Aryloxyethyl Thiocyanates are Potent Growth Inhibitors of Trypanosoma cruzi and Toxoplasma gondii

María N. Chao ${ }^{[a]}$, Carolina Exeni Matiuzzi ${ }^{[a]}$, Melissa Storey ${ }^{[b]}$, Catherine Li ${ }^{[b]}$, Dr. Sergio H. Szajnman ${ }^{[a]}$, Prof. Dr. Roberto Docampo ${ }^{[b]}$, Prof. Dr. Silvia N. J. Moreno ${ }^{[b]}$, and Prof. Dr. Juan B. Rodriguez ${ }^{[a]}$
Juan B. Rodriguez: jbr@qo.fcen.uba.ar
${ }^{[a]}$ Departamento de Química Orgánica and UMYMFOR (CONICET-FCEyN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina. Telephone: +54 11 4576-3385; Fax: +54 11 4576-3346
${ }^{[b]}$ Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, 30602, USA

Abstract

As a part of our project aimed at searching new safe chemotherapeutic agents against parasitic diseases, several compounds structurally related to the antiparasitic agent WC-9 (4phenoxyphenoxyethyl thiocyanate), which were modified at the terminal phenyl ring, were designed, synthesized and evaluated as growth inhibitors against Trypanosoma cruzi, the etiological agent of Chagas disease and Toxoplasma gondii, the parasite responsible of toxoplasmosis. Most of the synthetic analogues exhibited similar antiparasitic activity being slightly more potent than our lead WC-9. For example, the trifluoromethyl derivatives $\mathbf{1 5}$ and $\mathbf{1 6}$ exhibited ED_{50} values of $10.0 \mu \mathrm{M}$ and $9.2 \mu \mathrm{M}$, respectively, against intracellular T. cruzi, whereas they showed potent action against tachyzoites of T. gondii $\left(\mathrm{ED}_{50}\right.$ values $1.6 \mu \mathrm{M}$ and $1.9 \mu \mathrm{M}$ against T. gondii, respectively). In addition, the WC-9 analogues $\mathbf{4 8}$ and 61, in which the terminal aryl group was meta with respect to the alkyl chain bearing the thiocyanate group, showed potent inhibitory action against both T. cruzi and T. gondii at the very low micromolar range suggesting that para-phenyl substitution pattern is not necessarily required for biological activity.

Graphical Abstract

WC-9 is a well-known antichagasic agent targeting squalene synthase. We describe the design, synthesis, and biological evaluation of WC-9 analogues bearing either the aryloxy moiety bonded at the $\mathrm{C}-4^{\prime}$ position of the A ring or at the $\mathrm{C}-3^{\prime}$ one. Some of them turn out to be effective growth

[^0]inhibitors of both Trypanosoma cruzi and Toxoplasma gondii, the etiologic agent of Chagas disease and toxoplasmosis, respectively.

Introduction

Trypanosomatids have a strict requirement for specific endogenous sterols for survival and cannot use the abundant supply of cholesterol present in their mammalian hosts. ${ }^{[1-5]}$ For that reason, ergosterol biosynthesis has become a valid target to control parasitic diseases caused by pathogenic trypanosomatids. It has been reported that ergosterol biosynthesis inhibitors with potent in vitro activity and special pharmacokinetic properties in mammals can induce radical parasitological cure in animal models of both acute and chronic experimental Chagas disease. ${ }^{[6,7]}$ 4-Phenoxyphenoxyethyl thiocyanate (compound 1; WC-9) is an interesting drug that presents ED_{50} values at the low nanomolar range against the clinically more relevant replicative form (amastigotes) of Trypanosoma cruzi, ${ }^{[8-10]}$ the etiological agent of Chagas disease or American trypanosomiasis (Figure 1). WC-9 induces a dose dependent effect of growth of the epimastigotes (EP strain). ${ }^{[11]}$ In addition, the growth inhibitory effects of WC-9 are associated with a depletion of the parasite endogenous sterols, ergosterol and its 24-ethyl analogue with no accumulation of sterol intermediates or precursors indicating a blockade of the biosynthetic pathway at a pre-squalene level. ${ }^{[11]}$

Squalene synthase (SQS) is a crucial enzyme in isoprenoid biosynthesis, which catalyzes the first committed step in ergosterol biosynthesis, where a reductive dimerization of two molecules of farnesyl pyrophosphate takes place to form squalene. It has been determined that the precise mode of action of WC-9 is an inhibitor of the enzymatic activity of T cruzi SQS, ${ }^{[11]}$ employing as enzyme source highly purified glycosomes and mitochondrial membrane vesicles obtained from T. cruzi epimastigotes. ${ }^{[12]} \mathbf{W C - 9}$ is a potent inhibitor of both glycosomal and mitochondrial T.cruzi SQS, with IC_{50} values of 88 nM and 129 nM . The dose-response curves for the activity of WC-9 against $T c$ SQS were consistent with noncompetitive inhibition with $K_{\mathrm{i}}=\mathrm{IC}_{50}$; these K_{i} values are two to three orders of magnitude lower that the K_{m} of the substrates. ${ }^{[11]}$

Apicompexan parasite such as Toxoplasma gondii, the responsible agent of toxoplasmosis, lacks the mevalonate pathway and uses a prokaryotic-type 1-deoxy-D-xylulose-5-phosphate (DOXP) pathway instead to make IPP and DMAPP. The DOXP pathway localizes to the apicoplast and is essential. ${ }^{[13]}$ It has been demonstrated that T. gondii does not synthesize cholesterol and imports it from the host ${ }^{[14]}$ suggesting that inhibitors of the host SQS could potentially inhibit T. gondii growth. The fact that $\mathbf{W C - 9}$ and closely related analogues were growth inhibitor of T. gondii is quite in agreement with other authors work that has shown that mevalonate pathway inhibitors are active against Apicomplexan parasites such as Babesia divergens, ${ }^{[15]}$ Plasmodium falciparum, ${ }^{[15,16]}$ Cryptosporidium parvum, ${ }^{[17]}$ and T. gondii, ${ }^{[18]}$ indicating that these parasites, which lack the mevalonate pathway, are dependent on host biosynthesis of precursors of the isoprenoid pathway. In this regard, it has recently been demonstrated that T. gondii acquires isoprenoid intermediates like farnesyl diphosphate and/or geranylgeranyl diphosphate from the host cell produced by the mevalonate pathway. ${ }^{[19]}$

Rationale

To date the crystal structure of TcSQS with WC-9 is not available. However, the X-ray crystallographic structure of WC-9 bound to dehydrosqualene synthase (CrtM) from Staphylococcus aureus has been recently published. ${ }^{[20]}$ This enzyme catalyzes dehydrosqualene formation, a metabolite that is further transformed into staphyloxanthin. It has been postulated that WC-9 might bind into the same hydrophobic S2 pocket in TcSQS as it does in dehydrosqualene synthase keeping the same polar interactions with the thiocyanate group. ${ }^{[20]}$ Besides, lately it was possible to obtain crystals of WC-9 bound to human SQS but all the attempts to do so with $T c \operatorname{SQS}$ were unsuccessful. ${ }^{[21]}$

Based on WC-9 chemical structure, we have conducted a meticulous structure activity / biological activity relationship studies that lead to the assumption that the phenoxyethyl thiocyanate moiety (colored in red in Figure 1) should be considered as the structure of the pharmacophore. ${ }^{[8-10,22-24]}$ Although WC-9 is able to impair parasitemia in murine models of Chagas disease the level of protection is not as efficient as ketoconazole, used as a positive control. ${ }^{[25]}$ This lack of in vivo efficacy of WC-9 may be attributed to poor pharmacokinetic properties, which indeed should be improved. In this respect, the finding that structural variations at the B ring of WC-9 had a marked influence on biological activity encouraged us to follow this approach. As a matter of fact, the introduction of a fluorine atom at the B ring of WC-9 gives rise to compounds 2 and $\mathbf{3}$, which have estimated $\log \mathrm{P}$ values of 4.71 versus $\log \mathrm{P}$ of 4.51 for $\mathbf{W C - 9}$, indicating a better distribution between water/ octanol. In fact, both of these compounds, $\mathbf{2}$ and $\mathbf{3}$, are significantly more potent than WC-9 in in vitro assays (Figure 1). [23]

The question that arises is how is it possible to optimize the chemical structure of WC-9 without knowing the binding site at the target enzyme? The availability of this information would be very important in order to design rationally more effective non-competitive inhibitors structurally related to WC-9.

The Buchwald coupling reaction has proven to be a reliable method to prepare asymmetric substituted diaryl ethers or even diaryl amines. ${ }^{[26]}$ Certainly, a variety of WC-9 analogues bearing different substituents either at the A ring or B ring has been prepared employing this protocol, ${ }^{[24]}$ which is a reliable alternate method to get these type of compounds avoiding the use of expensive and not always commercially available phenylboronic acids as starting materials. ${ }^{[27]}$

Results and Discussion

Therefore, following a classical approach, the structural variations considered were those that involved different substitutions at the B ring as well as the relative position of the B ring to the aliphatic chain. The introduction of an electron withdrawing moiety at the B ring such as the trifluoromethyl group was the first structural modification considered. Then, employing commercially available 4-(benzyloxy)phenol (6), this compound was converted into the tetrahydropyranyl ether derivative 7 in 96% yield by treatment with 2-bromoethyl tetrahydro- $2 H$-pyran-2-yl ether in a suspension of potassium hydroxide in dimethyl
sulfoxide, following to a slightly modified Williamson reaction. ${ }^{[28]}$ Removal of the protecting benzyl group was carried out by treatment with hydrogen at 3 atm and room temperature, in the presence of palladium on charcoal, to afford phenol $\mathbf{8}$ in 73% yield, which on treatment with 1-iodo-3-(trifluoromethyl)benzene in the presence of 5% cuprous iodide, 10% picolinic acid and potassium phosphate according to the Buchwald protocol produced the conveniently functionalized diaryl ether 9 in 86% yield. Buchwald coupling reaction between $\mathbf{8}$ and 1-iodo-4-(trifluoromethyl)benzene gave 10 in 32% yield. Compound 9 was deprotected by treatment with pyridinium p-toluenesulfonate in methanol to afford the corresponding free alcohol 11 in 62% yield, which, in turned, was treated with tosyl chloride in pyridine to give tosylate $\mathbf{1 3}$ in 86% yield. 13 was further transformed into the thiocyanate derivative 15 by treatment with potassium thiocyanate in N, N-dimethylformamide at $100{ }^{\circ} \mathrm{C}$ in 36% yield (Scheme 2). In a similar strategy, 10 was transformed into alcohol 12, which was reacted with tosyl chloride to give $\mathbf{1 4}$, which was finally transformed into the title compound $\mathbf{1 6}$ by treatment with potassium thiocyanate as illustrated in Scheme 2.

In order to study the influence of the polarity of the terminal phenyl group, it was conceived the replacement of this ring by a naphtyl group giving rise to title compounds 20 and 24, whose estimated $\log \mathrm{P}$ values were both 5.2 versus 4.2 corresponding to the WC-9 molecule. Buchwald coupling reaction of $\mathbf{8}$ either with 2-bromonaphtalene or 1bromonaphtalene afforded the diaryl ether derivatives $\mathbf{1 7}$ and $\mathbf{2 1}$ in low but reproducible yields of 18% and 32%, respectively. Following the general strategy each tetrahydropyranyl protecting group present in $\mathbf{1 7}$ and $\mathbf{2 1}$ was cleaved by treatment with pyridinium p toluenesulfonate affording the corresponding free alcohols 18 and 22 in good yields, which were tosylated to give $\mathbf{1 9}$ and $\mathbf{2 3}$. On treatment with potassium thiocyanate, in separate experiments, these compounds were converted into the target molecules 20 and 24, respectively, as illustrated in Scheme 2.

We have recently described a pyridyl analogue of WC-9 where the nitrogen atom occupied the $3^{\prime \prime}$ position. ${ }^{[24]}$ In order to complete the structure / activity analysis it was decided to prepare the corresponding pyridyl derivative where the nitrogen atom was placed at the $\mathrm{C}-2^{\prime \prime}$ position giving rise to the target molecule 29. The incorporation of the pyridyl unit was carried out through a Buchwald coupling reaction between the already depicted 4iodophenoxyethyl tetrahydro-2H-pyran-2-yl ether (25) with 2-hydrozypyridine to produce tetrahydro pyranyl derivative $\mathbf{2 6}$ in 48% yield. Once this adduct was at hand, and similarly to the preparation of $\mathbf{1 6}$ and 17, cleavage of tetrahydropyranyl protecting group of $\mathbf{2 6}$ to give free alcohol 27, followed by tosylation to produce 28, and further substitution of the tosylate group by the thiocyanate ion afforded the title compound 29 in reaction yields of $60 \%, 90 \%$, and 61%, respectively (Scheme 3).

At the present time it is not conclusive which one is the optimal relative position of terminal phenyl of WC-9. We have recently demonstrated that analogues where the phenyl group was at the $\mathrm{C}-3^{\prime}$ position exhibited antiparasitic activity almost of the same efficacy as those compounds bearing this group at the $\mathrm{C}-4^{\prime}$ position. ${ }^{[24]}$ Therefore, it was conceived several regioisomers of WC-9 bearing different either chlorine or a methoxy group at diverse positions of the terminal ring such as $\mathbf{4 6 - 5 0}$. The synthetic strategy to obtain these
compounds is presented in Scheme 4 employing the already described 3-iodophenoxyethyl tetrahydro-2H-pyran-2-yl ether (30) as a common starting material. ${ }^{[24]}$ This compound was reacted with five substituted phenols like 2-chloro, 3-chloro, 4-chloro, 2-methoxy, and 3methoxyphenol under the usual Buchwald coupling procedures giving rise to the expected asymmetric diaryl ethers $\mathbf{3 1 - 3 5}$ in a range from moderate to good yields. Then, following the general method in individual experiments, each of these compounds suffered from tetrahydropyranyl cleavage to give 36-40, further tosylation to form tosylates 41-45 and nucleophilic displacement of the tosylate group by treatment with potassium thiocyante to afford the expected regioisomers of WC-9, that is, compounds 46-50, respectively (Scheme 4).

Pyridyl regioisomers analogues of WC-9 such as 60-62 were other interesting structural variations considered yielding polar compounds (estimated $\log \mathrm{P}=2.82$) and keeping the pharmacophore into the molecules. In this case, the synthesis of the title compounds was not straightforward, particularly, for the preparation of $\mathbf{6 2}$ as will be discussed later. Then, compound $\mathbf{3 0}$ was used as a committed starting material, which, on separate experiments, was reacted with 2-hydroxy-, 3-hydroxy-, and 4-hydroxypyridine under Buchwald coupling reaction conditions to give rise to coupled products $\mathbf{5 1} \mathbf{- 5 3}$ in moderate yields, which were easily deprotected by treatment with pyridinium p-toluenesulfonate to yield the corresponding free alcohols $\mathbf{5 4}-\mathbf{5 6}$. On treatment with excess of tosyl chloride $\mathbf{5 4}$ and $\mathbf{5 5}$ were converted into tosylates $\mathbf{5 7}$ and $\mathbf{5 8}$, respectively; while the corresponding tosylate of alcohol 56 could not be obtain due to formation of a tosylpyridinium ion, which not only consumes reagent, but also forms an extremelly polar species that hinders the reaction. [29] This problem was circumvented by the preparation of the bromide derivative 59. Then, on treatment with N-bromosuccinimide and triphenylphosphine $\mathbf{5 6}$ was converted into 69. [30] The title compounds $\mathbf{6 0 - 6 2}$ were obtained by treatment of tosylates $\mathbf{5 7}$ and $\mathbf{5 8}$, or bromine 59 with potassium thiocyate in good yields (Scheme 5).

The thiocyanate group in WC-9 and other closely related analogues seems to be essential for biological activity. In order to study the influence of this group on biological action it was considered to replace it by other electrophilic group such as the azido moiety. Thus, the already described tosylate 63, treated with sodium azide in N, N-dimethylformamide afforded the title compound 64 (Scheme 6).

Previous biological data had indicated that a simplified analogue of WC-9 (2,4dichlorophenoxyethyl thiocyanate), in which the aromatic skeleton was a 2,4-dichlorophenyl group instead of a 4-phenoxyphenyl moiety, exhibited similar anti Chagasic activity as our lead compound WC-9. ${ }^{[9]}$ Then, it would seem of interest to evaluate the corresponding bromine analogue $\mathbf{6 8}$. Thus, synthesis of Williamson between 2,4-dibromophenol and bromo ethyl tetrahydropyranyl ether afforded 65, which after hydrolysis of the tetrahydropyranyl group followed by treatment with tosyl chloride and further nucleophilic attack of potassium thiocyanate led the title compound 68 (Scheme 7).

Finally, as a part of the strategy to evaluate very simple structure, the pyridyl derivative $\mathbf{7 2}$ was considered as a polar and very simple structure having an estimated $\log \mathrm{P}$ value of 1.32 .

This compound was prepared straightforwardly from 3-hydroxypyridine following the general method as described in Scheme 8.

Biological evaluation of these new WC-9 analogues was very encouraging. The title compounds $\mathbf{1 5}$ and 16 were potent growth inhibitors of the intracellular form of T. cruzi, which is the clinically more relevant replicative form of the parasite. Certainly, both of these compounds bearing an electron withdrawing group at the $\mathrm{C}-3^{\prime \prime}$ and the $\mathrm{C}-4^{\prime \prime}$ positions exhibited ED_{50} values quite similar compared to $\mathbf{W C - 9}$, used as a positive control, under the same assay conditions. Compounds $\mathbf{1 5}$ and $\mathbf{1 6}$ were also potent inhibitors of T. gondii (tachyzoites) growth possessing ED_{50} values at the very low micromolar level ($1.6 \mu \mathrm{M}$ and $2.0 \mu \mathrm{M}$, respectively). The introduction of a naphtyl group as a terminal B ring of $\mathbf{W C - 9}$ was not beneficial for the anti-T. cruzi activity giving rise to 20 and 24, which are devoid of action against amastigotes of T. cruzi. Interestingly, 20 and $\mathbf{2 4}$ exhibited potent inhibitory action against tachyzoites of T. gondii with ED_{50} values of $2.3 \mu \mathrm{M}$ and $2.9 \mu \mathrm{M}$, respectively. Surprisingly, in spite of having the pharmacopore moeity in the structure, pyridyl derivative 29 was devoid of antiparasitic activity against both T. cruzi and T. gondii. With the exception of 47, which presented vanishing biological activity, the regioisomers of WC-9 bearing electron-donor groups at the terminal ring 46-50 showed potent inhibitory action against T. cruzi and T. gondii being $\mathbf{4 8}$ and $\mathbf{5 0}$ those with similar efficacy compared with WC-9. Interestingly, all of them were very potent growth inhibitors of tachyzoites of T. gondii showing ED_{50} values of $2.1 \mu \mathrm{M}, 3.9 \mu \mathrm{M}, 2.8 \mu \mathrm{M}$ and $4.0 \mu \mathrm{M}$, respectively, as shown in Table 1. Only the pyridyl analogues of the regioisomer of WC-9 61 showed potent antiparasitic action having ED_{50} values of $7.5 \mu \mathrm{M}$ and $3.7 \mu \mathrm{M}$ against T. cruzi and T. gondii, respectively. The rest of these pyridyl derivatives, that is, $\mathbf{6 0}$ and $\mathbf{6 2}$, are free of antiparasitic activity. Evidently, the relative position of the nitrogen atom at the B ring plays a key role in modulating the biological activity. Unexpectedly, the dibromo derivative 68 was inactive as an antiparasitic agent based on the results previously exhibited by the parent dichloro analogue. ${ }^{[9]}$ Finally, the simple pyridyl derivative $\mathbf{7 2}$ was devoid of antiparasitic activity as well. These data were in agreement with our previous results ${ }^{[24]}$ confirming that the paraaryl substitution pattern of WC-9 would not be necessarily required for an effective biological activity. The results are presented in Table 1.

Conclusions

It can be concluded that, most of the title compounds behave as anti-T. cruzi agents as well as anti-Toxoplasma agents favoring the latter ones. The key reaction to access these compounds was the Buchwald coupling reaction, which has proven to be reliable not only to obtain WC-9 derivatives modified at the B ring, but also to synthesize substituted derivatives at the A ring in the future. The promising biological activity observed of the target molecules together with the drug-like character of these compounds motivate new studies to find an optimized chemical structure knowing the precise mode of action. Efforts in these aspects are currently being pursued in our laboratory.

Experimental Section

The glassware used in air and/or moisture sensitive reactions was flame-dried and carried out under a dry argon atmosphere. Unless otherwise noted, chemicals were commercially available and were used without further purification. Anhydrous N, N-dimethylformamide and anhydrous dimethyl sulfoxide were used as supplied from Aldrich.

Nuclear magnetic resonance spectra were obtained using a Bruker AM-500 MHz spectrometer. Chemical shifts are reported in parts per million (δ) relative to tetramethylsilane. Coupling constants are reported in Hertz. ${ }^{13} \mathrm{C}$ NMR spectra were fully decoupled. Splitting patterns are designated as s, singlet; d, doublet; t, triplet; q, quartet.

High-resolution mass spectra were performed using a Bruker micrOTOF-Q II spectrometer, which is a hybrid quadrupole time of flight mass spectrometer with MS/MS capability.

Melting points were determined using a Fisher-Johns apparatus and are uncorrected.

Column chromatography was performed with E. Merck silica gel plates (Kieselgel 60, 230400 mesh). Analytical thin layer chromatography was performed employing 0.2 mm coated commercial silica gel plates (E. Merck, DC-Aluminum sheets, Kieselgel $60 \mathrm{~F}_{254}$).

4-Benzyloxyphenoxyethyl Tetrahydro-2H-pyran-2-yl Ether (7)

A solution of 4-(benzyloxy)phenol ($\mathbf{6} ; 5.00 \mathrm{~g}, 25.0 \mathrm{mmol}$) in dimethyl sulfoxide (25 mL) was treated with potassium hydroxide $(2.81 \mathrm{~g}, 50.0 \mathrm{mmol})$. The mixture was stirred at room temperature for 5 min . Then, bromoethyl tetrahydropyranyl ether $(6.27 \mathrm{~g}, 30.0 \mathrm{mmol})$ was added, and the reaction mixture was stirred at room temperature overnight. The mixture was partitioned between water $(70 \mathrm{~mL})$ and methylene chloride $(70 \mathrm{~mL})$. The aqueous phase was extracted with methylene chloride $(2 \times 40 \mathrm{~mL})$. The combined organic layers were washed with a saturated solution of sodium chloride $(5 \times 50 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was evaporated. The product was purified by column chromatography eluting with hexane$\mathrm{EtOAc}(19: 1)$ to yield 7.89 g (96% yield) of pure compound 7 as a colorless oil: $R_{\mathrm{f}} 0.63$ (hexane-EtOAc, 7:3); ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.46-1.88\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}-3^{\prime \prime \prime}, \mathrm{H}-4^{\prime \prime \prime}\right.$, H-5 ${ }^{\prime \prime \prime}$), 3.45-3.61 (m, 1H, H-6"' ${ }_{\mathrm{a}}$), 3.70-4.05 (m, 3H, H-1, H-6"' ${ }_{\mathrm{b}}$), 4.05-4.18 (m, 2H, H-2), 4.72 (dist. t, $\left.J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime \prime}\right), 5.02$ (s, $2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}-$), 6.87 (d, $J=9.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}$), $6.92\left(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 7.24-7.47\left(\mathrm{~m}, 5 \mathrm{H}\right.$, aromatic protons); ${ }^{13} \mathrm{C}$ NMR (125.77 $\mathrm{MHz}, \mathrm{CDCl} 3) \delta 19.4$ ($\left.\mathrm{C}-4^{\prime \prime \prime}\right), 25.4\left(\mathrm{C}-5^{\prime \prime \prime}\right), 30.5$ (C-3"'), 62.2 (C-6"'), 65.9 (C-1), 68.1 (C-2), 70.7 ($\mathrm{PhCH} 2 \mathrm{O}-$), 99.0 ($\left.\mathrm{C}-2^{\prime \prime \prime}\right), 115.7$ ($\left.\mathrm{C}-3^{\prime}\right), 115.8$ ($\left.\mathrm{C}-2^{\prime}, \mathrm{C}-3^{\prime}\right), 127.5$ ($\mathrm{C}-2^{\prime \prime}$), 127.9 (C-4"), $128.5\left(\mathrm{C}-3^{\prime \prime}\right), 137.3\left(\mathrm{C}-1^{\prime \prime}\right), 153.1\left(\mathrm{C}-1^{\prime}\right), 153.3\left(\mathrm{C}-4^{\prime}\right)$. HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]+351.1572$; found 351.1574 .

4-Hydroxyphenoxyethyl Tetrahydro-2H-pyran-2-yl Ether (8)

A solution of $7(8.150 \mathrm{~g}, 24.8 \mathrm{mmol})$ in ethyl acetate $(40 \mathrm{~mL})$ in the presence of 5% palladium on charcoal (40 mg) was treated with hydrogen at 3 atm . The reaction was stirred at room temperature for 4 h . The mixture was filtered off and the solvent was evaporated. The residue was purified by column chromatography (silica gel) employing hexane-EtOAc (4:1) as eluant to produce 4.301 g (73% yield) of pure $\mathbf{8}$ as a colorless oil: $R_{\mathrm{f}} 0.27$ (hexane-

EtOAc; 7:3); ${ }^{1} \mathrm{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.51-1.68$ (m, 4H, H-4", H-5"), 1.72-1.77 (m, 1H, H-3"a), 1.81-1.88 (m, 1H, H-3"b), 3.51-3.56 (m, 1H, H-6" ${ }_{\mathrm{a}}$), 3.79 (ddd, J=11.1, 6.4, 4.1 Hz, 1H, H-6"'ı ${ }_{\mathrm{b}}$, $3.92\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{a}}\right), 4.03\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{b}}\right), 4.11(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2), 4.71(\mathrm{t}$, $\left.J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right), 6.75\left(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 6.81\left(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.3$ (C-4"), 25.4 (C-5"), 30.5 (C-3"), 62.2 (C-6"), 66.0 (C-1), 68.1 (C-2), 99.0 (C-2"), 115.9 (C-2'), 116.0 ($\mathrm{C}-3^{\prime}$), 149.7 (C-4'), 153.0 (C-1'). HRMS (ESI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 261.1103$; found 261.1088.

4-[(3-Trifluoro)phenoxy]phenoxyethyl Tetrahydro-2H-pyran-2-yl Ether (9)

A mixture of compound $8(1.50 \mathrm{~g}, 6.29 \mathrm{mmol})$, 1-iodo-3-(trifluoromethyl)benzene (2.06 g , 7.56 mmol), copper(I) iodide ($120 \mathrm{mg}, 0.63 \mathrm{mmol}$), 2-picolinic acid, ($155 \mathrm{mg}, 1.26 \mathrm{mmol}$), and potassium phosphate tribasic ($2.68 \mathrm{~g}, 12.6 \mathrm{mmol}$) under anhydrous conditions was evacuated and backfilled with argon. This sequence was repeated twice. Then, dimethyl sulfoxide was added $(15.0 \mathrm{~mL})$ and the reaction mixture was stirred vigorously at $80^{\circ} \mathrm{C}$ for 36 h . The mixture was cooled to room temperature and partitioned between ethyl acetate (20 $\mathrm{mL})$ and water (20 mL). The aqueous layer was extracted with ethyl acetate $(2 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine $(5 \times 50 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was evaporated. The product was purified by column chromatography (silica gel) employing hexane-EtOAc (19:1) as eluent to afford 2.06 g (86% yield) of pure 9 as a colorless oil: $R_{\mathrm{f}} 0.64$ (hexane-EtOAc; 7:3); ${ }^{1} \mathrm{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.53-1.68(\mathrm{~m}$, $\left.4 \mathrm{H}, \mathrm{H}-4^{\prime \prime \prime}, \mathrm{H}-5^{\prime \prime \prime}\right), 1.72-1.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime \prime}{ }_{\mathrm{a}}\right.$), 1.81-1.87 (m, 1H, H-3"' ${ }_{\mathrm{b}}$), $3.53(\mathrm{~m}, 1 \mathrm{H}$, H- $6^{\prime \prime \prime}{ }_{\mathrm{a}}$), 3.82 (ddd, $J=11.2,6.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime \prime}{ }_{\mathrm{b}}$), 3.91 (ddd, $J=11.3,8.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}-1_{\mathrm{a}}\right), 4.07$ (ddd, $\left.J=11.1,4.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{b}}\right), 4.16(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2), 4.72(\mathrm{t}, J=3.6 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-2^{\prime \prime \prime}\right), 6.94\left(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 7.98\left(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 7.09(\mathrm{dd}, J=8.2$, $\left.2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 7.16\left(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right), 7.28$ (dt, $\left.J=7.8,0.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 7.39$ ($\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5^{\prime \prime}$); ${ }^{13} \mathrm{C}$ NMR ($125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.4$ (C-4"'), 25.4 (C-5"'), 30.5
 (C-2'), 118.9 (q, J = $\left.3.8 \mathrm{~Hz}, \mathrm{C}-4^{\prime \prime}\right), 120.4\left(\mathrm{C}-5^{\prime \prime}\right), 130.1$ (C-6"), 149.1 (C-4'), 155.8 (C-1'), $160.0(\mathrm{C}-1 ") ;{ }^{19} \mathrm{~F}$ NMR ($470.54 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.71$. HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~F}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 405.129$; found 405.1285.

4-[(4-Trifluoro)phenoxy]phenoxyethyl Tetrahydro-2H-pyran-2-yl Ether (10)

A mixture of compound $\mathbf{8}(433 \mathrm{mg}, 1.82 \mathrm{mmol}), 1$-iodo-4-(trifluoromethyl)benzene (594 $\mathrm{mg}, 2.18 \mathrm{mmol}$), copper(I) iodide ($34.6 \mathrm{mg}, 0.36 \mathrm{mmol}$), 2-picolinic acid, ($44.8 \mathrm{mg}, 0.36$ mmol), and potassium phosphate tribasic ($773 \mathrm{~g}, 3.64 \mathrm{mmol}$) in dimethyl sulfoxide (6.0 mL) was treated as described for the preparation of $\mathbf{9}$ for 13 days. The residue was purified by column chromatography (silica gel) employing hexane-EtOAc (19:1) as eluent to give 225 g (32% yield) of pure 10 as a colorless oil: $R_{\mathrm{f}} 0.60$ (hexane-EtOAc, 7:3); ${ }^{1} \mathrm{H}$ NMR (500.13 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.53-1.67\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-4^{\prime \prime \prime}, \mathrm{H}-5^{\prime \prime \prime}\right), 1.73-1.79\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime \prime}{ }_{\mathrm{a}}\right.$), 1.82-1.88 (m, $1 \mathrm{H}, \mathrm{H}-3^{\prime \prime \prime}{ }_{\mathrm{b}}$), 3.54 (m, 1H, Н- $6^{\prime \prime \prime}{ }_{\mathrm{a}}$), 3.82 (ddd, $J=11.2,6.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime \prime}{ }_{\mathrm{b}}$), 3.91 (ddd, J $\left.=11.3,8.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{a}}\right), 4.07\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{b}}\right), 4.16(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2), 4.72(\mathrm{t}, J=3.6 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-2^{\prime \prime \prime}\right), 6.95$ (d, J = 9.3 Hz, 2H, H-2'), 6.97 (m, 2H, H-2"), 6.99 (d, $J=9.3 \mathrm{~Hz}, 2 \mathrm{H}$, H-3'), 7.56 (d, $\left.J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.4$ (C-4"'), 25.4 (C-5 ${ }^{\prime \prime \prime}$), 30.5 (C-3"') 62.2 (C-6"'I), 65.8 (C-1), 67.9 (C-2), 99.0 (C-2"I), 116.0 (C-2'), 116.8
(C-3'), 121.5 (C-2"), $127.0\left(\mathrm{q}, J=3.8 \mathrm{~Hz}, \mathrm{C}-3^{\prime \prime}\right), 148.8\left(\mathrm{C}-4^{\prime}\right), 156.0\left(\mathrm{C}-1^{\prime}\right), 161.5$ $\left(\mathrm{C}-1^{\prime \prime}\right) ;{ }^{19} \mathrm{~F}$ NMR ($470.59 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-61.66$. HRMS (ESI) calc. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NaO}_{4}$ $[\mathrm{M}+\mathrm{Na}]^{+}$405.1290; found 405.1286.

4-[(3-Trifluoro)phenoxy]phenoxyethanol (11)

A solution of compound $9(1.96 \mathrm{~g}, 5.13 \mathrm{mmol})$ in methanol $(50 \mathrm{~mL})$ was treated with pyridinium 4-toluenesulfonate (30 mg). The reaction mixture was stirred at room temperature overnight. Then, water $(70 \mathrm{~mL})$ was added, and the mixture was extracted with methylene chloride $(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine ($3 \times$ $50 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was evaporated. The residue was purified by column chromatography (silica gel) eluting with hexane-EtOAc (17:1) to give 944.0 mg (62% yield) of pure alcohol 11 as a colorless oil: $R_{\mathrm{f}} 0.30$ (hexane-EtOAc, 7:3); ${ }^{1} \mathrm{H}$ NMR ($\left.500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.03(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OH}), 3.99(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 4.01(\mathrm{t}, J=4.5$ Hz, 2H, H-2), $6.94\left(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 7.00\left(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 7.10(\mathrm{dd}, J=$ $\left.8.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 7.17$ (t, $\left.J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right), 7.29\left(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 7.40(\mathrm{t}$, $\left.J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5^{\prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 61.5(\mathrm{C}-1), 69.7(\mathrm{C}-2), 114.1(\mathrm{q}, J$ $\left.=3.9 \mathrm{~Hz}, \mathrm{C}-2^{\prime \prime}\right), 115.9$ (C-2'), 119.0 ($\mathrm{q}, J=3.8 \mathrm{~Hz}, \mathrm{C}-4^{\prime \prime}$), 120.5 (C-5"), 130.2 (C-6"), 149.5 (C-4'), 155.5 (C-1'), 158.8 (C-1"). HRMS (ESI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{~F}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 321.0714; found 321.0703.

4-[(4-Trifluoro)phenoxy]phenoxyethanol (12)

A solution of compound $10(229 \mathrm{mg}, 0.60 \mathrm{mmol})$ in methanol $(10 \mathrm{~mL})$ was treated with pyridinium 4-toluenesulfonate (30 mg) as described for the preparation of $\mathbf{1 1}$. Purification by column chromatography (silica gel) eluting with hexane-EtOAc (17:1) afforded 174 mg (97% yield) of pure alcohol $\mathbf{1 2}$ as a white solid: $R_{\mathrm{f}} 0.20$ (hexane-EtOAc, $7: 3$); ${ }^{1} \mathrm{H}$ NMR ($\left.500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.99(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 4.10(\mathrm{t}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 6.94(\mathrm{~d}, J=9.1$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 6.98$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\prime \prime} \mathbf{2}^{\prime \prime}$), 7.01 (d, $\left.J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 7.54$ (d, $J=8.6$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR (125.77 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 61.5$ (C-1), 69.7 (C-2), 115.8 (C-2'), 116.9 (C-3'), 121.6 (C-2"), 127.0 ($\mathrm{q}, J=3.7 \mathrm{~Hz}, \mathrm{C}-3^{\prime \prime}$), $149.1\left(\mathrm{C}-4^{\prime}\right), 155.7\left(\mathrm{C}-1^{\prime}\right), 161.4$ $\left(\mathrm{C}-1^{\prime \prime}\right) ;{ }^{19} \mathrm{~F}$ NMR ($470.54 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-61.68$. HRMS (ESI) calc. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NaO}_{3}$ $[\mathrm{M}+\mathrm{Na}]^{+} 321.0714$; found 321.0719 .

4-[(3-Trifluoro)phenoxy]phenoxyethyl 4-Toluenesulfonate (13)

To a solution of alcohol $\mathbf{1 1}(922 \mathrm{mg}, 3.09 \mathrm{mmol})$ in pyridine $(5.0 \mathrm{~mL})$ was added with p toluenesulfonyl chloride $(1.72 \mathrm{~g}, 9.02 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 4 h . Then, $5 \% \mathrm{HCl}(50 \mathrm{~mL})$ was added and the reaction mixture was stirred for an additional hour. The mixture was extracted with methylene chloride $(50 \mathrm{~mL})$ and the organic layer was washed with $5 \% \mathrm{HCl}(3 \times 50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was evaporated. The product was purified by column chromatography (silica gel) employing a mixture of hexane-EtOAc (19:1) as eluent to afford 1.29 g of tosylate 13 (86% yield) as a colorless oil. $R_{\mathrm{f}} 0.50$ (hexane-EtOAc, 7:3); ${ }^{1} \mathrm{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{PhCH}_{3}\right), 4.16(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 4.38(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-2), 6.81\left(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 6.96\left(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 7.08(\mathrm{dd}, J=8.2,2.3$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 7.15\left(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right), 7.29\left(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 7.35(\mathrm{~d}, J=8.0$
$\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime \prime}\right), 7.40\left(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5^{\prime \prime}\right), 7.83\left(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.6\left(\mathrm{CH}_{3}\right), 66.0(\mathrm{C}-1), 68.0(\mathrm{C}-2), 114.2\left(\mathrm{q}, J=3.9 \mathrm{~Hz}, \mathrm{C}-2^{\prime \prime}\right)$, 116.0 (C-2'), 119.1 (q, $\left.J=3.9 \mathrm{~Hz}, \mathrm{C}-4^{\prime \prime}\right), 120.6$ (C-6") , 121.1 (C-3'), 128.0 (C-2 ${ }^{\prime \prime \prime}$), 129.9 (C-3"'), 130.2 (C-5"), 132.1 ($\left.\mathrm{q}, J=32.6 \mathrm{~Hz}, \mathrm{C}-3^{\prime \prime}\right), 132.9$ (C-4"'), $145.0\left(\mathrm{C}-1^{\prime \prime \prime}\right), 149.7$ (C-4'), 154.8 ($\mathrm{C}-1^{\prime}$), $158.7\left(\mathrm{C}-1^{\prime \prime}\right) ;{ }^{19} \mathrm{~F}$ NMR ($470.59 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.71$ (s). HRMS (ESI) calc for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NaO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 475.0803$; found 475.0775.

4-[(4-Trifluoro)phenoxy]phenoxyethyl 4-Toluenesulfonate (14)

To a solution of alcohol $\mathbf{1 2}(176 \mathrm{mg}, 0.59 \mathrm{mmol})$ in pyridine $(3.0 \mathrm{~mL})$ was added with p toluenesulfonyl chloride ($352 \mathrm{mg}, 1.84 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction mixture was treated as depicted for the preparation of $\mathbf{1 3}$ to afford 249 mg (93% yield) of pure tosylate $\mathbf{1 4}$ as a colorless oil: $R_{\mathrm{f}} 0.50$ (hexane-EtOAc, 7:3); ${ }^{1} \mathrm{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.45(\mathrm{~s}, 3 \mathrm{H}$, PhCH_{3}), 4.16 (m, 2H, H-1), 4.38 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2$), 6.81 (d, $\left.J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 6.966$ (d, $J=$ $\left.8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right), 6.970\left(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 7.36\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime \prime}\right), 7.54$ (d, J $\left.=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right), 7.83\left(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.7$ $\left(\mathrm{PhCH}_{3}\right) 66.0(\mathrm{C}-1), 68.0(\mathrm{C}-2), 116.0\left(\mathrm{C}-2^{\prime}\right), 116.9\left(\mathrm{C}-3^{\prime}\right), 121.5\left(\mathrm{C}-2^{\prime \prime}\right), 127.0(\mathrm{q}, J=3.8$ Hz, C-3"), 128.0 (C-2"') , 129.9 (C-3 ${ }^{\prime \prime \prime}$), 132.9 (C-4"'), 145.0 (C-1"'), 149.4 (C-4'), 155.0 (C-1'), $161.3\left(\mathrm{C}-1^{\prime \prime}\right) ;{ }^{19} \mathrm{~F}$ NMR ($470.54 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-61.69. HRMS (ESI) calc. for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{~F}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]+475.0803$; found 475.0809.

4-[(3-Trifluoro)phenoxy]phenoxyethyl Thiocyanate (15)

A solution of tosylate $13(1.290 \mathrm{~g}, 2.85 \mathrm{mmol})$ in anhydrous N, N-dimethylformamide (10 mL) was treated with potassium thiocyanate $(1.390 \mathrm{~g}, 14.3 \mathrm{mmol})$. The reaction mixture was heated at $100{ }^{\circ} \mathrm{C}$ for 48 h . The mixture was allowed to cool to room temperature and water $(20 \mathrm{~mL})$ was added. The aqueous phase was extracted with methylene chloride $(2 \times 30 \mathrm{~mL})$ and the combined organic layers were washed with brine $(5 \times 30 \mathrm{~mL})$ and water $(2 \times 30$ $\mathrm{mL})$. The solvent was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was purified by column chromatography (silica gel) eluting with hexane-EtOAc (19:1) to give 346 mg (36% yield) of pure compound $\mathbf{1 5}$ as a colorless oil; $R_{\mathrm{f}} 0.51$ (hexane-EtOAc, 7:3); ${ }^{1} \mathrm{H}$ NMR (500.13 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.35(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1), 4.33(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 6.95(\mathrm{~d}, J=9.1$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 7.01$ (d, $\left.J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 7.11$ (dd, $\left.J=8.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 7.18$ (t, J $\left.=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right), 7.30\left(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 7.41\left(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5^{\prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR (125.77 MHz, CDCl_{3}) $\delta 33.2(\mathrm{C}-1), 66.4(\mathrm{C}-2), 111.6(\mathrm{SCN}), 114.3(\mathrm{q}, J=3.9 \mathrm{~Hz}$, C-2"), 116.1 (C-2'), 119.2 (q, $\left.J=3.8 \mathrm{~Hz}, \mathrm{C}-4^{\prime \prime}\right), 120.6\left(\mathrm{C}-5^{\prime \prime}\right), 123.7\left(\mathrm{q}, J=272.4 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$), 130.2 (C-6"), 132.1 ($\mathrm{q}, J=32.6 \mathrm{~Hz}, \mathrm{C}-3^{\prime \prime}$), 150.1 (C-4'), 154.6 (C-1'), 158.6 (C-1"); ${ }^{19} \mathrm{~F}$ NMR (470.54 MHz, CDCl_{3}) $\delta-62.70$. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{NSF}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 362.0439; found 362.0428.

4-[(4-Trifluoro)phenoxy]phenoxyethyl Thiocyanate (16)

A solution of tosylate $14(249 \mathrm{mg}, 0.55 \mathrm{mmol})$ in anhydrous N, N-dimethylformamide (4 mL) was treated with potassium thiocyanate ($266 \mathrm{mg}, 2.73 \mathrm{mmol}$). The reaction mixture was heated at $100^{\circ} \mathrm{C}$ for 48 h . The reaction was work-up as depicted for the preparation of $\mathbf{1 5}$. The residue was purified by column chromatography (silica gel) employing a mixture of hexane-EtOAc (19:1) as eluent to give 76 mg (41% yield) of pure compound $\mathbf{1 6}$ as a
colorles oil: $R_{\mathrm{f}} 0.53$ (hexane-AcOEt, 7:3); ${ }^{1} \mathrm{H}$ NMR $\left(500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.35(\mathrm{t}, J=5.8$
$\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-1), 4.33(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 6.95\left(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 6.99(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}$), 7.03 (d, $\left.J=9.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 7.55$ (d, $\left.J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 33.2(\mathrm{C}-1), 66.4(\mathrm{C}-2), 111.6(\mathrm{SCN}), 116.1\left(\mathrm{C}-2^{\prime}\right), 117.0\left(\mathrm{C}-3^{\prime}\right)$, 121.6 (C-2"), 127.1 (q, $\left.J=3.8 \mathrm{~Hz}, \mathrm{C}-3^{\prime \prime}\right), 149.7\left(\mathrm{C}-4^{\prime}\right), 154.8\left(\mathrm{C}-1^{\prime}\right), 161.2\left(\mathrm{C}-1^{\prime \prime}\right) ;{ }^{19} \mathrm{~F}$ NMR ($470.54 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-61.70$. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{NSF}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 362.0439; found 362.0419.

β-Naphtyloxyphenoxyethyl Tetrahydro-2H-pyran-2-yl Ether (17)

A mixture of $\mathbf{8}$ ($889 \mathrm{mg}, 3.73 \mathrm{mmol}$), 2-bromonaphtalene ($111 \mathrm{mg}, 0.54 \mathrm{mmol}$), copper(I) iodide ($79 \mathrm{mg}, 0.42 \mathrm{mmol}$), 2-picolinic acid $(91.5 \mathrm{mg}, 0.74 \mathrm{mmol})$, and potassium phosphate tribasic ($1.53 \mathrm{~g}, 7.22 \mathrm{mmol}$) in methyl sulfoxide $(6 \mathrm{~mL})$ was treated according to the general procedure. The residue was purified by column chromatography (silica gel) employing hexane-EtOAc (9:1) as eluent to afford 244 mg (18% yield) of pure compound $\mathbf{1 7}$ as a colorless oil: $R_{\mathrm{f}} 0.55$ (hexane-EtOAc, 7:3); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.53-1.68(\mathrm{~m}$, $\left.4 \mathrm{H}, \mathrm{H}-4^{\prime \prime \prime}, \mathrm{H}-5^{\prime \prime \prime}\right), 1.73-1.79\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime \prime}{ }_{\mathrm{a}}\right.$), $1.85\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime \prime}{ }_{\mathrm{b}}\right), 3.55\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime \prime}{ }_{\mathrm{a}}\right)$, 3.83 (ddd, $J=11.1,6.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime \prime}{ }_{\mathrm{b}}$), 3.92 (ddd, $J=10.5,8.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{a}}$), 4.07 (m, 1H, H-1 $), 4.17(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2), 4.73\left(\mathrm{t}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime \prime}\right), 6.96(\mathrm{~d}, J=9.1 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 7.04\left(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 7.18\left(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}\right), 7.24$ (dd, $J=9.0$, $\left.2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right), 7.37$ (m, 1H, H-6"), 7.43 (ddd, $\left.J=7.9,7.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7^{\prime \prime}\right), 7.66$ (d, J $\left.=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8^{\prime \prime}\right), 7.799$ (d, $\left.J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 7.804$ (d, $\left.J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime}\right) ; 13 \mathrm{C}$ NMR ($\left.125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.4$ (C-4"'), $25.4\left(\mathrm{C}-5^{\prime \prime \prime}\right), 30.5$ (C-3"'), 62.2 (C-6"'), 65.9 (C-1), 68.0 (C-2), 99.0 ($\left.\mathrm{C}-2^{\prime \prime \prime}\right), 112.2$ (C-1"), 115.9 (C-2'), 119.3 (C-3"), $121.0\left(\mathrm{C}-3^{\prime}\right), 124.3$ (C-6"), 126.5 (C-8"), 127.0 (C-7"), 127.7 (C-5"), 129.8 (C-4"), 129.8 (C-10"), 134.3 (C-9"), 150.2 (C-4'), 155.4 (C-1'), 156.4 (C-2"). HRMS (ESI) calc. for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$ 387.1572; found 387.1558 .

β-Naphtyloxyphenoxyethanol (18)

A solution of $\mathbf{1 7}(358 \mathrm{mg}, 0.98 \mathrm{mmol})$ in methanol $(10 \mathrm{~mL})$ was treated with pyridinium p toluenesulfonate (20 mg) according to the general procedure. After the usual work-up, evaporation of the solvent yielded 266 mg of alcohol $\mathbf{1 8}$ (97% yield) as a white solid: R_{f} 0.22 (hexane-EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.99$ (dist. t, $J=4.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1$), 4.10 (dist. t, $J=4.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 6.95$ (d, $\left.J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 7.05(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}$, H-3'), 7.18 (d, $\left.J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}\right), 7.25$ (dd, $\left.J=9.0,2.6 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime}\right), 7.40$ (ddd, $J=8.1$, $\left.6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 7.43$ (ddd, $J=8.2,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7^{\prime \prime}$), 7.66 (dd, $J=8.1,0.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-8^{\prime \prime}\right), 7.80\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 7.81\left(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR (125.77 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 61.6(\mathrm{C}-1), 69.7(\mathrm{C}-2), 112.4\left(\mathrm{C}-1^{\prime \prime}\right), 115.7\left(\mathrm{C}-2^{\prime}\right), 119.4\left(\mathrm{C}-3^{\prime \prime}\right), 121.0$ (C-3'), 124.4 (C-6"), 126.5 (C-8"), 127.0 (C-7"), 127.7 (C-5"), 129.8 (C-4"), 129.8 (C-10"), 134.3 (C-9"), 150.5 (C-4'), 155.1 (C-1'), 156.3 (C-2"). HRMS (ESI) calc. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{3}$ [M $+\mathrm{H}]^{+}$281.1178; found 281.1166

β-Naphtyloxyphenoxyethyl 4-Toluenesulfonate (19)

A solution of alcohol $\mathbf{1 8}(286 \mathrm{mg}, 1.02 \mathrm{mmol})$ in pyridine (5 mL) was treated with tosyl chloride ($547 \mathrm{mg}, 2.87 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ as depicted in the general procedure. Purification of
the crude compound by column chromatography afforded 295 mg (67% yield) of tosylate $\mathbf{1 9}$ as a white solid: $R_{\mathrm{f}} 0.50$ (hexane-EtOAc, 7:3); ${ }^{1} \mathrm{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.45$ (s, $\left.\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.16(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 4.38 \mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2\right), 6.81\left(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 7.00(\mathrm{~d}, J=$ $\left.9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 7.17$ (d, $\left.J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}\right), 7.23$ (dd, $\left.J=8.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right), 7.36$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime \prime}$), 7.38 (ddd, $\left.J=8.0,6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 7.44$ (ddd, $J=8.1,6.9$, $\left.1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7^{\prime \prime}\right), 7.66$ (dd, $\left.J=8.2,0.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8^{\prime \prime}\right), 7.80\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 7.81$ (d, $\left.J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime}\right), 7.84\left(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR (125.77 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ $21.7\left(\mathrm{CH}_{3}\right), 66.1(\mathrm{C}-1), 68.1(\mathrm{C}-2), 112.5\left(\mathrm{C}-1^{\prime \prime}\right), 115.8\left(\mathrm{C}-2^{\prime}\right), 119.4\left(\mathrm{C}-3^{\prime \prime}\right), 120.9\left(\mathrm{C}-3^{\prime}\right)$, 124.5 (C-6"), 126.5 (C-8"), 127.0 (C-7"), 127.7 (C-5"), 128.1 (C-2"'), 129.8 (C-4"), 129.9 (C-10"), 129.9 (C-3"'), 132.9 (C-4"'), 134.3 (C-9"), 145.0 (C-1"I'), 150.8 (C-4'), 154.4 (C-1'), 158.9 (C-2"). HRMS (ESI) calc. for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 457.1086$; found 457.1077.

β-Naphtyloxyphenoxyethyl Thiocyanate (20)

A solution of 19 ($295 \mathrm{mg}, 0.68 \mathrm{mmol}$) in anhydrous N, N-dimethylformamide (5 mL) was treated with potassium thiocyanate ($350 \mathrm{mg}, 3.60 \mathrm{mmol}$) according to the general procedure. The residue was purified by column chromatography (silica gel) employing hexane-EtOAc ($9: 1$) as eluent to give 93.3 mg (43% yield) of pure $\mathbf{2 0}$ as a white solid: $R_{\mathrm{f}} 0.52$ (hexaneEtOAc, 7:3); mp 81-82 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.35(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1)$, $4.32(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 6.95\left(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 7.06$ (d, $\left.J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right)$, 7.20 (d, $\left.J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}\right), 7.24$ (dd, $\left.J=8.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right), 7.38$ (ddd, $J=8.1,6.9$, $\left.1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 7.43$ (ddd, $J=8.1,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7^{\prime \prime}$), 7.67 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8^{\prime \prime}$), 7.81 (d, $\left.J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 7.82\left(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime}\right)$) ${ }^{13} \mathrm{C}$ NMR (125.77 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 33.4(\mathrm{C}-1), 66.4(\mathrm{C}-2), 111.8(\mathrm{SCN}), 112.6\left(\mathrm{C}-1^{\prime \prime}\right), 115.9\left(\mathrm{C}-2^{\prime}\right), 121.0\left(\mathrm{C}-3^{\prime}\right)$, 124.5 (C-6"), 126.5 (C-8"), 127.0 (C-7"), 127.7 (C-5"), 129.83 (C-4"), 129.87 (C-5"a), 134.3 (C-8"a), 151.1 (C-4'), 154.1 (C-1'), 156.0 (C-2"). HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{NSNa}[\mathrm{M}+\mathrm{Na}]^{+} 344.0721$; found 344.0711.
a-Naphtyloxyphenylethyl Tetrahydro-2H-pyran-2-yl Ether (21)
A mixture of $\mathbf{8}$ ($724 \mathrm{mg}, 3.04 \mathrm{mmol}$), 1-bromonaphtalene ($840 \mathrm{mg}, 4.08 \mathrm{mmol}$), copper (I) iodide ($60.7 \mathrm{mg}, 0.32 \mathrm{mmol}$), 2-picolinic acid ($75.8 \mathrm{mg}, 0.62 \mathrm{mmol}$) and potassium phosphate tribasic ($1.33 \mathrm{~g}, 6.24 \mathrm{mmol}$) in dimethyl sulfoxide (6 mL) was treated as usual for 48 h . The residue was purified by column chromatography (silica gel) employing hexaneEtOAc (9:1) as eluent to give 322 mg (29% yield) of pure 21 as a colorless oil: $R_{\mathrm{f}} 0.56$ (hexane-EtOAc, 7:3); ${ }^{1} \mathrm{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.51-1.68\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-4^{\prime \prime \prime}, \mathrm{H}-5^{\prime \prime \prime}\right)$, $1.72-1.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime \prime}{ }_{\mathrm{a}}\right), 1.81-1.89\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime \prime}{ }_{\mathrm{b}}\right), 3.55\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime \prime}{ }_{\mathrm{a}}\right), 3.83(\mathrm{ddd}, J=$ $11.1,6.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime \prime}{ }_{\mathrm{b}}$), $3.90\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{a}}\right), 4.02$ (ddd, $J=11.1,5.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}-1_{\mathrm{b}}\right), 4.16(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2), 4.70\left(\mathrm{t}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime \prime}\right), 6.79(\mathrm{dd}, J=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}-2^{\prime \prime}\right), 6.94\left(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 7.02\left(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 7.33(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, H-3"), 7.52 (m, 2H, H-6", H-7"), 7.58 (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}$), 7.85 (dd, $J=7.4,1.9 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-5^{\prime \prime}\right), 8.24$ (d, $\left.J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8^{\prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.4$ (C-4"'), 25.4 (C-5"I'), 30.5 (C-3"I), 62.2 (C-6"'), 65.9 (C-1), 68.1 (C-2), 99.0 (C-2"I), 111.3 (C-2"), 116.0 (C-2'), 120.5 (C-3'), 122.0 (C-4"), 122.4 (C-8"), 125.7 (C-3"), 126.2 (C-7"), 126.5 (C-9"), 126.7 (C-6"), 127.6 (C-5"), 134.7 (C-10"), 149.7 (C-4'), 153.1 (C-1"), 155.2 (C-1'). HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 387.1572$; found 387.1563.

a-Naphtyloxyphenylethanol (22)

a-Naphtyloxyphenylethyl 4-Toluenesulfonate (23)

To a solution of alcohol $22(229 \mathrm{mg}, 0.82 \mathrm{mmol})$ in pyridine (5 mL) was added p toluenesulfonyl chloride ($517 \mathrm{mg}, 2.71 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After the usual work up, purification of the product afforded 323 mg (91% yield) of tosylate 23 as a white solid: $R_{\mathrm{f}} 0.48$ (hexaneEtOAc, 7:3); ${ }^{1} \mathrm{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.15(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 4.37$ (m, 2H, H-2), $6.788\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right), 6.790\left(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 6.98(\mathrm{~d}, J=$ $\left.9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 7.33$ (t, $\left.J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right), 7.35$ (d, $\left.J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime \prime}\right), 7.52(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-6^{\prime \prime}, \mathrm{H}^{\prime \prime} 7^{\prime \prime}$), 7.57 (d, $\left.J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 7.83$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime \prime}$), 7.86 (dd, J $\left.=7.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime}\right), 8.26$ (dd, $\left.J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8^{\prime \prime}\right)$. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 457.1086$; found 457.1082.

a-Naphtyloxyphenylethyl Thiocyanate (24)

A solution of tosylate $\mathbf{2 3}$ ($323 \mathrm{mg}, 1.03 \mathrm{mmol}$) in N, N-dimethylformamide (6 mL) was treated with potassium thiocyanate ($581 \mathrm{mg}, 5.98 \mathrm{mmol}$) following the general procedure. The residue was purified by column chromatography (silica gel) employing a mixture of hexane-EtOAc (19:1) as eluent to afford 140 mg (43% yield) of pure 24 as a white solid: R_{f} 0.54 (hexane-AcOEt, $7: 3$); mp $95-96{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.35(\mathrm{t}, J=5.8$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-1), 4.32(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 6.83\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right), 6.93(\mathrm{~d}, J=9.1$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 7.04\left(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 7.35\left(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right), 7.52(\mathrm{~m}, 2 \mathrm{H}$, H-6", H-7"), 7.58 (d, $\left.J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 7.87$ (dd, $\left.J=7.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime}\right), 8.26$ (dd, J $\left.=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8^{\prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 33.3(\mathrm{C}-1), 66.4(\mathrm{C}-2), 111.7$ (SCN), 111.8 (C-2"), $116.0\left(\mathrm{C}-2^{\prime}\right), 120.5\left(\mathrm{C}-3^{\prime}\right), 122.0\left(\mathrm{C}-4^{\prime \prime}\right), 122.8\left(\mathrm{C}-8^{\prime \prime}\right), 125.7\left(\mathrm{C}-3^{\prime \prime}\right)$, 125.9 (C-7"), 126.4 (C-9"), 126.6 (C-6"), 127.7 (C-5"), 134.9 (C-10"), 151.8 (C-4'), 153.9 (C-1"), $154.0\left(\mathrm{C}-1^{\prime}\right)$. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{NSNa}[\mathrm{M}+\mathrm{Na}]^{+} 344.0721$; found 344.0702.

4-(Pyridin-2-yloxy)phenoxyethyl Tetrahydro-2H-pyran-2-yl Ether (26)

A mixture of $\mathbf{2 5}(1.40 \mathrm{~g}, 4.02 \mathrm{mmol})$, 2-hydroxypyridine ($450 \mathrm{mg}, 4.73 \mathrm{mmol}$), copper (I) iodide ($73.3 \mathrm{mg}, 0.38 \mathrm{mmol}$), 2-picolinic acid ($91.0 \mathrm{mg}, 0.74 \mathrm{mmol}$), and potassium phosphate tribasic ($1.74 \mathrm{~g}, 8.20 \mathrm{mmol}$) in methyl sulfoxide $(6 \mathrm{~mL})$ was treated according to the general procedure for 8 days. The product was purified by column chromatography
(silica gel) eluting with a mixture of hexane-EtOAc (3:7) to give 607 mg (48% yield) of pure 26 as a colorless oil: $R_{\mathrm{f}} 0.09$ (hexane-EtOAc, 1:1); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.52-1.65\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-4^{\prime \prime \prime}, \mathrm{H}-5^{\prime \prime \prime}\right), 1.72-1.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime \prime}{ }_{\mathrm{a}}\right.$), 1.81-1.86 (m, 1H, H-3"' ${ }_{\mathrm{b}}$), 3.54 $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime \prime}{ }_{\mathrm{a}}\right.$), 3.84 (ddd, $J=11.2,6.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime \prime}{ }_{\mathrm{b}}$), 3.91 (ddd, $J=11.2,8.2,3.0$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{a}}\right), 4.07\left(\mathrm{ddd}, J=11.2,4.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{b}}\right), 4.18(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2), 4.72(\mathrm{t}, J=$ $\left.3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime \prime}\right), 6.22$ (dt, $\left.J=6.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 6.64\left(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 7.02$ (d, $\left.J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\prime} 2^{\prime}\right), 7.28\left(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 7.32(\mathrm{dd}, J=6.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-3^{\prime \prime}$), 7.39 (ddd, $\left.J=9.2,6.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR (125.77 MHz, CDCl_{3}) $\delta 19.2$ (C-4"'), 25.3 (C-5"I), 30.4 (C-3"'), 62.1 (C-6"'), 65.6 (C-1), 67.7 (C-2), 98.9 (C-2"I), 105.7 (C-6"), 115.1 (C-2'), 121.6 (C-4"), 127.4 (C-3'), 133.7 (C-4'), 138.2 (C-5"), 139.8 (C-3"), $158.6\left(\mathrm{C}-1^{\prime}\right), 162.6\left(\mathrm{C}-1^{\prime \prime}\right)$. HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 338.1368$; found 338.1365 .

4-(Pyridin-2-yloxy)phenoxyethanol (27)

A solution of $\mathbf{2 6}(607 \mathrm{mg}, 1.92 \mathrm{mmol})$ in methanol $(10 \mathrm{~mL})$ was treated with pyridinium p toluenesulfonate $(20 \mathrm{mg})$ and the mixture was stirred at room temperarture for 4 h . After the usual work up, the product was purified by column chromatography (silica gel) employing EtOAc as eluent to afford 266 mg (60% yield) of pure alcohol 27 as a white solid: $R_{\mathrm{f}} 0.09$ (AcOEt); mp $150{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.99$ (m, 2H, H-1), 4.13 (dist. $\mathrm{t}, J=$ $4.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 6.22$ (dt, $\left.J=6.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 6.65\left(\mathrm{dq}, J=9.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right)$, 7.02 (d, $\left.J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 7.31$ (d, $\left.J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 7.32$ (ddd, $J=6.5,2.2,0.6 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right), 7.39$ (ddd, $\left.J=9.2,6.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR (125.77 MHz, CDCl_{3}) δ 61.4 (C-1), 69.5 (C-2), 105.8 (C-6"), 115.2 (C-2'), 121.9 (C-4"), 127.7 (C-3'), 138.2 (C-5"), 139.8 (C-3"), 158.4 (C-1'), 163.8 (C-1"). 105.7 (C-6"), 115.1 (C-2'), 121.6 (C-4"), 127.4 (C-3'), 133.7 (C-4'), 138.2 (C-5"), 139.8 (C-3"), 158.6 (C-1'), 162.6 (C-1"). HRMS (ESI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$232.0974; found 232.0978.

4-(Pyridin-2-yloxy)phenoxyethyl 4-Toluenesulfonate (28)

A solution of alcohol $27(122 \mathrm{mg}, 0.53 \mathrm{mmol})$ in pyridine $(2 \mathrm{~mL})$ was treated with tosyl chloride ($352 \mathrm{mg}, 1.85 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction was quenched as depicted for the preparation of $\mathbf{1 3}$ to afford 183 mg (90% yield) of pure $\mathbf{2 8}$ as a white solid: $R_{\mathrm{f}} 0.39$ (AcOEt); ${ }^{1} \mathrm{H}$ NMR $\left(500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.18(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 4.39(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-2), 6.22$ (dt, $\left.J=6.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 6.64\left(\mathrm{dq}, J=9.3,0.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 6.88$ (d, $\left.J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 7.27\left(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 7.30(\mathrm{ddd}, J=6.9,2.0,0.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}-3^{\prime \prime}\right), 7.36$ (d, $\left.J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime \prime}\right), 7.39$ (ddd, $\left.J=9.0,6.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime}\right), 7.83$ (d, $J=$ $\left.8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR (125.77 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 21.7\left(\mathrm{CH}_{3}\right), 65.8(\mathrm{C}-1), 67.9(\mathrm{C}-2)$, 105.8 (C-6"), 115.2 (C-2'), 121.8 (C-4"), 127.7 (C-3'), 128.0 (C-2"'), 129.9 (C-3"'), 134.5 (C-4'), 132.8 ($\left.\mathrm{C}-4^{\prime \prime \prime}\right), 138.1$ (C-5"), 139.8 ($\left.\mathrm{C}-3^{\prime \prime}\right), 145.1$ ($\left.\mathrm{C}-1^{\prime \prime \prime}\right), 157.8\left(\mathrm{C}-1^{\prime}\right), 162.6\left(\mathrm{C}-1^{\prime \prime}\right)$. HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 386.1062$; found 386.1055.

4-(Pyridin-2-yloxy)phenoxyethyl Thiocyante (29)

A solution of compound $\mathbf{2 8}(136 \mathrm{mg}, 0.35 \mathrm{mmol})$ in anhydrous N, N-dimethylformamide (2 mL) was treated with potassium thiocyanate ($200 \mathrm{mg}, 2.06 \mathrm{mmol}$) according to the general method. The product was purified by column chromatography (silica gel) employing a
mixture of hexane-EtOAc (1:1) as eluent to yield 56.9 mg (61% yield) of thiocyanate 29 as a white solid: $R_{\mathrm{f}} 0.38$ (AcOEt); ${ }^{1} \mathrm{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.36$ (t, $J=5.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{H}-1), 4.36(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 6.23\left(\mathrm{dt}, J=6.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 6.65(\mathrm{dq}, J=9.3,0.7$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 7.02\left(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 7.33\left(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 7.31$ (ddd, $J=$ $\left.7.0,1.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right), 7.39$ (ddd, $\left.J=9.2,6.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime}\right)$; ${ }^{13} \mathrm{C}$ NMR (125.77 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 33.1(\mathrm{C}-1), 66.2(\mathrm{C}-2), 105.9\left(\mathrm{C}-6^{\prime \prime}\right), 111.6(\mathrm{SCN}), 115.3\left(\mathrm{C}-2^{\prime}\right), 121.9$ (C-4"), 127.9 (C-3'), 134.8 (C-4'), 138.1 (C-5"), 139.9 (C-3"), 157.6 ($\left.\mathrm{C}-1^{\prime}\right), 162.6$ ($\left.\mathrm{C}-1^{\prime \prime}\right)$. HRMS (ESI) calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 273.0698$; found 2.0703.

3-(2-Chlorophenoxy)phenoxyethyl Tetrahydro-2H-pyran-2-yl Ether (31)

A mixture of compound $\mathbf{3 0}$ ($927 \mathrm{mg}, 2.6 \mathrm{mmol}$), 2-chlorophenol ($411 \mathrm{mg}, 3.2 \mathrm{mmol}$), copper (I) iodide ($50.6 \mathrm{mg}, 0.27 \mathrm{mmol}$), 2-picolinic acid, ($65.5 \mathrm{mg}, 0.53 \mathrm{mmol}$), and potassium phosphate tribasic ($1.129 \mathrm{~g}, 5.3 \mathrm{mmol}$) was evacuated and back-filled with argon as described for the preparation of 9 . The product was purified by column chromatography (silica gel) employing hexane-EtOAc (24:1) as eluent to afford 475 mg (51% yield) of pure 31 as a colorless oil: $R_{\mathrm{f}} 0.47$ (hexane-EtOAc; $4: 1$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.50-$ 1.65 (m, 4H, H-4"', H-5 ${ }^{\prime \prime \prime}$), 1.70-1.76 (m, 1H, H-3 ${ }^{\prime \prime \prime}{ }_{a}$), 1.79-1.86 (m, 1H, H-3"' ${ }_{\mathrm{b}}$), 3.52 (m, $1 \mathrm{H}, \mathrm{H}-6^{\prime \prime \prime}{ }_{\mathrm{a}}$), 3.80 (ddd, $J=11.2,6.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime \prime}{ }_{\mathrm{b}}$), 3.88 (ddd, $J=11.2,8.2,3.1 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-1_{\mathrm{a}}\right), 4.07\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{b}}\right), 4.12(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2), 4.69\left(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime \prime}\right), 6.54(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{H}-4^{\prime}, \mathrm{H}-6^{\prime}\right), 6.55\left(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 7.02\left(\mathrm{dt}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 7.09$ (dt, $\left.J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 7.21\left(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 7.22\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime}\right), 7.45(\mathrm{dd}, J=$ $\left.8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right)$; ${ }^{13} \mathrm{C}$ NMR ($125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.4$ (C-4"I), 25.4 (C-5"'), 30.5 (C-3 ${ }^{\prime \prime \prime}$), 62.2 (C-6"I), 65.7 (C-1), 67.6 (C-2), $99.0\left(\mathrm{C}^{\prime \prime \prime \prime}\right), 104.8$ (C-2'), 109.6 (C-6'), 110.2 (C-4'), 121.2 ($\mathrm{C}-6^{\prime \prime}$), 124.8 ($\mathrm{C}-4^{\prime \prime}$), 126.0 ($\mathrm{C}-2^{\prime \prime}$), 127.9 ($\mathrm{C}-5^{\prime \prime}$), 130.1 ($\mathrm{C}-3^{\prime \prime}$), 130.8 ($\mathrm{C}-5^{\prime}$), 152.2 (C-1"), 158.1 (C-3'), $160.2\left(\mathrm{C}-1^{\prime}\right)$. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{ClNa}[\mathrm{M}+\mathrm{Na}]^{+}$ 371.1026; found 371.1023.

3-(2-Chlorophenoxy)phenoxyethanol (36)

A solution of compound $\mathbf{3 1}(475 \mathrm{mg}, 1.4 \mathrm{mmol})$ in methanol $(75 \mathrm{~mL})$ was treated with pyridinium 4-toluenesulfonate (30 mg) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature overnight. After the usual work up, the residue was purified by column chromatography eluting with hexane-EtOAc (4:1) to give 252 mg (70% yield) of pure alcohol 36 as a colorless oil: $R_{\mathrm{f}} 0.05$ (hexane-EtOAc; $4: 1$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 3.95 (dist. t, $J=4.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1$), 4.06 (dist. t, $J=4.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2$), $6.54(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}$, H-4'), 6.56 (ddd, $\left.J=8.1,2.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 6.66$ (ddd, $\left.J=8.2,2.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right)$, 7.03 (dd, $\left.J=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 7.10\left(\mathrm{ddd}, J=7.7,7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 7.22(\mathrm{t}, J=$ $\left.8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 7.24$ (m, 1H, H-5"), 7.46 (dd, $\left.J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 61.4(\mathrm{C}-1), 67.3(\mathrm{C}-2), 104.5$ (C-2'), $109.3\left(\mathrm{C}-6^{\prime}\right), 110.3\left(\mathrm{C}-4^{\prime}\right)$, 121.3 (C-6"), 125.0 (C-4"), 126.1 (C-2"), 128.0 (C-5"), 130.3 (C-3"), 130.8 (C-5'), 152.2 (C-1"), 158.1 (C-3'), $160.3\left(\mathrm{C}-1^{\prime}\right)$. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+} 265.0631$; found 265.0633.

3-(2-Chlorophenoxy)phenoxyethyl 4-Toluenesulfonate (41)

A solution of alcohol $36(253 \mathrm{mg}, 0.95 \mathrm{mmol})$ in pyridine $(3 \mathrm{~mL})$ was treated with p toluenesulfonyl chloride ($546 \mathrm{mg}, 2.9 \mathrm{mmol}$) according to the general method. The product was purified by column chromatography (silica gel) employing a mixture of hexane-EtOAc ($9: 1$) as eluent to afford 226 mg (66% yield) of tosylate 41 as a colorless oil. $\mathrm{R}_{f} 0.25$ (hexane-EtOAc, 4:1); ${ }^{1} \mathrm{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.11(\mathrm{~m}, 2 \mathrm{H}$, H-1), 4.35 (m, 2H, H-2), 6.39 (t, $\left.J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 6.53$ (m, 2H, H-4', H-6'), 7.00 (dd, J $\left.=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 7.11\left(\mathrm{dt}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 7.18\left(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right)$, 7.24 (ddd, $\left.J=8.1,7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime}\right), 7.32$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime \prime}$), 7.46 (dd, $J=8.0$, $\left.1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right), 7.81\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR (125.77 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 21.6$ $\left(\mathrm{CH}_{3}\right), 65.5(\mathrm{C}-1), 68.0(\mathrm{C}-2), 104.6\left(\mathrm{C}-2^{\prime}\right), 109.2\left(\mathrm{C}^{\prime} 6^{\prime}\right), 110.6$ (C-4'), $121.2\left(\mathrm{C}-6^{\prime \prime}\right), 125.0$ (C-4"), 127.99 (C-5"), 128.02 (C-2 $2^{\prime \prime \prime}$), 129.8 (C-3 $\left.{ }^{\prime \prime \prime}\right), 130.2$ (C-3"), 130.9 (C-5'), 132.9145.0 (C-1"I), 152.0 (C-1"), 158.2 (C-3'), 159.3 (C-1'). HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{SClNa}[\mathrm{M}+\mathrm{Na}]^{+} 441.0539$; found 441.0547.

3-(2-Chlorophenoxy)phenoxyethyl Thiocyanate (46)

A solution of tosylate $41(226 \mathrm{mg}, 0.54 \mathrm{mmol})$ in anhydrous N, N-dimethylformamide (3 mL) was treated with potassium thiocyanate ($262 \mathrm{mg}, 2.7 \mathrm{mmol}$). The reaction mixture was heated at $100^{\circ} \mathrm{C}$ for 3 h . After the usual work up, the residue was purified by column chromatography (silica gel) eluting with hexane-EtOAc (19:1) to give 15.8 mg (10% yield) of pure 46 as a colorless oil: $R_{\mathrm{f}} 0.38$ (hexane-EtOAc, $4: 1$); ${ }^{1} \mathrm{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.32$ (t, $J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1), 4.29(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 6.55\left(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right)$, 6.57 (ddd, $\left.J=8.2,2.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 6.67$ (ddd, $\left.J=8.3,2.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 7.03$ (dd, $\left.J=8.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 7.11$ (dt, $\left.J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 7.24$ (t, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$, H-H-5'), 7.24 (m, 1H, H-5"), 7.47 (dd, J = 8.0, $1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}$); ${ }^{13} \mathrm{C}$ NMR (125.77 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 33.2(\mathrm{C}-1), 65.9(\mathrm{C}-2), 104.6\left(\mathrm{C}-2^{\prime}\right), 109.3\left(\mathrm{C}-6^{\prime}\right), 110.8\left(\mathrm{C}-4^{\prime}\right), 111.6(\mathrm{SCN})$, 121.4 (C-6"), 125.1 (C-4"), 126.2 (C-2"), 128.0 (C-5"), 130.4 (C-5'), 130.9 (C-5'), 151.9 $\left(\mathrm{C}-1^{\prime \prime}\right), 158.4\left(\mathrm{C}-3^{\prime}\right), 159.1\left(\mathrm{C}-1^{\prime}\right)$. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{NSClNa}[\mathrm{M}+\mathrm{Na}]^{+}$ 328.0175; found 328.0169.

3-(3-Chlorophenoxy)phenoxyethyl Tetrahydro-2H-pyran-2-yl Ether (32)

A mixture of compound $\mathbf{3 0}$ ($959 \mathrm{mg}, 2.7 \mathrm{mmol}$), 3-chlorophenol ($708 \mathrm{mg}, 5.5 \mathrm{mmol}$), copper (I) iodide ($52.4 \mathrm{mg}, 0.27 \mathrm{mmol}$), 2-picolinic acid, ($67.8 \mathrm{mg}, 0.55 \mathrm{mmol}$), and potassium phosphate tribasic $(1.169 \mathrm{~g}, 5.5 \mathrm{mmol})$ under the conditions depicted for the preparation of 9 . The reaction mixture was stirred vigorously at $90^{\circ} \mathrm{C}$ for 21 days. The product was purified by column chromatography (silica gel) employing hexane-EtOAc (24:1) as eluent to afford 826 mg (86% yield) of pure 32 as a colorless oil: $R_{\mathrm{f}} 0.76$ (hexaneEtOAc; 3:2); ${ }^{1} \mathrm{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.52-1.65$ (m, 4H, H-4"', H-5"'), 1.72-1.76 (m, 1H, H-3'I' ${ }_{\mathrm{a}}$), 1.81-1.84 (m, 1H, H-3"' ${ }_{\mathrm{b}}$), $3.55\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime \prime}{ }_{\mathrm{a}}\right.$), 3.80 (ddd, $J=10.7,6.6$, $3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{-6 \prime \prime \prime}{ }_{\mathrm{b}}$), 3.91 (ddd, $J=11.1,8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{a}}$), $4.07\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{b}}\right), 4.12$ (m, 2H, H-2), 4.72 (t, $\left.J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime \prime}\right), 6.61\left(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 6.72(\mathrm{~m}, 2 \mathrm{H}$, H-4', H-6'), 6.90 (dd, $\left.J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 7.00\left(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right), 7.09$ (m, 1H, $\left.\mathrm{H}-4^{\prime \prime}\right), 7.25$ (t, $\left.J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5^{\prime}, \mathrm{H}-5^{\prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.2\left(\mathrm{C}-4^{\prime \prime \prime}\right)$, 25.3 (C-5"I), 30.4 (C-3"'), 62.3 (C-6"'), 65.8 (C-1), 67.5 (C-2), 99.1 (C-2"I), 106.1 (C-2'),
110.2 (C-6'), 111.6 (C-4'), 116.8 (C-6"), 118.9 (C-2"), 123.2 (C-4"), 130.2 (C-5"), 130.4 (C-5'), 134.6 (C-3"), 157.4 (C-1"), 158.0 (C-3'), 160.2 (C-1').

3-(3-Chlorophenoxy)phenoxyethanol (37)

A solution of compound $\mathbf{3 2}(581 \mathrm{mg}, 1.7 \mathrm{mmol})$ in methanol $(75 \mathrm{~mL})$ was treated with pyridinium p-toluenesulfonate (30 mg). The reaction mixture was stirred at room temperature overnight and was quenched as described for the preparation of 6 . The product was purified by column chromatography eluting with hexane-EtOAc (86:14) to give 302 mg (55% yield) of pure alcohol $\mathbf{3 7}$ as a colorless oil: $R_{\mathrm{f}} 0.14$ (hexane-EtOAc; $4: 1$); ${ }^{1} \mathrm{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.98(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 4.09(\mathrm{t}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 6.62(\mathrm{t}, J=2.3 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 6.65\left(\mathrm{dd}, J=8.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 6.74$ (dd, $\left.J=8.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 6.93$ (dd, $\left.J=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 7.03\left(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right), 7.11(\mathrm{dd}, J=7.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-4^{\prime \prime}$), 7.28 (dt, $\left.J=8.2,2.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5^{\prime}, \mathrm{H}-5^{\prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 61.4$ (C-1), 69.3 (C-2), 105.9 ($\left.\mathrm{C}-2^{\prime}\right), 110.0\left(\mathrm{C}^{\prime} 6^{\prime}\right), 111.8$ (C-4'), 117.0 (C-6"), 119.1 (C-2"), 123.4 (C-4"), 130.4 (C-5"), 130.5 (C-5'), $135.0\left(\mathrm{C}-3^{\prime \prime}\right), 157.6\left(\mathrm{C}-1^{\prime \prime}\right), 157.9$ (C-3'), 160.0 (C-1'). HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{ClNa}[\mathrm{M}+\mathrm{Na}]^{+} 287.0451$; found 287.0441.

3-(3-Chlorophenoxy)phenoxyethyl 4-Toluenesulfonate (42)

To a solution of $\mathbf{3 7}(368 \mathrm{mg}, 1.39 \mathrm{mmol})$ in pyridine (3 mL) was added p-toluenesulfonyl chloride ($796 \mathrm{mg}, 4.18 \mathrm{mmol}$) following the method of the preparation described for $\mathbf{1 1}$. The product was purified by column chromatography (silica gel) eluting with hexane-EtOAc ($97: 3$) to give 290 mg (50% yield) of pure 42 as a colorless oil: $R_{\mathrm{f}} 0.19$ (hexane-EtOAc, 4:1); ${ }^{1} \mathrm{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.12(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 4.36(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-2), 6.42\left(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 6.57$ (ddd, $\left.J=8.3,2.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 6.61(\mathrm{ddd}, J=$ $\left.8.2,2.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime} 6^{\prime}\right), 6.88$ (ddd, $\left.J=8.3,2.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 6.97(\mathrm{t}, J=2.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}$), 7.08 (ddd, $J=8.0,1.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}$), 7.24 (m, 2H, H-5', H-5"), 7.32 (d, $J=$ $\left.8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime \prime}\right), 7.81\left(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR (125.77 MHz, CDCl_{3}) $\delta 21.6$ $\left(\mathrm{CH}_{3}\right), 65.5(\mathrm{C}-1), 67.9(\mathrm{C}-2), 106.0\left(\mathrm{C}-2^{\prime}\right), 109.8\left(\mathrm{C}-6^{\prime}\right), 112.1\left(\mathrm{C}-4^{\prime}\right), 116.9\left(\mathrm{C}-6^{\prime \prime}\right), 119.0$ (C-2"), 123.5 (C-4"), 128.0 (C-2"I'), 129.8 ($\left.\mathrm{C}-3^{\prime \prime \prime}\right), 130.4$ (C-5"), 130.5 (C-5'), 132.8 (C-4"I), 135.0 ($\mathrm{C}-3^{\prime \prime}$), 145.0 ($\mathrm{C}-1^{\prime \prime \prime}$), 157.5 ($\mathrm{C}-1^{\prime \prime}$), 157.9 ($\left.\mathrm{C}-3^{\prime}\right), 159.4$ ($\mathrm{C}-1^{\prime}$). HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{SClNa}[\mathrm{M}+\mathrm{Na}]^{+} 441.0539$; found 441.0543.

3-(3-Chlorophenoxy)phenoxyethyl Thiocyanate (47)

To a solution of $\mathbf{1 2}(252 \mathrm{mg}, 0.60 \mathrm{mmol})$ in N, N-dimethylformamide (3 mL) was added potassium thiocyanate ($293 \mathrm{mg}, 3.0 \mathrm{mmol}$). The reaction mixture was treated according to the general procedure. The product was purified by column chromatography (silica gel) eluting with hexane-EtOAc (91:9) to afford 92.3 mg (50% yield) of 47 as a colorless oil: R_{f} 0.36 (hexane-EtOAc, $4: 1$); ${ }^{1} \mathrm{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.33(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1)$, $4.30(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 6.59\left(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 6.66$ (ddd, $J=8.2,2.3,0.8 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 6.71$ (ddd, $\left.J=8.3,2.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 6.91$ (ddd, $J=8.3,2.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}-6^{\prime \prime}\right), 7.00\left(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right), 7.09$ (ddd, $\left.J=8.0,1.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 7.30(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{H}-5^{\prime}, \mathrm{H}-5^{\prime \prime}\right)$; ${ }^{13} \mathrm{C}$ NMR ($125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 33.2$ (C-1), 65.9 (C-2), 106.1 (C-2'), 109.9 (C-6'), 111.6 (SCN), 112.4 (C-4'), 117.0 (C-6"), 119.1 (C-2") 123.6 (C-4"), 130.5
(C-5"), 130.6 (C-5'), 135.1 (C-3"), 157.7 (C-1"), 157.8 (C-3'), 159.2 (C-1'). HRMS (ESI)
calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{SNClNa}[\mathrm{M}+\mathrm{Na}]^{+} 328.0175$; found 328.0177.

3-(4-Chlorophenoxy)phenoxyethyl Tetrahydro-2H-pyran-2-yl Ether (33)

A mixture of compound $\mathbf{3 0}(810 \mathrm{mg}, 2.3 \mathrm{mmol}), 4$-chlorophenol ($598 \mathrm{mg}, 4.6 \mathrm{mmol}$), copper (I) iodide ($44.4 \mathrm{mg}, 0.23 \mathrm{mmol}$), 2-picolinic acid, ($57.4 \mathrm{mg}, 0.47 \mathrm{mmol}$), and potassium phosphate tribasic $(987 \mathrm{mg}, 4.6 \mathrm{mmol})$ was treated according to the general procedure and stirred at $90^{\circ} \mathrm{C}$ for 19 days. The product was purified by column chromatography (silica gel) employing hexane-EtOAc (24:1) as eluent to afford 417 mg (51% yield) of pure 33 as a colorless oil: $R_{\mathrm{f}} 0.34$ (hexane-EtOAc; 3:2); ${ }^{1} \mathrm{H}$ NMR (500.13 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.52-1.69\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-4^{\prime \prime \prime}, \mathrm{H}^{\prime \prime \prime \prime \prime}\right), 1.73-1.79\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime \prime}{ }_{\mathrm{a}}\right.$), 1.82-1.88 (m, $1 \mathrm{H}, \mathrm{H}-3^{\prime \prime \prime}{ }_{\mathrm{b}}$), $3.55\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime \prime}{ }_{\mathrm{a}}\right.$), 3.82 (ddd, $J=11.2,6.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime \prime}{ }_{\mathrm{b}}$), 3.91 (ddd, J $\left.=11.2,8.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{a}}\right), 4.06\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{b}}\right), 4.14(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2), 4.72(\mathrm{t}, J=3.6 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-2^{\prime \prime \prime}\right), 6.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-4^{\prime}\right), 6.79\left(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 6.97(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{H}-3^{\prime \prime}\right), 7.21\left(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 7.22\left(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 7.31(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{H}-2^{\prime \prime}\right)$; ${ }^{13} \mathrm{C}$ NMR ($125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.4$ (C-4 $4^{\prime \prime \prime}$), 25.4 (C-5"''), 30.5 (C-3"I), 62.2 (C-6"I'), 65.7 (C-1), 67.6 (C-2), 99.0 ($\left.\mathrm{C}-2^{\prime \prime \prime}\right), 105.7$ (C-2'), 109.9 (C-6'), 111.2 (C-4'), 120.2 ($\mathrm{C}-2^{\prime \prime}$), 128.3 ($\mathrm{C}-4^{\prime \prime}$), 129.5 ($\mathrm{C}-5^{\prime}$), 129.7 ($\mathrm{C}-3^{\prime \prime}$), 155.7 ($\left.\mathrm{C}-1^{\prime \prime}\right), 158.0\left(\mathrm{C}-1^{\prime}\right), 160.3$ (C-3'). HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{ClNa}[\mathrm{M}+\mathrm{Na}]^{+}$371.1026; found 371.1002.

3-(4-Chlorophenoxy)phenoxyethanol (38)

A solution of compound $\mathbf{3 3}(417 \mathrm{mg}, 1.2 \mathrm{mmol})$ in methanol $(75 \mathrm{~mL})$ was treated with pyridinium 4-toluenesulfonate (30 mg). The reaction mixture was stirred at room temperature overnight and was quenched as described for the preparation of 11. The product was purified by column chromatography eluting with hexane-EtOAc (9:1) to give 219 mg (69% yield) of pure alcohol 38 as a colorless oil: $\mathrm{R}_{f} 0.11$ (hexane-EtOAc; 8:2); ${ }^{1} \mathrm{H}$ NMR $\left(500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.98(\mathrm{t}, J=6.3,1 \mathrm{H},-\mathrm{OH}), 3.95(\mathrm{dt}, J=6.0,4.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1), 4.05$ (dist. t, $J=4.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 6.56\left(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 6.60(\mathrm{ddd}, J=8.1,2.2,0.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 6.68$ (ddd, $\left.J=8.3,2.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 6.95$ (d, $\left.J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right), 7.23$ (t, $\left.J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime} 5^{\prime}\right), 7.29\left(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 61.4 (C-1), 69.3 (C-2), 105.5 (C-2'), 109.6 (C-6'), 111.4 (C-4'), 120.4 (C-2"), 128.5 (C-4"), 129.7 (C-5'), 130.3 (C-3"), 155.6 (C-1"), 158.2 (C-1'), 160.0 (C-3'). HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{ClNa}[\mathrm{M}+\mathrm{Na}]^{+} 287.0451$; found 287.0450.

3-(4-Chlorophenoxy)phenoxyethyl 4-Toluenesulfonate (43)

To a solution of $\mathbf{8}(219 \mathrm{mg}, 0.83 \mathrm{mmol})$ in pyridine (3 mL) was added p-toluenesulfonyl chloride ($474 \mathrm{mg}, 2.48 \mathrm{mmol}$) following the method of preparation described for $\mathbf{1 2}$. The product was purified by column chromatography (silica gel) eluting with hexane-EtOAc (47:3) to give 269 mg (78% yield) of pure 13 as a colorless oil: $R_{\mathrm{f}} 0.25$ (hexane- EtOAc , 4:1); ${ }^{1} \mathrm{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.11(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 4.35(\mathrm{~m}, 2 \mathrm{H}$, H-2), 6.41 (t, $\left.J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 6.55$ (ddd, $\left.J=8.3,2.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 6.58$ (ddd, $J=$ $\left.8.2,2.2,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 6.93$ (d, $\left.J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right), 7.20\left(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right)$, 7.30 (d, $\left.J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right), 7.33$ (d, $\left.J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime \prime}\right), 7.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{H}-2^{\prime \prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.6\left(\mathrm{CH}_{3}\right), 65.5(\mathrm{C}-1), 67.9(\mathrm{C}-2), 105.6\left(\mathrm{C}-2^{\prime}\right)$,
109.5 (C-6'), 111.6 (C-4'), 120.3 (C-2"), 128.0 (C-2"I'), 128.5 (C-4"), 129.7 (C-5'), 129.8 ($\mathrm{C}-3^{\prime \prime \prime}$), 130.3 ($\mathrm{C}-3^{\prime \prime}$), 132.8 ($\left.\mathrm{C}-4^{\prime \prime \prime}\right), 145.0$ ($\mathrm{C}-1^{\prime \prime \prime}$), 155.5 ($\mathrm{C}-1^{\prime \prime}$), 158.1 ($\left.\mathrm{C}-1^{\prime}\right), 159.3$ ($\left.\mathrm{C}-3^{\prime}\right)$. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{ClS}[\mathrm{M}+\mathrm{H}]^{+} 419.0720$; found 419.0717.

3-(4-Chlorophenoxy)phenoxyethyl Thiocyanate (48)

To a solution of $\mathbf{1 3}(269 \mathrm{mg}, 0.64 \mathrm{mmol})$ in N, N-dimethylformamide (3 mL) was added potassium thiocyanate ($319 \mathrm{mg}, 3.2 \mathrm{mmol}$). The reaction mixture was treated according to the general procedure. The product was purified by column chromatography (silica gel) eluting with hexane-EtOAc (24:1) to afford 104 mg (53% yield) of 48 as a colorless oil: R_{f} 0.18 (hexane-EtOAc, $4: 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.32(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1)$, $4.29(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 6.56\left(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 6.62(\mathrm{dd}, J=7.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}$, H-4'), 6.68 (dd, $\left.J=8.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 6.96\left(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right), 7.25$ (t, $J=8.3$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 7.30\left(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR (125.77 MHz, CDCl_{3}) $\delta 33.2$ (C-1), 65.9 (C-2), 105.6 (C-2'), 109.6 (C-6'), 111.6 (SCN), 111.9 (C-4'), 120.4 (C-2"), 128.6 $\left(\mathrm{C}-4^{\prime \prime}\right), 129.8\left(\mathrm{C}-5^{\prime}\right), 130.5\left(\mathrm{C}-3^{\prime \prime}\right), 155.4\left(\mathrm{C}-1^{\prime \prime}\right), 158.3\left(\mathrm{C}-1^{\prime}\right), 159.2\left(\mathrm{C}-3^{\prime}\right)$. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{NSCl}[\mathrm{M}+\mathrm{H}]^{+} 306.0356$; found 306.0365.

3-(2-Methoxyphenoxy)phenoxyethyl Tetrahydro-2H-pyran-2-yl Ether (34)

To a mixture of compound $\mathbf{3 0}(939 \mathrm{mg}, 2.7 \mathrm{mmol})$, 2-methoxyphenol ($670 \mathrm{mg}, 5.4 \mathrm{mmol}$), copper (I) iodide ($51.4 \mathrm{mg}, 0.27 \mathrm{mmol}$), 2-picolinic acid, ($66.4 \mathrm{mg}, 0.54 \mathrm{mmol}$), and potassium phosphate tribasic ($1.148 \mathrm{~g}, 5.4 \mathrm{mmol}$) was added dimethyl sulfoxide (3.0 mL) and the reaction mixture was stirred at $90^{\circ} \mathrm{C}$ for 3 days according to the general method. The product was purified by column chromatography (silica gel) employing hexane-EtOAc (47:3) as eluent to afford 628 mg (68% yield) of pure 34 as a colorless oil: $R_{\mathrm{f}} 0.35$ (hexaneEtOAc; 4:1); ${ }^{1} \mathrm{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.50-1.65\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-4^{\prime \prime \prime}, \mathrm{H}-5^{\prime \prime \prime}\right), 1.70-1.76$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime \prime}{ }_{\mathrm{a}}\right), 1.79-1.85\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime \prime}{ }_{\mathrm{b}}\right), 3.51\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime \prime}{ }_{\mathrm{a}}\right.$), 3.79 (ddd, $J=11.0,6.5$, $4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime \prime}{ }_{\mathrm{b}}$), $3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.88\left(\mathrm{ddd}, J=11.3,8.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{a}}\right), 4.02$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{b}}$), $4.10(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2), 4.69\left(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime \prime}\right), 6.53-6.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right.$, H-4'), 6.62 (ddd, $\left.J=8.2,2.3,0.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 6.92\left(\mathrm{dt}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 7.00$ (ddd, $\left.J=8.1,4.9,1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime}, \mathrm{H}-5^{\prime \prime}\right), 7.13$ (dt, $\left.J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 7.17$ (t, $J=$ $\left.8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.4$ (C-4"I), 25.4 (C-5"'I), 30.5 $\left(\mathrm{C}-3^{\prime \prime \prime}\right), 56.0\left(\mathrm{OCH}_{3}\right), 62.2\left(\mathrm{C}-6^{\prime \prime \prime}\right), 65.7(\mathrm{C}-1), 67.4(\mathrm{C}-2), 99.0\left(\mathrm{C}-2^{\prime \prime \prime}\right), 104.0\left(\mathrm{C}-2^{\prime}\right), 108.7$ (C-6'), 109.6 (C-4'), 112.8 (C-3"), 121.1 (C-6"), 121.3 (C-5"), 124.9 (C-4"), 129.8 (C-5'), $144.8\left(\mathrm{C}-1^{\prime \prime}\right), 151.5\left(\mathrm{C}-2^{\prime \prime}\right), 159.1\left(\mathrm{C}-1^{\prime}\right), 160.1\left(\mathrm{C}-3^{\prime}\right)$. HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+} 367.1521$; found 367.1515 .

3-(2-Methoxyphenoxy)phenoxyethanol (39)

A solution of compound $\mathbf{3 4}(611 \mathrm{mg}, 1.8 \mathrm{mmol})$ in methanol $(10 \mathrm{~mL})$ was treated with pyridinium 4-toluenesulfonate (30 mg). The reaction mixture was stirred at room temperature overnight and was quenched as described for the preparation of 11. The product was purified by column chromatography eluting with hexane-EtOAc (87:13) to give 349 mg (76% yield) of pure alcohol 39 as a colorless oil: $R_{\mathrm{f}} 0.08$ (hexane-EtOAc; $4: 1$); ${ }^{1} \mathrm{H}$ NMR ($\left.500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.00(\mathrm{t}, J=6.2,1 \mathrm{H},-\mathrm{OH}), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.94(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1)$, $4.04(\mathrm{t}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 6.52-6.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-4^{\prime}\right), 6.61(\mathrm{ddd}, J=8.3,2.3,0.7 \mathrm{~Hz}$,
$\left.1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 6.93$ (dt, $\left.J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 7.00\left(\mathrm{td}, J=8.1,1.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime}, \mathrm{H}-5^{\prime \prime}\right)$, 7.15 (dt, $\left.J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 7.18\left(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR (125.77 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 56.0\left(\mathrm{OCH}_{3}\right), 61.4(\mathrm{C}-1), 69.2(\mathrm{C}-2), 103.8\left(\mathrm{C}-2^{\prime}\right), 108.5\left(\mathrm{C}-6^{\prime}\right), 109.7\left(\mathrm{C}-4^{\prime}\right)$, 112.8 (C-3"), 121.1 (C-6"), 121.4 (C-5"), 125.1 (C-4"), 130.0 (C-5'), 144.6 (C-1"), 151.5 (C-2"), 159.3 (C-1'), 160.0 (C-3').

3-(2-Methoxyphenoxy)phenoxyethyl 4-Toluenesulfonate (44)

To a solution of $\mathbf{3 9}(349 \mathrm{mg}, 1.34 \mathrm{mmol})$ in pyridine (3 mL) was added p-toluenesulfonyl chloride ($767 \mathrm{mg}, 4.02 \mathrm{mmol}$) following the method of the preparation described for $\mathbf{1 2}$. The product was purified by column chromatography (silica gel) eluting with hexane-EtOAc ($9: 1$) to give 456 mg (82% yield) of pure 44 as a white solid: $R_{\mathrm{f}} 0.13$ (hexane-EtOAc, 4:1); $\mathrm{mp} 92{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.09$ (m, 2H, H-1), 4.33 (m, 2H, H-2), 6.38 (t, $\left.J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 6.47$ (ddd, $J=8.3,2.4,0.8$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 6.52$ (ddd, $\left.J=8.2,2.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 6.93$ (ddd, $J=7.8,7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}-6^{\prime \prime}\right), 6.98$ (dd, $\left.J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right), 7.01$ (dd, $\left.J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime}\right), 7.14$ (t, $J=$ $\left.8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 7.15$ (ddd, $\left.J=8.1,7.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 7.32$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime \prime}$), $7.80\left(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR (125.77 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 21.6\left(\mathrm{PhCH}_{3}\right), 56.0$ $\left(\mathrm{OCH}_{3}\right), 65.4(\mathrm{C}-1), 68.0(\mathrm{C}-2), 103.9\left(\mathrm{C}-2^{\prime}\right), 108.3\left(\mathrm{C}-6^{\prime}\right), 110.0\left(\mathrm{C}-4^{\prime}\right), 112.8\left(\mathrm{C}-3^{\prime \prime}\right), 121.1$ (C-6"), 121.4 (C-5"), 125.1 (C-4"), 128.0 (C-2"I'), 129.8 (C-3"'), 130.0 (C-5'), 132.8 (C-4"'), 144.6 (C-1"), 144.9 (C-1"I), 151.5 (C-2"), 159.3 (C-1'), 160.0 (C-3'). HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 415.1215$; found 415.1219 .

3-(2-Methoxyphenoxy)phenoxyethyl Thiocyanate (49)

To a solution of $44(449 \mathrm{mg}, 1.08 \mathrm{mmol})$ in N, N-dimethylformamide (3 mL) was added potassium thiocyanate $(526 \mathrm{mg}, 5.4 \mathrm{mmol})$. The reaction mixture was treated according to the general procedure. The product was purified by column chromatography (silica gel) eluting with hexane-EtOAc (93:7) to afford 156 mg (48% yield) of 49 as a colorless oil: R_{f} 0.22 (hexane-EtOAc, $4: 1$); ${ }^{1} \mathrm{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.31(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1)$, $3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.27(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 6.53\left(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 6.56$ (ddd, J $\left.=8.2,2.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 6.61$ (ddd, $\left.J=8.2,2.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 6.94$ (dt, $J=7.7,1.4$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 7.00$ (m, 2H, H-3", H-5"), 7.15 (ddd, $\left.J=8.1,7.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 7.19$ (t, $\left.J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 33.3(\mathrm{C}-1), 56.0\left(\mathrm{OCH}_{3}\right), 65.8$ (C-2), 103.9 (C-2'), 108.5 (C-6'), 110.2 (C-4'), 111.7 (SCN), 112.9 (C-3"), 121.1 (C-6"), 121.5 (C-5"), 125.2 (C-4"), 130.1 (C-5'), 144.4 (C-1"), 151.5 (C-2"), 158.9 (C-1'), 159.4 (C-3'). HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{NS}[\mathrm{M}+\mathrm{Na}]^{+} 324.0670$; found 324.0660.

3-(3-Methoxyphenoxy)phenoxyethyl Tetrahydro-2H-pyran-2-yl Ether (35)

To a mixture of compound $\mathbf{3 0}$ ($800 \mathrm{mg}, 2.3 \mathrm{mmol}$), 3-methoxyphenol ($570 \mathrm{mg}, 4.6 \mathrm{mmol}$), copper (I) iodide ($43.8 \mathrm{mg}, 0.23 \mathrm{mmol}$), 2-picolinic acid, ($56.6 \mathrm{mg}, 0.46 \mathrm{mmol}$), and potassium phosphate tribasic ($978 \mathrm{mg}, 4.6 \mathrm{mmol}$) was added dimethyl sulfoxide (3.0 mL) and the reaction mixture was stirred at $90^{\circ} \mathrm{C}$ for 5 days according to the general procedure. The product was purified by column chromatography (silica gel) employing hexane-EtOAc (49:1) as eluent to afford 505 mg (64% yield) of pure 35 as a colorless oil: $\mathrm{R}_{f} 0.46$ (hexaneEtOAc; 4:1); ${ }^{1} \mathrm{H}$ NMR (500.13 MHz, CDCl_{3}) $\delta 1.53-1.68$ (m, 4H, H-4"', H-5"'), 1.73-1.79
(m, 1H, H-3"' ${ }_{\mathrm{a}}$), 1.82-1.89 (m, 1H, H-3"' ${ }_{\mathrm{b}}$), $3.55\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime \prime}{ }_{\mathrm{a}}\right.$), $3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.82$ (ddd, $J=11.0,6.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime \prime \prime \prime \prime}{ }_{\mathrm{b}}$), 3.91 (ddd, $J=11.3,8.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{a}}$), 4.06 (m, $\left.1 \mathrm{H}, \mathrm{H}-1_{\mathrm{b}}\right), 4.14(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2), 4.72\left(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime \prime}\right), 6.60-6.64(\mathrm{~m}, 4 \mathrm{H}$, aromatic protons), 6.68 (ddd, $\left.J=8.3,2.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 6.71$ (ddd, $J=8.3,2.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}$, H-6"), 7.24 (t, $\left.J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 7.25\left(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR (125.77 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 19.3\left(\mathrm{C}-4^{\prime \prime \prime}\right), 25.4\left(\mathrm{C}-5^{\prime \prime \prime}\right), 30.5\left(\mathrm{C}-3^{\prime \prime \prime}\right), 55.3\left(\mathrm{OCH}_{3}\right), 62.2\left(\mathrm{C}-6^{\prime \prime \prime}\right), 65.7(\mathrm{C}-1), 67.5$ (C-2), 99.0 (C-2 ${ }^{\prime \prime \prime}$), 105.0 ($\mathrm{C}-2^{\prime}$), 105.8 ($\left.\mathrm{C}-2^{\prime \prime}\right), 109.0$ ($\mathrm{C}-6^{\prime}$), 109.7 (C-4'), 111.1 (C-4"), 111.3 (C-6"), 130.0 (C-5'), 130.1 (C-5"), 158.1 (C-1"), 158.2 (C-3"), 160.2 (C-1'), 160.9 (C-3'). HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 367.1521$; found 367.1516.

3-(3-Methoxyphenoxy)-phenoxyethanol (40)

A solution of compound $5(852 \mathrm{mg}, 2.5 \mathrm{mmol})$ in methanol $(10 \mathrm{~mL})$ was treated with pyridinium 4-toluenesulfonate (30 mg). The reaction mixture was stirred at room temperature overnight and was quenched as described for the preparation of $\mathbf{1 1}$. The product was purified by column chromatography eluting with hexane-EtOAc (23:2) to give 582 mg (90% yield) of pure alcohol 40 as a colorless oil: $R_{\mathrm{f}} 0.10$ (hexane-EtOAc; $4: 1$); ${ }^{1} \mathrm{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.01$ (br s, 1H, OH), 3.94 (dist t, $J=4.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1$), 3.78 (s, 3H, $\left.\mathrm{OCH}_{3}\right), 4.04(\mathrm{t}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 6.59(\mathrm{~m}, 2 \mathrm{H}$, aromatic protons), $6.62(\mathrm{~m}, 2 \mathrm{H}$, aromatic protons), 6.67 (dd, $\left.J=8.1,2.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6^{\prime}, \mathrm{H}-6^{\prime \prime}\right), 7.22$ (t, $\left.J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5^{\prime}, \mathrm{H}-5^{\prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 55.4\left(\mathrm{OCH}_{3}\right), 61.4(\mathrm{C}-1), 69.2(\mathrm{C}-2), 105.1\left(\mathrm{C}-2^{\prime}\right), 105.5$ (C-2"), 109.1 (C-6'), 109.4 (C-4'), 111.2 (C-4"), 111.5 (C-6"), 130.1 (C-5'), 130.2 (C-5"), 158.1 ($\mathrm{C}-1^{\prime \prime}$), 158.3 ($\mathrm{C}-3^{\prime \prime}$), 159.9 ($\mathrm{C}-1^{\prime}$), 160.9 ($\mathrm{C}-3^{\prime}$). HRMS (ESI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+} 283.0946$; found 283.0941.

3-(3-Methoxyphenoxy)-phenoxyethyl 4-Toluenesulfonate (45)

To a solution of $\mathbf{3 6}(582 \mathrm{mg}, 2.24 \mathrm{mmol})$ in pyridine (3 mL) was added p-toluenesulfonyl chloride ($1.28 \mathrm{~g}, 6.71 \mathrm{mmol}$) following the general method. The product was purified by column chromatography (silica gel) eluting with hexane-EtOAc (4:1) to give 209 mg (59% yield) of pure 45 as a colorless oil: $R_{\mathrm{f}} 0.22$ (hexane-EtOAc, $4: 1$); ${ }^{1} \mathrm{H}$ NMR (500.13 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.10(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 4.35(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2), 6.43$ (t, $\left.J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 6.53$ (ddd, $J=8.2,2.4,0.6 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $6.57(\mathrm{~m}, 2 \mathrm{H}$, aromatic proton), 6.61 (ddd, $\left.J=8.2,2.2,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 6.67$ (dd, $J=8.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}-6^{\prime \prime}\right), 7.19\left(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 7.23\left(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime}\right), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{H}-3^{\prime \prime \prime}\right), 7.81\left(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime \prime}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.6\left(\mathrm{PhCH}_{3}\right)$, $55.4\left(\mathrm{OCH}_{3}\right), 65.5(\mathrm{C}-1), 68.0(\mathrm{C}-2), 105.1\left(\mathrm{C}-2^{\prime}\right), 105.6\left(\mathrm{C}-2^{\prime \prime}\right), 109.1\left(\mathrm{C}-6^{\prime}\right), 109.2\left(\mathrm{C}-4^{\prime}\right)$, 111.2 (C-4"), 111.8 (C-6"), 128.0 (C-2 ${ }^{\prime \prime \prime}$), 129.8 (C-3"'), 130.15 (C-5'), 130.18 (C-5"), 132.8 (C-4"'), $145.0\left(\mathrm{C}-1^{\prime \prime \prime}\right), 158.1$ (C-1"), 158.2 (C-3"), 159.2 (C-1'), 160.9 (C-3'). HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{6} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 437.1035$; found 437.1031.

3-(3-Methoxyphenoxy)-phenoxyethyl Thiocyanate (50)

To a solution of $\mathbf{1 5}(339 \mathrm{mg}, 0.82 \mathrm{mmol})$ in N, N-dimethylformamide (3 mL) was added potassium thiocyanate ($397 \mathrm{mg}, 4.1 \mathrm{mmol}$). The reaction mixture was treated according to the general procedure. The product was purified by column chromatography (silica gel) eluting with hexane-EtOAc (19:1) to afford 112 mg (45% yield) of $\mathbf{5 0}$ as a colorless oil: R_{f}
0.31 (hexane-EtOAc, $4: 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.32(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1)$, $3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.28(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 6.58-6.62(\mathrm{~m}, 3 \mathrm{H}$, aromatic protons), 6.65-6.69 (m, 3H, aromatic protons), $7.24\left(\mathrm{dt}, J=8.2,3.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5^{\prime}, \mathrm{H}-5^{\prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 33.2(\mathrm{C}-1), 55.4\left(\mathrm{OCH}_{3}\right), 65.8(\mathrm{C}-2), 105.2\left(\mathrm{C}-2^{\prime}\right), 105.6\left(\mathrm{C}-2^{\prime \prime}\right)$, 109.2 (C-6'), 109.4 (C-4'), 111.3 (C-4"), 111.7 (SCN), 112.1 (C-6"), 130.2 (C-5'), 130.4 (C-5"), 157.9 (C-1"), 158.4 (C-3"), 159.0 ($\mathrm{C}-1^{\prime}$), 161.0 ($\left.\mathrm{C}-3^{\prime}\right)$. HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{NSNa}[\mathrm{M}+\mathrm{Na}]^{+} 324.0670$; found 324.0661.

3-(2-Pyridyloxy)phenoxyethyl Tetrahydro-2H-pyran-2-yl Ether (51)

A mixture of compound $\mathbf{3 0}$ ($1.051 \mathrm{~g}, 3.0 \mathrm{mmol}$), 2-hydroxypyridine ($861 \mathrm{mg}, 9.0 \mathrm{mmol}$), copper (I) iodide ($57.5 \mathrm{mg}, 0.30 \mathrm{mmol}$), 2-picolinic acid, ($74.3 \mathrm{mg}, 0.60 \mathrm{mmol}$), and potassium phosphate tribasic ($1.928 \mathrm{~g}, 9.0 \mathrm{mmol}$) in dimethyl sulfoxide (3.0 mL) was stirred vigorously at $90^{\circ} \mathrm{C}$ for 13 days according to the general procedure The product was purified by column chromatography (silica gel) employing hexane-EtOAc (2:3) as eluent to afford $625 \mathrm{mg}\left(66 \%\right.$ yield) of 51 as a colorless oil: $R_{\mathrm{f}} 0.49$ (EtOAc); ${ }^{1} \mathrm{H}$ NMR (500.13 MHz , CDCl_{3}) $\delta 1.53-1.68\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-4^{\prime \prime \prime}, \mathrm{H}-5^{\prime \prime \prime}\right), 1.73-1.79\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime \prime}{ }_{\mathrm{a}}\right.$), 1.82-1.88 (m, 1 H , $\mathrm{H}-3^{\prime \prime \prime}{ }_{\mathrm{b}}$), $3.56\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime \prime}{ }_{\mathrm{a}}\right.$), 3.85 (ddd, $J=11.3,6.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime \prime}{ }_{\mathrm{b}}$), 3.92 (ddd, $J=$ $11.3,8.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{a}}$), 4.08 (ddd, $J=11.3,5.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{b}}$), $4.20(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2)$, $4.72\left(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime \prime}\right), 6.25\left(\mathrm{dt}, J=6.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 6.68(\mathrm{dq}, J=9.3,0.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 6.97-7.03\left(\mathrm{~m}, 3 \mathrm{H}\right.$, aromatic protons), 7.34 (ddd, $J=6.9,2.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}$), 7.39-7.43 (m, 2H, aromatic protons); ${ }^{13} \mathrm{C}$ NMR ($125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.3$ (C-4"'), 25.4 (C-5 ${ }^{\prime \prime \prime}$), 30.5 (C-3"'), 62.2 (C-6"I) , 65.7 (C-1), 67.7 (C-2), 99.0 ($\left.\mathrm{C}-2^{\prime \prime \prime}\right), 105.8$ (C-2'), 113.2 (C-6'), 115.1 (C-4'), 118.8 (C-6"), 122.0 (C-4"), 130.1 (C-5'), 137.8 (C-5"), 139.8 (C-3"), 141.9 (C-1"), $159.5\left(\mathrm{C}-3^{\prime}\right), 162.4\left(\mathrm{C}-1^{\prime}\right)$. HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]^{+}$ 338.1368 ; found 338.1368 .

3-(3-Pyridyloxy)phenoxyethyl Tetrahydro-2H-pyran-2-yl Ether (52)

A mixture of compound $\mathbf{3 0}$ ($900 \mathrm{mg}, 2.6 \mathrm{mmol}$), 3-hydroxypyridine ($491 \mathrm{mg}, 5.2 \mathrm{mmol}$), copper (I) iodide ($49.2 \mathrm{mg}, 0.26 \mathrm{mmol}$), 2-picolinic acid, ($63.6 \mathrm{mg}, 0.52 \mathrm{mmol}$), and potassium phosphate tribasic $(1.100 \mathrm{~g}, 5.2 \mathrm{mmol})$ in dimethyl sulfoxide (3.0 mL) was stirred at $90^{\circ} \mathrm{C}$ for 3 days. The product was purified by column chromatography (silica gel) employing hexane-EtOAc (83:17) as eluent to afford 484 mg (59% yield) of pure $\mathbf{5 2}$ as a colorless oil: $R_{\mathrm{f}} 0.09$ (hexane-EtOAc, 4:1); ${ }^{1} \mathrm{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.50-1.65$ (m, $\left.4 \mathrm{H}, \mathrm{H}-4^{\prime \prime \prime}, \mathrm{H}-5^{\prime \prime \prime}\right), 1.71-1.76\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime \prime}{ }_{\mathrm{a}}\right.$), 1.79-1.85 (m,1H, H-3"' ${ }_{\mathrm{b}}$), $3.52(\mathrm{~m}, 1 \mathrm{H}$, H- $6{ }^{\prime \prime \prime}{ }_{\mathrm{a}}$), 3.80 (ddd, $J=11.2,6.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime \prime}{ }_{\mathrm{b}}$), 3.89 (ddd, $J=11.2,8.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}-1_{\mathrm{a}}\right), 4.04\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{b}}\right), 4.13(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2), 4.69\left(\mathrm{t}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime \prime}\right), 6.60(\mathrm{~m}, 2 \mathrm{H}$, aromatic protons), 6.73 (ddd, $J=8.3,2.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}$), $7.23-7.32$ (m, 3H, H-5", $\mathrm{H}-6^{\prime \prime}$), 8.37 (d, $\left.J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 8.41$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}$); ${ }^{13} \mathrm{C}$ NMR (125.77 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 19.4$ (C-4"I), 25.4 (C-5"I), 30.5 (C-3"'), 62.2 (C-6 $6^{\prime \prime \prime}$), 65.7 (C-1), 67.6 (C-2), 99.0 (C-2 $2^{\prime \prime}$), 105.8 ($\left.\mathrm{C}-2^{\prime}\right), 110.3$ ($\left.\mathrm{C}-6^{\prime}\right), 111.2$ (C-4'), 124.1 (C-6"), 125.6 ($\left.\mathrm{C}-5^{\prime \prime}\right), 130.4$ (C-5'), 141.6 (C-2"), 144.4 (C-4"), 153.7 (C-1"), 157.5 (C-1'), 160.4 (C-3').

3-(4-Pyridyloxy)phenoxyethyl Tetrahydro-2H-pyran-2-yl Ether (53)

A mixture of compound $\mathbf{3 0}$ ($795 \mathrm{mg}, 2.3 \mathrm{mmol}$), 4-hydroxypyridine ($436 \mathrm{mg}, 4.6 \mathrm{mmol}$), copper (I) iodide ($43.7 \mathrm{mg}, 0.23 \mathrm{mmol}$), 2-picolinic acid, ($56.5 \mathrm{mg}, 0.46 \mathrm{mmol}$), and potassium phosphate tribasic ($976 \mathrm{mg}, 4.6 \mathrm{mmol}$) in dimethyl sulfoxide (3.0 mL) was stirred at $90^{\circ} \mathrm{C}$ for 2 days. The product was purified by column chromatography (silica gel) employing $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (97:3) as eluent to afford 508 mg (70% yield) of $\mathbf{5 3}$ as a colorless oil: $R_{\mathrm{f}} 0.14\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 19: 1\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.51-1.65$
 $\mathrm{H}-6{ }^{\prime \prime \prime}{ }_{\mathrm{a}}$), 3.84 (ddd, $J=11.3,6.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime \prime}{ }_{\mathrm{b}}$), 3.89 (ddd, $J=11.3,8.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}-1_{\mathrm{a}}\right), 4.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{b}}\right), 4.21(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2), 4.70\left(\mathrm{t}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime \prime}\right), 6.49(\mathrm{~d}, J=7.7$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right), 6.91$ (m, 2H, H-2', H-4'), 7.00 (ddd, $\left.J=8.3,2.1,0.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 7.41(\mathrm{t}, J$ $\left.=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 7.59\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR (125.77 MHz, CDCl ${ }_{3}$) $\delta 19.4$
 (C-2"), 114.4 (C-2'), 114.9 (C-6'), 119.0 (C-4'), 131.0 (C-5'), 139.0 (C-3"), 144.2 (C-3'), 159.4 ($\mathrm{C}-1^{\prime}$), 179.1 ($\mathrm{C}-1^{\prime \prime}$).

3-(2-Pyridyloxy)phenoxyethanol (54)

A solution of compound $\mathbf{5 1}(575 \mathrm{mg}, 1.82 \mathrm{mmol})$ in methanol $(10 \mathrm{~mL})$ was treated with pyridinium 4-toluenesulfonate (30 mg). After the usual work up, the residue was purified by column chromatography eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-methanol ($49: 1$) to give 281 mg (67% yield) of pure alcohol 24 as white solid: $R_{\mathrm{f}} 0.12$ (EtOAc); mp $95{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500.13 MHz , CDCl_{3}) $\delta 2.04$ (br s, $1 \mathrm{H}, \mathrm{OH}$), 3.97 (dist t, $J=4.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1$), 4.12 (dist t, $J=4.6 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{H}-2), 6.24\left(\mathrm{dt}, J=6.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 6.66\left(\mathrm{dq}, J=9.2,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 6.96-7.00(\mathrm{~m}$, 3 H , aromatic protons), 7.33 (ddd, $\left.J=6.9,2.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right), 7.38-7.42(\mathrm{~m}, 2 \mathrm{H}$, aromatic protons); ${ }^{13} \mathrm{C}$ NMR $\left(125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 61.4(\mathrm{C}-1), 69.5(\mathrm{C}-2), 105.8\left(\mathrm{C}-2^{\prime}\right)$, 113.2 (C-6'), 115.0 (C-4'), 119.1 (C-6"), 122.0 (C-4"), 130.2 (C-5'), 137.8 (C-5"), 139.9 (C-3"), 142.0 ($\mathrm{C}-1^{\prime \prime}$), 159.2 ($\mathrm{C}-3^{\prime}$,), 162.3 (C-1').

3-(3-Pyridyloxy)phenoxyethanol (55)

A solution of compound $\mathbf{5 2}(477 \mathrm{mg}, 1.51 \mathrm{mmol})$ in methanol (3 mL) was treated with pyridinium 4-toluenesulfonate (30 mg). The reaction mixture was stirred at room temperature overnight and was quenched as described for the preparation of $\mathbf{1 3}$. The product was purified by column chromatography eluting with hexane-EtOAc (1:1) to give 290 mg (83% yield) of pure alcohol 55 as a colorless oil: $R_{\mathrm{f}} 0.14$ (hexane-EtOAc, $1: 1$); ${ }^{1} \mathrm{H}$ NMR $\left(500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.07(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 3.96(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 4.01(\mathrm{t}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{H}-2), 6.60\left(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 6.62$ (ddd, $\left.J=8.1,2.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 6.72$ (ddd, $J=$ $\left.8.3,2.4,0.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 7.24-7.33(\mathrm{~m}, 3 \mathrm{H}$, aromatic protons), 8.38 (dd, $J=4.5,1.4 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 8.42\left(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 61.3$ (C-1), 69.3 (C-2), 105.6 (C-2'), 110.1 (C-6'), 111.4 (C-4'), 124.1 (C-6"), 125.8 (C-5"), 130.5 (C-5'), 141.6 (C-2"), 144.6 (C-4"), 153.6 (C-1"), 157.6 (C-1'), 160.1 (C-3').

3-(4-Pyridyloxy)phenoxyethanol (56)

A solution of $\mathbf{5 3}(617 \mathrm{mg}, 1.96 \mathrm{mmol})$ in methanol (3 mL) was treated with pyridinium 4toluenesulfonate $(30 \mathrm{mg})$. The reaction mixture was stirred at room temperature overnight
and was quenched as described for the preparation of 13. The product was purified by column chromatography eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (97:3) to give 156 mg (34% yield) of alcohol 56 as white solid: $R_{\mathrm{f}} 0.45$ (EtOAc-MeOH, 3:2); mp $117{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500.13 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 2.02(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OH}), 4.02(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 4.15(\mathrm{t}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2)$, 6.49 (d, $\left.J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right), 6.90\left(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 6.95(\mathrm{ddd}, J=7.9,2.2,0.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 6.99$ (ddd, $\left.J=8.4,2.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 7.43$ (t, $\left.J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 7.59$ (d, J $\left.=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 61.3(\mathrm{C}-1), 69.7(\mathrm{C}-2), 109.7$ (C-2"), 114.2 (C-2'), 115.2 (C-6'), 119.0 (C-4'), 131.2 (C-5'), 138.9 (C-3").

3-(2-Pyridyloxy)phenoxyethyl 4-Toluenesulfonate (57)

To a solution of $\mathbf{5 4}(284 \mathrm{mg}, 1.22 \mathrm{mmol})$ in pyridine (3 mL) was added p-toluenesulfonyl chloride ($702 \mathrm{mg}, 3.68 \mathrm{mmol}$) and the mixture was stirred at room temperature for 4 h . After the usual treatment, the residue was purified by column chromatography (silica gel) eluting with hexane-EtOAc (35:75) to give 289 mg (61% yield) of pure compound 57 as white solid: $R_{\mathrm{f}} 0.44$ (EtOAc); mp $157{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{PhCH}_{3}\right)$, 4.17 (m, 2H, H-1), $4.37(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2), 6.24\left(\mathrm{dt}, J=6.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 6.65(\mathrm{dq}, J=9.3$, $\left.0.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 6.82$ (t, $\left.J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 6.86$ (ddd, $\left.J=8.4,2.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right)$, 6.96 (ddd, $\left.J=6.9,2.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 7.30$ (ddd, $\left.J=7.9,2.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right), 7.34-$ 7.41 (m, 2H, aromatic protons), 7.36 (d, $\left.J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime \prime}\right), 7.82(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{H}-2^{\prime \prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.6\left(\mathrm{PhCH}_{3}\right), 65.7(\mathrm{C}-1), 67.9(\mathrm{C}-2), 105.9$ (C-2'), 113.3 (C-6'), 114.9 (C-4'), 119.4 (C-6"), 122.0 (C-4"), 128.0 (C-2 $2^{\prime \prime \prime}$), 129.9 (C-3"'), 130.2 (C-5'), 137.8 ($\mathrm{C}-5^{\prime \prime}$), 139.9 ($\mathrm{C}-3^{\prime \prime}$), 142.0 ($\mathrm{C}-1^{\prime \prime}$), 145.0 ($\mathrm{C}-1^{\prime \prime \prime}$), 158.6 ($\mathrm{C}-3^{\prime}$,), 162.3 (C-1').

3-(3-Pyridyl-3-yloxy)phenoxyethyl 4-Toluenesulfonate (58)

To a solution of $\mathbf{5 5}(402 \mathrm{mg}, 1.74 \mathrm{mmol})$ in pyridine (3 mL) was added p-toluenesulfonyl chloride ($994 \mathrm{mg}, 5.21 \mathrm{mmol}$) following the method of the preparation described for $\mathbf{1 3}$. The product was purified by column chromatography (silica gel) eluting with hexane-EtOAc (3:2) to give 305 mg (46% yield) of pure compound 58 as a colorless oil; $R_{\mathrm{f}} 0.69$ (EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{PhCH}_{3}\right), 4.13(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 4.36$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2$), $6.45\left(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 6.60(\mathrm{~m}, 2 \mathrm{H}$, aromatic protons), $7.29(\mathrm{~m}, 3 \mathrm{H}$, aromatic protons), 7.33 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime \prime}$), 7.81 ($\mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime \prime}$), 8.38 (dd, $\left.J=4.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 8.40\left(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR (125.77 MHz, CDCl_{3}) $\delta 21.7\left(\mathrm{PhCH}_{3}\right), 65.8(\mathrm{C}-1), 67.9(\mathrm{C}-2), 105.7\left(\mathrm{C}-2^{\prime}\right), 109.9\left(\mathrm{C}-6^{\prime}\right), 111.7\left(\mathrm{C}-4^{\prime}\right), 124.1$ (C-6"), 125.7 (C-5"), 128.0 (C-2"I) , 129.9 (C-3"'), 130.5 (C-5'), 132.8 (C-4"'), 141.6 (C-2"), 144.6 (C-4"), 145.0 (C-1"I), 153.5 (C-1"), 157.5 (C-1'), 159.4 (C-3'). HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{NS}[\mathrm{M}+\mathrm{H}]^{+} 386.1062$; found 386.1055 .

3-(4-Pyridyloxy)phenoxyethyl Bromide (59)

To a mixture of alcohol $56(153 \mathrm{mg}, 0.62 \mathrm{mmol})$ in methylene chloride $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added triphenyl phosphine ($191 \mathrm{mg}, 0.73 \mathrm{mmol}$) and N -bromosuccinimide ($129 \mathrm{mg}, 0.73$ mmol). The reaction mixture was stirred at room temperature for 2 h . The reaction was quenched by addition of water (25 mL). Then, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times$ $15 \mathrm{~mL})$. The combined organic layers were washed with brine $(3 \times 50 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$,
and the solvent was evaporated. The residue was purified by column chromatography (silica gel) eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (24:1) to give 45.9 mg (24% yield) of pure $\mathbf{5 9}$ as white solid: $R_{\mathrm{f}} 0.34(\mathrm{EtOAc}-\mathrm{MeOH}, 3: 2) ; \mathrm{mp} 68{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.67(\mathrm{t}, J=$ $6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1), 4.35(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 6.50\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right), 6.90(\mathrm{t}, J=$ $\left.2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 6.97$ (m, 2H, H-4', H-6'), 7.44 (t, $\left.J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 7.59$ (d, $J=7.8$ Hz, 2H, H-3").

3-(2-Pyridyloxy)phenoxyethyl Thiocyanate (60)

To a solution of $\mathbf{5 7}$ ($288 \mathrm{mg}, 0.75 \mathrm{mmol}$) in N, N-dimethylformamide (3 mL) was added potassium thiocyanate ($363 \mathrm{mg}, 3.7 \mathrm{mmol}$). The reaction mixture was treated according to the general procedure. The product was purified by column chromatography (silica gel) eluting with hexane-EtOAc (45:65) to afford 141 mg (69% yield) of $\mathbf{6 0}$ as white solid: R_{f} 0.26 (EtOAc); mp $142{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.35(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1)$, $4.35(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 6.24\left(\mathrm{dt}, J=6.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 6.66(\mathrm{dq}, J=9.2,0.6 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 6.98-7.02$ (m, 3H, aromatic protons), 7.33 (ddd, $J=6.9,2.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}$), $7.39-7.44$ ($\mathrm{m}, 2 \mathrm{H}$, aromatic protons); ${ }^{13} \mathrm{C}$ NMR ($125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 33.1$ (C-1), 66.0 (C-2), $106.0\left(\mathrm{C}-2^{\prime}\right), 111.6(\mathrm{SCN}), 113.3$ (C-6'), 115.0 (C-4'), 119.8 (C-6"), 122.0 (C-4"), 130.4 (C-5'), 137.8 (C-5"), 139.9 (C-3"), 142.1 (C-1"), 158.3 (C-3'), 162.3 (C-1'). HRMS (ESI) calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$295.0517; found 295.0516.

3-(3-Pyridyn-3-yloxy)phenoxyethyl Thiocyanate (61)

To a solution of $\mathbf{5 8}(245 \mathrm{mg}, 0.64 \mathrm{mmol})$ in N, N-dimethylformamide (3 mL) was added potassium thiocyanate ($309 \mathrm{mg}, 3.2 \mathrm{mmol}$). The reaction mixture was treated according to the general procedure. The product was purified by column chromatography (silica gel) eluting with hexane-EtOAc ($65: 35$) to afford 73.5 mg (64% yield) of $\mathbf{6 1}$ as a colorless oil: $R_{\mathrm{f}} 0.26$ (hexane-EtOAc, $1: 1$); ${ }^{1} \mathrm{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.33$ (t, $J=5.9 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{H}-1), 4.33(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 6.61\left(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 6.65(\mathrm{ddd}, J=8.2,2.3,0.7$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 6.72$ (ddd, $\left.J=8.3,2.3,0.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 7.27-7.34$ (m, 3H, aromatic protons), 8.38 (dd, $\left.J=4.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 8.42\left(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 33.2$ (C-1), $65.9(\mathrm{C}-2), 105.8\left(\mathrm{C}-2^{\prime}\right), 110.0\left(\mathrm{C}-6^{\prime}\right), 111.6(\mathrm{SCN})$, 112.0 (C-4'), 124.1 (C-6"), 125.8 (C-5"), 130.7 (C-5'), 141.7 (C-2"), 144.7 (C-4"), 153.4 (C-1"), 157.7 (C-1'), 159.2 (C-3'). HRMS (ESI) calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 273.0698$; found 273.0702.

3-(4-Pyridyloxy)phenoxyethyl Thiocyanate (62)

To a solution of $57(45.9 \mathrm{mg}, 0.16 \mathrm{mmol})$ in N, N-dimethylformamide (3.0 mL) was added potassium thiocyanate $(75.8 \mathrm{mg}, 0.78 \mathrm{mmol})$. The reaction mixture was treated according to the general procedure. The product was purified by column chromatography (silica gel) eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (24:1) to afford 37.0 mg (87% yield) of $\mathbf{6 2}$ as white solid: R_{f} 0.67 (EtOAc-MeOH, 3:2); mp $52{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.37(\mathrm{t}, J=5.7 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}-1), 4.39(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 6.49\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right), 6.93(\mathrm{t}, J=2.3 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 7.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\prime} 4^{\prime}, \mathrm{H}-6^{\prime}\right), 7.46\left(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 7.60(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{H}-3^{\prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 33.0(\mathrm{C}-1), 66.3(\mathrm{C}-2), 109.9\left(\mathrm{C}-2^{\prime \prime}\right), 111.4$ (SCN), 113.9 (C-2'), 115.9 (C-6'), 119.0 (C-4'), 131.3 (C-5'), 138.9 (C-3"), 144.3 (C-3'),
$159.0\left(\mathrm{C}-1^{\prime}\right)$, $179.0\left(\mathrm{C}-1^{\prime \prime}\right)$. HRMS (ESI) calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 273.0698$; found 273.0704 .

4-Phenoxyphenoxyethyl Azide (64)

To a solution of $\mathbf{6 3}(252 \mathrm{mg}, 0.66 \mathrm{mmol})$ in N, N-dimethylformamide (3 mL) was added sodium azide ($213 \mathrm{mg}, 3.28 \mathrm{mmol}$). The reaction mixture was heated at $100^{\circ} \mathrm{C}$ for 3 h . The mixture was allowed to cool to room temperature and water $(20 \mathrm{~mL})$ was added. The aqueous phase was extracted with methylene chloride $(2 \times 30 \mathrm{~mL})$ and the combined organic layers were washed with brine $(5 \times 30 \mathrm{~mL})$ and water $(2 \times 30 \mathrm{~mL})$. The solvent was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue was purified by column chromatography (silica gel) eluting with hexane to give 59.5 mg (35% yield) of pure $\mathbf{6 4}$ as a colorless oil: $\mathrm{R}_{f} 0.44$ (hexane-EtOAc, 4:1); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.60(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1), 4.14$ $(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 6.91\left(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 6.95(\mathrm{~m}, 2 \mathrm{H}$, aromatic protons), 6.99 (d, $\left.J=9.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 7.05\left(\mathrm{tt}, J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 7.30(\mathrm{~m}, 2 \mathrm{H}$, aromatic protons); ${ }^{13} \mathrm{C}$ NMR ($125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 50.2(\mathrm{C}-1), 67.5(\mathrm{C}-2), 115.7\left(\mathrm{C}-2^{\prime \prime}\right), 117.7$ (C-2'), 120.8 (C-3'), 122.6 (C-4"), 129.6 (C-3"), 150.8 (C-4'), 154.4 (C-1'), 158.3 (C-1"). HRMS (ESI) calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{~N}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 278.0905$; found 278.0892.

2,4-Dibromophenoxyethyl Tetrahydro-2H-pyran-2-yl ether (65)

A solution of 2,4-dibromophenol ($1.5 \mathrm{~g}, 5.95 \mathrm{mmol}$) in dimethyl sulfoxide (5 mL) was treated with potassium hydroxide ($668 \mathrm{mg}, 11.9 \mathrm{mmol}$) and bromoethyl tetrahydropyranyl ether $(1.24 \mathrm{~g}, 5.95 \mathrm{mmol})$ according to the general method. The residue was purified by column chromatography (silica gel) eluting with hexane-EtOAc (19:1) to afford 293 mg (46% yield) of pure 65 as a colorless oil: $R_{\mathrm{f}} 0.43$ (hexane-EtOAc, $4: 1$); ${ }^{1} \mathrm{H}$ NMR (500.13 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.51-1.63\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-4^{\prime \prime \prime}, \mathrm{H}-5^{\prime \prime \prime}\right), 1.71-1.77\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime \prime}{ }_{\mathrm{a}}\right.$), 1.80-1.84 (m, $1 \mathrm{H}, \mathrm{H}-3^{\prime \prime \prime}{ }_{\mathrm{b}}$), $3.53\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime \prime}{ }_{\mathrm{a}}\right.$), 3.86 (ddd, $J=11.0,5.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime \prime}{ }_{\mathrm{b}}$), 3.92 (ddd, J $\left.=11.3,8.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{a}}\right), 4.07\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{b}}\right), 4.19(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2), 4.77(\mathrm{t}, J=3.6 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-2^{\prime \prime \prime}\right), 6.82$ (d, $\left.J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 7.35$ (dd, $\left.J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 7.66$ (d, $J=$ $\left.2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right)$; ${ }^{13} \mathrm{C}$ NMR ($125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.2$ (C-4"), 25.4 (C-5"), 30.5 (C-3"), 62.1 (C-6"), 65.4 (C-1), 69.1 (C-2), $99.0\left(\mathrm{C}-2^{\prime \prime}\right), 113.1$ (C-4'), 113.2 (C-2'), 114.8 (C-6'), 131.1 (C-5'), 135.5 (C-3'), 154.8 (C-1'). HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Br}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 400.9364; found 400.9370 .

2,4-Dibromophenoxyethanol (66)

A solution of compound $\mathbf{6 5}(1.04 \mathrm{~g}, 2.74 \mathrm{mmol})$ in methanol $(10 \mathrm{~mL})$ was treated with pyridinium 4-toluenesulfonate (30 mg). The reaction mixture was stirred at room temperature overnight and quenched as described for the preparation of $\mathbf{6}$. The product was purified by column chromatography eluting with hexane-EtOAc (43:7) to give 568 mg (70% yield) of pure alcohol 66 as white solid: $R_{\mathrm{f}} 0.14$ (hexane-EtOAc; mp $59{ }^{\circ} \mathrm{C} ; 4: 1$); ${ }^{1} \mathrm{H}$ NMR ($\left.500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.15(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.99(\mathrm{dt}, J=6.2,4.6 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{H}-1), 4.12(\mathrm{t}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 6.80\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 7.38(\mathrm{dd}, J=8.7,2.4 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 7.68\left(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 61.2(\mathrm{C}-1)$, 71.0 (C-2), 113.4 ($\mathrm{C}-4^{\prime}$), 113.6 ($\mathrm{C}-2^{\prime}$), 114.9 ($\mathrm{C}-6^{\prime}$), 131.3 ($\left.\mathrm{C}-5^{\prime}\right), 135.6$ ($\left.\mathrm{C}-3^{\prime}\right), 154.3$ ($\left.\mathrm{C}-1^{\prime}\right)$. HRMS (ESI) calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{Br}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 316.8789$; found 316.8773.

2,4-Dibromophenoxyethyl 4-Toluenesulfonate (67)

2,4-Dibromophenoxyethyl Thiocyanate (68)

To a solution of 67 ($725 \mathrm{mg}, 1.61 \mathrm{mmol}$) in N, N-dimethylformamide (3 mL) was added potassium thiocyanate ($782 \mathrm{mg}, 8.05 \mathrm{mmol}$). The reaction mixture was treated according to the general procedure. The product was purified by column chromatography (silica gel) eluting with hexane-EtOAc (23:2) to afford 405 mg (75% yield) of $\mathbf{6 8}$ as white solid: R_{f} 0.34 (hexane-EtOAc, $4: 1$); mp $85{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.39(\mathrm{t}, J=5.9 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}-1), 4.34(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 6.81\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 7.40(\mathrm{dd}, J=8.7,2.4$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 7.70\left(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR (125.77 MHz, CDCl ${ }_{3}$) $\delta 33.0(\mathrm{C}-1)$, 67.3 (C-2), 111.5 (SCN), 113.5 (C-4'), 114.5 (C-2'), 115.1 (C-6'), 131.4 (C-5'), 135.9 (C-3'), $153.6\left(\mathrm{C}-1^{\prime}\right)$. $\mathrm{HRMS}(\mathrm{ESI})$ calcd for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{ONSBr}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 357.8513$; found 357.8508

3-Pyridyloxyethyl Tetrahydro-2H-pyran-2-yl Ether (69)

A solution of 3-hydroxypyridine $(1 \mathrm{~g}, 10.5 \mathrm{mmol})$ in dimethyl sulfoxide $(5 \mathrm{~mL})$ was treated with potassium hydroxide $(1.18 \mathrm{~g}, 21.0 \mathrm{mmol})$. The suspension was stirred for 30 min at room temperature. Then, bromoethyl tetrahydropyranyl ether $(2.20 \mathrm{~g}, 10.5 \mathrm{mmol})$ was added; the reaction mixture was stirred at room temperature overnight. The mixture was partitioned between methylene chloride $(30 \mathrm{~mL})$ and water $(30 \mathrm{~mL})$. The aqueous phase was extracted with methylene chloride $(2 \times 70 \mathrm{~mL})$. The combined organic layers were washed with a saturated solution of sodium chloride $(2 \times 100 \mathrm{~mL})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent was evaporated. The residue was purified by column chromatography (silica gel) eluting with hexane-EtOAc (7:3) to afford 736 mg (31% yield) of pure $\mathbf{6 9}$ as a yellow oil: R_{f} 0.26 (hexane-EtOAc, 1:1); ${ }^{1} \mathrm{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta^{1} \mathrm{H}$ NMR (500.13 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 1.52-1.65\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-4^{\prime \prime \prime}, \mathrm{H}-5^{\prime \prime \prime}\right), 1.71-1.77\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime \prime}{ }_{\mathrm{a}}\right), 1.81-1.85(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-3^{\prime \prime \prime}{ }_{\mathrm{b}}$), $3.53\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime \prime}{ }_{\mathrm{a}}\right.$), 3.83 (ddd, $J=11.4,6.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime \prime}{ }_{\mathrm{b}}$), 3.89 (ddd, $J=$ $11.2,8.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{a}}$), 4.08 (ddd, $J=11.4,5.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{b}}$), $4.12(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2)$, $4.71\left(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime \prime}\right), 7.23(\mathrm{~m}, 2 \mathrm{H}$, aromatic protons), 8.24 (dd, $J=4.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}-4^{\prime}\right), 8.34\left(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.3$ (C-4"), 25.3 (C-5"), 30.4 (C-3"), 62.2 (C-6"), 65.7 (C-1), 67.7 (C-2), 99.1 (C-2"), 121.2 (C-6'), 123.9 (C-5'), $138.0\left(\mathrm{C}-2^{\prime}\right), 142.5\left(\mathrm{C}-4^{\prime}\right), 154.9\left(\mathrm{C}-1^{\prime}\right)$. HRMS (ESI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$ 224.1287; found 224.1291.

3-Pyridyloxyethanol (70)

A solution of compound $\mathbf{6 9}(725 \mathrm{mg}, 3.25 \mathrm{mmol})$ in methanol (3 mL) was treated with 4toluenesulfonic acid (30 mg). The reaction mixture was stirred at room temperature overnight and was quenched as usual. The product was purified by column chromatography eluting with hexane-EtOAc (3:7) to give 304 mg (67% yield) of pure alcohol 70 as a yellow oil; $R_{\mathrm{f}} 0.19(\mathrm{EtOAc}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.34(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 4.00($ dist $\mathrm{t}, J=$ $4.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1), 4.14$ (dist t, $J=4.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2$), 7.23 (m, 2H, aromatic protons), 8.24 (t, $\left.J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 8.34\left(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 61.3$ (C-1), 69.6 (C-2), 121.2 ($\left.\mathrm{C}-6^{\prime}\right), 123.9\left(\mathrm{C}-5^{\prime}\right), 138.0\left(\mathrm{C}-2^{\prime}\right), 142.5$ ($\left.\mathrm{C}-4^{\prime}\right), 154.9\left(\mathrm{C}-1^{\prime}\right)$. HRMS (ESI) calcd. for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$140.0712; found 140.0710 .

3-Pyridyloxyethyl 4-Toluenesulfonate (71)

To a solution of $70(303 \mathrm{mg}, 2.18 \mathrm{mmol})$ in pyridine (3 mL) was added p-toluenesulfonyl chloride ($1.25 \mathrm{~g}, 6.54 \mathrm{mmol}$) following the method of the preparation described for $\mathbf{1 3}$. The product was purified by column chromatography (silica gel) eluting with hexane-EtOAc (13:7) to give 441 mg (69% yield) of pure 71 as a colorless oil; $\mathrm{R}_{f} 0.48$ (EtOAc); ${ }^{1} \mathrm{H}$ NMR ($\left.500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{PhCH}_{3}\right), 4.21(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 4.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2), 7.24$ (m, 2 H , aromatic protons), 7.35 (d, $\left.J=8.0,2 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right), 7.82$ (d, $\left.J=8.4,2 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right), 8.22$ (d, J $\left.=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 8.25\left(\mathrm{dd}, J=4.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right)$. HRMS (ESI) calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{NS}[\mathrm{M}+\mathrm{H}]^{+} 294.0800$; found 294.0798.

3-Pyridyloxyethyl Thiocyanate (72)

To a solution of $71(413 \mathrm{mg}, 1.41 \mathrm{mmol})$ in N, N-dimethylformamide (3 mL) was added potassium thiocyanate ($683 \mathrm{mg}, 7.04 \mathrm{mmol}$). The reaction mixture was treated according to the general procedure. The product was purified by column chromatography (silica gel) eluting with hexane-EtOAc (7:3) to afford 107 mg (42% yield) of 72 as a colorless oil: R_{f} 0.38 (EtOAc); ${ }^{1} \mathrm{H}$ NMR ($\left.500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.37(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1), 4.38(\mathrm{t}, J=$ $5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 7.25\left(\mathrm{~m}, 2 \mathrm{H}\right.$, aromatic protons), $8.30\left(\mathrm{dd}, J=4.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 8.35$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$); ${ }^{13} \mathrm{C}$ NMR ($125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 33.1$ (C-1), 66.1 (C-2), 111.4 (SCN), 121.5 (C-6'), 124.0 ($\mathrm{C}-5^{\prime}$), 137.9 ($\mathrm{C}-2^{\prime}$), 143.3 ($\left.\mathrm{C}-4^{\prime}\right), 154.1$ ($\left.\mathrm{C}-1^{\prime}\right)$. HRMS (ESI) calcd. for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{ON}_{2} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$203.0255; found 203.0255.

Drug Screening

T. cruzi amastigote assays

These experiments were done as reported using tdTomato labeled trypomastigotes ${ }^{[31]}$ with the modifications described by Recher et al., 2013. ${ }^{[32]} \mathrm{ED}_{50}$ values were determined by nonlinear regression analysis using SigmaPlot.

T. gondii tachyzoites assays

Experiments on T. gondii tachyzoites were carried out as described previously ${ }^{[33]}$ using T. gondii tachyzoites expressing red fluorescent protein ${ }^{[34]}$ with the modifications described by Recher et al., 2013. ${ }^{[32]}$ Plates were read with covered lids, and both excitation (544 nm) and emission (590 nm) were read from the bottom.

Cytotoxicity for Vero cells

The cytotoxicity was tested using the Alamar Blue ${ }^{\mathrm{TM}}$ assay as described by Recher et al., 2013. ${ }^{[32]}$

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported by grants from the National Research Council of Argentina (PIP 0797), ANPCyT (PICT 2012 \#0457), and the Universidad de Buenos Aires (20020130100223BA) to J.B.R., the Bunge \& Born Foundation to S.H.S, and the U.S. National Institutes of Health to R.D. (AI-107663) and S.N.J.M. (AI-102254).

References

1. Urbina JA. Parasitol. 1997; 117:S91-S99.
2. Urbina JA. Curr Pharm Des. 2002; 8:287-295. [PubMed: 11860367]
3. Buckner FS, Urbina JA. Int J Parasitol Drugs Drug Resist. 2012; 2:236-242. [PubMed: 23277882]
4. Lepesheva GI, Villalta F, Waterman MR. Adv Parasitol. 2011; 75:65-87. [PubMed: 21820552]
5. Docampo R, Schmuñis G. Parasitol Today. 1997; 13:129-30. [PubMed: 15275097]
6. Urbina JA, Concepción JL, Rancel S, Bisbal G, Lira R. Mol Biochem Parasitol. 2002; 125:35-45. [PubMed: 12467972]
7. Urbina JA, Payares G, Molina J, Sanoja C, Liendo A, Lazardi K, Piras MM, Piras R, Perez N, Wincker P, Ryley JF. Science. 1996; 273:969-971. [PubMed: 8688084]
8. Cinque GM, Szajnman SH, Zhong L, Docampo R, Schvartzapel AJ, Rodriguez JB, Gros EG. J Med Chem. 1998; 41:1540-1554. [PubMed: 9554887]
9. Szajnman SH, Yan W, Bailey BN, Docampo R, Elhalem E, Rodriguez JB. J Med Chem. 2000; 43:1826-1840. [PubMed: 10794699]
10. Elhalem E, Bailey BN, Docampo R, Ujváry I, Szajnman SH, Rodriguez JB. J Med Chem. 2002; 45:3984-3999. [PubMed: 12190320]
11. Urbina JA, Concepcion JL, Montalvetti A, Rodriguez JB, Docampo R. Antimicrob Agents Chemother. 2003; 47:2047-2050. [PubMed: 12760897]
12. Concepcion JL, Gonzalez-Pacanowska D, Urbina JA. Arch Biochem Biophys. 1998; 352:114-120. [PubMed: 9521823]
13. Nair SC, Brooks CF, Goodman CD, Sturm A, McFadden GI, Sundriyal S, Anglin JL, Song Y, Moreno SN, Striepen B. J Exp Med. 2011; 208:1547-1559. [PubMed: 21690250]
14. Coppens I, Sinai AP, Joiner KA. J Cell Biol. 2000; 149:167-180. [PubMed: 10747095]
15. Grellier P, Valentin A, Millerioux V, Schrevel J, Rigomier D. Antimcrob Agents Chemother. 1994; 38:1144-1148.
16. Pradines B, Torrentino-Madamet M, Fontaine A, Henry M, Baret E, Mosnier J, Briolant S, Fusai R, Rogier C. Antimicrob Agents Chemother. 2007; 51:2654-2655. [PubMed: 17502414]
17. Bessoff K, Sateriale A, Lee KK, Huston CD. Antimicrob Agents Chemother. 2013; 57:1804-1814. [PubMed: 23380723]
18. Cortez E, Stumbo AC, Olieveira M, Barbosa HS, Carvalho L. Int J Antimcrob Agents. 2009; 33:185-186.
19. Li ZH, Ramakrishnan S, Striepen B, Moreno SN. PLoS Path. 2013; 9:e1003665.
20. Lin F-Y, Liu Y-L, Li K, Cao R, Zhu W, Axelson J, Pang R, Oldfield E. J Med Chem. 2012; 55:4367-4372. [PubMed: 22486710]
21. Shang N, Li Q, Ko TP, Chan HC, Li J, Zheng Y, Huang CH, Ren F, Chen CC, Zhu Z, Galizzi M, Li ZH, Rodrigues-Poveda CA, Gonzalez-Pacanowska D, Veiga-Santos P, de Carvalho TM, de

Souza W, Urbina JA, Wang AH, Docampo R, Li K, Liu YL, Oldfield E, Guo RT. PLoS Pathog. 2014; 10(5):e1004114. [PubMed: 24789335]
22. Schvartzapel AJ, Zhong L, Docampo R, Rodriguez JB, Gros EG. J Med Chem. 1997; 40:23142322. [PubMed: 9240347]
23. García Liñares G, Gismondi S, Osa Codesido N, Moreno SNJ, Docampo R, Rodriguez JB. Bioorg Med Chem Lett. 2007; 17:5068-5071. [PubMed: 17643987]
24. Elicio PD, Chao MN, Galizzi M, Li C, Szajnman SH, Docampo R, Moreno SNJ, Rodriguez JB. Eur J Med Chem. 2013; 69:480-489. [PubMed: 24090919]
25. García Liñares GE, Ravaschino EL, Rodriguez JB. Curr Med Chem. 2006; 13:335-360. [PubMed: 16475941]
26. (a) Maiti D, Buchwald SL. J Am Chem Soc. 2009; 131:17423-17429. [PubMed: 19899753] (b) Bhayana B, Fors BP, Buchwald SL. Org Lett. 2009; 11:3954-3957. [PubMed: 19663467] (c) Fors BP, Watson DA, Biscoe MR, Buchwald SL. J Am Chem Soc. 2008; 130:13552-13554. [PubMed: 18798626]
27. (a) Evans DA, Katz JL, West TR. Tetrahedron Lett. 1998; 39:2937-2940.(b) Chan DMT, Monaco KL, Wang R-P, Winters MP. Tetrahedron Lett. 1998; 39:2933-2936.
28. Schvartzapel AJ, Fichera L, Esteva M, Rodriguez JB, Gros EG. Helv Chim Acta. 1995; 78:12071214.
29. Inkster JAH, Liu K, Ait-Mohand S, Schaffer P, Guérin B, Ruth TJ, Storr T. Chem Eur J. 2012; 18:11079-11087. [PubMed: 22807282]
30. Imperiali B, Roy RS. J Org Chem. 1995; 60:1891-1894.
31. Canavaci AM, Bustamante JM, Padilla AM, Pereza Brandan CM, Simpson LJ, Xu D, Boehlke CL, Tarleton RL. PLOS Negl Trop Dis. 2010; 4:e740. [PubMed: 20644616]
32. Recher M, Barboza AP, Li Z-H, Galizzi M, Ferrer-Casal M, Szajnman SH, Docampo R, Moreno SN, Rodriguez JB. Eur J Med Chem. 2013; 60:431-440. [PubMed: 23318904]
33. Gubbels MJ, Striepen B. Antimicrob Agents Chemother. 2003; 43:309-316. [PubMed: 12499207]
34. Agrawal S, van Dooren GG, Beatty WL, Striepen B. J Biol Chem. 2009; 284:33683-33691. [PubMed: 19808683]

Figure 1.
Chemical structure of WC-9 (compound 1) and other closely related analogues.

Scheme 1.
Reagents and conditions: a) $\mathrm{Br}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OTHP}, \mathrm{KOH}, \mathrm{DMSO}, \mathrm{rt}, 24 \mathrm{~h}, 96 \%$; b) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$, EtOAc, rt, $4 \mathrm{~h}, 73 \%$; c) 1-iodo-3-(trifluoromethyl)benzene or 1-iodo-4(trifluoromethyl)benzene, $5 \% \mathrm{CuI}, 10 \%$ picolinic acid, $\mathrm{K}_{3} \mathrm{PO}_{4}$, $\mathrm{DMSO}, 9{ }^{\circ} \mathrm{C}, 36 \mathrm{~h}$; d) PPTS, MeOH, rt, 24 h ; e) TsCl, Py, $0^{\circ} \mathrm{C}$, 4 h ; e) KSCN, DMF, $80^{\circ} \mathrm{C}, 48 \mathrm{~h}$.

Scheme 2.

Reagents and conditions: a) 2-bromonaphtalene, $5 \% \mathrm{CuI}, 10 \%$ picolinic acid, K3PO4, DMSO, $90^{\circ} \mathrm{C}, 24 \mathrm{~h}, 18 \%$; b) PPTS, MeOH, rt, $4 \mathrm{~h}, 97 \%$; c) ClTs, py, rt, $4 \mathrm{~h}, 67 \%$; d)
KSCN, DMF, $100{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, 43 \%$; e) 1-bromonaphtalene, $5 \% \mathrm{CuI}, 10 \%$ picolinic acid, $\mathrm{K}_{3} \mathrm{PO}_{4}$,
DMSO, $90^{\circ} \mathrm{C}, 24 \mathrm{~h}, 29 \%$; f) PPTS, MeOH, rt, $4 \mathrm{~h}, 92 \%$;. g) CITs, py, rt, $4 \mathrm{~h}, 91 \%$;h)
KSCN, DMF, $100^{\circ} \mathrm{C}, 3 \mathrm{~h}, 43 \%$.

Scheme 3.
Reagents and conditions: a) 2-hydroxypyridine (1.2 equiv.) $5 \% \mathrm{CuI}, 10 \%$ picolinic acid, $\mathrm{K}_{3} \mathrm{PO}_{4}$, DMSO, $80^{\circ} \mathrm{C}, 24 \mathrm{~h}, 48 \%$; b) PPTs, $\mathrm{MeOH}, \mathrm{rt}, 16 \mathrm{~h}, 60 \%$; c) ClTs, py, $0^{\circ} \mathrm{C}$, then, rt, 90%; d) KSCN, DMF, $100^{\circ} \mathrm{C}, 61 \%$.

Scheme 4.
Reagents and conditions: a) 5\% CuI, 10% picolinic acid, $\mathrm{K}_{3} \mathrm{PO}_{4}$, DMSO, $80^{\circ} \mathrm{C}, 24 \mathrm{~h}$; b)
PPTs, $\mathrm{MeOH}, \mathrm{rt}, 16 \mathrm{~h}$; c) ClTs, py, $0^{\circ} \mathrm{C}, 6 \mathrm{~h}$; d) KSCN, DMF, $100^{\circ} \mathrm{C}, 6 \mathrm{~h}$.

Scheme 5

Reagents and conditions: a) 5\% CuI, 10% picolinic acid, $\mathrm{K}_{3} \mathrm{PO}_{4}, \mathrm{DMSO}, 8{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$; b) PPTs, MeOH , rt, 16 h ; c) NBS, $\mathrm{PPh}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 24 \%$; d) ClTs, py, $0^{\circ} \mathrm{C}, 6 \mathrm{~h}$; e) KSCN , DMF, $100^{\circ} \mathrm{C}, 6 \mathrm{~h}$.

Scheme 6.
Reagents and conditions: a) $\mathrm{NaN}_{3}, \mathrm{DMF}, 100^{\circ} \mathrm{C}, 6 \mathrm{~h}, 35 \%$.

Scheme 7.

Reagents and conditions: a) $\mathrm{KOH}, \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{OTHP}, \mathrm{DMSO}, \mathrm{rt}, 16 \mathrm{~h}, 46 \%$; b) PPTs,
$\mathrm{MeOH}, \mathrm{rt}, 16 \mathrm{~h}, 70 \%$; c) ClTs, py, $0^{\circ} \mathrm{C}, 6 \mathrm{~h}, 84 \%$; d) KSCN, DMF, $100^{\circ} \mathrm{C}, 6 \mathrm{~h}, 75 \%$.

Scheme 8.
Reagents and conditions: a) $\mathrm{KOH}, \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{OTHP}, \mathrm{DMSO}, \mathrm{rt}, 16 \mathrm{~h}, 31 \%$; b) PPTs, $\mathrm{MeOH}, \mathrm{rt}, 16 \mathrm{~h}, 46 \%$; ClTs, py, $0^{\circ} \mathrm{C}, 6 \mathrm{~h}, 69 \%$; d) KSCN, DMF, $100^{\circ} \mathrm{C}, 6 \mathrm{~h}, 42 \%$.
Biological activity of WC-9 analogues against T. cruzi (amastigotes), T. gondii (tachyzoites), and Vero cells. ${ }^{\ddagger}$

Compound	T. cruzi $\mathbf{E D}_{\mathbf{5 0}}(\boldsymbol{\mu M})$	${\text { T. gondii } \mathbf{E D}_{\mathbf{5 0}}(\boldsymbol{\mu M})}^{\text {Cytotoxicity } \mathbf{E D}_{\mathbf{5 0}}(\boldsymbol{\mu M})}$	$\mathbf{S I}(\boldsymbol{T .}$ cruzi)	SI (T. gondii)	
$\mathbf{1 5}$	10.0 ± 2.5	1.66 ± 0.35	>50.0	>5.0	>31.1
$\mathbf{1 6}$	9.2 ± 1.8	1.86 ± 0.38	>50.0	5.4	>26.7
$\mathbf{2 0}$	>10.0	2.25 ± 0.84	104.7 ± 7.8	>10.4	46.5
$\mathbf{2 4}$	>10.0	2.87 ± 0.19	70.1 ± 7.6	>7	24.4
$\mathbf{2 9}$	>10.0	>10.0	>200.0		
$\mathbf{4 6}$	11.94 ± 0.38	2.13 ± 0.38	>50.0	4.2	23.4
$\mathbf{4 7}$	>20.0	>10.0	>200.0		
$\mathbf{4 8}$	6.27 ± 0.75	3.86 ± 0.28	98.4 ± 5.8	15.7	25.2
$\mathbf{4 9}$	11.7 ± 2.52	2.79 ± 0.42	115.7 ± 39.8	9.9	41.5
$\mathbf{5 0}$	8.75 ± 0.33	4.02 ± 0.27	96.2 ± 37.5	11.0	23.9
$\mathbf{6 0}$	>10.0	>10.0	>200.0		
$\mathbf{6 1}$	7.49 ± 1.39	3.71 ± 0.92	124.0 ± 12.0	16.6	33.5
$\mathbf{6 2}$	>10.0	>10.0	>200.0		
$\mathbf{6 4}$	>10.0	>10.0	>200.0		
$\mathbf{6 8}$	>20.0	>10.0	>50.0		
$\mathbf{7 1}$	>10.0	>10.0	>200		
WC-9	5.0 ± 1.1	4.8 ± 0.41	82.6 ± 7.3		
Benznidazole	1.92 ± 0.55				
Atovaquone		0.032 ± 0.019			

[^1]
[^0]: Correspondence to: Juan B. Rodriguez, jbr@qo.fcen. uba. ar.
 Supporting Information: Copies of the ${ }^{1} \mathrm{H}$ NMR, ${ }^{19} \mathrm{~F}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of the target molecules and the corresponding intermediates are included as supporting information.

[^1]: *Data are from one experiment in triplicate expressed as means \pm S.D.

