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Glasses of composition Agx(Ge0.25Se0.75)100-xand Agx(Ge0.25Se0.75)100-xdoped with 0.5 at% 
of 57Fe were analyzed with the aim to evaluate if their structure evidences any effect of 
ageing,  for thousands of hours at room temperature and/or hundreds of hours for sub-Tg 
thermal treatments. Strong ageing effects were observed by means of Mössbauer 
spectroscopywhereas Raman spectroscopy contributed to identify the origin of these 
effects.  
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1. Introduction 
 
As well as other chalcogenide glasses, Ag-Ge-Se glasses have attracted much interest in 

recent years due to their actual or potential applications in fields such as solid electrolytes, 
electro/opto-chemical sensors, non- volatile memories, etc. As a consequence, the stability of these 
glasses is one aspect to be controlled. Several authors [1-5] have approached the study of 
relaxation and ageing of chalcogenide glasses andsome of them even analyzed ageing and 
relaxation on glasses of composition GeuSe1-u from different points of view [3-5]. Among these 
authors J.M. Saiter et al. [3]reported an interesting result, that is, forGeuSe1-u samples withu <0.12 
at. Fraction,aged for 13 years, differential scanning calorimetric analyzes present two endothermic 
peaks associated to the glass transition (Tg)instead of the single endothermic peak observed at 
short ageing duration. On the other hand only one peak occurs for u=0.12. The authors propose 
that it is neededa long time ageing at temperatures well below Tg for the occurrence of double 
endothermic peaks. They attribute these two peaks to a transformation of an initial homogeneous 
glass towards an inhomogeneous one during ageing. The fact that they only occur for low x is 
attributed to the coexistence, in the initial glass, of Se chains and GeSe4/2 structural units in a 
model of local atomic arrangements, and the presence of only one relaxation peak for higher x 
values is attributed to the gradual disappearing of the Se chains as x increases. The authors 
propose that the first endothermic peak corresponds to the faster relaxation of Se chains whereas 
the GeSe4/2 cells must relax with a slower kinetics and so they need larger ageing duration to be 
observed. This phenomenon corresponds to the second relaxation peaks in low u samples and to 
the single peak that appears in DSC patterns for Ge higher concentrations. 

For higher Ge concentrations the structure of GeuSe1-u glasses is characterized by the 
presence of chains of tetrahedra centered on a Ge (GeSe4/2) which are linked together either 
sharing vertices (CS) or edges (ES).[6] The presence of rings and chains of Se is also possible [7] 
whereas ethane type structures (Et) are reported for high Ge concentration[8]. The addition of Ag 
to the structure of these binary glasses does not alter substantially their structural units. However, 
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ambient conditions in the dark (Agx_aged). Anew series was prepared for this work (Agx_0).This 
series of samples was thermally treated at 110C for different periods of time(t) and then cooled 
down to room temperature to be evaluated (Agx_t). 

The atomic structure of the samples was characterized by means of X-ray diffractometry 
(XRD) in a Rigaku - goniometer, with monochromatized Cu Kαradiation.The local structure 
was revealed by FT-Raman spectroscopy (RS) employing a Bruker 66 equipment with aNd-YAG 
laser (λ=1064 nm). The employed parameters in Raman spectroscopy, in order to avoid 
crystallization, were: Current = 0.81A, Power≈ 4mW and Scans=100. The spectra were fitted with 
Voigt functions employing the Fityk 0.9.8 program [14]. Due to fluctuations on the laser power, 
normalization was performed with reference to the band at 197cm-1. 

Mössbauer spectroscopy was employed to evaluate local structure by means of a 57Fe 
probe. Mössbauer spectra (MS) were obtained at room temperature in transmission geometry, from 
57Fe doped samples of the first series, employing a constant acceleration spectrometer with a 57Co 
(Rh) source. The samples spectra were fitted with two distributions of electric field 
gradientscorresponding to both 57Fe environments, employing the Normos-Dist program, whereas 
calibration spectra were fitted employing the Normos-Site program. [15] 

 
 
3. Results 
 
XRD of both as quenched samples (Figure 1a) and aged samples Agx and Agx(Fe) (Figure 

1.b)present wide peaks characteristic of an amorphous structure together with a first scattering 
peak (FSP)at 215°. The intensity of this FSP decreases with increasing Ag concentration x. 

The MS of fresh samples show two Fe environments, one of them corresponding to high 
spin (HS) Fe2+ whereas the other one corresponds to low spin (LS) Fe2+.Each Fe environment is 
attributed to a different amorphous phase, HS Fe2+ to the Ag-rich phase and LS Fe2+ to the Ag-
poor phase. [9] MS of aged samplesevidence the presence of strong effects of long-term relaxation 
in the phase containing LS Fe2+ (Figure 2). After aging, the relative absorption of HS Fe2+ does not 
vary whereas the relative absorption of Fe2+ (LS) increases substantially. 

These effects are inversely proportional to the Ag concentration of the samples, that is, 
they depend on the relative amount of Ag poor phase as can be seen in Figure 2. 

In all tested samples, the most important contributions to the Raman spectra (Figure 3) are 
the bands centered at 197 cm-1 and 213 cm-1 and those centered at 240 cm-1 and 261 cm-1. The first 
bands are attributed (see Table 1) to Ge-Se-Ge vibrations in tetrahedra that share corners (CS) and 
Se-Se vibrations in tetrahedra that share edges (ES) respectively. The other bands are attributed to 
chains (CM) and rings (SeN) of Se atoms.  
 

 
Fig. 2. MS of samplesAgx(Fe)_0 and Agx(Fe)_aged for 8 years at ambient  
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Table 1.Raman Spectroscopy.Identification of the bands. 
 

Raman Shift 
(cm-1) 

Description Name References 

120 Rocking/Bending modes of Se Se RB [5] 
180 Ethane-like mode Ge2Se6/2 Et [16, 17, 18] 

197 
Symmetric stretching of Se in Ge-Se-

Gebondings(corner sharing GeSe4/2tetrahedra) 
CS [16] 

216 
Breathing mode Se-Se (edge sharing 

GeSe4/2tetrahedra) 
ES [16] 

240 
Se-Se stretching in Se chains.    

Ge-Se bondings different to Ge-Se-Ge. 
SeCh 

[19] 
[20] 

260 Se-Se stretchings in SeN rings SeN [19] 
310 Asymmetric vibrations of Ge-Se-Ge Ge-Se As [16, 21] 

 
The ageing effect observed in Mössbauer spectra of samples Agx(Fe)_aged cannot be 

attributed to crystallization, in the light of the XRD patterns of these samples. 
Long-term relaxation does not affect HS Fe2+environments, i.e. Ag-rich amorphous phase 

but it does affect LS Fe2+ environments, i.e. Ag-poor amorphous phase which structure is very 
similar to that of GeuSe1-u glasses. 

The increasing of the absolute area corresponding to LS Fe2+may be attributed to an 
increasing of the Lamb-Mössbauer fraction of the Ag-poor zones, i.e. a structure modification 
involving the GeuSe1-u structural units. 

 
Fig. 4. Comparison of Ag5_0 spectrum and that of a sample of the same  

composition aged for 8 years at room temperature Ag5_aged. 
 



 
 

 

Fig. 5.Sub-Tg thermal treatments of sample Ag5_0. 

As the overall effect of the increasing of Ag concentration in Agx(Ge0.25Se0.75)100-x glasses, 
as was observed by RS, was the decreasing of Se-Se bands (250 cm-1) one may assume that the 
GuSe1-u backbone in the Ag-poor phase mainly consists of GeSe4/2 units.Thus, long term ageing 
involve as proposed by Saiter [3] the slower GeSe4/2 units. In agreement with this, RS of samples 
Ag5_0 and Ag5_aged evidence no effect of long term ageing on the band at 260cm-1, but exhibit a 
broadening and an asymmetry on the main band (CS) at 197cm-1 along with a decrease in the 
contribution of the ES modethat can obey to the emergence of new modes of vibration. 

On the other hand, short time ageing at 110°C exhibits a decreasing of the chain mode 
contribution whereas the GeSe4/2 structural units remain unaltered. This fact may be attributed 
either to a short time relaxation (t≤336h) or to temperature dependence of the glass´s structure 
below Tgas proposed by Edwards [5] except that in our case the structural units involved are those 
related to Se-Se bonds and not ES/CS fraction. 

 
 
5. Conclusions 
 
From the results of Raman spectroscopy it can be concluded that in the long term 

(thousands of hours) physical ageing of Agx(Ge0.25Se0.75)100-x glasses, structural changes take place 
and involve the relative fraction of CS and ES modes or, in general, the GeSe4/2 tetrahedral 
structural units. On the other hand, in short term ageing (hundreds of hours) the structural changes 
observed involve Se chains/rings. 

The long term structural changes may account of an increased structural rigidity of the 
glass.  

The evolution of Mössbauer spectra of these glasses on ageing may be attributed to their 
structural modification. However, further experiences are needed in order to determine whether the 
relaxation of the structure in the short range (the scope of Raman spectroscopy), i.e. the tetrahedral 
units, is enough to modify so significantly the Lamb-Mossbauer fraction of the amorphous phase 
with low Ag content. 
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