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We present a full two-fluid magnetohydrodynamic (MHD) description for a completely ionized

hydrogen plasma, retaining the effects of the Hall current, electron pressure, and electron inertia.

According to this description, each plasma species introduces a new spatial scale: the ion inertial

length ki and the electron inertial length ke, which are not present in the traditional MHD

description. In the present paper, we seek for possible changes in the energy power spectrum in

fully developed turbulent regimes, using numerical simulations of the two-fluid equations in

two-and-a-half dimensions. We have been able to reproduce different scaling laws in different

spectral ranges, as it has been observed in the solar wind for the magnetic energy spectrum. At the

smallest wavenumbers where plain MHD is valid, we obtain an inertial range following a

Kolmogorov k�5=3 law. For intermediate wavenumbers such that k�1
i � k � k�1

e , the spectrum is

modified to a k�7=3 power-law, as has also been obtained for Hall-MHD neglecting electron inertia

terms. When electron inertia is retained, a new spectral region given by k > k�1
e arises. The power

spectrum for magnetic energy in this region is given by a k�11=3 power law. Finally, when the terms

of electron inertia are retained, we study the self-consistent electric field. Our results are discussed

and compared with those obtained in the solar wind observations and previous simulations. VC 2014
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4903907]

I. INTRODUCTION

There are several alternative and complementary

approaches to model the dynamics of a plasma. For instance,

kinetic theory describes a plasma from a microscopic point

of view, including phenomena at the corpuscular scales

described through their distribution function. On the other

hand, magnetohydrodynamic (MHD) models describe more

global phenomena at macroscopic scales using low order

moments of the distribution function such as the particle den-

sity, the velocity of the flow, and its pressure. However, the

description at intermediate scales, i.e., in between the MHD

and the kinetic scales is a subject of debate. In particular, the

solar wind is an example of a space plasma for which this

discussion is still open. With the aim of getting a better

understanding of the nature of a magnetized plasma at inter-

mediate scales and within the framework of a full two-fluid

MHD description, retaining the effects of the Hall current,

electron pressure, and electron inertia, we investigate the

development of turbulent regimes throughout these scales.

An important feature to characterize a stationary and

isotropic turbulent regime of a plasma is its energy spectrum

E(k), which provides the energy per unit wavenumber. At

MHD scales, i.e., at wavenumber below the inverse of the

ion inertial length kki
� k�1

i (ki � c/xpi, where c is the speed

of light and xpi¼ (4pe2n0/mi)
1=2 is the ion plasma fre-

quency), the energy spectrum follows a k�5=3 scaling, i.e., a

Kolmogorov spectrum just as for neutral fluids. This

power-law was predicted by Kolmogorov1 for hydrodynamic

turbulence, assuming isotropy and using dimensional analy-

sis. Using measurements of the solar wind at 1, 2.8, and 5

AU and assuming the Taylor hypothesis, Matthaeus and

Goldstein2 found energy spectra consistent with a

Kolmogorov spectrum. However, one fundamental differ-

ence between hydrodynamic turbulence and plasma turbu-

lence is the presence of different wavenumber regimes with

their corresponding power-law dependencies. Solar wind

observations have shown that the MHD range typically ends

just at the ion inertial length, where the magnetic power

spectrum exhibits a characteristic break.3,4 At wavenumbers

larger than the inverse of the ion inertial length, i.e., the

Hall-MHD (HMHD) range, the magnetic spectra exhibit

steeper power laws.5–8 Biskamp et al.9 studied the electron

MHD (EMHD) turbulence in 2D and 3D systems. In the

EMHD approximation, asymptotically valid at spatial scales

much smaller than the ion inertial length, the ions are

regarded as static (because of their much larger mass) and

electrons are the only species to carry the electric current. In

this regime, Biskamp et al.9 found that the energy spectrum

follows a k�7=3 power law. This prediction was later con-

firmed by other numerical simulations.10–12 The classical

explanation for this turbulence regime is that it is associated

with a cascade process involving dispersive waves such as

ion-cyclotron and/or whistler modes. In the context of 3D

compressible MHD with and without the Hall effect,

Dmitruk and Matthaeus13 analyzed the behavior of the mag-

netic and electric field fluctuations. The authors found that
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the turbulent magnetic field was almost unaffected by the

presence of the Hall term in Ohm’s law, while the electric

field is modified at scales smaller than the ion skin depth and

close to the dissipation range. Furthermore, reconnection

zones are identified, and the relative importance of each term

in Ohm’s law was studied in real space. In this direction,

Smith et al.14 examined the influence of the Hall effect and

the level of turbulence on the magnetic reconnection rate in

two-and-a-half dimensions (2.5D) compressible HMHD.

Their results indicate that the reconnection rate is enhanced

both by increasing the Hall parameter and the amplitude of

the turbulence. The idea that MHD turbulence may play an

important role in a magnetic reconnection setup was first

proposed by Matthaeus and Lamkin15 by adding turbulent

fluctuations on a two-dimensional sheet pinch configuration.

It is also important to remark that several studies have shown

that the magnetic reconnection rate might still depend on the

value of the Hall parameter14,16–19 or on the level of turbu-

lent fluctuations.14,15

Recently, Sahraoui et al.20 found evidence of two break-

points in the magnetic energy spectrum from solar wind

observations obtained with the multi-spacecraft Cluster.

These results show a break at a wavenumber presumably

consistent with the inverse ion inertial length kki
(as previ-

ously observed by Leamon et al.3 and Smith et al.4) and a

second break at a wavenumber correlated with the electron

gyroradius qe¼ v?/xce (where the perpendicular velocity is

calculated with the thermal velocity and xce� eB0/mec is the

electron cyclotron frequency). However, in those observa-

tions, the electron gyroscale qe was very close to the electron

inertial length ke (because be � 1), and therefore it was not

clear to what characteristic scale can be attributed this break-

point. The authors confirmed the Kolmogorov spectrum at

MHD scales, a second power law k�7=3 at HMHD scales

above the ion inertial scale and a steeper power law k�4.1

above kqe
� 1=qe. Other authors have found similar

results.21,22 In particular, Alexandrova et al.21 confirmed the

Kolmogorov law at the MHD scales, a power law k�2.8 at

k > kki
and an exponential decay around the electron Larmor

radius qe.

In summary, the present study is consistent with results

suggesting that the Hall effect produces a steepening in the

spectrum at the ion inertial length which does not involve

energy dissipation.6,11,23,24 The main goal of the present

paper is to explore the physics of a complete two-fluid model

without neglecting the electron mass. Consequently, the sys-

tem is able to distinguish two characteristic scales, the ion

and electron inertial lengths. Therefore, we call Electron

Inertia HMHD (EIHMHD) to a theoretical framework that

extends MHD and HMHD, both of which can be regarded as

particular cases. In particular, this level of description should

not be confused with the EMHD approximation,17,25 since

we retain the whole dynamics of both the electron and ion

flows throughout all the relevant spatial scales. We claim

that the EIHMHD framework is a way to partially bridge the

gap between the fluidistic and kinetic descriptions.

The paper is organized as follows: in Sec. II, we develop

the EIHMHD model and present the ideal invariants of the

model in Sec. III. In Sec. IV, we show the set of equations

that describe the dynamical evolution of the problem in a

2.5D setup. In Sec. V, we present our main results, and

finally, in Sec. VI, we summarize our conclusions.

II. ELECTRON INERTIA HALL-MHD MODEL

The equations of motion for an incompressible plasma

made of ions and electrons with mass mi,e, charge 6 e, den-

sity ni¼ ne¼ n (quasi-neutrality), pressure pi,e, and velocity

ui,e, respectively, can be written as

min
dui

dt
¼ en Eþ 1

c
ui � B

� �
� $pi þ lir2ui þ Rie; (1)

men
due

dt
¼�en Eþ1

c
ue�B

� �
�$peþler2ueþRei; (2)

j ¼ c

4p
$� B ¼ en ui � ueð Þ: (3)

Here, B and E are the magnetic and electric fields, j is

the electric current density, c is the speed of light, li,e are the

viscosities, and Rie (Rie¼�Rei) is the rate of momentum

gained by ions due to collisions with electrons. This momen-

tum exchange rate is assumed to be proportional to the rela-

tive speed between species. More specifically,

Rie ¼ �nmi�ieðui � ueÞ; (4)

where �ie is the collisional frequency of an ion against elec-

trons. In view of Eq. (3), this momentum exchange rate (or

friction force between species) becomes proportional to the

electric current density j.

The total derivatives in Eqs. (1) and (2) are

dui;e

dt
� @ui;e

@t
þ ui;e � $ð Þui;e; (5)

and the conservation of mass for each species leads, in the

incompressible case, to

$ � ui;e ¼ 0: (6)

This set of equations can be written in a dimensionless form

in terms of a typical length scale L0, the constant particle

density n, a value B0 for the magnetic field, a typical velocity

vA¼B0/(4pnM)1=2 (the Alfv�en velocity) where M�mi þ me,

and the electric field is in units of E0¼ vAB0/c

1� dð Þ dui

dt
¼ 1

k
Eþ ui � Bð Þ � $pi þ �ir2ui þ

r

k
; (7)

d
due

dt
¼ � 1

k
Eþ ue � Bð Þ � $pe þ �er2ue �

r

k
; (8)

j ¼ 1

k
ui � ueð Þ; (9)

where we have introduced the dimensionless parameters

d�me/M and k � c/xML0, and xM¼ (4pe2n/M)1=2 has the

form of a plasma frequency for a particle of mass M. The

dimensionless momentum exchange rate is r¼�gj and

g¼mic
2�ie/(4pe2nvAL0) is the (dimensionless) electric resis-

tivity. The dimensionless ion and electron inertial lengths
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can be defined in terms of their corresponding plasma fre-

quencies xi,e¼ (4pe2n/mi,e)
1=2 simply as ki,e� c/xi,eL0. Note

that in the limit of electron inertia equal to zero, we obtain

xM¼xi, and therefore k¼ ki¼ c/xiL0 reduces to the usual

Hall parameter. However, throughout this paper, we are

going to retain the effect of electron inertia through the pa-

rameter d 6¼ 0. For a fully ionized hydrogen plasma is d� 1

and as a result k 6¼ ki� ke. Nonetheless, the current theoreti-

cal description may also be applied to an electron-positron

plasma (for which d¼ 1/2), since it is actually valid for all

values of d. The expressions for the dimensionless ion and

electron inertial scales (ki,e) in terms of the two dimension-

less parameters d and k are simply ki¼ (1 � d)1=2k and

ke¼ d1=2k.

For a hydrodynamic description of this two-fluid

plasma, we replace the velocity field for each species (i.e.,

ui,e) in terms of two new vector fields. Namely, the hydrody-

namic velocity u given by

u ¼ ð1� dÞui þ due; (10)

and the electric current density j given by (9). From Eqs. (9)

and (10), we can readily obtain the velocity of each species

as

ui ¼ uþ dkj; (11)

ue ¼ u� ð1� dÞkj: (12)

The hydrodynamic equation of motion is the sum of the cor-

responding equations of motion (7) and (8)

du

dt
¼ j� B� d 1� dð Þk2r2B

� �
�$pþ �r2uþ �0r2j; (13)

where p� pi þ pe is the total pressure, �¼ �i þ �e, and

�0¼ k(d�i � (1 � d)�e). Following the expressions obtained

by Braginskii26 and assuming both species to share a com-

mon temperature, the ratio of viscosities is only a function of

the mass ratio, i.e.,

�e

�i
¼ 0:54

ffiffiffiffiffiffiffiffiffiffiffi
d

1� d

r
; (14)

which shows that viscosity is predominantly due to

ions.

Note that most of the terms in Eq. (13) can easily be

identified as a sum of the corresponding terms in Eqs. (7)

and (8), but the convective derivatives in these equations

are nonlinear terms that have also been properly taken into

account, giving rise to a new nonlinear term in Eq. (13),

which is proportional to d. Note also that in the limit of

negligible electron inertia (i.e., for d ! 0), Eq. (13)

reduces to the equation of motion for traditional MHD.

This is the case as well for the Hall-MHD description,

which is a two-fluid theoretical description, but considering

massless electrons.

On the other hand, the equation of motion for electrons

(8), using E ¼ �@tA�r/ and ðue � rÞue ¼ xe � ue

þrðu2
e=2Þ (with xe ¼ r� ue being the electron vorticity)

can be written as

@

@t
A� dkueð Þ ¼ ue � B� dkxeð Þ þ r kpeþdk

u2
e

2
� /

� �
� k�er2ue � gj: (15)

We define

B0 � B� dkxe ¼ B� dð1� dÞk2r2B� dkx; (16)

where x ¼ $� u is the hydrodynamic vorticity. Taking the

curl of Eq. (15), it is possible to obtain a dynamical equation

for the magnetic field

@t B0 ¼$� ½u� ð1� dÞkj	 � B0 þ gr2B

�k�er2x� ð1� dÞk2�er4B: (17)

Equations (13) and (17) are the EIHMHD equations. It is

interesting to note that the presence of the electron mass

(and the corresponding viscosity coefficient �e) introduces

high order derivative terms that play the role of hyperviscos-

ity. This certainly has an impact at large wavenumbers,

affecting the distribution of energy at the small scales and

the dissipative range of the energy power spectrum. The

major source of dissipation of magnetic field in a plasma,

where the electron mass is not neglected, is the friction

between the electrons themselves and not the loss of momen-

tum of the electrons by collision with ions (as in the MHD

and HMHD cases). This can be seen in the last term of Eq.

(17), which together with the second term (on the right hand

side) came from the curl of the dissipative term in the fluid

equation of electrons, a term that cannot be neglected if we

consider electron inertia (and the resulting momentum and

energy transport due to the electrons).

It is also possible to obtain an equation for the electric

field E making use of Eqs. (13), (16), (17), and the

Maxwell–Faraday equation (in dimensionless form)

$� E ¼ � @B

@t
: (18)

It is useful to consider this equation in Fourier space to

obtain a closed expression for the electric field. First, the par-

tial time derivative of Eq. (16) in Fourier space reads

@bB0
@t
¼ ak

@bB
@t
� dk

@bx
@t
; (19)

where ak� 1 þ (1 � d)dk2k2, since $! ik and bAðkÞ is the

Fourier transform of an integrable function A(x).

Rearranging terms and using Eq. (18) in Fourier space, we

get an equation for the electric field in Fourier space as

ik� bE ¼ a�1
k

@bB0
@t
þ dk

@bx
@t

 !
; (20)

where the two right-hand side terms are calculated from Eqs.

(13) and (17), respectively, as

@bx
@t
¼ ik� d

j� B0
� �

þ idkk� dui � xð Þ � k2ð�bu þ �0
bjÞ;
(21)
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@bB0
@t
¼ ik� due � B0ð Þ � k2 gbB � k�ebx� �

� 1� dð Þk2�ek4bB:
(22)

The equation for the electric field is obtained applying

ð$�Þ�1
to Eq. (20), which gives rise to the gradient of an

undetermined function g(r, t), which can be associated to the

electrostatic potential. This function g(r, t) can be obtained

from the Poisson equation that results from taking the diver-

gence of the equation.

It is worth mentioning that the electric field consists of

four different contributions. An inductive part related to the

u�B term, a Hall contribution related to ki j�B term, the

dissipative component, and a new contribution associated

with the non-zero electron mass (i.e., proportional to d).

III. IDEAL INVARIANTS AND ENERGY CASCADE
REGIONS

In the ideal limit, i.e., neglecting dissipation terms (see

also Ref. 27), a multi-species plasma made of N species of

individual mass ms, electric charge qs, and particle density

ns, satisfies the following equations of motion:

msns
dus

dt
¼ qsns Eþ 1

c
us � B

� �
� $ps; (23)

where s¼ 1,…, N. We assume each species to be incompres-

sible (i.e., ns¼ const and $ � us ¼ 0, for s¼ 1,…, N) and the

plasma to be quasi-neutral, i.e.,

XN

s¼1

qsns ¼ 0: (24)

The electric current density will be given by

j ¼ c

4p
$� B ¼

XN

s¼1

qsnsus: (25)

Such a plasma displays N þ 1 ideal invariants. One of them

is of course the total energy E, given by

E ¼
ð

d3r
XN

s¼1

msnsu
2
s

2
þ B2

8p

 !
: (26)

The other invariants are one helicity per species, i.e.,

Hs ¼
ð

d3r Aþ cms

qs
us

� �
� Bþ cms

qs
xs

� �
; (27)

where xs ¼ $� us. In a fully ionized hydrogen plasma is

s¼ i,e and we therefore have three ideal invariants. In the

Hall-MHD limit, we neglect the electron mass (me¼ 0) and

as a result the total energy reduces to just the ion (or bulk)

kinetic energy plus the magnetic energy (see Eq. (26)). Also,

the electron helicity (see Eq. (27) for ms¼ 0) reduces to the

well known magnetic helicity H0 ¼
Ð

d3rA � B, while the

proton helicity corresponds to the hybrid helicity (see, for

instance, Ref. 28 and also Ref. 12).

Note that when the effects of electron inertia are

retained (i.e., me 6¼ 0), the regular magnetic helicity H0 is not

anymore an ideal invariant. For the two-fluid description

being addressed in the present study, the dimensionless ver-

sion of the three ideal invariants is

E ¼
ð

d3r
u

2

2

þ B

2

2

þ 1� dð Þdk2 j

2

2
� �

; (28)

He ¼
ð

d3rðA� dkuÞ � ðB� dkxÞ; (29)

Hi ¼
ð

d3rðAþ ð1� dÞkuÞ � ðBþ ð1� dÞkxÞ: (30)

All these are quadratic and global invariants. For instance,

the energy density

E r; tð Þ ¼
u

2

2

þ B

2

2

þ 1� dð Þdk2 j

2

2

; (31)

satisfies the following evolution equation:

@

@t
E r; tð Þ ¼ �$ � F ; (32)

where F is therefore the energy flux. Since the energy den-

sity (31) is quadratic, an equation equivalent to (32) also

holds in Fourier space as a result of Parseval’s theorem. In a

stationary and isotropic turbulent regime, the so called

energy cascade corresponds to a constant energy flux in

Fourier space (i.e., Fk independent of k ¼ jkj), which is

therefore equal to the energy dissipation rate �. For instance,

in the paradigmatic case of incompressible hydrodynamic

turbulence, the modulus of the energy flux in Fourier space

goes like Fk ’ ku3
k ¼ �, which leads to the well known

Kolmogorov’s energy power spectrum Ek ’ �2=3k�5=3, sim-

ply using that Ek ’ u2
k=sk and sk ’ (kuk)

�1.

In the more complex case of EIHMHD turbulence, there

are many terms contributing to the energy flux in both physi-

cal and Fourier spaces. Symbolically, these various contribu-

tions are sketched in the following expression for the energy

flux in Fourier space:

Fk ’ kðu3
k þ ukBkB0k þ ð1� dÞkJkBkB0k þ ð1� dÞdk2@tJkBkÞ:

(33)

The presence in EIHMHD of two physical lengthscales

causes the appearance of three different regions in wavenum-

ber space.

(1) MHD region (k�kki
): In this region, we assume d 
 0


 k and also uk ’ Bk ’ B0k. Therefore, Fk ’ kB3
k ¼ � and

Ek ’ B2
k=k ’ �2=3k�5=3.

(2) HMHD region (kki
�k�kke

): In this region, we maintain

d 
 0 but k 6¼ 0, and uk�Bk ’ B0k. As a result, we now

have Fk ’ kk2B3
k ¼ � and therefore Ek ’ B2

k=k
’ ð�=kÞ2=3k�7=3.

(3) EIHMHD region (kke
�k): This large-k region is

dominated by the last two terms in the energy flux, i.e.,

Fk ’ kdk2@tJkBk¼ � (since B0k � dk2k2Bk � Bk). Since

kk � 1=
ffiffiffi
d
p
� 1, we assume the ions to remain static
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because of their much larger mass and the dynamics to

be dominated by the electrons, i.e., @t ’ kuek ’ kk2Bk.

Therefore, Fk ’ dk3k4B3
k ¼ �. Note that the energy

power spectrum in this region is now predominantly

electron kinetic energy, and therefore Ek ’ dk2J2
k=k

’ ð�2dÞ1=3k�5=3. The power spectrum of magnetic

energy, however, is equal to B2
k=k ’ ð�=ðdk3ÞÞ2=3k�11=3.

IV. 2.5D SETUP

We consider a 2.5D setup where the vector fields depend

on two Cartesian coordinates, say, x and y, but they have all

three components. Considering the incompressible case, i.e.,

$ � u ¼ 0, we can write the magnetic and velocity fields as

B ¼ $� ½bzaðx; y; tÞ	 þ bzbðx; y; tÞ and u ¼ $� ½bzuðx; y; tÞ	
þbzuðx; y; tÞ, where a(x, y, t) and uðx; y; tÞ are the scalar

potential for the magnetic and velocity fields, respectively.

In terms of these scalar potentials, the Eqs. (13) and (17)

take the form

@t x ¼ ½u;x	 � ½a; j	 � ð1� dÞdk2½b;r2b	
þ�r2x� �0kr4b; (34)

@t u ¼ ½u; u	 � ½a; b	 � ð1� dÞdk2½j; b	 þ �r2uþ �0kr2j;

(35)

@t a0 ¼ ½ue; a
0	 þ gr2a� ð1� dÞ�ek

2r4a� �ekr2u; (36)

@t b0 ¼ ½ue; b
0	 þ ½ue; a

0	 þ gr2b� ð1� dÞ�ek
2r4b

��ekr2x; (37)

where x ¼ �r2u; j ¼ �r2a; a0 ¼ aþ dð1� dÞk2j� dku;
b0 ¼ b� dð1� dÞk2r2b� dkx, and the nonlinear terms are

the standard Poisson brackets, i.e., [p, q]¼ @xp@yq � @yp@xq.

We have also defined the stream function and the velocity

component along bz for electrons, respectively, as ue ¼
u� ð1� dÞkb and ue¼ u � (1 � d)kj. This set of equations

describes the dynamical evolution of the magnetic and veloc-

ity fields. When d¼ 0 (i.e., me¼ 0), it reduces to the incom-

pressible 2.5D HMHD equations. Finally, in the 2.5D setup,

for computation of the self-consistent electric field along the

z direction, we can ignore the g(r, t) indetermination since

@z� 0 in this geometry.

V. NUMERICAL RESULTS

We use a parallel pseudospectral code to numerically

integrate Eqs. (34)–(37). A second-order Runge-Kutta time

integration scheme is adopted. Periodic boundary conditions

are assumed for the bx and by directions of a square box of lin-

ear side 2pL0 (where L0 is the length unit). The simulations

performed throughout the present paper are run-down, i.e.,

they do not contain any magnetic or velocity stirring forces.

As initial conditions, we excite Fourier modes (for both mag-

netic and velocity field fluctuations) in a shell in k-space

with wavenumbers 3� k� 4, with the same amplitude and

random phases for all modes. For all the simulations pre-

sented here, we used a spatial resolution of 30722 grid points,

�¼ 3� 10�5 and g¼ 1.5� 10�4. To suppress aliasing

effects, our spectral code uses a maximum wavenumber

kmax¼N/3¼ 1024. The ratio between the ion and electron

inertial lengths is equal to the square root of the mass ratio.

We used the realistic value me/mp¼ 1/1836, which corre-

spond to kke
� 43kki

. In addition, the dissipation range

corresponds to wavenumbers much larger than these two

characteristic scales. We ran simulations at high spatial reso-

lution to study the freely evolving turbulence at different

scales. In particular, we performed two EIHMHD simula-

tions with the same ion inertial length (ki) and different elec-

tron to proton mass ratios (me/mp). On one hand, we used a

fictitious mass ratio, me/mp¼ 0.015 (electrons 27 times heav-

ier), which corresponds to kki
� 10 and kke

� 82 to study the

development of scales between the electron and the ion iner-

tial lengths. On the other hand, we used the real mass ratio

me/mp¼ 1/1836 corresponding to kkp
� 10 and kke

� 428.

For both simulations, the dissipation wavenumber kd, com-

puted as kd ¼ hj2 þ x2i1=4=
ffiffiffi
�
p

, remains in the range of

ke< kd< kmax. Figure 1 shows the magnetic energy spectra

for both cases. The black and gray lines correspond to the

real and fictitious electron to proton mass ratio, respectively.

As shown by the spectra, the magnetic power spectra explic-

itly depends on the value of electron mass, even though

asymptotically goes to the HMHD spectrum as k� kke
.

The upper panel in Figure 2 shows the magnetic energy

spectrum for the case of fictitious electron to proton mass ra-

tio (gray line). In addition, the dashed black lines show the

theoretical power-law scalings (see Sec. III) for the different

spectral ranges. The ion, electron, and dissipation wavenum-

bers are indicated as vertical dashed gray lines. The lower

panels show the compensated spectrum for the HMHD (solid

line) and EIHMHD (dashed line) region. The separation

points occur near the kinetic scales kki
and kke

, which is con-

sistent with solar wind observations.20,21 It is worth mention-

ing that both kinetic effects, the Hall effect and the non-zero

electron mass, affect the spectrum and the breakpoints. It is

also remarkable the consistent scaling for each region. From

Figure 2, the scale separation between the HMHD and the

FIG. 1. Magnetic energy spectra for EIHMHD cases with ki¼ 1/10 and

me/mp¼ 1/1836 (black) and me/mp¼ 0.015 (gray).
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EIHMHD regions is clearly noticeable. The Hall range is

well described with the scaling �k�7=3, in agreement with

the observations, several theoretical predictions,9,11 and pre-

vious numerical results.10,12 A new range of scaling �k�11=3

emerges for wavenumbers k � kke
, i.e., the EIHMHD region,

which is also consistent with our prediction, solar wind

observations20,21 and previous simulations.20,29 There is also

an indication of an exponential decay for the largest range of

wavenumbers in our simulations, as was suggested by

observations.21

Figure 3 shows the power spectra for the magnetic

energy for me/mp¼ 1/1836 (black line), with the same format

as Figure 2. We also obtain two separation points at the two

kinetic scales kki
and kke

, with a �k�7=3 and �k�11=3 power-

law scalings for HMHD and EIHMHD, respectively.

However, the inverse of the electron inertial lengths and the

dissipation wavenumber are close to each other in this case.

Therefore, there is no clear-cut distinction between the k�11=3

power-law and the exponentially decaying dissipative region.

Figure 4 (upper panel) shows the power spectrum of the

z component of the electric field for the two EIHMHD cases,

me/mp¼ 1836 (black) and me/mp¼ 0.015 (gray). The ion

wavenumber (kki
� 10), the fictitious and real electron wave-

numbers (kke
� 82 and kke

� 482, respectively), and the

dissipation scale (kd� 650) wavenumber are indicated as

vertical dashed gray lines. The two spectra are clearly differ-

ent when we consider electrons with different masses. As we
FIG. 2. Magnetic energy spectra for me/mp¼ 0.015. Vertical dashed gray

lines correspond to kki
� 10; kke

� 82, and k� � 550. The compensated

spectrum for the HMHD (solid line) and EIHMHD (dashed line) regions are

shown in the lower panel.

FIG. 3. Magnetic energy spectra for me/mp¼ 1/1836. Vertical dashed gray

lines correspond to kki
� 10; kke

� 430, and k� � 650. The compensated

spectrum for the HMHD (gray line) and EIHMHD (green line) regions in

the same format as Figure 2.

FIG. 4. Power spectrum of electrostatic field for EIHMHD with me/m-

p¼ 1/1836 and me/mp¼ 0.015 (upper panel). Vertical lines correspond to

kki
� 10; kke

(�82 and �428 for the fictitious and real mass ratio, respec-

tively) and k� � 650. The lower panel corresponds to the ratio between the

electric and magnetic spectra, i.e., SE/SB.
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expect, the electric field is much smaller than the magnetic

field for all scales. The lower panel shows the ratio between

the electric field (z component) and the magnetic field spec-

tra. We find that the electric field becomes gradually more

important as k increases. This is consistent with observa-

tions20 in the solar wind.

VI. CONCLUSIONS

Within the context of a full two-fluid model, we obtain

different power laws for the magnetic energy spectrum, con-

sistent with those observed in the solar wind. Allowing elec-

trons to acquire a finite kinetic energy introduces a new range

in the energy spectrum. According to our results, the separa-

tion points occur every time a new scale is involved, first the

ion inertial length and then the electron inertial length. This

is explicitly shown in Eqs. (34)–(37) where it can be seen that

the presence of the scales ki and ke introduce new non-linear

terms which are absent in a plain MHD description. As a con-

sequence, these new nonlinear terms affect the energy distri-

bution among scales. If the energy distribution is affected by

introducing these two effects (Hall and non-zero electron

mass), we can expect also different flow structures, intermit-

tency and general dynamics on scales where we cannot treat

the plasma as a single fluid. We have taken a first step toward

understanding turbulence in a full two-fluid model and leave

the path for further studies of this system.
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