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Abstract. The Generalized Sturmian Functions method aims to deal with atomic physics
problems. It has seen application to two and three-body problems, and its flexibility enables
one to work with bound systems as well as with particles in the continuum. In the present
contribution we analyze how the method expands the atomic double continuum in collision
problems, using the double ionization of Helium by fast electrons as a showcase. We first test
the robustness of the method in a particularly challenging situation, the zero energy case. We
then present fully differential cross sections for a scattering problem which after 15 years of
continued efforts has not been satisfactorily solved: the double ionization of Helium by electron
impact in the fast projectile regime, as measured by the Orsay group.

1. Introduction

The Generalized Sturmian Functions (GSF) methodology was introduced seven years ago [1],
and has seen a series of successful applications in atomic physics problems (see [2] and references
therein). Whether in the case of bound systems or particles in the continuum, the method has
provided accurate solutions at a computationally inexpensive cost (see, e.g., Ref. [3]). GSF
form basis sets which have two main characteristics underlying their efficiency. First, the basis
functions can be constructed in such a way to contain the exact or approximate asymptotic
conditions for a given problem. Second, the oscillations of the basis functions can be localized
in any spatial region of interest, leaving the expansion to deal essentially with the domain where
it is most needed.

For the case of bound systems, it is easy to understand how the basis functions provide
excellent convergence properties, concentrating the expansion capabilities in the (inner) region
of interest [4, 5, 6, 7] and having all basis elements decay exponentially at the same rate, as
close as possible to the expected behavior of the physical wave function.

Less clearly established is how the basis manages to solve three-body double continuum
problems, although the efficiency has been illustrated through application to the study of
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single electron impact ionization of hydrogen [3, 8]. This contribution aims to analyze how
the hyperspherical asymptotic behavior for the double continuum wave fronts can be well
approximated by the GSF method, by using an angularly coupled combination of basis functions
in the radial coordinates of the two emitted particles.

The proposed analysis is done here for the double ionization of Helium in the fast projectile
regime. This process is formally a four—body problem, but the collision dynamics can be
reduced to a three-body problem when treating the projectile in a perturbative fashion [9].
For the purpose of the present investigation, in the first part we restrict ourselves to a Temkin—
Poet (TP) model of the physical process. While keeping the main challenges of a three-body
problem, it allows to perform studies on a single partial wave. Then, going beyond the TP case,
the full three-body problem is studied and Fivefold Differential Cross Sections (FDCS) are
briefly presented. We also provide some convergence details related to the relevance of angular
momentum partial waves.

Atomic units (h = e = m, = 1) are assumed throughout, unless stated otherwise.

2. Double ionization of Helium by fast electrons: GSF expansion

The double ionization of Helium formalism used by our group was introduced in [9]. The system
is comprised of the nucleus (Z = 2), the target electrons and the projectile. With the same
notation as in Ref. [9, 10, 11], 7o and 73 denote the distances between the nucleus and the target
electrons, and rog the interelectronic distance. Vector q stands for the momentum transferred
from the projectile to the originally bound system; in this work we shall take ¢ = 0.24 a.u.
which corresponds to one of two configurations explored by the Orsay group in Refs. [12, 13, 14].
The Helium target is left with total energy E, after the collision. The formulation treats the
projectile—He interactions in a perturbative fashion [9]; considered up to its first order, it yields
the following equation for the ejected electrons’ scattering wave function:

4T 1
¢ (2m)
where the three-body Hamiltonian hy, is given by

1 1 Z Z 1
hHe:(_2V§—V§——+). (2)

[hire — Ba] ®F. (q,r2,1r3) = — (=Z + €"972 4 £'973) §; (1o, 13) (1)

The Hamiltonian appearing in Eq. (1) is separable in the total angular momentum subspaces,
implying that the well known bipolar harmonics y@{}j (T2,T3) are eigenfunctions of this operator.
Consequently, we construct the three-body GSF basis ©, (ra,r3) as the non—correlated product
(i.e., with no explicit 793 dependence)

~ Sn22 Sn33
O, (r2,13) = VEM (Fy, F) Snate (r2) St (1) 3)

T9 r3

where index v denotes the set of indices {L, M, I3, 13, n92,n3}. For three-body problems, the GSF
method expands the continuum solution @7, (r3,r3) in terms of this basis set:

@"" (q,ra,r3) Z Z Z $,0, (r2,13) (4)
L,M lg,lp na,np

with coefficients ¢,. The two-body functions S, (r2) and Sp,, (r3) in Eq. (3) are the so—
called Generalized Sturmian Functions, and verify a homogeneous differential equation which
resembles the reduced radial Schrodinger equation:

[77 + Z/[(T) - Es] Snl(r) = _Bnl V(T) Snl(r)a (5)
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with 7, = —i% lél;:é), u the reduced mass (set to 1 throughout this paper) and [ the angular

momentum quantum number. The energy F is fixed externally, and in principle, is an arbitrary
parameter. A good choice of E;, however, plays a key role to describe the double continuum
behavior, as will be discussed later. The potential /() is used to include in the basis set some
physics of the problem in question: mainly to account for non—active electrons shielding the
nuclear charge and for the asymptotic charge perceived at long ranges by the active electrons.
The other potential involved in Eq. (5), V(r), is called generating potential, and its role is to
concentrate the oscillations of the basis in any desired region, thus tailoring the set for any
specific application.

Sturmians with negative s decay exponentially and are suitable for bound state studies. For
positive Ey, the asymptotic behavior can be chosen as a linear combination of pure Coulombic
waves Hﬁ(r) and H; (r). For continuum applications we choose E, > 0 and Sy;(r) — Hl+(7")
beyond a given radius R. Past the point » = R, all basis elements become linearly dependent
(LD) and exhibit the same asymptotic behavior.

As it has been shown in previous publications (see [2] and references therein), the GSF method
is particularly efficient resource wise when dealing with three-body bound states, and also with
the three-body continuum [3]. In this contribution it is our wish to further investigate why the
methodology works well in building up the double continuum. The main point is the following.
The GSF basis imposes outgoing (+) type asymptotic conditions on each coordinate ry and
r3, i.e., on a square contour in the (rqe,r3) space. However, the double continuum asymptotic
behavior comprises outgoing waves in the hyperradial coordinate p = \/r35 + r%, i.e., on a circular
contour. We will see below that, with an adequate choice of energy E; for the basis set, the
outgoing hyperspherical condition is very well approximated by the GSF implementation in
spherical coordinates (r2,73).

3. Double continuum asymptotic conditions

Ideally, for a double continuum wave function to be a proper solution of the three-body problem,
the asymptotic conditions imposed by a resolution scheme should contain or approximate the
hyperspherical behavior formally established by Peterkop [15] and Kadyrov [16, 17]. Thus,
the pure hyperspherical double continuum should be imposed in order to perfectly expand the
expected solution. This would imply a scattering function with an asymptotic wave vector
given by k = kp, defining for the purpose p = cos (a) €3 + sin () €3, kK = v/2E,, and where
tan (a) = r3/re. Unit vectors €2 and €3 point in the (rg,73) space, respectively along axes 79
and 3.

In figure 1 we show the scattering wave function @/, (q,ra,r3), calculated within a
RxR=60x60 a.u. box, but plotted beyond the range of the calculation, where the basis sets
are no longer linearly independent (LI). Sector I is where the basis is LI in both coordinates.
In sector II we are evaluating the function beyond the ro = R limit, where the set Sy, (r2)
has become LD and S,,,,(r3) still has expanding capabilities (i.e., is LI); in sector III we have
the symmetric situation. Sector IV shows ®F (q,rs,r3) plotted when the basis is, in both
coordinates, outside of its LI range. It contains pure outgoing wave fronts. We stress here
that the calculation is performed inside the box, and physical results (cross sections) are always
extracted from within it.

Consider the transition from sector I to II. For ro > R, the GSF set Sy, (r2) behaves as an
outgoing wave in coordinate 73, becoming LD. But we are still inside the r3 range where the
elements S,,,;, (r3) are LI. Therefore, in the 73 direction, the basis can expand the behavior of the
expected hyperspherical front, specifically, an outgoing wave on 73 with wave number xsin («).
It is then in the 79 part that there is an approximation: the component of Kk across the boundary
is kcos (a) while the set Sp,1,(r2) approximates it by . The degree of approximation equates to
that of using cos (a) &~ 1, carrying an error term of the order a?/2. This is the reason why the
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particular choice Fs = E, manages, by imposing asymptotic conditions in coordinates (ra,73),
to approximate very well the expected hyperspherical structure. Analogously, by symmetry, the
same logic applies when crossing from I to III.

120
E
f‘ 60
. '777 J ~.| L] LI Y 'e,- % A O
0 60 120

ro (a.u.)

Figure 1. (Color online) Scattering wave function (real part) plotted as a function of ro and
r3. The calculation was performed inside a 60x60 a.u. box, but plotted in a 120x120 a.u. box.
In sector II (III) the basis becomes LD in coordinate ry (r3), but not in 73 (r2). In sector IV,
the basis is LD in both coordinates.

These arguments justify the empirical affirmation made in Ref. [3], where it is suggested that
taking Fs = E, provides the most precise three-body wave functions within the GSF method.
We found that this choice is enough to ensure sound results to extract the transition amplitude
from a region limited by 72,73 = 0.9 R, where the wave function is considerably neat and devoid
of noise.

Regarding the hyperspherical double continuum, it is worth noting that hyperspherical GSF
are being developed [18, 19]. In fact, coincident results for the double ionization of Helium by
fast electrons with the spherical and hyperspherical GSF were jointly presented in [9]. It was
suggested in [10, 20] that both versions should be mutually complementary in the sense that the
single continuum information contained in the three-body wave function is better characterized
with a spherical basis set, while the hyperspherical version is expected to be more efficient
handling the double continuum. The hyperspherical GSF implementation is currently being
generalized to go beyond the S-wave frame.

Having explained how the basis works to approximate the hyperspherical outgoing boundary
conditions, we show the GSF method’s consistency through a challenging test. It is very
demanding for any method to solve Eq. (1) in the zero energy case (E, = 0), which classically
implies that both Helium electrons barely have the energy to be detached from the core. They
distance themselves from the nucleus with a vanishing asymptotic velocity. This is reflected in
the quantum mechanical asymptotic function described by Klar [21], with a wavelength growing
with p:

V(@) < e Bl (a0) Vil (6)
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where A (,6) depends on both, the hyperangle o and # = cos™!(T - T3), but not on p. Thus,
the asymptotic hyper-momentum can be thought to be proportional to 1/,/p. Solving such
a problem requires large spatial domains because the solution itself presents oscillations with
very long wavelengths. For the GSF, the challenge lies in the fact that there is not a clearly
convenient choice for the basis set energy F, since the wave vector varies with the hyperradius
p. For the present example, the goal was to obtain a solution in a box of 170x170 a.u. using
200x200 Sturmians. We first solved the problem in a preliminary way in a 80x80 a.u. box,
with a much smaller basis set (80x80 Sturmians). Then, from the last complete wave inside the
preliminary domain, we took the wavelength, and from it, obtained a hyper-momentum at that
radius. We finally extrapolated the hyper-momentum from ~ 70 a.u. to =~ 170 a.u. following
the % law, inferring that an energy Es = 0.04 a.u. would be best suited for the bigger

calculation.

60
120

3 (ay, 180

180

Figure 2. (Color online) Real part of the scattering wave function with zero total energy E,
and momentum transfer ¢ = 0.24 a.u.

The real part of the resulting wave function is plotted in figure 2. One can appreciate how
the wavelength becomes longer as the hyperradius grows, as indicated by Eq. (6). The slender
structures near the two borders correspond to single ionization channels (as was studied in detail
in Ref. [10]) and have been truncated in the figure to better visualize the double continuum
with zero energy. Double ionization measurements are performed with two electrons emitted
with a given energy which can be small (see, e.g., [22, 23]) but finite. Thus, the extreme, more
challenging, case E, = 0 serves here only to ensure the GSF method can handle also the very
low energy regime for emitted particles.

We have in this section explained how the spherical GSF deals with the double continuum,
and illustrated how it could effectively apply to very low emission energies. In the next section
we will see the methodology applied to a full three-body case, namely, Eq. (1) beyond the TP
approximation.
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4. Application to a full three-body continuum problem

Previous work has been done by our group with respect to the long standing open problem (see,
e.g., [24]) of the double ionization of Helium by high energy electrons. We first established the
theoretical foundations on which we based our scattering solution [9], applied it within a TP
framework, and studied the information contained in the wave function [10]. Turning to the full
problem, i.e., beyond TP, we first showed results for Single Differential Cross Sections (SDCS)
[11] and then for FDCS [25] in the kinematics considered experimentally by Lahmam-Bennani
et al [12, 13, 14].

Under fast projectile and small momentum transfer kinematics, the transition matrix of the
double ionization resembles that of the Double Photo Ionization (DPI) process [13, 14]. Thus,
the contribution from the total angular momentum L = 1 wave is expected to be the dominant
one. Consequently, we describe here a convergence test performed with respect to the {lo,l3}
partial waves corresponding to L = 1. The analysis was done in two runs. In the first one,
we included partial waves {{0, 1}, {1,2}{2,3},{3,4}}, and the permuted ones {ly <> l3}. In the
second run, we used {{0,1},{1,2}{2,3},{3,4},{4,5}}, and their permutation. In figure 3 we
show some of the partial waves contributions to @7, (q,r2,r3), but not the dominant ones for
scale purposes. One can see that adding the {4, 5} pair produced only a very modest modification
to the {2,3} and {3,4} waves calculated in the first run. Moreover, the amplitude of the added
{4,5} wave is significantly smaller than that corresponding to the pairs {0,1} and {1,2}. Such
a contribution would not alter the FDCS in an appreciable fashion, since the amplitudes appear
squared, and waves {{2,3},{3,4}} are already a factor ~ 2 smaller than the dominant ones,

{{0,1},{1,2}}.

0001 T T T T T T T T T T T

sC

®_*(p,a=45°)

3 1 | 1 I 1 | 1 I 1 | 1 I 1 | 1
0‘0010 5 0 15 20 25 30 35 40

p (va)

Figure 3. (Color online) Fixed hyperangle o = m/4 wave function cuts (real part) for L = 1;
the two ejected electrons possess 10 eV each, and ¢ = 0.24 a.u. The wave {4,5} (solid line) has
a small magnitude when compared to waves {2,3} (first run: open circles, second run: dotted
line ) and {3,4} (first run: full squares, second run: dashed line). These waves have in turn
roughly half of the amplitude of the more important {0,1} and {1,2} ones (not shown in the

graph).

As introduced in Ref [9], the FDCS can be extracted directly from the asymptotic range of
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the wave function:

do o akrkoks

= (2 lim p°|®F; 2,
dQ2dQ3dQY;d Exd Es (27) im p°| 0. (q, 2, r3) | (7)

kik3  p—oo

From the GSF three-body scattering wave function ®7, (q,r2,r3) we calculated FDCS and
present a contour plot in figure 4, for the coplanar Orsay kinematics [14], i.e., By = F3 = 10 eV
ejection energies, E; = k3/2 = 5599 eV and ¢ = 0.24 a.u.

0.001

Figure 4. (Color online) Contour plot for the calculated FDCS as a function of both ejection
angles 0y and 03. The kinematics are those used in the Orsay experiment [14] for (10+10) eV
emission energies.

We can observe clearly the binary and recoil structures. Because of the small momentum
transfer regime, those structures are expected to be present, surrounded by distinct nodal lines
detailed in Ref [13]. However, the nonzero momentum transfer ¢ implies that those peaks should
not be identical. This is opposed to the DPI case where the momentum transferred to the system
by the incident radiation is negligible. figure 4 shows a recoil peak that is indeed more elongated
than the binary one. A deeper analysis and comparison with other theories is beyond the scope
of this contribution, and can be found elsewhere [25].

5. Concluding remarks
In this contribution we detailed how the spherical GSF basis manages to deal with the three—
body continuum by approximating the hyperspherical asymptotic conditions. We have justified
and explained how the approach can give accurate results for three-body double continuum
physical problems.

We tested the GSF basis with a zero energy problem in a Temkin—Poet model of the electron
impact double ionization of Helium. This was done in order to experiment with a demanding
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problem which is the extreme case of near threshold ionization. The investigation suggests that
the GSF method should be able to cope also with low energy, near threshold, kinematics.

In the last section we applied the GSF to the full three-body problem, still in the fast electron
impact double ionization of Helium context. The kinematics considered were those of the Orsay
experiment [14]. Under the small momentum transfer regime, the double ionization transition
matrix has a structure similar to that found in the dipolar DPI case. The L = 1 wave is
the most dominant one, and as such, we presented a convergence analysis with respect to its
{l2, 13} waves. The FDCS calculated with the GSF method present the expected peak and nodal
structure studied by Lahmam-Benanni et al [13]. The full analysis of the results in comparison
with the experiments and other theoretical calculations are to be presented elsewhere.
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