
Accepted Manuscript

Elastomers obtained by crosslinking of α,ω-bis(glycidylether) poly(dimethyl-

siloxane) as versatile platforms for functional materials

Jimena S. Gonzalez, Cristina E. Hoppe, Roberto J.J. Williams

PII: S0014-3057(16)31279-4

DOI: http://dx.doi.org/10.1016/j.eurpolymj.2016.12.020

Reference: EPJ 7643

To appear in: European Polymer Journal

Received Date: 11 October 2016

Revised Date: 1 December 2016

Accepted Date: 3 December 2016

Please cite this article as: Gonzalez, J.S., Hoppe, C.E., Williams, R.J.J., Elastomers obtained by crosslinking of

α,ω-bis(glycidylether) poly(dimethylsiloxane) as versatile platforms for functional materials, European Polymer

Journal (2016), doi: http://dx.doi.org/10.1016/j.eurpolymj.2016.12.020

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.eurpolymj.2016.12.020
http://dx.doi.org/10.1016/j.eurpolymj.2016.12.020


  

Elastomers obtained by crosslinking of α,ω−bis(glycidylether) 

poly(dimethylsiloxane) as versatile platforms for functional materials 

Jimena S. Gonzalez,* Cristina E. Hoppe and Roberto J. J. Williams 

Institute of Materials Science and Technology (INTEMA), University of Mar del Plata 

and National Research Council (CONICET), Av. J. B. Justo 4302, B7608FDQ, Mar del 

Plata, Argentina. 

 

*Corresponding author: Jimena S. Gonzalez, jimena.gonzalez@fi.mdp.edu.ar, telephone 

number: 0054 223 4816600  

Authors’ e-mail addresses: Jimena S. Gonzalez, jimena.gonzalez@fi.mdp.edu.ar, 

Cristina Hoppe, hoppe@fi.mdp.edu.ar, Roberto JJ Williams, williams@fi.mdp.edu.ar 

 

 

 

 

 

 

 

 

  



  

ABSTRACT 

Elastomers with an interesting set of properties were synthesized by crosslinking α,ω-

bis(glycidylether)poly(dimethylsiloxane,PDMS), using two different strategies. The 

first one was the anionic homopolymerization of terminal epoxy groups initiated by 4-

dimethylaminopyridine (DMAP); the second strategy was the crosslinking with a 

polyoxypropylenediamine (Jeffamine D2000). Reaction conditions were selected to 

achieve complete conversion of epoxy groups. Resulting soft elastomers (PDMS-

Homop and PDMS-D2000) were transparent materials with gel fractions higher 95 %. 

PDMS-D2000 exhibited an outstanding damping capacity (maximum tan δ > 2) in a 

temperature range located between –50 ºC and –75 ºC, assigned to a high viscous 

dissipation during the relaxation of polyoxypropylene blocks. PDMS-Homop showed 

also good damping properties in a broader low-temperature range. A significant 

property of both elastomers was the capacity to re-organize their nanostructures, as 

shown by SAXS spectra and contact angle measurements, in response to the hydrophilic 

or hydrophobic nature of the liquid in contact. Hydroxyl groups present in the chemical 

structure of PDMS-D2000 could be used as reducing agents for the in situ generation of 

gold nanoparticles from an infused Au(III) compound. The synthesis was also 

performed using a sacrificial template to provide macroporosity to the resulting 

materials. These macroporous elastomers were used to remove organic components 

from water. Magnetic nanoparticles were infused and stabilized inside the macroporous 

structure to allow magnetic separation of the materials after use. 

 

Keywords: elastomer, α,ω-bis(glycidylether) poly(dimethylsiloxane), nanostructured 

network, damping, amphiphilicity. 

 



  

Introduction 

Due to its chemical inertness and outstanding elastic, gas permeation and dielectric 

properties, poly(dimethylsiloxane) (PDMS) has been the choice of many strategies 

leading to the synthesis of polymer networks with special properties. Most of these 

approaches have been focused in the decrease of the extreme hydrophobicity of PDMS 

with the aim of avoiding protein adsorption and biofouling. These are main drawbacks 

of this material for biomedical applications [1-2]. In most of proposed strategies to 

confer amphiphilicity to PDMS, poly(ethylene oxide) (PEO) has been used as the 

hydrophilic segment due to its excellent biocompatibility, high hydrophilicity and 

exceptional resistance to protein adhesion [2]. PEO can be attached to PDMS by 

physical/chemical adsorption methods, direct covalent attachment, and graft 

copolymerization. As an example, branched PEO-silanes, with varying siloxane tether 

lengths, were synthesized and used in a crosslinking reaction with α,ω-bis(Si-OH)PDMS 

for the synthesis of amphiphilic silicones with increased protein resistance and water-

induced increase of surface hydrophilicity [3]. UV photo-crosslinking copolymerization 

of poly(dimethylsiloxane), polyoxyethylene and perfluoroalkyl (meth)acrylate (macro)-

monomers was also used to obtain networks with interesting properties for marine anti-

biofouling [4]. Highly resilient hydrogels were synthesized by using the thiol-

norbornene chemistry to cross-link PEO and PDMS. These materials showed excellent 

mechanical energy storage efficiency (resilience) at high strains, comparable with one 

of the most resilient materials known, natural resilin[5]. 

Here, we propose the use of a simple, solvent-free approach for the synthesis of 

PDMS crosslinked networks based on the use of a commercial PDMS oligomer 

terminated in epoxy groups, α,ω-bis(glycidylether)PDMS (Fig. 1a). Taking advantage of 

the versatility of epoxy chemistry we used two different crosslinking schemes. The first 



  

one was an anionic homopolymerization of the epoxy groups initiated by 4-

dimethylaminopyridine (DMAP), Fig. 1b [6]. The second one was a typical stepwise 

polymerization involving epoxy-amine reactions, employing a 

polyoxypropylenediamine (Jeffamine D2000, Fig. 1c). 

 

 

 

Figure 1: Chemical structures of: (a) α,ω-bis(glycidylether)PDMS; (b) 4-

dimethylaminopyridine (DMAP); (c) polyoxypropylenediamine (Jeffamine D-2000). 

 

Both selected strategies lead to the generation of elastomers with different 

nanostructures and properties. The homopolymerization of terminal epoxy groups 

generates short polyether chains [6] covalently bonded to PDMS chains (Fig. 2a and 

2b). This reaction can be regarded as a threading of a few PDMS chain ends generating 

a cluster. The reaction occurs also at the other end of the chains. However, the threading 

can involve the formation of new clusters as shown in Fig. 2a. The nanostructure 

percolates throughout the material generating the cross-linked amphiphilic elastomer 

(hydrophilic polyether chains and hydrophobic PDMS clusters). The large fraction of 

intramolecular cycles present in this structure leads to a low fraction of effective 

crosslinks related to a low elastic modulus of the material. 

The second strategy gives a completely different nanostructure as shown in Fig. 2c 

and 2d. Large hydrophobic polyoxypropylene (PPO) blocks alternate with hydrophobic 



  

PDMS blocks. However, the crosslinks composed of a tertiary amine with neighboring 

hydroxyl groups are highly hydrophilic. 

The particular nanostructure of both elastomeric networks produces a set of 

interesting properties that might be useful for practical applications. Our aim is to 

discuss the synthesis, characterization and significant properties of both materials.    

 

 

 

Figure 2: (a) Scheme of the nanostructure produced by the homopolymerization of α,ω-

bis(glycidylether)PDMS; (b) Chemical structure of a polyether chain; (c) Scheme of the 

nanostructure produced by reaction with polyoxypropylenediamine; (d) Chemical structure of a 

crosslink. 

 

 

 

 



  

Experimental Section 

Materials 

The α,ω-bis(glycidylether)PDMS had a weight per epoxy group equal to 490 g/mol (n 

~8 in the chemical structure shown in Fig. 1a), and was provided by Aldrich; 4-

dimethylaminopyridine (DMAP) was also provided by Aldrich. Jeffamine D2000 was 

provided by Huntsman. Its molar mass was 2470 g/mol, as determined by titration of 

terminal amine groups. Hydrogen tetrachloroaurate (III) trihydrate (HAuCl4.3H2O, 49 

wt% as Au), ferric chloride (FeCl3.6H2O), ferrous sulfate (FeSO4.7H2O), and 

ammonium hydroxide were provided by Aldrich. All organic solvents were P.A. grade. 

Synthesis of the elastomers  

The homopolymerization of α,ω-bis(glycidylether)PDMS was performed at 85 ºC for 

96 h, employing a molar ratio DMAP/epoxy groups equal to 0.08 (equal to the one 

found optimum in another system [6]). The reaction with a stoichiometric amount of 

Jeffamine was performed at 120 ºC for 48 h. Under these conditions both systems 

attained complete conversion as will be discussed in next section. The generation of 

porous elastomers and the modification with gold or magnetite nanoparticles will be 

described in the Results and Discussion section. 

Methods 

Middle-infrared spectra of samples were obtained with a Thermo Scientific Nicolet 

6700 spectrometer, employing a resolution of 4 cm-1. Measurements were carried out 

both in transmission and attenuated total reflectance modes (smartOrbit ATR 

accessory). 

Gel fractions were determined gravimetrically from samples cut in squared pieces 

(weight close to 100 mg) and dried in an oven at 50 ºC for 24 h (initial weight = W0). 



  

After 96 h immersion in tetrahydrofuran (THF) at room temperature, the supernatant 

was removed and slices blotted with filter paper and weighed in a stoppered vial 

(weight = Ws). Samples were then dried at 50 ºC to constant weight (weight = Wd). The 

gel fraction was defined by the ratio (Wd/W0) x100. To determine the swelling degree of 

gels in different solvents, a similar procedure was carried out by immersion of the 

samples at room temperature by 48 h. The swelling degree was calculated as: [(Ws - 

Wd)/Wd] x 100. 

The contact angle (CA) was measured at room temperature using 5 µL droplets of L droplets of 

liquid (motor oil SAE20 or MiliQ water) by gently depositing it on the substrate using a 

micropipette. A goniometer Ramé Hart 500, provided with DROP Image Advanced 

Software was used for the measurements. Tests were repeated at least three times with a 

final precision within 1.5°. 

Rheological measurements were carried out using an Anton Paar Physica MCR 301 

rheometer. Specimens of rectangular cross-section (15 mm height x 6 mm width x 2mm 

thickness), were tested under torsion mode with a distance between clamps equal to 12 

mm. Dynamic mechanical analysis (DMA) tests were performed at a heating rate of 

5ºC/min from -80 to 100ºC with a fixed frequency of 1 Hz.  

Both scanning (SEM) and transmission (TEM) electron microscopy were employed to 

characterize morphologies. SEM images were obtained using a JEOL JSM-6460 LV 

instrument. Samples were cryo-fractured by a previous immersion in liquid N2 and 

coated with gold before testing. TEM images of samples cut with a cryo-

ultramicrotome, were obtained with a JEOL JEM-1011 microscope operated at 100 kV.  

Small-angle X-ray scattering (SAXS) measurements were taken at room temperature 

at the beam line SAXS 1 of the National Laboratory of Synchrotron Light (LNLS, 

Campinas, Brazil). The scattering intensity (in arbitrary units) was recorded as a 



  

function of the scattering vector q = (4π/λ) sinθ, where λ is the light wavelength (1.55 Å) 

and 2θ the scattering angle. 

 

Results and Discussion 

Synthesis of the elastomers 

The conversion of epoxy groups was monitored by FT-NIR spectroscopy, following 

the characteristic absorption band at 4530 cm-1 (conjugated epoxy CH2 deformation 

band with the aromatic CH fundamental stretch) [7]. The complete disappearance of this 

band was observed after 96 h in the homopolymerization reaction (Fig. 3) and after 48 h 

in the epoxy-amine reaction (Fig. 4). 

 

Figure 3: FT-NIR spectra during the homopolymerization of α,ω-bis(glycidylether)PDMS. 



  

 

Figure 4: FT-NIR spectra of α,ω-bis(glycidylether)PDMS, Jeffamine and the reaction product, 

after 48 h at 120 ºC. 

 

Characterization of the elastomers 

In what follows, the synthesized elastomers will be denoted as PDMS-Homop and 

PDMS-D2000. Both were soft, highly elastic and transparent materials. Gel fractions 

were 96.6 % for PDMS-Homop and 95.2 % for PDMS-D2000. 

    The presence of a nanostructure was searched by SAXS. Fig. 5 shows SAXS spectra 

of both elastomers. While no peaks were present in the spectrum of PDMS-D2000, a 

broad band appeared in the spectrum of PDMS-Homop, at q close to 2 nm-1. This 

corresponds to a characteristic distance of 3.1 nm that might be assigned to an average 

separation among PDMS clusters (Fig. 2a). 



  
 

Figure 5: SAXS spectra of (a) PDMS-Homop and (b) PDMS-D2000. 

 

The rheological behavior was monitored in the -80 ºC to 100 ºC range. This 

temperature range was much higher than the one needed to observe the relaxation of 

PDMS chains but was adequate to characterize the relaxation of polyether chains. 

Figure 6 shows this relaxation for both elastomers. 

 

 

Figure 6: Tan δ vs. temperature for PDMS-Homop and PDMS-D2000. 

  

For the case of PDMS-D2000, this relaxation is sharp with a maximum at – 68.1 ºC. 

For PDMS-Homop, the relaxation is broad with a maximum at -51.3 ºC. The maximum 



  

value of tan δ (> 2) for PDMS-D2000 is surprising for a cross-linked elastomer. This 

corresponds to a loss modulus (G’’) higher than the storage modulus (G’), which is 

characteristic of a liquid state present in a cross-linked solid! This behavior was 

reproducible and characteristic of this material. The explanation is that the relaxation of 

polyoxypropylene blocks occurs with a large viscous dissipation, giving the elastomer 

excellent damping properties in the -50 ºC to -75 ºC temperature range. The relaxation 

peak of the other elastomer, PDMS-Homop, indicates good damping characteristics in a 

broader temperature range. A value of tan δ in the order of 0.4 is still adequate to 

provide good damping properties at room temperature, with technological relevance in 

applications like noise reduction and attenuation of vibration. 

The values of the storage moduli at 25 ºC were 48 kPa for PDMS-Homop and 282 kPa 

for PDMS-D2000. The very low elastic modulus of PDMS-Homop is directly related to 

the low concentration of effective crosslinks, as previously discussed (Fig. 2a). 

Figure 7 shows the swelling of both elastomers in solvents with different values of the 

solubility parameter. 

 

Figure 7: Swelling degrees of PDMS-Homop and PDMS-D2000 in different solvents. 

For both elastomers, a maximum swelling was observed for CHCl3. THF was also an 

excellent solvent while water did not produced any significant swelling, as expected 



  

(6.7 % for PDMS-Homop and 2.9 % for PDMS-D2000).The moderate swelling in 

ethanol could be related with the existence of strong hydrogen bonds between ethanol 

and ether groups present in the networks. 

 

Response to water 

In spite of the main hydrophobic character of both elastomers, the presence of water 

produced significant re-arrangements of their nanostructures. Figs. 8 and 9 show a 

comparison of SAXS spectra for the dry elastomers and those swollen with the 

equilibrium amount of water. 

 

Figure 8: SAXS spectra of dry (a) and water-swollen (b) PDMS-Homop elastomer. 

 

Figure 9: SAXS spectra of dry (a) and water-swollen (b) PDMS-D2000 elastomer. 

For PDMS-Homop the broad scattering peak shifts from about 2 nm-1 to 1.7 nm-1, 

indicating a small increase in the average distance among PDMS clusters from 3.1 nm 



  

to 3.7 nm. This might be assigned to the swelling of the hydrophilic polyether chains 

present at the boundaries of the PDMS clusters. For PDMS-D2000, the small amount of 

absorbed water produced a re-arrangement of the network that generated a sharp 

scattering peak at q ≈ 0.9 nm-1 (d = 7 nm), followed by a smaller and broad peak centred 

at q ≈ 3.8 nm-1 (d = 1.65nm). The high mobility of both hydrophobic blocks produced a 

clustering that generated the scattering peak as a response to the presence of water. 

However, the nature of the objects (clusters) scattering SAXS radiation could not be 

determined. 

Static water contact angles were measured on the free surface of both elastomers. For 

PDMS-Homop, the initial contact angle was 98º, indicating the material surface was 

hydrophobic. However, after two minutes of contact between the water droplet and the 

surface, this angle changed to 60º and kept this value. This proves that the surface has 

the ability to restructure in response to environmental changes. In order to minimize 

surface energy, hydrophobic PDMS clusters are expected to concentrate at the air-

sample interface, providing hydrophobicity to the exposed surface. In the presence of 

water, a fast re-arrangement of the superficial nanostructure takes place, partially 

replacing hydrophobic clusters by hydrophilic polyether chains. This produced a 

significant decrease of the water contact angle. Samples previously immersed in water 

showed an initial contact angle of 60 º. When they were dried at 50 ºC for 3 h, the initial 

contact angle changed to 95º. In this case, the re-arrangement of the superficial 

nanostructure proceeded in the opposite direction, proving the reversibility of this 

transformation. 

For PDMS-D2000, the transformation of the nanostructure at the surface took place at 

a fast rate. The high contact angle expected for this hydrophobic elastomer could not be 



  

detected. Instead, the initial measured value was 70º that decreased rapidly and 

stabilized at 65º. 

Hydrophobic surfaces that become hydrophilic in contact with water might have 

applications as antifogging materials [8]. 

Response to oil 

   In order to evaluate the oleophilic behavior of the elastomers, contact angles were also 

measured using commercial motor oil SAE20 as probe liquid. Initial contact angles 

were 60º for PDMS-Homop and 62 º for PDMS-D2000. In about 2 minutes, these values 

were reduced to 38º and 49º, respectively. In both cases, the surface was enriched with 

hydrophobic segments / clusters in response to the hydrophobic environment. Therefore, 

these materials adapt their contact surface to either hydrophilic or hydrophobic 

environments through re-arrangements of their nanostructures. 

Dispersion of gold nanoparticles  

   A transparent coating containing a dispersion of gold nanoparticles can be heated by 

irradiation with light with a wavelength close to the maximum of the plasmon band of 

the nanoparticles [9-12]. The location of the maximum depends on the size and shape of 

nanoparticles. For application of these elastomers as antifogging materials, the 

possibility of drying by light irradiation might be of interest. Conferring this property 

needs to produce a dispersion of gold nanoparticles inside the material. Here, we show 

how to generate such dispersion in PDMS-D2000. 

In a first step, a sample of PDMS-D2000 was put in contact with a 1:6 water/THF 

solution of HAuCl4.3H2O (6mM). Due to the high swelling in THF, the gold compound 

was rapidly infused as confirmed by the yellow color acquired by the elastomer. 

Presumably, Au(III) was complexed / stabilized by tertiary amines and hydroxyl groups 



  

present in the structure of the elastomer. After 24h of immersion, the elastomers became 

colorless, a fact explained by the room-temperature reduction of Au(III) to Au(I) 

produced OH groups[13]. The sample was then removed from the solution and heated at 

100 ºC for 1 h. The color turned to a dark red, evidencing the reduction of Au(I) to 

Au(0). TEM images (Fig, 10) show the presence of a distribution of gold nanoparticles 

with an average diameter of 17 nm. 

  

 

Figure 10: TEM images showing the dispersion of Au nanoparticles in PDMS-D2000. 

 

Macroporous Elastomers 

In order to use PDMS-Homop or PDMS-D2000 to absorb oils dispersed in water, it is 

convenient to generate macroporosity to increase the exposed surface per unit volume. 

Elastomeric sponges were obtained by applying a sugar-template with an approach 

similar to that used by Choi et al [14]. Sponges were replicated from commercially 

available cube sugars by infiltration of the monomers followed by polymerization using 

the curing schedules previously described. After reaction, sugar was eliminated by 

immersion in water and sonication for several hours. SEM images (Fig. 11) of 

cryogenically fractured samples showed the presence of macroporous structures with a 

broad pore size distribution (ranging between 200-400 μm). 



  

 

 

Figure 11: SEM images of macroporous PDMS-Homop and PDMS-D2000. 

 

Bulk densities of porous samples were 0.26 g/cm3 for PDMS-Homop, and 0.38 g/cm3 

for PDMS-D2000. The feasibility to use these sponges to separate heptane or 

chloroform from water is shown in Fig. 12. As the solvents are retained both in the bulk 

of the materials (producing swelling) and inside the macropores, the efficiency of 

solvent removal is very high. For macroporous PDMS-Homop the weight % of absorbed 

heptane was 233 % while for chloroform, it was 589 %. For PDMS-D2000, 

corresponding values were 296 % and  2251 %, respectively.  

 

 



  

Figure 12: Photographs of samples immersed in water/organic solvents mixtures. The 

organic solvent was colored using organic dyes for better visualization. a) Heptane (green) in 

water; b) absorption of heptane by the PDMS-Homop sponge; c) PDMS-Homop sponge 

containing the solvent. d) Chloroform (orange) in water and e) PDMS-D2000 sponge containing 

the solvent. 

 

The dispersion of magnetic nanoparticles inside the sponges can help to recuperate 

the materials by magnetic separation. Magnetite nanoparticles stabilized by oleic acid 

were synthesized using a procedure described in the literature [15]. They were dispersed 

in chloroform and the sponges were immersed into this dispersion for 24 h. When 

removed, sponges had a dark-brown color, conferred by the infused nanoparticles. The 

color was not lost after a new immersion in pure chloroform for 24 h, evidencing that 

the interaction of oleic acid with hydrophobic domains was strong enough to avoid the 

re-dispersion of nanoparticles in the solvent. Sponges containing the magnetic 

nanoparticles adhered to a permanent magnet, as shown in Fig. 13. 

 

 
 
 
Figure 13: Magnetic sponges attracted by a permanent magnet a) PDMS-D2000 Sponge; b) 

PDMS-Homop Sponge. 

 

CONCLUSIONS 



  

Elastomers with interesting properties were synthesized by crosslinking α,ω-

bis(glycidylether)PDMS using two different strategies. The first one was the anionic 

homopolymerization of terminal epoxy groups and the second one was the crosslinking 

with a polyoxypropylene diamine. Resulting soft elastomers (PDMS-Homop and 

PDMS-D2000) were transparent materials with gel fractions higher than 95 %. PDMS-

D2000 exhibited an outstanding damping capacity (maximum tan δ > 2) in a temperature 

range located between –50 ºC and –75 ºC, assigned to a high viscous dissipation during 

the relaxation of polyoxypropylene blocks (a liquid-like behavior of segments in a 

cross-linked material). PDMS-Homop showed also good damping properties in a 

broader low-temperature range. At room temperature, the value of tan δ was still 

adequate (about 0.4), for applications requiring damping capacity. 

A significant property of both elastomers was the capacity to re-organize their 

nanostructures, as shown by SAX spectra and contact angle measurements, in response 

to the hydrophilic or hydrophobic nature of the liquid in contact. Hydroxyl groups 

present in the chemical structure of PDMS-D2000 could be used as reducing agents for 

the in situ generation of gold nanoparticles from an infused Au(III) compound. This can 

allow remote heating of the elastomer by exciting the plasmon band of the nanoparticles 

with visible light of an adequate wavelength. The ability to turn the surface from 

hydrophobic to hydrophilic in contact with water, combined with the possibility of 

drying by light irradiation, opens applications in the area of antifogging materials. 

The synthesis was also performed using a sacrificial template to provide 

macroporosity to the resulting materials. These macroporous elastomers were used to 

remove organic components from water making use of their high absorption capacity. 

Magnetic nanoparticles were infused and stabilized inside the macroporous structure. 

This would allow magnetic separation of the materials after use. 
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