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Abstract

We prove that the only domain §2 such that there exists a solution to the following problem Au + w*u=—1in 2, u=0on
0§2, and ﬁ /: 30 Onu = c, for a given constant c, is the unit ball By, if we assume that £2 lies in an appropriate class of Lipschitz

domains.
© 2011 Elsevier Masson SAS. All rights reserved.

1. Introduction

Let us consider the following problem: for @ € R, is it true that the only domain §2 such that there exists a solution
u to the problem

Au+w?*u=—1 in$2, (1.1)
u=~0 on 052,
with
Opt =c o0onos2, (1.2)

is a ball? Here 2 is a sufficiently smooth bounded domain in RN, N > 2, dqu is the external normal derivative to
the boundary 952, and c is a given constant. By using the Alexandrov method of moving planes J. Serrin [20] has
proved that if there exists a solution u to (1.1), (1.2), and if u has a sign in £2, then £2 = B (for example for v =0,
by the maximum principle it follows that u is positive in £2). For the particular case w = 0 see also the proofs of
H. Weinberger [23], based on a Rellich-type identity and on the maximum principle, and M. Choulli, A. Henrot [7],
which use the technique of domain derivative. We point out that Serrin in [20] has studied the same type of problem
for more general nonlinear elliptic equations. For further references concerning symmetry (and non-symmetry) results
for overdetermined elliptic problems, see also [1-4,8-19,21,22]. All these results need hypothesis on the sign of u.
In [5] the authors have given a positive answer to the above question by supposing that
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() w? ¢ {Antn>1 ({An)n>1 being the sequence, in increasing order, of eigenvalues of —A in By with Dirichlet
boundary conditions),
(ii) w ¢ A, where A is an enumerable set of R™, whose limit points are the values A1,,, for some integer m > 1, A,
being the mth-zero of the first-order Bessel function I,
(iii) $2 is such that the ker(A + w?) = {0} in £2,
(iv) the boundary 82 is a Lipschitz perturbation of the unit sphere 3 B; of RV .

We point out that in [5] no hypothesis are required on the sign of the solution u. We can say that paper [6] can be
considered as preparatory of [5] (in the sense that some ideas developed in [6] are used in [5]). In the present paper
we give a new proof of the result proved in [5], which let us permit to avoid hypothesis (i)—(iii) above.

We recall that if let us denote by (1,),>1 the sequence, in increasing order, of eigenvalues of —A in By with
Dirichlet boundary conditions, we have that the eigenvalue A,, for some n € N, coincides, for some integers £ > 0
and m > 1, with k%m. Here and in what follows Ay, will denote the mth-zero of the so-called N-dimensional £-order
Bessel function of the first kind Iy, i.e. Iy (A¢,) = 0 (see Section 2). We recall in particular that (see [5, Lemma 3.5])

16 =—1 1 in R.
From these remarks it follows that the function u® given by
1 /]
WOy = L (@) 1\ . (1.3)
w? \ Ip(w)
solves (1.1), (1.2) when §2 = B;. Here r = |x|, | - | denoting the Euclidean norm in RY. We observe that if the constant

 is smaller or equal than A1y, the solution u(? is positive in By, while if w is bigger than A1, then u® changes sign.
In the rest of the paper we will assume w > 0. The same conclusions hold true for @ < 0, since the coefficient w? is
even in (1.1). We stress out that in order that (1.3) makes sense, in the rest of the paper we will suppose that

© & {Aomtm>1-
Here and in what follows ¢ = 9,u? on 8 B;. By (1.3), we obtain that
_ Ij(w)
wly(w)’

(1.4)
In the present paper we prove the following

Theorem 1.1. For o & {Aom}m>1, there exists a class D of C>“-domains such that if u is a solution to (1.1) verifying

1
— [ dgu=c,
|asz|/““ ¢
052

with 2 € D, and c given by (1.4), then 2 = By, and u = u©®,
The idea underlying the proof of Theorem 1.1 is the following. Let E be the vector space of C>“ functions defined

on the unit sphere 9 B, i.e.
E={keC*™ @B},

0 <o < 1.For k € E, let §£2; be the domain whose boundary d£2; can be written as perturbation of d By, i.e.
32e={x=010+k)y, ycoB}

(in particular for k = 0 on d By, £29 = B1). We denote by @ the following operator
D E— R,

defined by

¢(k):/8nup—c/,

082y 082
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where u, is a particular solution to (1.1), when §2 = §2; (u,, will be defined in Section 3 below). We observe that @
has not a sign in a neighborhood of 0 in E (i.e. @ is neither positive nor negative). In fact @ (0) = 0 (since u, = u©®
when £2 = Bj). Moreover since the unit sphere centered at the point xo € RY is parametrized by

IB1(x0) ={x=(1+k')y, y€oBi},

where k' is given by

K(»)=x0-y— 141+ 1x0- P — xol (1.5)
we have that @ (k') = 0, with
k-0 inE, asxg— 0.

So the best one can expect is that @ is different to 0 in O \ {k € E; k =k}, for some neighborhood O of 0 in E. By
studying the behavior of the operator @ at 0, we prove thatif @ & {A¢p}e>2,m>1, With gy 7 A1y, for all m’ > 1, then
@ is differentiable at zero in E. On the other hand if w = Ay, for some £ > 2, and m > 1 (with Ay, #£ Ay, for all
m’ > 1), then @ is differentiable at zero in the vector space

Eq={k€E; key=0, kpy = 0, pel} (1.6)

of functions k € E which don’t have either the frequency £ or the frequency p, I being a (eventually empty) finite set
of positive integer such that 7, (A¢,;,) = 0 (the cardinality of / depending on the multiplicity of the eigenvalue Azm, see
Section 2 for more details). Here and in what follows kg; = |31T1\ f 9B, kY, is the s-order (Fourier) coefficient of k£, and
Y, is the spherical harmonic of degree s, witht =1, ..., d;. More precisely we have that the differential at zero in the
direction k has a sign if kg # 0 (see Lemma 3.3), ko being the zeroth-order coefficient of k (i.e. kg = IBITll /. 2B, k). We
can show then that there exists a neighborhood O of 0 in E such that @ is positive in O N E™, and @ is negative in
ONE~,where ET and E~ are two circular sectors respectively in the subset {k € E; ko <0}, and {k € E; ko > 0}.
Now, since if there exists a solution u to (1.1), when £2 = 2, verifying @ fa 2 dnl = c, one can prove that
@ (k) = 0, we obtain that k = 0, if we assume that k € O N (E™ U E~ U {0}). Finally, since the operator @ is invariant
up to isometries, we obtain that the class D in Theorem 1.1 is defined as

D={2: 2 =0},
for some o € X, and some §2; € G, where X is the set of isometries of RV, and
G={2; ke ON(ETUE~ U{0})}.

We stress out that E through the paper is the space of functions of class C>% on 9 B; (this means that we consider only
regular perturbations of the unit sphere), but, up to obvious changes, the same conclusions hold true in the case where
E is the space of functions of class C%! on 8By, i.e. the boundary 92y is of Lipschitz class. The paper is organized
as follows: in the next section we give some notations used through the paper, in Section 3 we give the first-order
approximation of the operator @ in a neighborhood of 0, and in Section 4 we prove Theorem 1.1, and we consider the
Lipschitz case. Finally in Section 5 counter-examples to Theorem 1.1 are given.

2. Preliminaries and notations

Let us denote by Bj the ball of radius 1 in R centered at zero. By B, we define the Euclidean closure of Bj. Let
us denote by /; the so-called N-dimensional £-order Bessel function of the first kind, i.e.

Le(r) =r""Jyqe(r),

where v = % — 1, and J,4¢ is the well-known (v + £)-order Bessel function of the first kind (we observe that for
N =2, I, coincides with the £-order Bessel function of the first kind J;). I, solves the following Bessel equation

N -1 L+ N-=-2
I +——I,+ 1—7( + ) I;=0 inR.
¢ e 2
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Let Ay be the mth-zero of the ¢-order Bessel function Iy. Let (A,),>1 be the sequence, in increasing order, of
eigenvalues of —A in B; with Dirichlet boundary conditions. An eigenvalue A, for some n € N, coincides, for some
integer £ > 0, and m > 1, with A%m. The corresponding eigenfunctions can be written as (in polar coordinates)

01 =1i(Agmr)Ye1(0),

®dy = Le(hgmr) Yed, (),
Pp, = Ip ()\Zmr)qu ),

where p € I, and [ is a (eventually empty) finite set (by Fredholm theorem) of integer such that 7, (A¢;,) =0, i.e.
I={peN, p#£t; I,(m)=0}. 2.1)

Here Yj; is the spherical harmonic of degree s, witht =1, ..., ds, and

J 1 if s =0,

We will use the following convention: we say that a function f has the frequency s, if the s-order coefficient of f, i.e.
fo = ﬁ /: 9B, [ Y, is different to zero. And similarly we say that a function f doesn’t have the frequency s, if the

s-order coefficient of f vanishes. B
Let k be a C>“-extension of k into By. Let us call A the Jacobian matrix of change of variable

x=(1+k(»)y, yeB (2.2)
(where we denote k by k). The matrix A is given by
14+k+ yi01k y102k yionk
201k l4+k+y200k --- 20Nk
Aij = : : : :
ynOi1k o l+k+ynvonk

Let G = AT A. The matrix G can be written as
G=1Iy+GY +o(|k]l),

where Iy is the N-order identity matrix, and the matrix G(!) depends linearly on k and Vk. Following [5], the matrix
G is given by

2x101k X100k +x001k -+ x10yk+xy01k
1) X102k + xp01k 2x702k <o Xp0Nk + xn 00k
x10nk + xn01k 2xnyonk

3. The first-order expansion of the operator @

A function k € E can be written, in Fourier series expansion, as
d

P
k=ko+ Y > kpg¥ps ondB.
p>1g=1

We recall that problem (1.1) cannot have solutions or, if a solution exists, it cannot be unique. This happens all times
the kernel ker(A + w?) # {0} in £2. More precisely by Fredholm theorem there exists a solution to (1.1) if and only if

1 .
—1 eker(A+a)2) in £2.
We can write a solution u as

U=up+up,
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where u, is a particular solution to (1.1) such that

up eker(A+o?) in 2, 3.1)

and uy, solves the corresponding homogeneous problem. We observe that u, is unique and can be written as

H—=Ap
and a corresponding eigenfunction of —A in £2 (with Dirichlet boundary conditions), and n, is the dimension of the
corresponding eigenspace. I is a finite set of integer (by Fredholm theorem), and /€ is the complementary of /. On
the other hand if the kernel ker(A + w?) = {0}, then a solution u exists and is unique. For example for w = Ay, for

some £,m > 1, thenu, = %(1;)0(()&)31")) — 1) is a particular solution to (1.1) when £2 = B; (lying in the ker(A + )L%m)L
v m

in B1), and uj, has the form &nin polar coordinates)

where o), = is the p-order Fourier coefficient of u. Here A, and v, are respectively the pth-eigenvalue

dy d[’
=Y aegliemr)YegO@) + Y Y ctpgIp(hemr)Ypg (0).

g=1 pel g=1
where [ is defined in (2.1), and a1, ..., g, , @ py € R. We denote by @ the following operator
d:FE— R,
defined by
D (k) := / Onup —c / ,
082 082

where u, is a particular solution to (1.1), verifying (3.1), when §2 = §2;. The operator @ is well-defined, since we
suppose that a solution u exists for k lying in some neighborhood of 0 in E. Using (2.2), we have that the function &
defined by

i(y)=u((l+k)y) inBy,

solves

{diV(ﬁG_1Vﬁ) +w? /i = —/& 1in By, (3.2)
=0 on 0By, .

where g = |det G|. Following [5], the external normal derivative of u at the point x = (1 + k)y € 082 is given by
_ —1/2 1o
onu((1+k)y) = (G 'y-y)*G Vi - y.
The operator @ then becomes
_ —1/2 el o~ = =
o= [ (6796 vi, e [V
dB; dB

where i, (y) =up,((1 +k)y), and \/E is the surface element of the new variable y. Let us denote i, by u,, and y
by x. We begin by proving the following

Lemma 3.1. We have

u,,—)u(o) as k — 0.

Proof of Lemma 3.1. Letz =u, — u© . By writing the matrix ﬁG‘l in (3.2) as
VG ' =1y +K, (3.3)



556 B. Canuto / Ann. I. H. Poincaré — AN 28 (2011) 551-564

it follows that z solves
{ Aw+o?w = (1 — /g)(@w?up+ 1) —div(KVu,) in By,
w=0 on 0B;.
Let assume that the ker(A + w?) = {0} in B;. The solution w to (3.4) can be written as

+o0 np

w= Z Zo‘pq‘ppq’

p=l1g=1
where the p-order Fourier coefficient

g, (1 = V(@ up + 1) — div(K Vu,) ¥,
w? —Ap '

¥pg =
Since

Vg8 =1+ Nk+x-Vk+o(|kll),
we obtain

w—>0 ask— 0.

(3.4)

(3.5)

On the other hand, if the ker(A + w?) # {0} in By, i.e. w? = Ay, for some n > 2 (we recall that A, ¢ {A%m}m>1), then

a solution w to (3.4) can be written as
w=wp+ wp,

where

We claim that w,, = z. We have that the function w, — z solves
A(wp —2) +Ap(wp —2) =0 in By,
wy —2=0 on 0Bj.

So we obtain

Wp—2= Z Zﬂpqd’pq’

pel g=1

1.e.

np
0
up=u® +w,+ Z Zﬂpq‘/qua

pel g=1

for all B, € R. Since u, is a solution to (3.2), it follows that

— /g =div(y/8G ' Vu,) + h/gup
=div(VgG V(@ +wy)) + A5 (1 +w))

np

+3° By div(VEG T V) 4 havE Y Y Bra¥ing

pel g=1 pel g=1

=—Jg+ Z Zﬂpq (div(v2G ™' Vpg) + hni/8Vpg)-

pel g=1
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In particular we obtain

Bra(div(VEG™ Vi) + Ani/8Wpg) =0
We claim that

div(vgG ' Vpg) + hnn/8¥pg £0 in By.

By contradiction let assume that there existsa p € I anda g € {1,...,n,} such that

div(y/8G 'V pg) + kn/8Ypg =0 in By.
By defining by y = y(x) the inverse of the change of variable (2.2), we obtain that

Vpg () = ¥pe(y(x)),  x €2,

solves
AVpg + hnWipg =0 in &, Vpg =0 onds2.

This implies that A, is an eigenvalue of —A in §2;. Then u, doesn’t lie in ker(A + M)t in £2;, which yields a
contradiction. This yields that 8,, =0, forall pe I,andg =1,...,n,, and thenu, =u©® +w,. ©

By (3.3) it follows that

V&N =G =KG = (K +o(Ikl)(Ix + GV + o(lIk1l)),
where KW denotes the one-order term of the matrix K (the matrix G is given by (2.3)). In particular the matrix
KO =g — GO, (3.6)

where g1, the one-order term of /&> 1s given by

gV = Nk +x - Vk. (3.7)
By (3.5) we have
1 1 — Nk —x - Vk+o(|kll),
V&
and by (3.3), (3.6), and (3.7), we obtain
G1=%+%K(l)+m
=1Iy — G +o(|lk])). (3.8)

Lemma 3.2. If o & {Aom}e>2,m>1, With Aem # Ay, for all m’' > 1, then uy, has the form
up=u® +u® +o(lkll) inE, (3.9)

where uV solves

(1 2,0 — £
{Ablt +ou') =f in By, (3.10)
uD =0 on 0B,
and f\V is given by

If 0 = Ay, for some £ > 2, and m > 1 (with Ly # A, for all m’ > 1), the same holds true by changing E with Ey,
where Ey is defined in (1.6).
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To prove Lemma 3.2, we observe that if the ker(A + »?) = {0} in By, then u p admits a one-order expansion
in E. The same holds true if the ker(A + w?) # {0} in By, with w = Ay, for some m > 1. On the other hand, if the
ker(A + a)2) = {0} in By, i.e. © = Agy, for some £ > 2, and m > 1, then u, admits a one-order expansion in the vector
space E; of functions k € E which don’t have either the frequency ¢ or the frequency p, with p € I, the set I being
defined in (2.1).

Proof of Lemma 3.2. Let @ ¢ {A¢m}e>2m>1, With Ay 7 Ay, for all m” > 1. Let assume that u, can be written as
in (3.9). Then u, solves

{ Aup +div(KVu,) + ® /gup, =—/g in By,

3.11
up, =0 on dBj. ( )

We have
div(KVu,) + /g(0?up + 1) = div(KD(Vu @ + vuD))
+ (1 +Nk+x- VO (o (@@ +uD) +1) + - 3.12)
The one-order terms in (3.12) are given by
(Nk+ x - Vk)(l + a)zu(o)) + ?uM + diV(K(l)VM(O)).
By taking the one-order terms in (3.11), we obtain that u® solves (3.10). By a direct calculation uD has the form
uD = —Ié(klmr) rk
AMmToX1m)

if w = A1, since I(/) = —1I;. Otherwise, for w # A1, then uD has the form

k]

2O =

where iz solves
{Aﬁ+w2ﬁ:0 in By,

= _ 5L
U= w}o(w)k on 0B;.

The solution # (in polar coordinates) can be written as

dl’

u(r,0)=—c (kolo(wr)/lo(w) + Z kaqlp(a)r)/lp(w)qu (9)). (3.13)
pz=lg=1

Now obviously (3.13) is well-defined for all @ ¢ {Agy}e>2,m>1. Let us define by

© €]

u):Mp—I/t —u .

The function w solves
i Aw +o*w = (1 — /g)(@?u, +1) —div(KVu,) — fV in By,
w=0 on dBj.
By writing u ), as
up= u® 4 £,
with f (k) =o0(1) as k — 0 in E, we obtain
(1 — V&) (@*up +1) —div(K Vup) — £V = o(|lk])).
By standard C%“-estimates we obtain
lwll c2.e g,y = o(lIKll).

Now if w = Ay, for some £ > 2, and m > 1, then (3.13) makes sense if and only if k € E;, and the same above
conclusions hold true, by substituting £ with E,. O
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Lemma 3.3. If o & {Aem}e>2,m>1, With gy # Ay, for all m' > 1, then the operator @ is differentiable at 0 in E,
and

I[(w) I)()?
1@ | o 2)|8B1|.
lo(w)  Ip(w)

Otherwise if w = Agy, for some € = 2, and m > 1, the same holds true by changing E with E,.

(d®(0) | k)= —ko(

The previous lemma means that if w = A4y, for some £ > 2, and m > 1, then @ is not differentiable at O in &k, with
k having the form

k= Z kemYem(©0) + Y Zk,,q Yy (6). (3.14)
pel g=1

Proof of Lemma 3.3. By (2.3), (3.8), and (3.9), we obtain

® (k) = /(G_1x~x)_l/zG_1Vup-x\/§—c/\/§

9B 0B

= /(G_]x-x)_l/zG_IVu(O)-x\/g—c/\/§+ /(G_]x-x)_l/zG_IVu(l)~x\/§+---

0B 0B 0B
:c/(1—2k—28nk)1/2\/§—c/\/§
d B 0By
+ /(1 — 2k = 20k) "2 (B0u — GOVUD  x) g+ (3.15)
dB

Since the surface element /g can be written as

V& =1+o(lkl),

by taking the one-order terms in (3.15), we obtain

(dcb(o>|k)=—c/(k+ank)+ / Onu'
d B 9B
Since

//
apu'V) = ( ()—i-c)k—i-cank—l-anu

ly(w)
and
dp
Onil = —cw(kol(’)(a))/lo(a)) + Y kpg Iy @)/, (w)qu(9)>
r=1g=1
we obtain
I} (@)
(d¢(0)|k)=—c/(k+8nk)+(c— )fk+c/ank+fanu
ly(w)
B 0B 0B
__fi@ @) g
Io(w) Io( )
JdB
[(w) I(w)?
= —ko( 2 0 ) 9B,
‘(mw+mwﬂ'1'
being ¢ = fo(@) |
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Lemma 3.4. The number
() Ij(®)?
> 0.
Iy(w)  Ip(w)?

(3.16)

Proof of Lemma 3.4. We have

(ko) = / ity — ¢ f Z(IO((I—i—ko)w)_Io(a))>|8B1+kO|'
Ii((1+ko)w)  Ip(w) w

9Bi4k, 9B11k,
Now since the function
I} (w)
ly(w)
is decreasing in w, it follows that for ko > O sufficiently small, the function
L +k)o) i)
— <
Iy((1 +ko)w)  Ip(w)

So @ is decreasing in the direction tkq, for some ¢ € I, and then

(d®(0) | ko) <0,
which yields (3.16). O

4. Proof of Theorem 1.1
Before proceeding with the proof of Theorem 1.1, we need the following

Lemma 4.1. There exists a neighborhood O of the origin in E, such that ifk € O N EC, then the mass center X of 2k
is different to zero.
Here E| is the vector space
Ey={k € E; kiy =0},
of functions k € E which don’t have the frequency 1, and
Elcz{keE; kig #0forsomeg=1,..., N},

the complementary of E, is the set of functions k£ which have the frequency 1. We recall that the mass center of a
domain £2 is the point x of coordinates

1
x,-:—/xi, i=1,...,N.
1$2]
2

Proof of Lemma 4.1. Fori =1,..., N, let us denote by F; the following operator
Fi:E—>R,
defined by
Fw = [
IQkIQk

i.e. the operator F; associates to k the ith component of the mass center x of the domain §2;. By the change of
variable (2.2), we obtain
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Fi( I-QI/ /(1+k)xl

=f(1—Nk—x-Vk+~-)/(xl~+(N+1)kxl~+x-ka,~+~-)
B B

:/(1 —Nk—x-Vk—l—---)/((N+1)kx,-—|—x-ka,- + ).
B B
By taking the one-order terms, we have that the differential of F; at zero in k is given by

1
(dF:(0) [K)=(N+1) > Zk / /quY1,+ZZpk /rp+zv1 / Yoo i
p=1 g=1 3B p=1qg=1 0 0By
1 1

=(N+1)k1i/rN+l+k1i/rN

0 0

1
(14— )iy
( +(N—|—2)(N+1)>kl

Letke E IC Then there exists at least a ¢ € {1, ..., N} such that kj, # 0. So there exists a neighborhood O of the
origin in E such that F; is increasing (or decreasing) in O N E IC Now, since F;(0) =0, we obtain that X, #0. O

The previous lemma implies in particular that if the mass center of £2 is at the point zero, then k£ doesn’t have the
frequency 1,i.e. kjg =0forallg =1,..., N. This means that a domain §2;, with k € O N E is either a domain with
mass center at 0, or £ = o (§2;), for some o € ¥, and some domain 2, where X' is the set of isometries of RV,
and §2; has mass center at zero. Now since the operator @ is invariant up to isometries, we obtain that @ has a sign
in a neighborhood O of 0 in E, if @ has a sign in O N E;. For this reason in what follows we will concentrate our
attention on the space E|. We observe for example that the function

k/=x0'y_1+\/1+|x0')’|2—|x0|2,

which parametrizes the sphere 3 By (x¢) centered at xo, has the frequency 1, which is equal to xo, i.e. kK’ € E lc . In fact
the function

B3 =1+ 1% P — o2

is even in the variable y, and then the function /Y1y, is odd, which implies that f 3B, hYim=0,forallm=1,..., N.

Proof of Theorem 1.1. Step 1. Let assume that o ¢ {Agm}e>2.m>1, With Agy # Ay, for all m” > 1. Let us define
by

={ke Ex; Ikl =1, ko < —€},
and by
— (ke Er; Ikl =1, ko> e},
for some positive constant € < 1. We have
(d®(0) | k) >€C|oB| forallk e E],
and

(d®(0) | k) < —€C|aBy| forallk € E_,
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’ / 2
where C = gg; + 52232 So there exists a sufficiently small interval I of 0 in R such that @ is positive in
Et={tk;tel, keE}}, (4.1)

and @ is negative in
E-={tk;tel, ke E}. (4.2)

Let O be a neighborhood of 0 in E such that O N E* U {0} is contained in E* U {0}, and O N E~ U {0} is contained
in E~ U{0}. Now if @ = Agy,, for some £ > 2, and m > 1, the same above conclusions hold true by changing E| with
the subspace

E¢y={k € Ey; keyg=0, kpy =0, pel}

of E;. Now since for example @ is positive in ET N E; and is continuous in ET, and E is finite dimensional, it
follows that @ is positive in E™.

Step 2. Let D be the class of C>*-domains defined as
D={2; =020},
for some o € X, and some 2 € G, where ¥ is the set of isometries of RY, and
G={2; ke ON(ETUE~U{0})}.
Let assume that there exists a §2 € D such that Ial—ﬂl /. 90 Onu = c. Since the problem is invariant up to isometries we
have that IBITkI fan Ontt = c, forsome k € ON(ET U E~ U{0}).
Step 3. Let assume that the kernel ker(A + w?) = {0} in £2¢. Then u coincides with u ,, and
@ (k) =0.

Let assume that k € O N E* U {0}. This yields that k = 0, since @ is positive in O N E*. Now if the kernel
ker(A + w?) # {0} in £2, then u can be written as

U=up+uy in 2.
Since by Fredholm theorem —1 € ker(A + w?)*, by divergence theorem we obtain
1 1
0= uhz_E Auh:_E Onlt).
2k 2k 982k
Then we have

@(k):fanup—cf:/anu—cfzo. O

382 32 952 32
We conclude this section by examining briefly the Lipschitz case. Let us define by
E={kec™ @B}
Let u € H'(£2;) be a weak solution to (1.1), when 2 = §2;, and k € E. Then u solves
/w-vq)—aﬂ/w:ftﬁ,
o8 2 2

for all ¢ € C2°(82). Since, by regularity results, u € C 0.1(£2¢), the operator @ is well-defined in E. By repeating the
same arguments as in the regular case, one can prove the following
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Theorem 4.2. For o & {Aom}m>1, there exists a class D of Lipschitz domains, such that if u € H L(2) is a weak
solution to (1.1) verifying

1
—— | Opu=c,
|852] / !
082
with 2 € D, and ¢ given by (1.4), then 2 = By, and u = u'®.

5. Concluding remark

We recall that by the proof of Theorem 1.1 it follows that @ is positive in the circular sector ET in {k € E; ko < 0},
and is negative in the circular sector E~ in {k € E; ko > 0}. So the operator @ must vanish somewhere. In fact let
€ > 0 be fixed. Let k € E™. Then @ (k) is negative. Now the domain £2;, whose boundary is given by

8f2k={x=(1—|—(a+k))y, y € 3B},

with —1 < a < 0, is a contraction of the domain £2;. We can find then a value a such thata +k € ET. But @ (a +k) is
positive. Then there exists a k such that @ (k) = 0. By repeating the same argument for all € > 0, and for all k € E~,
we can find a variety M in E (whose tangent space at 0 is contained or coincides with Eg = {k; ko = 0}), such that
@ vanishes identically on M. In particular we obtain that all domains 2 lying in the class

D={2: 2=0(20).

for some o € ¥, and some k € M, are counter-examples to Theorem 1.1.
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