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1 Introduction

Supersymmetry preserving flux compactifications of String and M-Theory are described

by gauged supergravities. The introduction of background fluxes generates a scalar po-

tential in the effective action, providing a successful arena for moduli stabilization and

supersymmetry breaking. The embedding tensor formalism [1, 2] (see also [3] and ref-

erences therein) provides an efficient formulation of such theories in which all possible

flux-deformations are encoded into a single object, the embedding tensor. Much effort has

been made in recent years to establish a correspondence between its components and the

consistent flux-deformations that arise in string theory compactifications [4–8]. While some

of these deformations (dubbed “geometric”) can be rapidly identified with metric and p-

form flux backgrounds, the higher dimensional origin of others is less clear (and were then

named “non-geometric”). Interestingly, in this formulation the global symmetries inherited

form the duality symmetries of the parent theories are manifest. These symmetries mix

geometric and non-geometric deformations, allowing to identify the origin of non-geometric

fluxes as the result of flux-compactifications in dual backgrounds.

Regardless of their higher dimensional origin, it is clear that gauged supergravities

offer a window to look into the vacuum structure of string theory. It is then of interest

to explore and classify their possible gaugings and critical points. This is clearly a very

ambitious programme, since the lower dimensional the gauge supergravity, the larger the

space of possible deformations allowed by the embedding tensor. Still, it is worth the effort

and here we give a small step in this direction. Before we comment on our main results,

let us first offer a glimpse into previous results.

– 1 –



J
H
E
P
1
1
(
2
0
1
5
)
0
3
7

Among the three possible types of vacua: AdS, Mkw and dS, the latter is necessarily

SUSY breaking and therefore the hardest to find in supersymmetric theories. Since we

happen to live in such a vacuum, it is possibly the most interesting one. One finds instead

a large landscape of AdS vacua which is mostly of interest in the context of the AdS/CFT

correspondence, and there are many known examples of Mkw vacua of special interest in

stringy constructions of standard-like models. Stable dS vacua, on the contrary, remain

quite reluctant to discovery. We do have some knowledge of why this is the case, specially

after some no-go theorems (see for example [9, 10]) and after many studies that relate a

positive cosmological constant with instabilities (among which we can mention [11–13]).

Although in theories with small amount of supersymmetry there are very interesting ex-

amples of dS vacua [14–16], to our knowledge, there is no known fully stable dS vacuum in

(half-)maximal gauged supergravity.

We then find it of interest to focus on particularly simple gauged supergravities in

which an exhaustive analysis can be made outside the regions excluded by no-go theorems

and previous surveys. Here we consider seven-dimensional half-maximal gauged super-

gravity [17], which is rich enough in structure to offer an intricate moduli space and at

the same time is simple enough to make an exhaustive analysis. We begin by identifying

the scalars of the theory (2.1)–(2.2), the possible gaugings (2.4) with their corresponding

quadratic constraints (2.5), the scalar potential (2.6) and the shift matrices (2.8). The flux-

deformations split into three types. On the one hand we have the universal half-maximal

gaugings, consisting of the “three-form” fABC and the unimodular deformations ξA, and

on the other there is a (non-gauging) massive deformation θ. We then classify all orbits

of solutions to the quadratic constraints (tables 2 and 3), therefore finding all consistent

seven-dimensional gauge supergravities with sixteen supercharges. The space of deforma-

tions splits into two branches, one with θ = 0 (branch 1) and another one with ξA = 0

(branch 2). While the classification of orbits of branch 2 was exhaustively performed

in [18], here we complete the classification for branch 1 by including the unimodular

deformations ξA.

We then move to the analysis of critical points, following the going-to-the-origin ap-

proach [6]. While branch 1 contains only Mkw vacua, branch 2 allows for non-semisimple

configurations that exhibit both AdS and Mkw, and semisimple configurations with a large

variety of minima. Interestingly, we find an SO(1, 3) gauging configuration with an AdS-

Mkw-dS transition vacuum containing a fully stable dS window. We believe this is the first

example of stable dS vacua in half-maximal supergravity.

Let us briefly sketch the structure of the paper. In section 2 we introduce the theory

and all the elements that are necessary to explore its moduli space. Section 3 is devoted

to classify all the duality orbits of deformations. In section 4 we perform the analysis of

critical points and conclude with a discussion in section 5. For completion we also include

an appendix where we deal with formulae that is relevant for the analysis.

2 The half-maximal D = 7 gauged supergravities

Half-maximal (ungauged) supergravity in seven dimensions coupled to three vector multi-

plets can be obtained by reducing type I supergravity in ten dimensions on a T3. The theory
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fields SO(5) irrep’s R+ × SL(4) irrep’s SU(2)R × SU(2) irrep’s # dof’s

eµ
a 14 1(0) (1,1) 14

Aµ
[mn] 5 6(+1) (1,1) 30

Bµν 10 1(+2) (1,1) 10

Σ 1 1(+1) (1,1) 1

Vmαα̂ 1 4′(0) (2,2) 9

ψµα 16 1(0) (2,1) 32

χα 4 1(0) (2,1) 8

λαα̂β̂ 4 1(0) (2,3) 24

Table 1. The on-shell field content of (ungauged) half-maximal supergravity in D = 7. Each

field is massless and hence transforms in some irrep of the corresponding little group SO(5) w.r.t.

spacetime diffeomorphisms and local Lorentz transformations. Please note that, in the SL(4) scalar

coset representative Vmαα̂, one needs to subtract the number of unphysical scalars corresponding

with SO(4) generators in order to come up with the correct number of dof’s, i.e. 9.

possesses 16 supercharges which can be rearranged into a pair of symplectic-Majorana (SM)

spinors transforming as a doublet of SU(2)R. The full Lagrangian enjoys a global symmetry

given by

G0 = R+
Σ × SO(3, 3) ≈ R+

Σ × SL(4) .

The (64B+64F ) bosonic and fermionic propagating degrees of freedom (dof’s) of the theory

are then rearranged into irrep’s of G0 as described in table 1. We refer to the appendix for

a summary of our notations for all different indices used throughout the paper.

As one can see from table 1, the scalar sector of the theory contains an R+ scalar

denoted by Σ and an SO(3,3)
SO(3)×SO(3) coset representative denoted by MAB. However, by

exploiting the isomorphism between SO(3, 3) and SL(4) at the level of their Lie algebras, it

is particularly convenient to parametrise this set of scalars by an SL(4)
SO(4) coset representative

which we denote by Mmn. In terms of the vielbein Vmαα̂ appearing in table 1, Mmn can

be constructed as

Mmn = Vmαα̂ Vnββ̂ εαβ εα̂β̂ , (2.1)

where εαβ εα̂β̂ can be viewed as the invariant metric of SU(2)R × SU(2), which can be

brought into the form of an 14. Given a realisation of Mmn,MAB can then be obtained as

MAB =
1

2
[GA]mp[GB]nqMmnMpq , (2.2)

in terms of the ’t Hooft symbols [GA]mn introduced in appendix B.

The kinetic Lagrangian for the scalar sector reads

Lkin = −5

2
Σ−2 (∂Σ)2 +

1

16
∂µMAB ∂

µMAB = −5

2
Σ−2 (∂Σ)2 +

1

8
∂µMmn ∂

µMmn , (2.3)

where MAB and Mmn denote the inverse of MAB and Mmn, respectively.
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As a consequence of the linear constraint (LC), the deformations of the theory described

by a generalised embedding tensor need to transform in the following G0 irrep’s [18]

Θ ∈ 1(−4)︸ ︷︷ ︸
θ

⊕10′(+1)︸ ︷︷ ︸
Q(mn)

⊕10(+1)︸ ︷︷ ︸
Q̃(mn)

⊕6(+1)︸ ︷︷ ︸
ξ[mn]

,

where θ can be viewed as a Stückelberg coupling defining as a so-called p = 3-type defor-

mation [19], whereas all the other irreducible pieces correspond to gaugings. In particular,

Q & Q̃ can be used in order to gauge a subgroup of SL(4), whereas ξ necessarily gauges

the R+
Σ generator as well as a suitable subgroup of SL(4).

It is worth mentioning that the ’t Hooft symbols given in appendix B may be used

to map Q ⊕ Q̃ and ξ into a 3-form fABC (self-dual (SD) and anti-self-dual (ASD) part)

and a vector ξA of SO(3, 3), respectively. Such f and ξ characterise the universal sector of

consistent gaugings of half-maximal theories which exist in any dimension in the presence

of vector multiplets.

The generators of the gauge algebra can be written as

(Xmn)pq
rs =

1

2
δ

[r
[mQn][p δ

s]
q] +

1

4
εtmn[p (Q̃+ ξ)t[r δ

s]
q] , (2.4)

in terms of the embedding tensor. Please note that the (Xmn)pq
rs’s are in general not

traceless. In particular their trace is proportional to ξ, thus implying that one needs an

embedding tensor in the 6 in order to gauge the R+ generator outside of SL(4).

The closure of the gauge algebra and more general bosonic consistency impose the fol-

lowing quadratic constraints (QC) on the various irreducible components of the embedding

tensor (
Q̃mp + ξmp

)
Qpn −

1

4

(
Q̃pq Qpq

)
δmn = 0,

Qmp ξ
pn + ξmp Q̃

pn = 0,

ξmn ξ
mn = 0,

θ ξmn = 0,

(2.5)

where ξmn ≡ 1
2 ε

mnpq ξpq. The above QC contain irreducible pieces transforming in the

1(+2) ⊕ 6(−3) ⊕ 15(+2) of R+
Σ × SL(4).

Gauge invariance and supersymmetry force the scalar potential of the theory to be of

the form1

V =
g2

64

(
θ2 Σ8 +

1

4
QmnQpq Σ−2 (2MmpMnq −MmnMpq) +

+
3

2
ξmnξpq Σ−2MmpMnq +

1

4
Q̃mnQ̃pq Σ−2 (2MmpMnq −MmnMpq) +

− θ
(
QmnM

mn − Q̃mnMmn

)
Σ3 +QmnQ̃

mn Σ−2

)
,

(2.6)

1We hereby correct a typo in ref. [20] concerning the sign of the θ Q̃ term, which, though, does not affect

any of the results obtained there.
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where g denotes an arbitrary gauge coupling.2 The above expression generalises the one

given in ref. [20] to the case with ξmn 6= 0.

The gauging procedure induces mass terms for the fermions proportional to the gauge

coupling constant of the following form

e−1 Lf. mass ⊃ g
(
A1

αβ ψ̄µα γ
µν ψνβ ⊕A2

αβ ψ̄µα γ
µ χβ ⊕A3 α̂β̂β

α ψ̄µα γ
µ λβα̂β̂

)
, (2.7)

where the shift matrices A1
αβ = A1

[αβ], A2
αβ and A3 α̂β̂β

α = A3 (α̂β̂)β
α are the irreducible

components of the T-tensor. These can be written in terms of the embedding tensor as

A1
αβ =

1

8

(
Σ4 θ εαβ + Σ−1Qmn Vγα̂mVδβ̂

n εγαεδβεα̂β̂ − Σ−1 Q̃mn Vmαα̂Vnββ̂ εα̂β̂
)
,

A2
αβ =

1

8

(
Σ4 θ εαβ − 1

4
Σ−1Qmn Vγα̂mVδβ̂

n εγαεδβεα̂β̂ +
1

4
Σ−1 Q̃mn Vmαα̂Vnββ̂ εα̂β̂

)
+

√
15

32
Σ−1 ξmn Vγα̂mVδβ̂

n εγαεδβεα̂β̂ ,

A3 α̂β̂γ
δ =

1

8
Σ−1

(
Qmn Vγα̂mVββ̂

n εβδ − Q̃mn Vmαγ̂Vnδδ̂ εγ̂α̂εδ̂β̂εαγ

−
√

3

2
ξmn Vαα̂mVββ̂

n εαβδδγ

)
. (2.8)

The conditions for preserving supersymmetry read

A1
αβ qβ

!
=

√
−10V

3
qα , (2.9)

for a pair of SM spinors qα transforming in the fundamental representation of SU(2) or,

equivalently,

A2
αβ qβ

!
= 0 , and A3 α̂β̂γ

δ qδ
!

= 0 . (2.10)

In terms of the shift matrices defined in (2.8), the scalar potential in (2.6) can be

rewritten as

V = g2

(
− 3

10
|A1|2 +

4

5
|A2|2 +

1

2
|A3|2

)
, (2.11)

where3 |A1|2 ≡ A1
αβ A1αβ , |A2|2 ≡ A2

αβ A2αβ and |A3|2 ≡ A3 α̂β̂γ
δ A3

α̂β̂γ
δ.

Please note that, in the origin of moduli space, the vielbeins of SL(4)
SO(4) read

Vmαβ̂
∣∣∣
origin

=
1√
2

[
Γm
]αβ̂

, (2.12)

where
[
Γm
]αβ̂

denote the Dirac matrices of SO(4) in the Weyl representation (see

appendix C for more details).

2In section 4, we will set g = 8 when analysing the set of critical points of the various gauged theories.
3SU(2) indices are raised and lowered by means of εαβ and εα̂β̂ .
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N = 4, D = 4 gaugings with 7D origin. Half-maximal supergravity in D = 4 with

six vector multiplets exhibits manifest SL(2) × SO(6, 6) global symmetry and it admits

embedding tensor deformations which are restricted to transform in the

Θ ∈ (2,12)︸ ︷︷ ︸
ξaM

⊕ (2,220)︸ ︷︷ ︸
fa[MNP]

,

of SL(2)× SO(6, 6) by the LC [21].

By reducing a consistent gauged theory in 7D on a T3, one obtains a particular class

of embedding tensors in 4D. Hence, in order to identify the parts of fa[MNP] & ξaM which

have a seven-dimensional origin, one needs to branch the N = 4 embedding tensor w.r.t.

our global 7D symmetry G0. This is done through the following chain

SL(2)Σ × SO(6, 6) ⊃ SL(2)Σ × SO(3, 3)A × SO(3, 3)Â ⊃ R+
Σ × SO(3, 3)A ,

where R+
Σ is a combination of the R+ sitting inside SL(2)Σ and one of the Cartan generators

of SO(3, 3)Â in the last step one is allowed to identify the fundamental representation of

SO(3, 3)A with the two-form of SL(4) by using the mapping in appendix B.

The fundamental index M of SO(6, 6) splits as

M −→ A⊕
(
i, j, k; ī, j̄, k̄

)
,

in light-cone coordinates.

The ten scalars of the 7D theory are embedded as

Mab =

(
Σ2

Σ−2

)
, MMN =


MAB

Σ2 13

Σ−2 13

 (2.13)

into the SL(2)
SO(2) and SO(6,6)

SO(6)×SO(6) coset representatives, respectively.

The embedding tensor of the 7D theory is embedded into the objects fa[MNP] & ξaM as

follows

f+ABC = fABC , f−īj̄k̄ = θ , and ξ+A =
1√
2
ξA , (2.14)

where

fABC = (Xmn)pq
rs [GA]mn [GB]pq [GC ]rs ,

ξA = ξmn [GA]mn ,
(2.15)

in terms of the objects in (2.4) and the ’t Hooft symbols defined in (B.4).

3 Orbit classification of deformations

Each solution to the QC in (2.5) identifies a consistent deformation of half-maximal 7D

supergravity. The global symmetry group R+ × SL(4) ≈ R+ × SO(3, 3) of the theory can

be interpreted as T-duality and, since the QC are manifestly covariant w.r.t. such global

symmetry, the space of solutions is naturally split into duality orbits.

– 6 –
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This section is the natural generalisation of the analysis carried out in ref. [18] in the

case θ = ξmn = 0. Due to the last condition in (2.5), the set of all consistent gaugings is

naturally split into two independent branches:

• branch 1: θ = 0 , • branch 2: ξmn = 0 .

Orbits of deformations in branch 1. When θ = 0, the corresponding deformation

can be understood as a gauging in the traditional sense, i.e. it is obtained by promoting a

suitable subgroup of G0 to a local symmetry. In particular, as we have already observed

earlier, Q & Q̃ purely gauge generators within the SL(4) factor, whereas ξ necessarily

gauges the extra R+
Σ as well as a subgroup of SL(4).

The T-duality orbit classifications for gaugings in this branch is presented in table 2.

As far as the higher-dimensional origin of the orbits in this branch is concerned,

they can all be regarded as generalised twisted reductions of heterotic supergravity and

hence they should all be accessible by means of twisted reductions of Double Field Theory

(DFT) [22]. However, as already noted in [18], this will generically require a relaxation of

the section condition as originally proposed in ref. [23].

Orbits of deformations in branch 2. When ξmn = 0, the most general consistent

deformation of half-maximal 7D supergravity is a combination of a massive deformation

induced by θ and a gauging of an arbitrary (up to six-dimensional) subgroup of SL(4). The

consistency conditions and therefore the resulting gauge algebras turn out to be identical

to those in the θ = ξmn = 0 case already analysed in detail in ref. [18]. We collect in table 3

the corresponding results suitably combined with a non-zero θ.

Please note that, whenever θ 6= 0, all the duality orbits belonging to this second

branch of consistent deformations are related to orientifold compactifications of type II

supergravities on a T3 with dyonic generalised fluxes and hence go beyond those twisted

reductions of DFT considered in ref. [18].

4 Systematic analysis of critical points

After having classified all the consistent deformations of half-maximal supergravity in D =

7, the aim of this section is that of studying the critical points of the potential (2.6). To

this end we introduce the following explicit parametrisation for the SL(4) scalars

Vmm =


eφ1/2 χ1 e

φ2/2 χ2 e
φ3/2 χ4 e

−(φ1+φ2+φ3)/2

0 eφ2/2 χ3 e
φ3/2 χ5 e

−(φ1+φ2+φ3)/2

0 0 eφ3/2 χ6 e
−(φ1+φ2+φ3)/2

0 0 0 e−(φ1+φ2+φ3)/2

 , (4.1)

containing three dilatons and six axions. Please note that the vielbein in (4.1) can be

related to the object appearing in table 1 in the following way

Vmαβ̂ =
1√
2
Vmm

[
Γm
]αβ̂

, (4.2)

by using the Dirac matrices of SO(4).
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ID ξmn Qmn/ cosα Q̃mn/ sinα gauging

1

04

14 14

SO(4) , α 6= π
4

SO(3) , α = π
4

2 diag(1, 1, 1,−1) diag(1, 1, 1,−1) SO(3, 1)

3 diag(1, 1,−1,−1) diag(1, 1,−1,−1)
SO(2, 2) , α 6= π

4

SO(2, 1) , α = π
4

4
04

diag(1, 1, 1, 0)
diag(0, 0, 0, 1)

CSO(3, 0, 1) , α 6= π
4

SO(3) , α = π
4

5 diag(1, 1,−1, 0) CSO(2, 1, 1)

6

ξ0

(
ε2

02

)
diag(1, 1, 0, 0)

diag(0, 0, 1, 1)
CSO(2, 0, 2) , |ξ0| < 1

f1 (Solv6)∗ , |ξ0| = 1

7 diag(0, 0, 1,−1)

CSO(2, 0, 2) , |ξ0| <
√

cos(2α)

CSO(1, 1, 2) , |ξ0| >
√

cos(2α)

g0 (Solv6)∗ , |ξ0| =
√

cos(2α)

8 diag(0, 0, 0, 1) h1 (Solv6)∗

9

ξ0

(
ε2

02

)
diag(1,−1, 0, 0)

diag(0, 0, 1, 1) f2 (Solv6)∗

10 diag(0, 0, 1,−1) CSO(1, 1, 2)

11 diag(0, 0, 0, 1) h2 (Solv6)∗

12 ξ0

(
ε2

02

)
diag(1, 0, 0, 0) diag(0, 0, 0, 1)

l (Nil6(3))∗ , ξ0 6= 0

CSO(1, 0, 3) , ξ0 = 0

13 ξ0

(
ε2

02

)
04 04

(
R+ n (R+)

3
)
×U(1)2

Table 2. All the T-duality orbits of consistent gaugings in the 6 ⊕ 10 ⊕ 10′ of half-maximal

supergravity in D = 7. Any value of (α, ξ0) parameterises inequivalent orbits; the range of α is

everywhere −π4 < α ≤ π
4 , while that of ξ0 is −1 ≤ ξ0 ≤ 1. The shorthand ε2 denotes the 2D

Levi-Civita symbol. Note that, whenever ξ0 6= 0, one Abelian gauge generator needs to coincide

with R+
Σ . For more details on algebras marked with *, see appendix A.

In terms of the vielbein Vmm, the coset representative Mmn appearing in the scalar

potential is given by

Mmn = Vmm Vnn δmn , (4.3)

where δmn represents the SO(4) invariant metric. By plugging the above parametrisation

into the kinetic Lagrangian given in (2.3), one can rewrite it as

Lkin = −1

2
KIJ

(
∂ΦI

) (
∂ΦJ

)
, (4.4)

where ΦI ≡ (Σ, φ1, φ2, φ3, χ1, χ2, χ3, χ4, χ5, χ6), with I = 1, . . . , 10 and the kinetic

– 8 –
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ID θ Qmn/ cosα Q̃mn/ sinα gauging

1

κ

14 14

SO(4) , α 6= π
4

SO(3) , α = π
4

2 diag(1, 1, 1,−1) diag(1, 1, 1,−1) SO(3, 1)

3 diag(1, 1,−1,−1) diag(1, 1,−1,−1)
SO(2, 2) , α 6= π

4

SO(2, 1) , α = π
4

4
κ

diag(1, 1, 1, 0)
diag(0, 0, 0, 1)

CSO(3, 0, 1) , α 6= π
4

SO(3) , α = π
4

5 diag(1, 1,−1, 0) CSO(2, 1, 1)

6

κ diag(1, 1, 0, 0)

diag(0, 0, 1, 1)
CSO(2, 0, 2) , α 6= π

4

f1 (Solv6)∗ , α = π
4

7 diag(0, 0, 1,−1)

CSO(2, 0, 2) , |α| < π
4

CSO(1, 1, 2) , |α| > π
4

g0 (Solv6)∗ , |α| = π
4

8 diag(0, 0, 0, 1) h1 (Solv6)∗

9
κ diag(1,−1, 0, 0)

diag(0, 0, 1,−1)
CSO(1, 1, 2) , α 6= π

4

f2 (Solv6)∗ , α = π
4

10 diag(0, 0, 0, 1) h2 (Solv6)∗

11 κ diag(1, 0, 0, 0) diag(0, 0, 0, 1)
l (Nil6(3))∗ , α 6= 0

CSO(1, 0, 3) , α = 0

Table 3. All the T-duality orbits of consistent deformations in the 1 ⊕ 10 ⊕ 10′ of half-maximal

supergravity in D = 7. Any value of α parameterises inequivalent orbits; the range of α is

everywhere −π2 < α < π
2 , except in orbits 1, 2, 3 and 11, where it is reduced to −π4 < α ≤ π

4

due to the symmetry w.r.t. interchanges between Q & Q̃. Note that the value of κ, instead, can

be restricted to being either 0 or 1 by using an R+
Σ rescaling. For more details on algebras marked

with *, see appendix A.

metric KIJ assumes the form

KIJ =

(
K(1)

K(2)

)
, (4.5)

where the two 5×5 blocks of KIJ have in general a complicated field-dependent expression.

However, in the origin of the scalar manifold, they explicitly read

K(1)
∣∣∣
origin

=


5 0 0 0 0

0 1
2

1
4

1
4 0

0 1
4

1
2

1
4 0

0 1
4

1
4

1
2 0

0 0 0 0 1
2

 , and K(2)
∣∣∣
origin

=
1

2
15 . (4.6)
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The inverse of the above kinetic metric turns out to be needed in order to write down

the correct physical normalised mass matrix for ΦI , which then reads(
m2
)
I

J ≡ 1

|V |
KJK ∂K∂IV . (4.7)

We remind the reader that one needs to take the Breitenlohner-Freedman (BF) bound [24]

into account when it comes to judging the stability of an AdS critical point. In D dimen-

sions, this translates into the following lower bound for the normalised mass of the mode

in question
m2

|Λ|
!
≥ − D − 1

2 (D − 2)
, (4.8)

which equals −3
5 in 7D.

For the analysis of critical points of the scalar potential we will adopt the going to

the origin (GTTO) approach [6], i.e. we will make use of a non-compact R+ × SL(4)

transformation in order to restrict the search of solutions to the origin of moduli space

without loss of generality.

Furthermore, since in both branches (1 & 2) we retain a set of embedding tensor

components which happens to be closed w.r.t. compact global symmetries as well, we are

still allowed to use an SO(4) to further simplify the embedding tensor while keeping all

the scalars in the origin. In our case, we will exploit this possibility in order to assume a

diagonal form for the symmetric matrix Qmn.

No-go argument for Λ 6= 0 within branch 1. When θ = 0, all the non-vanishing

embedding tensor irrep’s happen to have the same R+
Σ weight. As a consequence, the

complete scalar potential within this class of deformations can be written as

V (Σ, Mmn) = Σ−2 V0(Mmn) , (4.9)

where V0 is an arbitrary function of the SL(4) scalars but independent of Σ.

This immediately implies that Σ is generically a run-away direction. This statement

is analogous to that in ref. [25] concerning the run-away behaviour of the SL(2) dilaton in

every purely electric gauging within half-maximal supergravity in four dimensions.

The only way of solving the Σ field equation is having a vanishing Λ at the solution.

As a consequence, one is only left with Minkowski solutions of the no-scale type as the only

possibility. An example of such a solution with ξmn = Q̃mn = 0 is

Qmn =

(
12

02

)
, (4.10)

with the following (non-)normalised mass spectrum

1

16
(×2) , 0 (×8) . (4.11)

Such a solution corresponds to a reduction of type I supergravity on an ISO(2) group

manifold [26]. We have not explored this branch exhaustively but so far we have no

evidence for the existence of Minkowski solutions with non-zero ξmn.
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ID θ Qmn Q̃mn orbit mass spectrum

1 0 diag(λ, λ, 0, 0) diag(0, 0, µ, µ) 6

0 (× 6)

λ2 (× 2)

µ2 (× 2)

2 0 diag(λ, λ, 0, 0) 04 6
0 (× 8)

1
16λ

2 (× 2)

3 λ
2 diag(λ, 0, 0, 0) 04 11

0 (× 9)

1
16λ

2 (× 1)

Table 4. All the Minkowski solutions of half-maximal supergravity in D = 7 with non-semisimple

gauge groups within branch 2. Only orbits 6 and 11 in table 3 admit these solutions. Please note

that, in this case, the mass spectrum cannot be normalised w.r.t. to the value of the cosmological

constant.

Critical points in branch 2. In this second branch of consistent deformed theories θ

offers us the only terms in the scalar potential having a different scaling behaviour w.r.t.

Σ, thus allowing us to stabilise all the moduli at non-vanishing values of the cosmological

constant. This case represents the 7D analog of introducing non-trivial de Roo-Wagemans

phases.

In this branch, the QC (2.5) take the following simple form

Q̃mpQpn −
1

4

(
Q̃pq Qpq

)
δmn = 0 . (4.12)

If one furthermore restricts, as argued earlier to a diagonal Qmn, the above QC imply a

diagonal form for Q̃mn as well. This, in turn, guarantees that all the equations of motion

for the axions will be automatically satisfied, thus simplifying our analysis enormously.

Exhaustive search within non-semisimple gaugings. Within this class of theories

there exist no-scale type Minkowski (i.e. stable up to flat directions) and AdS solutions.

These critical points are collected in table 4 and 5, respectively.

Exhaustive search within semisimple gaugings with Q̃mn = 0. When considering

the case of semisimple gaugings purely in the 10′, one has access to orbits 1, 2 and 3 of

table 3 with α = 0. These gaugings all admit an uplift to semisimple gaugings of the

maximal theory where the embedding tensor is purely restricted to a YMN ∈ 15′ of SL(5)

of the form

YMN =

(
θ

1
2 Qmn

)
, (4.13)

and hence all fall into the classification of ref. [27]. All critical points of this type are

collected in table 6.
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ID θ Qmn Q̃mn orbit mass spectrum

1 λ
4 diag(λ, λ, λ, 0) diag(0, 0, 0, λ) 4

0 (× 3)

− 8
15 (× 1)

16
15 (× 5)

8
3 (× 1)

2 λ
14 diag(λ, λ, λ, 0) diag(0, 0, 0,−8

7λ) 4

0 (× 3)

12
5 (× 5)

2
35

(
22 ±

√
1954

)
(× 1)

3 λ
2 diag(λ, λ, λ, 0) diag(0, 0, 0, λ) 4

0 (× 8)

4
5 (× 1)

12
5 (× 1)

Table 5. All the AdS solutions of half-maximal supergravity in D = 7 with non-semisimple gauge

groups within branch 2. Only CSO(3, 0, 1) and SO(3) gaugings in table 3 admit AdS solutions.

Sol. 1 is supersymmetric, whereas 2 & 3 are non-supersymmetric. Sol. 2 even violates the BF

bound in (4.8), thus being unstable.

ID θ Qmn orbit mass spectrum

1 λ
2 λ14 1 − 8

15 (× 10)

2 λ λ14 1
−4

5 (× 9)

4
5 (× 1)

3 λ
2 diag(λ, λ, λ, 2λ) 1

0 (× 3)

−4
5 (× 6)

4
5 (× 1)

Table 6. All the AdS solutions of half-maximal supergravity in D = 7 with semisimple gauge

groups in the 10′. All these critical points of the SO(4) and SO(3) gaugings admit an uplift to the

maximal 7D theory, since they satisfy θ Q̃mn = 0. Sol. 1 is supersymmetric, whereas sol. 2 & 3 are

non supersymmetric and unstable.

Exploring semisimple gaugings in the 10 ⊕ 10′. When considering more general

semisimple gaugings with both Q & Q̃ turned on, the space of solutions to the QC and

field equations suddenly becomes much richer and a complete analytical treatment gets

much harder to perform. However, we were able to exhaustively explore some particularly

relevant subcases within this class.

By setting, e.g. q11 = 1 and q33 = q44, one finds a set of isolated AdS/Minkowski solu-

tions corresponding to critical points of SO(4)-gauged theories and two continuous branches

with gauge group SO(3, 1) exhibiting an AdS-Mkw-dS transition and even allowing for a

stable dS window.

– 12 –



J
H
E
P
1
1
(
2
0
1
5
)
0
3
7

ID θ Qmn Q̃mn orbit V0 mass spectrum

1 1−λ
2 14 λ14 1 −15

4 (1− λ)2 − 8
15 (× 10)

2 1−λ
4 diag(1, 1, 1, λ) diag(λ, λ, λ, 1) 1 - 4 - 2 −15

16 (1− λ)2

0 (× 3)

− 8
15 (× 1)

16
15 (× 5)

8
3 (× 1)

3 1− λ 14 λ14 1 −5 (1− λ)2
−4

5 (× 9)

4
5 (× 1)

4 1−λ
2 diag(1, 1, 1, λ) diag(λ, λ, λ, 1) 1 - 4 - 2 −5

4 (1− λ)2

0 (× 8)

4
5 (× 1)

12
15 (× 1)

5 0 diag(1, 1, λ, λ) diag(λ, λ, 1, 1) 1 - 6 - 3 0
0 (× 6)

4 (1− λ)2 (× 4)

Table 7. Isolated AdS/Mkw solutions of half-maximal supergravity in D = 7 with semisimple

gauge groups in the 10 ⊕ 10′. Note that the gauge group transitions in rows 3, 4 and 5 do not

involve a sign change for V0. Sol. 1 & 2 are supersymmetric, whereas all the other solutions happen

to break supersymmetry. Sol. 3 is the only one violating the BF bound (4.8).

The set of isolated solutions is presented in table 7. In solutions 3 & 4 in the table,

the gauge group degenerates into ISO(3) when λ = 0. There one has a Minkowski critical

point and then, when moving further into the λ < 0 region, the gauge group becomes

SO(3, 1) but, as one can see from the analytical λ-dependence of V0 shown in the table, the

cosmological constant goes back to negative instead of flipping sign. A similar transition

has been first observed in ref. [28] in the context of the G2 invariant sector of N = 8

supergravity in four dimensions.

In solution 5 instead, the gauge group evolves from SO(4) to SO(2, 2) via CSO(2, 0, 2)

in correspondence of λ = 1. However in this case, the cosmological constant stays vanishing

for any value of λ.

Stable dS in the SO(3, 1)-gauged theory (orbit 2). The continuous branches of

solutions (labelled by ±) read

Q± = diag(1, λ, λ, λ) , Q̃± = f±(λ) diag(λ, 1, 1, 1) and θ± = g±(λ) ,

where

f±(λ) ≡ −7 + 22λ− 7λ2 ± (1− λ)
√

49− 82λ+ 49λ2

8 (2− λ)
,

and

g±(λ) ≡
(

1

1− λ
+

15

8 + 8λ ±
√

49− 82λ+ 49λ2

)−1

.
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-15 -10 -5 0

-10

0

10

20

V0

min@mi
2D

BF bound

-0.5 0.0 0.5 1.0

-1

0

1

2

V0

min@mi
2D

BF bound

Figure 1. The value of the cosmological constant (V0) and the minimum eigenvalue of the nor-

malised mass matrix as a function of the λ parameter. The plot on the left represents the window

of stable dS for the solution labelled by “+”, whereas the right plot shows the one for the solution

labelled by “−”.

The above solutions exhibit a stable dS window respectively given by

−7− 4
√

3 < λ < µ+ and µ− < λ < −7 + 4
√

3 ,

where µ± represent the two real roots4 of the following polynomial (µ+ < µ−)

P (µ) ≡ 98 + 77µ− 222µ2 + 77µ3 + 98µ4 = 0 . (4.14)

This situation is depicted in figure 1. Such stable dS windows lie in the vicinity of a stable

Minkowski critical point in analogy to what has been observed in refs [14–16] in the context

of N = 1 supergravity in 4D.

In the continuous branch labelled by +, one is approaching the stable Minkowski

solution at λ = −7− 4
√

3

Q+ = diag(1,−7− 4
√

3,−7− 4
√

3,−7− 4
√

3) , Q̃+ = diag(7 + 4
√

3,−1,−1,−1) ,

and θ+ = 0 , where the non-normalised mass spectrum reads

0 (× 4) , 32 (7 + 4
√

3) (× 6) .

An explicit example of stable dS critical point within branch + (λ = −3) is given by

Q+ = diag(1,−3,−3,−3) , Q̃+ =
−17 + 2

√
46

5
diag(−3, 1, 1, 1) and θ+ =

−6+
√

46

5
.

In this case the value of the cosmological constant reads V0 = 16
5 (52−7

√
46), and the mass

spectrum is

0 (× 3) ,
28 +

√
46

15
(× 5) ,

1

90

(
212− 13

√
46±

√
61310− 7504

√
46

)
(× 1) .

This example of dS vacuum is highly non-geomeric. In the standard language of Neveu-

Schwarz fluxes [29], it includes not only the three-form H-flux and the metric ω-flux, but

also the non-geometric Q and R-fluxes. None of them can be removed through a duality

transformation, and then the orbit to which they belong is genuinely non-geometric in the

sense of [18]. While the universal half-maximal gaugings were uplifted to duality covariant

higher dimensional theories in [30, 31], massive deformations have been considered in that

context in [32]. We believe that combining these results can provide an uplift of this

vacuum eventually.

4Numerically, µ± = 1
56

(
−11− 3

√
385 ±

√
450 + 66

√
385
)

.
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5 Conclusions

In this paper we have studied various aspects of supergravities in D = 7 with sixteen

supercharges coupled to three vector multiplets. The most general deformations include

a combination of a “Romans-like” massive deformation and a traditional gauging of a

subgroup of the global duality group.

By using the embedding tensor formalism, we were first able to classify the inequivalent

duality orbits of consistent deformations. It is worth mentioning that all orbits with no

massive deformation can be regarded as generalised twisted reductions of DFT, provided

that one allows for a dependence on doubled coordinates generically violating the section

condition. The above massive deformation happens to have a non-trivial S-duality phase.

Hence, any attempt of uplifting those orbits where a gauging is combined with such a

deformation would require going beyond DFT reductions.

Secondly, we studied the properties of the different scalar potentials induced by the

aforementioned deformations when it comes to critical points. We found that all orbits

of gauged theories without massive deformation can only admit no-scale type Minkowski

solutions. On the contrary, when the massive deformation is turned on together with a

gauging, various types of maximally symmetric solutions appear, the zoology of such mod-

els including interesting examples of (non-)supersymmetric AdS and stable dS vacua. To

our knowledge, this is the first example of a stable dS critical point obtained through spon-

taneous supersymmetry breaking within a theory with such a large amount of supercharges.
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Summary of indices. All throughout the text we extensively make use of indices of

different groups. Here we give a list of the notations retained in this work

M, N, . . . fundamental of SO(6, 6)

A, B, . . . fundamental of SO(3, 3)

M, N, . . . fundamental of SL(5)

m, n, . . . fundamental of SL(4)

m, n, . . . fundamental of SO(4)local

a, b, . . . fundamental of SL(2)

µ, ν, . . . 7D spacetime indices

α, β, . . . fundamental of SU(2)R

α̂, β̂, . . . fundamental of SU(2)

I, J, . . . collective labels for 7D scalars
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A Non-semisimple gauge algebras

In section 3 we have studied the T-duality orbits of consistent deformations in half-maximal

D = 7 supergravity and for each of them, we identified the underlying gauge algebra and

collected the results in tables 2 & 3. Since there exists no exhaustive classification of

non-semisimple algebras of dimension six, we would like to explicitly give the form of the

algebras appearing in tables 2 & 3.

Solvable algebras. This class includes the gaugings described in rows 6–11 of table 2

and 6–10 of table 3. In the former case, the central generator named z will be realised

through R+
Σ .

The CSO(2, 0, 2) and CSO(1, 1, 2) algebras. The details about these algebras can

be found in ref. [33]; we summarise here some relevant facts. The six generators are

labelled as {t0, ti, si, z}i=1,2, where t0 generates SO(2) (SO(1, 1)), under which {ti} and

{si} transform as doublets

[t0, ti] = εi
j tj , [t0, si] = εi

j sj , (A.1)

where the Levi-Civita symbol εi
j has one index lowered with the metric ηij =diag(±1, 1)

depending on the two different signatures. z is a central charge appearing in the following

commutators

[ti, sj ] = ηij z . (A.2)

The Cartan-Killing metric is diag(∓1, 0, · · · , 0︸ ︷︷ ︸
5 times

), where the ∓ is again related to the two

different signatures.

The f1 and f2 algebras. These are of the form Solv4×U(1)2. The 4 generators of

Solv4 are labeled by {t0, ti, z}i=1,2, where t0 generates SO(2) (SO(1, 1)), under which {ti}
transform as a doublet

[t0, ti] = εi
j tj , (A.3)

[ti, tj ] = εij z . (A.4)

The Cartan-Killing metric is diag(∓1, 0, · · · , 0︸ ︷︷ ︸
5 times

).

The h1 and h2 algebras. The 6 generators are {t0, ti, si, z}i=1,2 and they satisfy the

following commutation relations

[t0, ti] = εi
j tj , [t0, si] = εi

j sj + ti ,

[ti, sj ] = ηij z , [si, sj ] = εij z .
(A.5)

The Cartan-Killing metric is diag(∓1, 0, · · · , 0︸ ︷︷ ︸
5 times

).

– 16 –



J
H
E
P
1
1
(
2
0
1
5
)
0
3
7

The g0 algebra. The 6 generators are {t0, tI , z}I=1,··· ,4, where t0 transforms cyclically

the {tI} amongst themselves such that[[[
[tI , t0], t0

]
, t0

]
, t0

]
= tI , (A.6)

and

[t1, t3] = [t2, t4] = z . (A.7)

Note that this algebra is solvable and not nilpotent even though its Cartan-Killing metric

is completely zero.

Nilpotent algebras. This family comprises the gaugings found in rows 12 and 11 in

tables 2 and 3, respectively.

The CSO(1, 0, 3) algebra. The details about this algebra can be again found in ref. [33];

briefly summarizing, the 6 generators are given by {tm, zm}m=1,2,3 and they satisfy the

following commutation relations

[tm, tn] = εmnp z
p , (A.8)

with all the other brackets being vanishing. The order of nilpotency of this algebra is 2.

The l algebra. The 6 generators {t1, · · · , t6} satisfy the following commutation relations

[t1, t2] = t4 , [t1, t4] = t5 , [t2, t4] = t6 . (A.9)

The corresponding central series reads

{t1, t2, t3, t4, t5, t6} ⊃ {t4, t5, t6} ⊃ {t5, t6} ⊃ {0} , (A.10)

from which we can immediately conclude that its nilpotency order is 3.

B Mapping between SL(4) and SO(3, 3)

The ’t Hooft symbols [GA]mn are invariant tensors which map the fundamental represen-

tation of SO(3, 3), i.e. the 6 into the anti-symmetric two-form of SL(4)

vmn = [GA]mn vA , (B.1)

for any object where vA transforming as a vector of SO(3, 3). The two-form irrep of SL(4)

is real due to the role of the Levi-Civita tensor relating vmn to vmn via

vmn =
1

2
εmnpq v

pq . (B.2)

The inverse of the mapping in (B.1) is carried out by the corresponding ’t Hooft

symbols with lower indices, i.e. [GA]mn ≡
1
2 εmnpq [GA]pq. The tensors [GA]mn and [GA]mn

satisfy the following identities

[GA]mn [GB]mn = 2 ηAB ,

[GA]mp [GB]pn + [GB]mp [GA]pn = −δnm ηAB ,

[GA]mp [GB]pq [GC ]qr [GD]rs [GE ]st [GF ]tn = δnm εABCDEF ,

(B.3)
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where ηAB and εABCDEF denote the SO(3, 3) light-cone metric and the Levi-Civita symbol,

respectively.

We adopt the following explicit representation for the ’t Hooft symbols in light-cone

coordinates

[G1]mn =


0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 , [G1̄]mn =


0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0

 ,

[G2]mn =


0 0 −1 0

0 0 0 0

1 0 0 0

0 0 0 0

 , [G2̄]mn =


0 0 0 0

0 0 0 −1

0 0 0 0

0 1 0 0

 ,

[G3]mn =


0 0 0 −1

0 0 0 0

0 0 0 0

1 0 0 0

 , [G3̄]mn =


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

 .

(B.4)

C SO(4) Dirac matrices in the Weyl representation

In 0+4 dimensions Dirac spinors have 4 complex components; however, such spinors are not

irreducible. Every Dirac spinor splits into a pair of chiral (Weyl) spinors caarying 2 inde-

pendent complex components each. We therefore choose the following Weyl representation

for the Dirac matrices, i.e. where they all assume the form

Γm =

(
02

[
Γm
]αβ̂[

Γ̄m
]
α̂β

02

)
, (C.1)

which needs to satisfy {
Γm, Γn

}
= 2 δmn 14 . (C.2)

We perform the following explicit choice for the chiral 2 × 2 blocks

Γ1 =

(
02 12

12 02

)
, Γ2 =

(
02 i σ1

−i σ1 02

)
,

Γ3 =

(
02 i σ2

−i σ2 02

)
, Γ4 =

(
02 i σ3

−i σ3 02

)
,

(C.3)

where
{
σi
}
i=1, 2, 3

are the usual Pauli matrices given by

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (C.4)
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[9] J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds

and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].

[10] M.P. Hertzberg, S. Kachru, W. Taylor and M. Tegmark, Inflationary Constraints on Type

IIA String Theory, JHEP 12 (2007) 095 [arXiv:0711.2512] [INSPIRE].

[11] L. Covi, M. Gomez-Reino, C. Gross, J. Louis, G.A. Palma and C.A. Scrucca, De Sitter vacua

in no-scale supergravities and Calabi-Yau string models, JHEP 06 (2008) 057

[arXiv:0804.1073] [INSPIRE].

[12] I. Bena, M. Graña and N. Halmagyi, On the Existence of Meta-stable Vacua in

Klebanov-Strassler, JHEP 09 (2010) 087 [arXiv:0912.3519] [INSPIRE].

[13] U.H. Danielsson, G. Shiu, T. Van Riet and T. Wrase, A note on obstinate tachyons in

classical dS solutions, JHEP 03 (2013) 138 [arXiv:1212.5178] [INSPIRE].

[14] B. de Carlos, A. Guarino and J.M. Moreno, Complete classification of Minkowski vacua in

generalised flux models, JHEP 02 (2010) 076 [arXiv:0911.2876] [INSPIRE].

[15] U. Danielsson and G. Dibitetto, On the distribution of stable de Sitter vacua, JHEP 03

(2013) 018 [arXiv:1212.4984] [INSPIRE].
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