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Abstract. We present a general formulation for the simulation of fluid flows in interation with hy-
poelastic materials using the particle finite element method (PFEM). The fluid is fully coupled with the
structures which can undergo large structural displacements, rotations and deformations. The key feature
of the PFEM is the use of an updated Lagrangian description to model the motion of nodes (particles)
in both the fluid and the structure domains. A mesh connects the nodes defining the discretized domains
where the governing equations, expresed in an integral form, are solved as in the standard FEM. The
implemented code is used to solve a number of fluid-structure interaction problems including free-fluid-
surfaces and breaking waves impacting over hypoelastic structures.
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1 INTRODUCTION

The analysis of multiphysics problems, and specifically the solution of fluid-structure inter-
actions (FSI), has been given increased attention during recent years. There are many problems
where a direct fully coupled analysis is needed to model the physics of FSI problem accurately.
This is particularly the case when the structure undergoes large structural displacements, ro-
tations and deformations in the interaction with the fluid. Examples of this kind are common
in ship hydrodynamics, off-shore structures, spill-ways in dams, free surface channel flows,
liquids containers, mould filling processes, etc.

In such case, the use of the ALE formulation (Donea and Huerta, 2006) is recommended to
model the fluid domain and ease it coupling with the structural domain usually treated in the
Lagrangian description. Generally, these problems are analyzed with the finite element method
(FEM)(Zienkiewicz et al., 2006).

Typical difficulties of FSI analysis using the FEM include the treatment of the convective
terms and the incompressibility constraint in the fluid equations, the modeling and tracking of
the free surface in the fluid, the transfer of information between the fluid and solid domains via
the interfaces analysis using, the modeling of wave splashing, the possibility to deal with large
rigid body motions of the structure within the fluid domain, the efficient updating of the finite
element meshes for both the structure and the fluid, etc.

Most of these problems disappear if a Lagrangian description of motion is used to formulate
the governing equations of both the solid and the fluid domain. In the Lagrangian formulation,
one essentially follows the history of individual particles and, consequently, nodes in a finite
element mesh can be viewed as moving material point (called "particles"). Hence, the motion
of the mesh discretizing the total domain (including both the fluid and solid parts) is followed
during the transient solution.

In this paper, a Lagrangian formulation will be used together with a particular form of the
FEM called the particle finite element method (PFEM) (Idelsohn et al., 2004b,a) to solve prob-
lems involving the interaction between fluids and solids in a unified manner. This approach
allows to treat the fluid and the solid as a single entity, allowing to integrate in the time the two
subdomains simultaneously (monolithic treatment). The PFEM, treats the mesh nodes in the
fluid and solid domains as particles which can freely move and even separate from the main
fluid domain representing, for instance, the effect of water drops. A finite element mesh con-
nects the nodes defining the discretized domain where the governing equations are solved in the
standard FEM fashion.

In the next section the basis of the Lagrangian and Eulerian descriptions are briefly pre-
sented. Next the constitutive equations are derived. Then the discretization of these equations
in space and time is then discussed. Details of the basic ideas of the PFEM are outlined. Finally,
numerical results in two dimensions problems are presented.

2 EQUATIONS OF MOTION

Neglecting thermomechanical effects, the motion of the elemental particles of any continuum
material (fluid, solid or gas) can be determined by the equations of conservation of mass and
momentum. These equations can be postulated as the continuum form of classical Newton’s
equations of motion and are independent of the material constitution or geometry. Using an
Eulerian description, i.e. looking at the elemental particles as they pass through fixed positions
in the physical space, the equations of conservation of mass and momentum can be stated in

J. MARTI, S. IDELSOHN, A. LIMACHE, N. CALVO, J. D'ELIA810

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



local form as:

Dρ(x, t)

Dt
= −ρ (x, t) div V (x, t) (1)

ρ (x, t)
DV (x, t)

Dt
= div σ (x, t) + ρ (x, t)b (x, t) (2)

where σ (x, t) is the Cauchy stress, and, ρ (x, t) and V (x, t) are the density and the velocity
vector of the elemental particles that at time t pass through the position x, respectively. Dφ

Dt

denotes the total or material time-derivative of φ. In the absence of couple stresses the Cauchy
stress is a second order symmetric tensor. In the Eulerian description the divergence div is taken
with respect to the spatial coordinates x. For example, div computed in cartesian coordinates
x = xkek is:

div V =
∂Vk

∂xk

At any time t equations (1) and (2) can be solved on the whole volume Ωt occupied by the
material body, provided one knows the external body forces b (per unit of mass) and surface
forces t̄ (see Figure 1).

Figure 1: Movement of a deformable body

We can write equivalent conservation equations using a Lagrangian Formulation. In the La-
grangian description, one essentially follows the history of individual particles. Consequently,
two independent variables are taken: the time t of evolution and a vector-type label associated
to each particle. The label can be conveniently taken as the reference position vector X of
the particle at some initial reference time t = 0. In this description, then, any quantity M is
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expressed as M = M(X, t). In particular, the particle position is written as

x = χ(X, t) (3)

which represents the location at t of the particle whose position was X at t = 0.
The knowledge of the deformation map χ for all the elemental particles completely defines

the motion and deformation of the material body. In particular the velocities can be computed
by:

V (X, t) =
∂χ(X, t)

∂t
=

Dx

Dt
(4)

Assuming the existence of the deformation map it is possible to rewrite the conservation equa-
tions (1) and (2) in terms of the reference coordinates X:

ρ(x, t) = ρ (χ(X, t)) =
ρ0(X, t)

J(X, t)
(5)

ρ0(X, t)
DV (X, t)

Dt
= Div P (X, t) + ρ0f(X, t) (6)

where ρ0(X, t) is the density of the material in the reference configuration, J(X, t) is the
Jacobian

J(X, t) = det F (X, t) (7)

of the deformation gradient

F (X, t) =
∂x

∂X
= Grad(χ(X, t)) (8)

and P (X, t) is the first Piola-Kirchhoff stress tensor

P (X, t) = J(X, t)σ(χ(X, t)) · F−T (X, t) (9)

Note that the differential operators divergence and gradient are written in lower-case letters
(div, grad) when computed with respect to spatial coordinates xk and in capital letters (Div, Grad)
when computed with respect to material coordinates Xk.

From now on, we simplify the notation by writing the physical quantities without referencing
their explicit dependence on time and on material or spatial coordinates. Then, the conservation
equations (5) and (6) can be rewritten simply as:

ρ =
ρ0

J
(10)

ρ0
DV

Dt
= Div P + ρ0f (11)

with the Jacobian given by:
J = det F (12)

and the first Piola-Kirchhoff stress by:

P = Jσ · F−T (13)

Observe that in the Lagrangian formulation, conservation of mass (10) is a direct consequence
of a straightforward computation of the density in terms of the Jacobian and of the initial density
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configuration ρ0. The momentum equation has to be solved in conjunction with the boundary
conditions representing the external loads and motion restrictions under which the material
body is moving. In most of the cases one specifies surface forces t at certain surfaces Γσ of the
boundary Γ of the body and impose prescribed displacements in the remaining parts ΓU of the
material’s boundary:

σ · n = t̄ on Γσ (14)

U = Ū on ΓU (15)

Equations (10)-(15) are independent of the material, so we need to incorporate the information
of the specific material we want to model. This is done by means of specifying the material’s
constitutive equation, which basically links the stress tensor to the deformation. In the con-
text of the present paper we treat the problem of simulating incompressible newtonian fluids
and isotropic hypoelastic solids either separately or in the form of a fluid-structure interaction.
Accordingly in the next section we discuss their constitutive equations.

3 CONSTITUTIVE EQUATIONS

3.1 Constitutive Equation of Incompressible or Nearly-Incompressible Newtonian Flu-
ids

We treat the incompressible fluid as the limit case of a nearly-incompressible newtonian flow.
The constitutive equation of a newtonian fluid is a linear relationship between the Cauchy stress
σ and the deformation rate tensor D:

σ = −pI − 2

3
µf (tr D)I + 2µfD (16)

where µf is the fluid viscosity and p is the thermodynamic (or hydrostatic) pressure of the fluid.
By definition D is the symmetric part

D =
1

2
(L + LT ) (17)

of the velocity gradient tensor:
L = grad V (18)

Note that:
tr D = div V = εv (19)

If D is decomposed in its volumetric and its deviatoric components:

D =

[
1

3
(tr D)I + D́

]
=

[
1

3
εvI + D́

]
(20)

We can write (19) as:
σ = −pI + 2µfD́ (21)

Following Kundu and Cohen (2002), if the newtonian flow is nearly-incompressible then
density changes are related to pressure changes by the following relationship:

dp =
Kf

ρ
dρ (22)
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where Kf is the elastic bulk modulus of the fluid. Then applying the material time derivative to
the equation above and using the equation of conservation of mass we get:

Dp

Dt
=

Kf

ρ

Dρ

Dt
= − Kf div V (23)

3.2 Time-Discretization of the Constitutive Equation of a Newtonian Fluid

A implicit discretization of the fluid’s constitutive equation (21) is:

σ(n+1) = −p(n+1)I + 2µfD́
(n+1)

(24)

The discretized version of equation (23) for nearly incompressible flows would be:

p(n+1) − p(n)

4t
= −Kf div(n+1) V (n+1) (25)

So:

p(n+1) = p(n) −4tKfε
(n+1)
v (26)

3.3 Constitutive Equation of Hypoelastic Solids

A isotropic hypoelastic solid (Truesdell and Noll, 1992) is a material whose constitutive
equation is given by a linear isotropic relationship between the stress rate and the deformation
rate:

4
τ = 2µhD + λh(tr D)I (27)

where
4
τ is the Truesdell rate

4
τ = τ̇ −L · τ − τ ·LT = F · Ṡ·F T (28)

of the Kirchhoff stress tensor τ = Jσ and Ṡ is the material time-derivative of the second
Piola-Kirchhoff stress:

S = F−1 · P = JF−1 · σ · F−T (29)

3.4 Time-discretization of the constitutive equation of an hypoelastic solid

A implicit discretization of the constitutive rate equation is:

4
τ

(n+1)

= 2µhD
(n+1) + λh(tr D(n+1))I (30)

The Truesdell rate of the Kirchhoff stress is written within the interval as

4
τ

(n+1)

= F (n+1) · Ṡ(n+1) · F T (n+1) (31)

where F (n+1) is the deformation gradient up to time t(n+1). Applying the generalized midpoint
rule for Ṡ

(n+1)

Ṡ
(n+1)

=
S(n+1) − S(n)

4t
(32)
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we get

F (n+1) ·
(
S(n+1) − S(n)

)
·F T (n+1) =

2µ4tD(n+1) + λ4t(tr D(n+1))I (33)

using that F ·S ·F T = Jσ and the so-called incremental deformation tensor f (n+1) defined as:

f (n+1) · F (n) = F (n+1) (34)

we get:

J (n+1)σ(n+1) = J (n)f (n+1)·σ(n) · fT (n+1)+

λh4t(tr D(n+1))I + 2µh4tD(n+1)
(35)

The equation (35) can be applied for both formulations. However in this paper we will use the
Updated Lagrangian approach (see Section 4), then it suffices to replace f (n+1) by F (n+1) and
J (n) by 1. Defining

µ̄
(n+1)
h =

µh4t

J (n+1)
, λ̄

(n+1)
h =

λh4t

J (n+1)
(36)

and the tensor
σ̂

(n+1)
h =

1

J (n+1)
F (n+1)·σ(n) · F T (n+1) (37)

we obtain the stress update expression:

σ(n+1) = σ̂
(n+1)
h + λ̄

(n+1)
h (tr D(n+1))I + 2µ̄

(n+1)
h D(n+1) (38)

Decomposing the deformation rate tensor in terms of their deviatoric and volumetric part in the
above equation, we obtain the following alternative expression:

σ(n+1) = σ̂
(n+1)
h +

(
λ̄

(n+1)
h +

2

3
µ̄

(n+1)
h

)
(εv

(n+1))I + 2µ̄
(n+1)
h D́

(n+1)
(39)

Defining a hypoelastic volumetric viscosity:

κh = λ̄h +
2

3
µ̄h (40)

We get:

σ(n+1) = σ̂
(n+1)
h + κ

(n+1)
h εv

(n+1)I + 2µ̄
(n+1)
h D́

(n+1)
(41)

If we decompose σ̂
(n+1)
h in its deviatoric and volumetric part

σ̂
(n+1)
h = −p̂

(n+1)
h I + ´̂σ

(n+1)

h (42)

We have:

σ(n+1) = −p̂
(n+1)
h + κ

(n+1)
h εv

(n+1)I + 2µ̄
(n+1)
h D́

(n+1)
+ ´̂σ

(n+1)

h (43)
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From the application of the trace operator to the equation above we get the following useful
relationship:

p(n+1) = p̂
(n+1)
h − κ

(n+1)
h εv

(n+1) (44)

where p(n+1) is the mean pressure:

p = −1

3
tr σ

of the stress tensor σ(n+1). Then,

σ(n+1) = −p(n+1)I + 2µ̄
(n+1)
h D́

(n+1)
+ ´̂σ

(n+1)

h (45)

This is a discrete version of the constitutive equation of an hypoelastic material.

3.5 A unique constitutive formulation for a Newtonian Fluid and a Hypoelastic Solid

Now we make use of the similarity between the constitutive equation of the hypoelastic solid
(45) and the constitutive equation of a Newtonian fluid (24) so as to write a unique constitutive
equation for both materials. The only differences between the constitutive equations are the
additional term ´̂σ

(n+1)

h for the hypoelastic solid and the fact that their Lamé Coefficients are
not longer constant. As a consequence we can write the following general expressions for both
materials:

σ(n+1) = −p(n+1)I + 2µ(n+1)D́
(n+1)

+ ´̂σ
(n+1)

(46)

with
p(n+1) = p̂(n+1) −Kεv

(n+1) (47)

where

µ(n+1) =


µ̄h = µh4t

J(n+1) if Hypoelastic solid

µ
(n+1)
f if Newtonian fluid

p̂(n+1) =

 p̂
(n+1)
h if Hypoelastic solid

p(n) if Newtonian fluid

K =


λh4t
J(n+1) + 2

3
µh4t
J(n+1) if Hypoelastic solid

4tKf if Newtonian fluid

σ̂(n+1) =


1

J(n+1) F
(n+1)·σ(n) · F T (n+1) if Hypoelastic solid

p(n)I if Newtonian fluid

(48)

´̂σ
(n+1)

=


´̂σ

(n+1)

h if Hypoelastic solid

0 if Newtonian fluid
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4 TIME-DISCRETIZATION OF EQUATIONS OF MOTION USING A
LAGRANGIAN FORMULATION

To obtain numerical solutions to equations (10)-(15) we use a Lagrangian Formulation. The
formulation can be made either Total Lagrangian or Updated Lagrangian. In the former the
reference configuration is the initial one, in the second the reference configuration is chosen to
be the most recent computated configuration and it is updated every time step. In this paper
we will use the Updated Lagrangian approach only. Having chosen a reference configuration
which corresponds to a volume Ω0 with a density distribution ρ0, applying the Newmark method
(Newmark (1959)) to integrate in the time the equations (10) and (11) leads to:

ρ0
V(n+1) −V(n)

∆t
= Div

(
J (n+1)σ(n+1) · F−T (n+1)

)
+ ρ0b

(n+1) (49)

with
ρ(n+1) =

1

J (n+1)
ρ0 (50)

where

U (n+1) = U (n) + ∆tV (n) + ∆t2
(

(
1

2
− β)A(n) + βA(n+1)

)
(51)

V (n+1) = V (n) + ∆t
(
(1− γ)A(n) + γA(n+1)

)
(52)

The values of γ and β determine the order of the method. However, the order of the method
is limited to 1 so that values of γ = 1 and β = 0.5 are chosen. The above equations are solved
in the reference volume Ω0 and the boundary conditions imposed on the reference volume’s
boundary Γ0 = Γ0U + Γ0σ.

Equations (10)-(15) or their discrete form (49)-(50) are independent of the material, so we
need to incorporate the materialt’s constitutive equations. In the context of the present paper we
treat the problem of simulating quasi-incompressible newtonian fluids and isotropic hypoelastic
solids either separately or in the form of a fluid-structure interaction.

5 INTEGRATION OF MOTION EQUATIONS

Inserting the general constitutive equation (46) into equation (49) and assuming an Updated
Lagrangian Approach (i.e. ρ0 = ρ(n)) we get:

ρ(n)

(
V (n+1) − V (n)

∆t

)
= −Div

(
J (n+1)p(n+1)I · F−T (n+1)

)
+

Div
(
J (n+1)2µ(n+1)D́

(n+1) · F−T (n+1)
)

+ Div
(
J (n+1) ´̂σ

(n+1) · F−T (n+1)
)

+ ρ(n)b(n+1)

(53)

Now in order to ease readiness, we will drop the upper-index (n + 1) from the unknown
quantities. So for example F−T (n+1) will be written simply as F−T . Note that we keep the
index (n) of the known quantities. Using this convention we can rewrite the above equation as:

ρ(n)

(
V − V (n)

∆t

)
= −Div

(
JpI · F−T

)
+ Div

(
J2µD́ · F−T

)
+ Div

(
J ´̂σ · F−T

)
+ ρ(n)b

(54)

Mecánica Computacional Vol XXV, pp. 809-827 (2006) 817

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Using (47), we have:

ρ(n)

(
V − V (n)

∆t

)
= −Div

(
Jp̂I · F−T

)
+ Div

(
Jµ
(
grad V + gradT V

)
· F−T

)
+

Div

(
J

(
K − 2

3
µ

)
εvI · F−T

)
+ Div

(
J ´̂σ · F−T

)
+ ρ(n)b

(55)

5.1 Spatial Discretization

Multiplying equation (55) by the test function W and (47) by q and integrating over the
domain, we arrive at :

∫
Ωn

ρ(n)W ·

(
V − V (n)

∆t

)
dVn =∫

Ωn

W · (−Div
(
Jp̂I · F−T

)
+ Div

(
Jµ
(
grad V + gradT V

)
· F−T

)
+

Div

(
J

(
K − 2

3
µ

)
εvI · F−T

)
+

Div
(
J ´̂σ · F−T

)
+ ρ(n)b)dVn +

∫
Γn

W (T − P ·N )dΓn

(56)

∫
Ωn

qp(n+1) dVn =

∫
Ωn

q
(
p̂(n+1) −Kεv

(n+1)
)
dVn (57)

After integration by parts, equation (56) becomes:∫
Ωn

ρ(n)W ·

(
V − V (n)

∆t

)
dVn =

∫
Ωn

Grad W : (Jp̂I · F−T )dVn−∫
Ωn

Grad W : (Jµ
(
Grad V + GradT V

)
· F−1 · F−T )dVn−∫

Ωn

Grad W :

(
J

(
K − 2

3
µ

)
εvI · F−T

)
dVn −

∫
Ωn

Grad W : (J ´̂σ · F−T )dVn+∫
Ωn

ρ(n)W · bdVn +

∫
Γn

W · T dΓn

(58)

The velocity and the pressure are approximated as:

Vj =
∑

Wi (X, t) Vi,j

p =
∑

Wi (X, t) Pi
(59)

where Wi are the MFEM shape functions and V and p the nodal values of the three com-
ponents of the unknown velocity and the pressure respectively. More details of the mesh dis-
cretization process and the choice of shape functions are given in section 8. Substituting the
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approximation (59) into (57)-(58) and choosing a Galerkin method leads to the following sys-
tems of equations:

(M + ∆tK) V = MV (n) −∆tD ´̂σ + ∆tDp̂ + ∆tF (60)

M̂p = M̂ p̂−GV (61)

where the previous matrices are:

Mij =

∫
Ωn

ρ(n)WiWjdVn

M̂ij =

∫
Ωn

WiWjdVn

Kij =

∫
Ωn

Grad WiF
−1µ

(
Grad Wj + GradT Wj

)
F−1JdVn + (62)

∫
Ωn

Grad WiF
−T

(
K − 2

3
µ

)
Grad WjF

−T JdVn

(63)

Dij =

∫
Ωn

Grad WiWjF
−T JdVn

Gij =

∫
Ωn

WiKGrad WjF
−T dVn

Fi =

∫
Ωn

WibdVn +

∫
Γn

WiT dΓn

(64)

6 SUMMARY OF A FULL ITERATIVE TIME STEP

The resulting nonlinear system of equations (60)-(61) has to be solved iteratively. Therefore,
a Picard iteration is used for the linearization of all equations, leading to a relatively simple
fixed point type solution procedure. A full time step may be described as follows: starting with
the known values X(n), V (n) and σ(n) in each particle, the computation of the new particle po-
sition involve the following steps:

1- Initialize F (n+1,0) = δijei⊗ ej,J (n+1,0) = 1, x(n+1,0) = X(n)

2- While (not converge)
a)Evaluate the velocity V (n+1,i+1)

(M + ∆tK) V (n+1,i+1) = MV (n) −∆tD ´̂σ
(n+1)

+

∆tDp̂(n+1) + ∆tF (n+1)
(65)

d)Move the particles to the x(n+1,i+1) position with

x(n+1,i+1) = X(n) + U (n+1,i+1) (66)

e)Compute the deformation gradient F (n+1,i+1) from (8) and J (n+1,i+1) from (7)
3-If converge
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b)Evaluate the pressure p(n+1,i+1)

M̂p(n+1) = M̂ p̂(n+1) −GV (n+1,i+1) (67)

update the mesh nodes with

X(n+1) = x(n+1,i+1) (68)

4-Evaluate the σ(n+1) only for the solid domain

σ(n+1) = −p(n+1)I + 2µ(n+1)D́
(n+1)

+ ´̂σ
(n+1)

(69)

5-Generate the new mesh
6-Compute the new time step

7 THE BASIS OF THE PARTICLE FINITE ELEMENT METHOD

Let us consider a domain containing both fluid and solid subdomains. The moving fluid
particles interact with the solid boundaries thereby inducing the deformation of the solid which
in turn affects the flow motion and, therefore, the problem is fully coupled. The finite element
method (FEM) is used to solve the continuum equations in both domains. Hence a mesh dis-
cretizing these domains must be generated in order to solve the governing equations for both the
fluid and solid problems in the standard FEM fashion. We note again that the nodes discretiz-
ing the fluid and the solid domains are viewed as material particles which motion is tracked
during the transient solution. This is useful to model the separation of fluid particles from the
main fluid domain and to follow their subsequent motion as individual with a known density, an
initial acceleration and velocity and subject to gravity forces. The quality of the numerical so-
lution depends on the discretization chosen as in the standard FEM. Adaptive mesh refinement
techniques can be used to improve the solution in zones where large motions of the fluid or the
structure occur.

7.1 Basic steps of the PFEM

For clarity purposes we will define the collection or cloud of nodes (C) pertaining to the fluid
and solid domains, the volume (V) defining the analysis domain for the fluid and the solid and
the mesh (M) discretizing both domains. A typical solution with PFEM involves the following
steps.

1. The starting point at each time step is the cloud of points in the fluid and solid domains.
For instance Cn denotes the cloud at time t = tn (Figure 2).

2. Identify the boundaries for both the fluid and solid domains defining the analysis domain
V n in the fluid and the solid. This is an essential step as some boundaries (such as the
free surface in fluids) may be severely distorted during the solution process including
separation and re-entering of nodes. The Alpha Shape method (Edelsbrunner and Mucke,
1999) is used for the boundary definition (see Section 8).

3. Discretize the fluid and solid domains with a finite element mesh Mn. In our work we
use an innovative mesh generation scheme based on the extended Delaunay tesselation
(Idelsohn et al., 2003a, 2004a).
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4. Solve the coupled Lagrangian equation of motion for the fluid and the solid domains.
Compute the relevant state variables in both domains at the next (updated) configuration
for t+∆t: velocities, pressure and viscous stresses in the fluid and displacements, stresses
and strains in the solid.

5. Move the mesh nodes to a new position Cn+1 where n + 1 denotes the time tn + ∆t,
in terms of the time increment size. This step is typically a consequence of the solution
process of step 4.

6. Go back to step 1 and repeat the solution process for the next time step.

8 MESH GENERATION

A key point for the success of the Lagrangian FSI formulation is the fast regeneration of
a mesh at every time step on the basis of the position of the nodes in the space domain. The
mesh is generated using the so called extended Delaunay tesselation (EDT) presented in (Idel-
sohn et al., 2003b,a; Edelsbrunner and Mucke, 1999). The C0 continuous shape functions of
the elements can be simply obtained using the so called meshless finite element interpolation
(MFEM). Details of the mesh generation procedure and derivation of the MFEM shape func-
tions can be found in (Idelsohn et al., 2003b,a; Edelsbrunner and Mucke, 1999). One of the
main problems in mesh generation is the correct definition of the boundary domain. The use of
the extended Delaunay partition makes it easier to recognize boundary nodes.

Figure 2: Sequence of steps to update a "cloud" of nodes from time n (time n) to time n+1 (t=tn+∆t)
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Figure 3: Identification of individual particles (or a group of particles) starting from a given collection of nodes

Considering that the particles follow a variable h(x) distribution, where h(x) is the minimum
distance between two particles, the following criterion has been used: All particles on an empty
sphere with a radius r(x) bigger than h(x), are considered as boundary nodes. α is a parameter
close to, but greater than one. Note that this criterion is coincident with the Alpha Shape concept
(Edelsbrunner and Mucke, 1999). Figure 3 shows an example of the boundary recognition using
the Alpha Shape technique.
In this work, the boundary surface is defined by all the polyhedral surfaces (or polygons in 2D)
having all their nodes on the boundary and belonging to just one polyhedron.
The method described also allows one to identify isolated fluid particles outside the main fluid
domain.

9 EXAMPLES

9.1 Collapse of a water column with a obstacle

The collapse of a water column is calculated using the present formulation and results com-
pared with experiment results obtained by S. Koshizuka in reference (Koshizuka et al., 1995).
Geometry of the initial water column is illustrated in Figure 4. The fluid properties correspond
to water, so that ρ = 1000[kg/m3] and µ = 0.001[kg/sm]. The system is simulated for 2[s]
with a time steps = 0.0025[s]. Figure 5 show the experimental and the numerical results at
different characteristic time step. At time 0.1[s], the right surfaces of the water start the dis-
turbance due to the obstacle. At time 0.2[s], the water surface is completely disturbed by the
obstacle.

Figure 4: Initial geometry of the water column

The results compare considerably well with the experimental results. At 0.3[s] collapsed
water crashes to the right wall. At 0.5[s], the water goes up along the right wall with separations
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Figure 5: Collapsing water column with obstacle

and several drops. Finally, at 1[s], the water along the right wall falls down and a new breaking
wave will soon occur on the left wall.
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9.2 Breaking dam on hypoelastic wall

Figure 6 represents the same problem but with a elastic obstacle with density ρ = 2500[kg/m3],
Young’s modulus E = 106[kg/s2m] and Poisson’s ratio ν = 0. The geometry of the more slen-
der obstacle is of width h = 1.2[cm] and height 20/3 · h. No experimental results have been
found for this example, but the shape of the deformation of the beam as well as the free surface
perturbation seems to be in agreement with the physics of the problem.

Figure 6: Breaking dam on hypoelastic

The left upper corner of the solid first gets a defection to the left when the water acts on its
lower part and moves to the right while the water rises. It obtains its maximum deflection (mark
(a) in Figure 7) when the water jet passes the top and is fully attached to the left side of the solid.
Finally, the impact of the fluid causes the thin solid to start oscillating (b). This oscillation is
damped (c) by the water located left and right of the wall.

9.3 Bar under a lateral wave

In this example a bar is located in the middle of a tank. The obstacle with density ρ =
7800[kg/m3], Young’s modulus E = 2.1 · 106[kg/s2m] and Poisson’s ratio ν = 0.3. Geometry
is illustrated in Figure 8.
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Figure 7: History of the displacement

Now, the system is simulated for 2[s] with a constant time step = 0.001[s]. The hypoelastic
solid is deflected by the impulse of the fluid wave (Figure 9). The the solid first moves to the
left while the water rises and to the right when the wave goes back.

10 CONCLUSIONS

In this paper, the Particle Finite Element Method applied to solve Fluid-Structure Interaction
problems in a monolithic numerical scheme was presented. The method takes advantage of
the similarity between the discrete constitutive equations of the materials under consideration:
quasi-incompressible newtonian fluid and hypoelastic solid, and it has proved to be ideal to
treat problems involving fluid with free surfaces and structures which can undergo large struc-
tural displacements, rotations and deformations. Other, essential solution ingredients of the
numerical approach are: the Delaunay triangulation algorithm which provides a very efficient
connectivity scheme, and, the identification of boundary nodes using an Alpha-Shape type tech-
nique. The examples presented have shown the great potential of the PFEM for solving a wide
class of practical FSI problems.
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