-F of 2 gains more van der Waals contacts

(interactions distance ca. 3.6 Å). This trend observed in the structure analysis is also

reflected in the EC50 values of the compounds, in which the order of compound potency

from least to greatest is 5-H=5-Br<5-F<5-Cl.

The RT complexes with the five FDA-approved NNRTIs, rilpivirine (TMC278), etravirine

(TMC125), efavirenz, delavirdine, and nevirapine, were compared with the RT:1 structure

(Table 2). In the RT:1 structure, as well as the other catechol diether structures, Pro95

specifically adopts the Cγ endo rotamer in which Cγ is pointed toward the 5-Cl group to

maintain favorable van der Waals interactions as described above. Interactions between the

5-Cl containing ring and Tyr181 in the “down” conformation make space for the 5-Cl atom

to move closer to the Cγ atom of Pro95 (Table 2). As observed in the approved RT:NNRTI

complexes, interactions with Pro95 are generally weak. For example, distances between the

closest NNRTI atom (which happens to be carbon for all the NNRTIs) and the Cγ of Pro95
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range from 3.9–4.9 Å, which is greater than the sum of van der Waals radii for 2 carbon

atoms. For all of the approved NNRTIs, the “up” conformation of Tyr181 restricts the space

in the pocket and prevents the inhibitor from moving closer to Pro95 in order to gain

favorable van der Waals interactions.

The rare conformation of Pro95 and Tyr181, EC50 value trends, and van der Waals analysis

strongly suggest that the 5-Cl is ideally positioned on the catechol diether scaffold to interact

with the Cγ of Pro95. While this interpretation suggests that the interactions with Cγ may

compete with possible halogen bonding with the carbonyl, it is encouraging that our most

potent inhibitor, compound 1, maintains favorable interactions with Pro95. In terms of the

structure activity relationships, both the structures and the EC50 values strongly suggest that

the chlorine atom is optimal at the C5 position of the cyanovinylphenyl ring. Perhaps the

same approach can be used for Trp229 and other conserved residues in the NNBP, in which

compounds are further modified to maintain optimal van der Waals interaction distances

with target residues of interest.

Conformation of the uracil

In all RT crystal structures with the catechol diether compounds, the ethoxy uracil interacts

with residues in the groove region of the NNBP, consisting of residues Lys102, Lys103, and

Pro236. However, the ethoxy uracil is observed in multiple conformations in the different

crystal structures. Structures of picomolar derivatives 1 and 2 reveal the ethoxy uracil in the

syn-anti-gauche (sag) conformation (Figure 4) maintaining up to four hydrogen bonds with

Lys102 and Lys103 (12). In the RT:3 crystal structure, we see the ethoxy linker in the

reverse conformation, shifting the uracil slightly into the anti-anti-gauche (aag)

conformation. Compound 4 is in a more intermediate conformation, in which the ethoxy

linker is similar to 1 and 2 in the sag conformation, but the uracil is rotated slightly. Table 3

lists all of the possible hydrogen bonding interactions observed in the crystal structures for

all of the catechol diether compounds. By examining all of these interactions, it is apparent

that the picomolar inhibitors, compounds 1 and 2 in which the uracil is in the sag

conformation, maintain the most hydrogen bonds with the donors and acceptors in the

groove region, which include residues Lys102 and Lys103. There is even the possibility of

making a fourth hydrogen bond with the backbone carbonyl of Pro236, in which the NH

group of the uracil can participate in hydrogen bonds with either the carbonyl of Lys103 or

Pro236. However, in the conformation observed in 3 and 4, only 2 hydrogen bonds can be

formed between the uracil and groove residues Lys103 and Pro236.

Interestingly, the conformation and hydrogen bonding capacity of the uracil ring seems to

correlate with the strength of van der Waals interaction between the Pro95 Cγ and the C5

substituent. Figure 3 shows the correlation between the strength of the van der Waals

interaction and its effects on the hydrogen bonding potential of the uracil ring. Picomolar

inhibitors 1 and 2 have stronger interactions with the Cγ atom of Pro95 and have uracil

conformations that maintain the most hydrogen bonds. In the case of compound 4, the

interaction between the Cγ and the hydrogen is not strong enough, causing the

cyanovinylphenyl to shift slightly accompanied by a movement in the uracil ring. This

movement in the uracil, considered as the “intermediate” conformation (Table 3,Figure 4),
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reduces the hydrogen bonding potential of compound 4. The interaction distances for 5-F of

2 and 5-Br of 3 with the Cγ atom are essentially the same; however, the larger Br atom

causes the C5 aryl ring to also shift resulting in the rearrangement of the uracil in the aag

conformation to prevent steric clash with residues in the groove. This conformation is more

drastic than the “intermediate” conformation, in which the ethoxy linker rearranges and

positions the uracil farther away from the hydrogen bond donors and acceptors within the

groove region of the NNBP. The 15-fold loss in potency between the 5-F and 5-Br

derivatives is most likely due to the loss of 2 hydrogen bonds observed with the uracil in the

aag conformation for compound 3.

While it is difficult to quantify the direct relationship between molecular interactions

observed in crystal structures and compound potency, we generally see a trend in which both

the strength of van der Waals interactions with the Cγ of Pro95 and the positioning of the

uracil ring contribute to picomolar potency. While the 5-F atom maintains the uracil

conformation in the sag position to make four hydrogen bonds, its contacts with the Cγ of

Pro95 are not as favorable, suggesting a possible explanation for the 6-fold increase in EC50

value compared to compound 1. Similarly, the weaker interactions observed between the 5-

H and 5-Br derivatives, along with the fewer hydrogen bonds formed seem to contribute to

their 100-fold difference in potency compared to 1 and 15-fold difference compared to 2.

Previously, it has been reported that the contribution of a single hydrogen bond can vary

significantly, ranging from 2- to 15-fold for weak, neutral-neutral hydrogen bonds, and up to

3000-fold for strong, charged hydrogen bonds (29). The energetic strength of van der Waals

interactions has less variation but can contribute up to 4 kJ/mol (30). Thus, it seems possible

that our structural observations somewhat correlate with the EC50 values for the different C5

analogues.

Unlike the hydrophobic core of other NNRTIs, the ethoxy uracil of our catechol diether

compounds is flexible and may be a key advantage in adapting to changes in the NNBP such

as mutations. As observed for rilpivirine (TMC278), torsional flexibility allows the

compound to reorient and gain new interactions with the L100I/K103N RT variant (8, 31).

Interestingly, we also observe interactions with Leu100, specifically with the Cδ1 and Cδ2

atoms of the side chain and the various C5 substituents. Distances between the C5 atoms and

Cδ2 atom of Leu100 range from 3.4–4.2 Å, while distances between the C5 atoms and Cδ1

atom of Leu100 range from 3.2–4.1 Å. These values suggest that the C5 substituents are also

optimally placed to form van der Waals interactions with Leu100. As examined in the four

structures, the interaction with Leu100 is not enhanced by larger C5 substituents; however,

binding of the four analogues may be impacted by the clinically relevant L100I mutation.

Given the influence of the C5 substitution on compound orientation, future optimization can

exploit the Pro95 Cγ van der Waals interaction to position the compound in the NNBP and

anchor the uracil ring into the groove for maximal hydrogen bonding. Possible modulation

of the ethoxy uracil at the C5 position to promote the sag conformation may be an effective

strategy to maintain interactions with resistant variants of RT such as L100I/K103N while

avoiding steric conflicts with residues in the binding pocket.
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Conclusions and Future Directions

Although several anti-HIV therapeutics are currently available, there is still a compelling

need to optimize new active compounds given the propensity of the HIV-1 virus to develop

resistance against current treatments. Towards that goal, we recently reported an

extraordinarily potent class of anti-HIV agents targeting RT that feature a catechol diether

core scaffold. Additional crystal structures of RT in complex with modified derivatives of

the catechol diether series assisted in the elucidation of key interactions and our structural

observations correlate well with the reported EC50 values. The potential for halogen bonding

between these compounds and Pro95 was explored extensively using comparative structural

analysis to interpret the effects of different substitutions at the C5 position of the

cyanovinylphenyl group. Upon analysis of the various crystal structures, it is apparent that

Pro95 is not participating in halogen bonding and that, instead, a van der Waals interaction

between the C5 halogen and Cγ of Pro95 is occurring with the 5-Cl of compound 1. In

addition to these interactions, the ethoxy uracil substituent of the compounds adopts several

different conformations of which the sag conformation observed in compounds 1 and 2 is

optimal, allowing for the maintenance of the most hydrogen bonds. Conversely, the

“intermediate” and aag conformations of the uracil allow for only two hydrogen bonds and

clarify the differences in interactions between compounds with picomolar versus nanomolar

potency. Interestingly, substitutions at the C5 position of the cyanovinylphenyl ring greatly

influence the interaction with the Pro95 Cγ and thus the conformation of the ethoxy uracil

in the groove pocket. As suggested by our structural observations, the flexibility of the

ethoxy uracil, as well as the direct interaction of our compounds with conserved residue

Pro95, is encouraging given the prevalence of mutations in the NNBP. Furthermore, these

structural studies will aid future computational and structure-based efforts to optimize the

catechol diether compound series against resistant variants of RT.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Stereo view of omit, σA-weighted 2mFo-Fc electron density contoured to 1.0 σ for the RT:4 (A) and RT:3 (B) complexes. Both

compounds 4 and 3 (green and orange, respectively) and Pro95 (yellow) were omitted from the model to generate iterative build

omit maps using the original structure factors. Additional RT residues in the binding pocket are lavender.
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Figure 2.
Stereo view of the catechol diether inhibitors (A) 4 (green) and (B) 3 (orange) bound to the NNBP of HIV-1 RT (lavender).
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Figure 3.
(Top) van der Waals sphere representation of the interaction between the Cγ atom of Pro 95 (lavender) and the C5 substituents

of 4, 2, 1, and 3 from Left to Right. The 5-Cl (pink) and 5-F (blue) derivatives maintain the most hydrogen bonds and have

potency in the picomolar range, while the interaction with 5-H (green) and 5-Br (orange) are not as strong. The repulsive effect

causes the 5-Br to shift away from the Cγ causing a rearrangement of the uracil in order to avoid steric clash. (Bottom)

Corresponding uracil conformation for the various C5 derivatives and the possible hydrogen bond interactions (black dashed

lines) made with the donors and acceptors in the groove region of the NNBP. Hydrogen bonding potential for the C5 derivatives

and strength of the C5-Cγ interaction correlate well with the EC50 values.
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Figure 4.
Overlay of the sag (pink), “Intermediate” (green), and aag (orange) conformations of the ethoxy uracil side chain as observed in

the RT complexes bound to 1, 4, and 3, respectively
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Table 1

EC50 Values in nanomolar (nM) for catechol diether derivatives.

Compound EC50 (nM)

1 X=Y=Cl 0.055

2 X=Y=F 0.320

3 X=Cl, Y=Br 5.2

4 X=Cl, Y=H 5.0

Rilpivirine 0.670
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Table 2

Comparison of Pro95 and Tyr181 conformations observed in the crystal structures for compound 1 and the

other five FDA approved NNRTIs.

RT:NNRTI Complex PDB Code P95 Rotamer Y181 Conformation

Compound 1 4H4M Cγ endo “Down”

Rilpivirine 2ZD1 Cγ exo “Up”

Etravirine 3M8P Cγ exo “Up”

Efavirenz 1IKW Cγ exo “Up”

Delaviridine 1KLM Cγ exo “Up”

Nevirapine 3HVT Cγ exo “Up”
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