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Abstract

Nebivolol is a third generation beta blocker with endothelial nitric oxide synthase 
(eNOS) agonist properties. Considering the role of reactive oxygen species (ROS) 
in the uncoupling of eNOS, we hypothesized that the preadministration of an anti-
oxidant as tempol, could improve the hypotensive response of nebivolol in normo-
tensive animals increasing the nitric oxide (NO) bioavailability by a reduction of 
superoxide (O2

.-) basal level production in the vascular tissue.
Male Sprague Dawley rats were given tap water to drink (control group) or tem-

pol (an antioxidant scavenger of superoxide) for 1 week. After 1 week, Nebivolol, at 
a dose of 3 mg/kg was injected intravenously to the control group or tempol treated 
group. Mean arterial pressure, heart rate and blood pressure variability were evalu-
ated in the control, tempol, nebivolol and tempol nebivolol groups, as well as, the 
effect of different inhibitor as NW-nitro-l-arginine methyl ester (L-NAME, a Nitric  
oxide synthase blocker) or glybenclamide, a KATP channel inhibitor. Also, the  
expression of α,β soluble guanylate cyclase (sGC), phospho-eNOS, and phospho-
vasodilator-stimulated phosphoprotein (P-VASP) were evaluated by Western  
Blot and cyclic guanosine monophosphate (cGMP) levels by an enzyme-linked 
immunosorbent assay (ELISA) commercial kit assay.

We showed that preteatment with tempol in normotensive rats produces a  
hypotensive response after nebivolol administration through an increase in the NO 
bioavailability and sGC, improving the NO/ cGMP/ protein kinase G (PKG) pathway 
compared to the nebivolol group.

We demonstrated that tempol preadministration beneficiates the response of a 
third generation beta blocker with eNOS stimulation properties, decreasing the basal 
uncoupling of eNOS and improving NO bioavailability. Our results clearly open a 
possible new strategy therapeutic for treating hypertension.
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Abstract 

Nebivolol is a third generation beta blocker with endothelial nitric oxide 

synthase (eNOS) agonist properties. Considering the role of reactive oxygen 

species (ROS) in the uncoupling of eNOS, we hypothesized that the 

preadministration of an antioxidant as tempol, could improve the hypotensive 

response of nebivolol in normotensive animals increasing the nitric oxide (NO) 

bioavailability by a reduction of superoxide (O2
.-) basal level production in the 

vascular tissue. 

Male Sprague Dawley rats were given tap water to drink (control group) 

or tempol (an antioxidant scavenger of superoxide) for 1 week. After 1 week, 

Nebivolol, at a dose of 3 mg/kg was injected intravenously to the control group 

or tempol treated group. Mean arterial pressure, heart rate and blood pressure 

variability were evaluated in the control, tempol, nebivolol and tempol nebivolol 

groups, as well as, the effect of different inhibitor as NW-nitro-l-arginine methyl 

ester (L-NAME, a Nitric oxide synthase blocker) or glybenclamide, a KATP 

channel inhibitor. Also, the expression of α,β soluble guanylate cyclase (sGC), 

phospho-eNOS, and phospho-vasodilator-stimulated phosphoprotein (P-VASP) 

were evaluated by Western Blot and cyclic guanosine monophosphate (cGMP) 

levels by an enzyme-linked immunosorbent assay (ELISA) commercial kit 

assay. 

We showed that preteatment with tempol in normotensive rats produces 

a hypotensive response after nebivolol administration through an increase in the 

NO bioavailability and sGC, improving the NO/ cGMP/ protein kinase G (PKG) 

pathway compared to the nebivolol group. 

We demonstrated that tempol preadministration beneficiates the 

response of a third generation beta blocker with eNOS stimulation properties, 

decreasing the basal uncoupling of eNOS and improving NO bioavailability. Our 

results clearly open a possible new strategy therapeutic for treating 

hypertension. 

Keywords: antioxidants, cardiovascular therapeutic, endothelial nitric oxide, 
nitric oxide, oxidative stress, third generation beta blockers. 

Abbreviations 

cyclic guanosine monophosphate , cGMP; endothelial nitric oxide 

synthase; enzyme-linked immunosorbent assay , ELISA; eNOS; guanosine-5'-

triphosphate , GTP; heart rate, HR; hydrogen peroxide , H2O2 ; low frequency 

range , LF; mean arterial pressure, MAP; NW-nitro-l-arginine methyl ester, L-

NAME; nitric oxide, NO; NO metabolites content, NOx; peroxynitrite , ONOO-; 

phospho- vasodilator-stimulated phosphoprotein , P-VASP; protein kinase G, 

PKG; reactive oxygen species, ROS; soluble guanylate cyclase, sGC; 

superoxide, O2
.-; thiobarbituric acid reactive substances, TBARS; very low 

frequency range, VLF. 
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1. Introduction 

Oxidative stress is an imbalance between the production and 

degradation of reactive oxygen species (ROS), such as O2
.- and hydrogen 

peroxide (H2O2), thereby leading to cellular and tissue injury due to the high 

reactivity properties of these oxygen species [1]. The damage inflicted by ROS, 

as well as, reactive nitrogen species such as peroxynitrite (ONOO-) on cellular 

and extracellular targets as membrane lipids [2], proteins [3], and 

deoxyribonucleic acid [4] contributes to tissue and organ dysfunction in several 

pathologies such as hypertension among others [5]. O2
.- and H2O2 produced 

mainly by the NADPH oxidases in vascular cells are two of the most biologically 

important ROS in the cardiovascular system [6-8]. Importantly, NAD(P)H 

production of O2
.- is constitutive conversely to the phagocytic isoform that is only 

activated when the respiratory burst [5]. Constitutive production leads to basal 

level of O2
.- also in normotensive animals [9]. In the vasculature, O2

.- reacts with 

NO from the eNOS to form ONOO-, a potent oxidant compound, leading to 

uncouple the eNOS [10]. Uncoupling of eNOS generates O2
.- instead of NO. As 

a consequence, the loss of bioavailable NO and formation of ONOO- lead to 

vascular inflammation and remodeling, altered vascular tone, enhanced 

vascular permeability, and increased platelet aggregation not only in 

hypertensive patients, but also in normotensive subjects, Consequently, eNOS 

uncoupling and reduced endothelium-dependent relaxation impair vascular 

function that leading to hypertension [7,10]. 

The third generation beta blocker nebivolol represents an attractive 

option for the treatment of different cardiovascular diseases, including 

hypertension and cardiac failure. Beneficial properties of nebivolol include the 

highly selective blockade of the β1-adrenoceptor and enhancement of NO 

dependent vasodilation [11-12]. 

Tempol is an antioxidant that mimics the action of the superoxide 

dismutase enzyme, that catalyses the conversion of O2
.- into H2O2, acting as an 

efficient scavenger of free radicals [13]. Although the protective effects of tempol 

against free radical-induced damage have mainly been attributed to the 

dismutation of O2
.-, tempol is a multifunctional antioxidant since it reacts with a 

diversity of biological oxidants and reductants [14,15]. 

Munzel et al. have recently reported that those patients with evidence of 

vascular oxidative stress have a worse prognosis in the management of 

hypertension [16]. It stands to reason that antioxidants should be beneficial in 

preventing and/or delaying hypertension. Moreover, it has been demonstrated 

that chronic treatment with acetylsalicylic acid lowers basal levels of O2
.- in 

normotensive rats. However, pitfalls of conventional antioxidant therapy in 

conjunction with the lack of proven benefit of antioxidants have led to suggest 

that the use of supplemental antioxidant could even be hazardous to patients 

resulting in an “antioxidant paradox” [17]. Nevertheless, it is important to note 

that basic and clinical evidences showing cardiovascular benefits of antioxidant 

supplement are lacking.  

Taking into account that the mechanism of action of nebivolol includes 

eNOS stimulation, we hypothesized that administration of tempol, a O2
.- 

scavenger, could decrease basal levels of ROS produced by the constitutive 
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action of vascular NAD(P)H oxidase improving the hypotensive response of 

nebivolol via NO increased bioavailability. 

2. Methods 

2.1 Chemicals 

Glybenclamide, N-acetyl-cysteine and thiobarbituric acid were from 

Sigma (St.Louis,MO,USA). Metoprolol and atenolol were purchased from 

Droguerias Saporiti (Buenos Aires, Argentina). Nebivolol was a gift from Raffo 

Laboratory (Buenos Aires, Argentina). All other reagents were of analytical 

grade or better. 

2.2 Animals 

2.2.1 Animals and chronic treatment of tempol 
Male Sprague Dawley rats (3 months old, 220–250 g) were purchased 

from the School of Pharmacy and Biochemistry, University of Buenos Aires, 

Argentina. Animal experiments were performed in accordance with the 

Principles of Laboratory 

Animal Care (NIH publication 2002 and 2011). The animal experiments 

were approved by the local Scientific and Technology Ethics Committee at the 

University of Buenos Aires. All efforts were made to minimize animal suffering 

and to reduce the number of animals used. Rats were randomly divided into two 

groups. Control rats (C, n = 46) were given tap water to drink and tempol group 

(T, n = 60) was given tempol solution at a concentration of 172 mg/L to drink for 

1 week [14]. For the N-acetyl-cysteine group (n=5), the drug was given in the 

drinking water at 4 g/kg/day during one week. 

2.3 Preparation of nebivolol formulation 
Nebivolol is practically insoluble in water and therefore a special formula 

was prepared to allow intravenous administration of the drug at a dose of 3 

mg/kg. The formula of nebivolol solution consisted of 2 mg/ml nebivolol, 

0.5%(w/v) polyvinylpyrrolidone, 40% (v/v) propylene glycol, 10% (v/v) glycerine 

and purified water. 

2.4 In vivo experiments 

2.4.1 In-vivo experimental design 
Rats were anaesthetized with ether and the left carotid artery and left 

femoral vein were cannulated with polyethylene cannulae containing 

heparinized saline solution (25 U/ml) for blood pressure recording and drug 

administration, respectively. Cannulae were tunnelled under the skin and 

externalized at the back of the neck. Experiments were performed in freely 

moving animals 24 h after cannulae placement. On the day of the experiment, 

arterial cannulae were connected to a Spectramed P23XL pressure transducer 

(Spectramed, Oxnard, CA, USA) coupled to a Grass 79D polygraph (Grass 

Instruments, Quincy, MA, USA). The polygraph was connected to a digital 

converter adaptor unit (Polyview, PVA 1; Grass-AstroMed,WestWarwick, RI, 

4 
 

Fr
ee

 R
ad

ic
 R

es
 D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
L

oy
ol

a 
U

ni
ve

rs
ity

 o
n 

10
/0

5/
13

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.



JU
ST

 A
CC

EP
TE

D

USA), and recordings were stored and analysed with a software program 

(Polyview 2.3;Astro-Med,WestWarwick, RI, USA). Basal mean arterial pressure 

(MAP) and heart rate (HR) were estimated during an interval of 45 minutes. 

MAP was calculated as the sum of the diastolic pressure and one-third of the 

pulse pressure. HR was estimated tachographically by counting the pulsatile 

waves of arterial pressure recording. Nebivolol, at a dose of 3 mg/kg was 

injected intravenously during 30 s to the control group (CN, n=7) or tempol 

treated group (TN, n=7). To test different β-blockers responses, metoprolol (3 

mg/kg, i.v., n=5) or atenolol (3 mg/kg, i.v., n=5) was given to the T group. To 

determine the role of NOS or KATP channels in the cardiovascular effects of 

nebivolol, the blood pressure response was evaluated in rats pretreated, 45 min 

before nebivolol administration, with L -NAME (75 mg/kg, i.v.) or glybenclamide 

(20mg/kg) in the TN group (n = 5, in each group). The indicated dose of L-

NAME was chosen because it is specific only for the eNOS isoform [18]. 

2.4.2 Spectral analysis 
Blood pressure variability was continuously estimated by determination 

of standard deviation (SD) and spectral analysis of 3 min periods of blood 

pressure recordings were obtained from baseline and during regular times after 

nebivolol administration when the quality of the arterial blood pressure signal 

was visually considered to be satisfactory. According to previous work by other 

authors [19,20], spectral analysis of the data was performed using the Fast 

Fourier Transform algorithm with a Hamming window (Polyview 2.3;Astro-Med). 

Spectral densities in the very low frequency range (VLF) (0.1–0.2 Hz) and in the 

low frequency range (LF) (0.2 to 0.7 Hz) were estimated [20]. 

2.5 Ex vivo experiments 

2.5.1 Lipid peroxidation in control and tempol groups 
The thoracic aortic rings from the two groups were excised (C and T), 

washed with ice-cold saline solution (0.9% wt/vol NaCl), and weighed. 

Homogenate lipid peroxidation was determined by measuring the rate of 

production of thiobarbituric acid reactive substances (TBARS) (expressed as 

malondialdehyde equivalents) in the C and T, 7 animals in each group as we 

previously described [21]. 

2.5.2 Expression of α, β sGC isoforms, phospho-eNOS, eNOS and P-

VASP by Western Blot 

The animals were sacrificed by cervical dislocation, and thoracic aortic 

segments from the four experimental groups (C, T, CN and TN) were excised, 

washed with ice-cold saline solution (9 g/l NaCl) and weighed. Aortic 

homogenates from C, T for alpha (α), beta (β) guanylate cyclase and C,T, CN 

and TN groups for phospho-eNOS (Ser1177) and P-VASP (Ser 239) were 

prepared in a Potter-Elvehjem homogenizer using radioimmuno precipitation 

assay and Roche Complete Protease inhibitor tablets. The homogenates were 

then separated by centrifugation at 6,000 g for 20 min, and the supernatant was 

mixed with Laemmli 6 X loading buffer and incubated at 92 ° C for 5 min. Total 

tissue protein was separated by electrophoresis in 4-20 % Tris-glycine SDS 

polyacrylamide gels (Mini Protean III System; BioRad Laboratories, Hercules, 
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Calif., USA), transferred onto nirocellulose membranes and blocked in 50 g/l dry 

milk or bovine serum albumin in T-TBS (0.02 mol/l Tris, 0.15 mol/l NaCl, pH 7.5, 

containing 1 g/l Tween 20) at room temperature for 1 h. The membranes were 

washed 3 times with T-TBS and incubated with the primary antibodies against 

alpha (α), beta (β) sGC, phospo-eNOS (Ser 1177), total eNOS and P-VASP 

(Ser 239) overnight at 4° C. The polyclonal antibodies against α, β guanylate 

cyclase, were purchased from Sigma (St. Louis, MO., USA), and the monoclonal 

antibodies against phospo-eNOS, total eNOS and P-VASP were purchased 

from Cell Signaling Technology, Inc. (Danvers, Mass., USA). After washing 3 

times with T-TBS, the blots were incubated with horseradish peroxidase-

conjugated anti-rabbit secondary antibody at room temperature for 2 h. 

Thereafter, the membranes were washed 3 times with T-TBS, developed using 

enhanced chemiluminescent reagents (Amersham Life Science, Arlington 

Heights, IL, USA), and subjected to autoluminography for 1–5 min. Band 

intensities were quantified using the ImageJ software (NIH). In all instances, the 

membranes were stained with Ponceau S stain to verify the uniformity of protein 

loading and transfer efficiency across the test samples. Immunoblot with anti- β-

actin (Sigma-Aldrich) was used as an internal control of protein loading when 

correspond. The intensity values were first normalized to β-actin or total protein 

and then expressed as relative protein expression, with the control lane being 1 

unit. 

2.5.3 Aortic cGMP levels 
The thoracic aortic rings from the four groups C,T, CN and TN were 

excised, washed with ice-cold saline solution (0.9% wt/vol NaCl), and weighed. 

Aortic cGMP concentrations were measured using a cGMP ELISA kit (GE 

Healthcare, Pittsburgh, USA) according to the protocol of the manufacturer 

(acetylation enzyme immunoassay procedure for intracellular cGMP 

measurement). 

2.5.4 NO levels in ex vivo aorta 
Aorta rings from C and T rats were removed and placed in Krebs-

Henseleit buffer while trimmed free of adipose and connective tissue, and then 

cut into 4- to 5-mm rings. Aortic rings were placed in test tubes containing 2 ml 

Krebs solution and with 5 μM DAF-2DA for 30 min to allow intracellular 

accumulation of DAF-2 and aerated with 95% O2-5% CO2. After that, the aortic 

rings were further treated with 10 nM nebivolol or vehicle control. Samples for 

the basal accumulation of NO were taken. Then, aortic rings were removed, 

dabbed dry with filter paper, and weighed. The fluorescence of the incubation 

solutions was measured (50 μl, in triplicate) in a 96-well microplate using a 

SpectraMax M5 Multi-Mode Microplate Reader (Molecular Devices, Sunnyvale, 

CA, USA) at an excitation wavelength of 495 nm and an emission wavelength of 

520 nm. DAF-2DA fluorescence is linearly related to the NO concentration. NO 

production was expressed as steady-state DAF-2DA fluorescence intensity 

minus its intensity before exposure to the released NO and values were 

normalized to tissue weight and expressed taking the control group as 1 unit 

[22,23]. 
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2.5.6 NO metabolites 
NO metabolites content (NOx) was determined by means of the Griess 

colorimetric reaction, after enzymatic reduction of nitrates to nitrites in aorta 

homogenates. The absorbance of the samples was determined at 540 nm, and 

sodium nitrate was used as a standard. Results were expressed taking the 

control lane as 1 unit [24]. 

2.6 Statistical analysis 
Normal distribution of the data and the variables of the study were 

verified using the Kolmogorov–Smirnov test. Data were expressed as means ± 

SEM. Statistical analysis of drug effects on MAP, HR, western blot analysis, NO 

measurements was performed by two-way ANOVA. Comparison of drug 

interventions on LF and LVF was performed by one-way analysis of variance 

(ANOVA) and the test of Bonferroni as post hoc test. Statistical tests were 

performed using GraphPad Prism version 5.02 for Windows (GraphPad 

Software, San Diego, California, CA). Statistical significance was defined as p< 

0.05. 

3. Results 

3.1 Temporal course of mean arterial pressure changes after intravenous 
administration of nebivolol 

In the control group, nebivolol administration at a dose of 3 mg/kg did not 

modify the MAP at any time (Fig. 1A). Interestingly, in the group pretreated with 

the antioxidant tempol, nevibolol produced a marked decrease in MAP (Fig 1A). 

Conversely, vehicle did not modify blood pressure in either experimental C and 

T groups (data not shown). 

To rule out whether the increase in the hypotensive effect of nebivolol in 

the tempol treated groups was due to its β-blocker adrenergic action, we used 

metoprolol or atenolol, two β-blocker agents lacking an effect on NO 

bioavailability [12]. We have previously demonstrated that nebivolol at a dose of 

3 mg/kg is equivalent to a dose of 3 mg/kg of atenolol or metoprolol in regard to 

the MAP response [25,26]. Atenolol or metoprolol administration did not modify 

MAP neither in C nor T treated group (Fig. 1B). Also, to exclude whether the 

hypotensive effect was exclusive between tempol-third generation beta blockers 

association, we used N-acetyl cysteine (an antioxidant that mimics the action of 

glutathione) together with nebivolol. Surprisingly, in the N-acetyl cysteine group, 

nebivolol administration diminished MAP similar to the tempol preteated group 

(Fig. 1B). To address whether the hypotensive response in the TN group was 

related to an increase in NO level or KATP channel activation, we used L-NAME, 

a specific inhibitor of NOS, or glybenclamide, a KATP channel blocker. Acute 

preadministration of L-NAME partially blocked the hypotensive effect found in 

the TN group (Fig. 1A). Conversely, glybenclamide preadministration, did not 

modify the hypotensive response in the TN group (Fig. 1A). 
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3.3 Heart rate effects 

Figure 2 shows the maximum response of HR changes in C and T rats 

after intravenous administration of nebivolol, metoprolol or atenolol. Nebivolol, 

metoprolol and atenolol administration induced a bradycardic response in both 

control and tempol groups compared to C group. However, no significant 

statistically difference was found between groups. Vehicle application did not 

modify HR in C and T experimental groups without nebivolol, metoprolol or 

atenolol administration (data not shown). 

3.4 Effect of nebivolol on blood pressure variability 

Nebivolol administration reduced VLF and LF in the TN group at 15 and 

30 minutes post-administration (Table 1) with regard to control animals. 

However, reduction of VLF induced by nebivolol administration was not 

significant in the TN group compared with CN animals due to large variance of 

the results. Importantly, L-NAME pretreatment prevented effects on blood 

pressure variability demonstrating indirect evidence of the involvement of NO 

pathway in nebivolol-tempol synergic interaction (Table 1). 

3.5 Oxidative stress parameters 

3.5.1 Lipid peroxidation in aorta 
In order to demonstrate that tempol exerts antioxidant effects in the 

normotensive C group, we performed TBARS determination as a general index 

of oxidative stress. As shown in Fig. 3, pretreatment with tempol produced a 

decrease in TBARS formation in 30% in comparison with control without 

antioxidant treatment indicating that tempol treatment produced an antioxidant 

response. 

3.6 Nitric oxide pathway 

3.6.1 Effects of Nebivolol on NO/cGMP levels 
Nebivolol administration increased eNOS activation in the control and 

tempol pretreated groups. As shows in Fig. 4A, CN and TN rats showed a 1.58 

and 1.68 fold higher phosphorylation of ser 1177 than C and T groups, 

respectively (Fig. 4A). However, no statistical difference was found between CN 

and TN groups. Then, we measured NO level to find whether there was any 

difference between the CN and TN groups. The NO levels, measured by 

fluorescent probe DAF-2T in aortic rings, were increased in the CN group. 

Interestingly in the TN group, NO fluorescence was higher than CN group (Fig 

4B). Furthermore, the nitrite production measured ex vivo by Griess reaction 

was increased 3.2 folds in the TN group and 2.1 folds in the CN group with 

respect to C group without treatment, demonstrating an increase in NO 

bioavailability in the TN group compared to CN animals (Fig. 4C). 

3.6.2 Effects of Nebivolol on NO/cGMP signalling in tempol treated rats 

It is well know that NO exerts its biological action through the sGC 

enzyme. Data here reported demonstrates an increase in α and β sGC subunits 

in 2.1 fold expression in T group with respect to C animals (Fig. 5 A, B). In 

addition, cGMP, the effector of the NO pathway, was enhanced in TN when 

compared with CN group (Fig. 5C). It is well known that the primary downstream 
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target of vascular smooth muscle cGMP is PKG, which itself activates the VASP 

protein by phosphorylation. TN group showed a greater increase on P-VASP 

(ser 239) phosphorylation compared with CN (4.01 vs 2.20 fold, respectively), 

(Fig. 5D). This fact may be a consequence of increase in NO bioavailability 

together with the higher expressions of α and β guanylate cyclase found in the T 

and TN groups. 

4. Discussion 

The present study demonstrates that the combination of an antioxidant, 

such as tempol, and nebivolol, a NO-dependent vasodilatory beta blocker, 

produces a marked potentiation of nebivolol hypotensive response by 

enhancing NO bioavailability and the NO pathway, as a consequence of the 

antioxidant activity exerted by tempol. Our findings open a possible new 

strategy therapeutic. 

We have demonstrated that nebivolol at doses of 0.3 and 3 mg/kg did not 

modify mean arterial pressure in normotensive conscious rats [27]. However, 

dual combination between tempol and nebivolol i.v administration at a dose of 3 

mg/kg produces a drop in MAP without affecting HR substantially between the 

C, T, CN and TN groups. To address the mechanism involved in the 

hypotensive response, we test the possibility whether pretreatment with a NOS 

inhibitor, L -NAME, or with a KATP blocker, glybenclamide, could abolish this 

response found in the TN group. L-NAME but not glybenclamide partially 

blocked the drop in MAP in the TN group demonstrating that the NO pathway 

was involved in the hypotensive response to nebivolol in tempol pretreated rats. 

This last finding could be attributed to the endothelial isoform of NOS, 

considering that L -NAME, at the selected dose, is specific for eNOS [18]. 

Identification of the frequency components of blood pressure variability 

by power spectral analysis can potentially provide an approximation about 

mechanisms involved in blood pressure regulation [28-30]. In this context, it is 

well known that the endothelial-derived NO in rats modulates LF and VLF 

domains of blood pressure variability [28-30]. In fact, spectral analysis of the 

blood pressure recording suggests that the greater hypotensive response to 

nebivolol in tempol rats could be attributed to the NO pathway since nebivolol 

administration induced a reduction of VLF and LF only in the TN group. 

On the other hand, metoprolol and atenolol, two β blockers without 

eNOS stimulating activity did not produce any hypotensive response in animals 

pretreated with tempol. All together, these findings suggest that the 

improvement of the NO pathway could be attributed to an increase in NO 

bioavailability and/or a decrease in ONOO- production. Those are beneficial 

effects since arterial hypertension is associated with impaired endothelium-

dependent vasodilatation both in the macro and microvasculature [31,32]. 

Endothelium-dependent vasodilatation is mediated principally by NO and O2
.- 

increased levels are associated with reduced NO bioavailability and increased 

ONOO-. O2
.- is constitutively produced by the vascular NAD(P)H oxidase not 

only in pathological situation as hypertension but also in normotensive animals. 

For that reason, O2
.- seems to play a key role for the reduced endothelium-
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dependent vasodilatation in arteries from normotensive and hypertensive 

animals leading and/or aggravating hypertension, as a consequence of eNOS 

uncoupling or ONOO- production [33,34]. Also, it has been shown by Oelze et 

al., that long-term nebivolol administration exerts antioxidant “perse” actions in 

an angiotensin-II dependent model of hypertension [16]. Nevertheless, in our 

study, the acute term of nebivolol administration is unlikely to produce neither 

antioxidant properties “perse” nor hypotension in the C group (Fig. 1). 

In order to elucidate the mechanism of the tempol-nebivolol hypotensive 

effect, we studied in more detail the NO/sGC/cGMP pathway [35,36]. The two 

most important sites of eNOS activation are the activation at Ser 1177 and the 

inhibitory site Thr 495 [35, 36]. In fact, in our experimental work, nebivolol 

induces phosphorylation at Serine 1177 in the control and tempol treated 

groups. This phosphorylation at Serine 1177 was similar in CN and TN groups; 

indicating that nebivolol-tempol amplified response is downstream eNOS 

activation. To address whether the hypotensive response was due to an 

increase in NO bioavailability, as a consequence of O2
.- basal levels reduction 

by tempol action, we evaluate NO directly by DAF and indirectly by Griess 

reaction. As expected, NO and nitrite levels are increased in the TN group with 

respect to the CN group. In the vessel wall, NO diffuses from the endothelium 

across cell membranes into underlying vascular smooth muscle. It is known that 

the well-recognized function of NO is the activation of heme containing sGC 

[37], which is a heterodimeric protein consisting of 73 kDa α1 and 70 kDa β1 

subunits, both of which are required for catalytic activity [38,39]. sGC catalyses 

the conversion of guanosine-5'-triphosphate to the second messenger cGMP. In 

our study, we measured the cGMP levels in the four experimental groups. 

Consistently, TN group showed higher level in cGMP than CN group. In 

addition, chronic administration of tempol produced an increase in α1and β1 

sGC subunits expression and this last fact may enhance the hypotensive effect 

of nebivolol found in the TN group. cGMP modulates numerous targets, 

including protein kinases such as PKG, ion channels, among others [38]. 

However, the primary downstream target of vascular smooth muscle cGMP is 

PKG, which itself activates the myosin light-chain phosphatase [37]. Taking 

together, the NO-cGMP pathway is a key regulator of vascular tone and that 

PGK mediates many of these NO/cGMP effects [39- 41]. 

It is well know that analysis of the phosphorylation of VASP at serine 239 

is a useful biomarker of PGK activity [41, 42] and therefore NO pathway activity. 

Importantly, we found an increase in P-VASP at serine 239 levels higher in the 

TN group compared with CN animals that correlates with cGMP and NO levels. 

These results suggest that the over-response in the NO/cGMP pathway as a 

cause of the hypotensive effect in the TN group.  Nonetheless, we can not 

discard a role of ONOO- into this effect. Since O2
.- reacts with NO producing 

ONOO-, another diverging mechanism could be that tempol-nebivolol 

association may reduce ONOO- levels preventing more eNOS declouped. 
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Conclusion 

Up to now, there are no data available on a successful combination 

between antioxidant and antihypertensive drugs. Moreover, monotherapy with 

vitamin C or vitamin E were found to lower oxidative stress, but large scale 

clinical studies have not supported an effect of vitamin C or vitamin E 

supplementation on cardiovascular disease or mortality [43,44]. 

Taking together our results, we demonstrated that antioxidant therapeutic 

with tempol produces an enhanced hypotensive effect in nebivolol 

administration enhancing the NO bioavailability and sGC improving the 

NO/cGMP/PKG pathway. Also, into this mechanism, we can not discard a 

possible reduction of ONOO- levels as a consequence of less O2
.-. Since, 

ONOO- mediated oxidation of tetrahydrobiopterin, a critical cofactor for eNOS, 

which represents a pathogenic cause of uncoupling of NO synthase, tempol-

nebivolol combination could be preventing this phenomenon through decreasing 

nitrosative stress. 

To sum up, this association could lead to a new therapeutic strategy for 

treatment of hypertension or resistant hypertension to standard therapy. The 

mechanism proposed is that the reduction of O2
.- constitutively produced by 

NADPH or ONOO- levels by tempol action, could enhance the NO bioavailability 

produced by third generation β-blocker releasing NO. Further studies are 

needed to establish whether the ability of this combination could attenuate 

hypertension in experimental models or in humans. 
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Figure Legends 

Fig. 1. Changes on MAP after nebivolol (3mg/kg), i.v. administration in control 

(CN), tempol rats (TN) and TN animals preteated with L-NAME (75 mg/kg) or 

glybenclamide (20 mg/kg). Changes in MAP were described as the changes in 

intravascular administration of nebivolol. Values are the means ± SEM of 

multiple experiments (n = 7, in each group). * p<0.05 versus before 

administration. # p<0.05 versus TN group. B) Changes on MAP after metoprolol 

or atenolol (3mg/kg), i.v. administration in control (C) and tempol rats (T) and 

changes on MAP after nebivolol (3mg/kg), i.v. administration in N-Acetyl-

Cysteine preteated group. Changes in MAP were described as the changes in 

intravascular administration of nebivolol. Values are the means ± SEM of 

multiple experiments (n = 5, in each group). * p<0.05 versus before 

administration. 
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Fig. 2. Maximum changes on heart rate (HR) after nebivolol, metoprolol or 

atenolol (3 mg/kg), i.v. administration in control (CN), tempol rats (TN) and TN 

animals preteated with L-NAME (75 mg/kg). Changes in HR were described as 

the changes after intravascular administration of nebivolol, metoprolol or 

atenolol. Values are the means ± SEM of multiple experiments (n = 7, in each 

group). * p<0.05 versus baseline value. 
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Fig. 3. Lipid peroxidation in C and CT rats. Bars represent mean ± S.E.M of 7 

animals in each group. * p < 0.0001 tempol versus control group, n=7 each 

group. 
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Fig. 4. (a) eNOS phosphorilation in the thoracic aortic homogenates of C,T, CN 

and TN after 10 minutes of nebivolol (3 mg/kg, i.v.) in vivo administration. 

Relative expression level of phospho-eNOS. Phospho eNOS was normalized 

using total eNOS antibody, and results are expressed as relative to a control of 

1. * Significant differences ( p<0.01) between nebivolol administration groups vs 

control group. Results show mean values of four independent measurements. b) 

NO measurement by fluorescence analysis of DAF-2 T (triazolofluorescein). 

Aortic rings from C and T groups were pretreated with nebivolol (10 μM) ex vivo 

during 10 minutes before addition of DAF-2 (5 μM). Concentrations of the 

product DAF-2 T were analyzed by fluorescence. Reported data are DAF-2 T 

concentration normalized to dryed tissue weight in each sample and expressed 

taking control group as 1. * P<0.05. Line (P<0.05) represents differences 

between CN and TN groups, n=5 each group. c) Nitrite measurement by Griess 

reaction. Aortic rings homogenates from C, CN, T and TN groups after 10 

minutes of nebivolol (3mg/kg) i.v. in vivo administration. * significant differences 

( p<0.01) between nebivolol administration groups vs control group. Line 

(p<0.05) represents differences between CN and TN groups, n=7 each group. 

Values were normalized to protein content in each sample and results are 

expressed as relative to a control of 1. 
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Fig. 5. NO pathway protein expression. Alpha (A) and beta (B) sGC protein 

expression in the thoracic aortic homogenates from C and T groups. Protein 

expression was normalized using β -actin as control antibody, and results are 

expressed as relative to a control of 1. * Significant differences ( p<0.01) 

between T group vs control group. Results show mean values of four 

independent measurements. (c) cGMP measurement in aortic rings 

homogenates from C, CN, T and TN groups after 10 minutes of nebivolol 

(3mg/kg) i.v. in vivo administration. * significant differences ( P<0.05) between 

nebivolol administration groups vs control group. Line (P<0.05) represents 

differences between CN and TN groups. Results show mean values of four 

independent measurements. (d) P-VASP (ser 239) in the thoracic aortic 

homogenates of C,T, CN and TN after 10 minutes of nebivolol (3 mg/kg, i.v.) in 
vivo administration. Relative expression level phospo-VASP. Phospho-VASP 

was normalized using beta actin antibody, and results are expressed as relative 

to a control of 1. * significant differences ( P<0.01) between nebivolol 

administration groups vs control group. Line (P<0.05) represents differences 

between CN and TN groups. Results show mean values of four independent 

measurements. 
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Table Legends 

Table 1 

Change in beat-to-beat blood pressure variability in the low frecuency (LF) and 

very low frequency (VLF) domain (expressed as % of baseline values) after 15 

and 30 min of i.v. administration of nebivolol in control rats (CN), tempol rats 

(TN) and tempol rats pretreated with L-NAME (TN-LNAME). Bars represent 

mean ± S.E.M of 7 animals in each group. * P<0.05 vs. CN. 
Parameter CN TN TN-LNAME 

LF variability (mmHg2) 

(15 min) 

 

91.58±12.85 

 

48.10±4.80* 

 

100.19±12.07 

(30 min) 82.74±5.35 53.21±2.12* 99.90±7.14 

VLF variability 

(mmHg2) 

(15 min) 

 

95.78±11.42 

 

65.62±13.40 

 

89.51±10.50 

(30 min) 93.78±2.44 74.48±7.41 107.42±12.53 
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