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Late post-training activation of the ventral tegmental area (VTA)–hippocampus dopaminergic loop controls the entry of

information into long-term memory (LTM). Nicotinic acetylcholine receptors (nAChR) modulate VTA function, but their

involvement in LTM storage is unknown. Using pharmacological and behavioral tools, we found that a7-nAChR-mediated

cholinergic interactions between the pedunculopontine tegmental nucleus and the medial prefrontal cortex modulate

the duration of fear-motivated memories, maybe by regulating the activation state of VTA–hippocampus dopamine

connections.

Evidence suggests that nicotinic acetylcholine receptor (nAChR)
agonists ameliorate the cognitive decline associated with schi-
zophrenia and Alzheimer’s disease (AD) progression (Barrantes
et al. 2010; AhnAllen et al. 2012). Long-term memory (LTM) stor-
age requires activation of the ventral tegmental area (VTA)–hip-
pocampus dopaminergic loop (Lisman and Grace 2005) and
synthesis of brain-derived neurotrophic factor (BDNF; Bekin-
schtein et al. 2007). Indeed, we have previously shown that the
VTA–hippocampus loop is specifically active late after learning
and, through a process involving the D1/D5 dopamine receptor-
dependent increase of BDNF expression in the CA1 region of
the dorsal hippocampus, determines LTM duration (Rossato
et al. 2009). Therefore, since nicotine modulates VTA function
(Wooltorton et al. 2003) and cholinergic inputs to the VTA have
excitatory influence on mesolimbic dopamine neurons (Good
and Lupica 2009; Yang et al. 2009; Zhao-Shea et al. 2011), contrib-
uting to signal behaviorally relevant events as well as the reward-
ing properties of stimuli (Mansvelder et al. 2003; Chen et al.
2006; Ikemoto 2007; Besson et al. 2012), we investigated the in-
volvement of nAChRs on fear memory persistence. To that end,
we utilized the step-down inhibitory avoidance (IA) learning task
and 3-mo-old male Wistar rats. Animals were maintained under
a 12-h light/dark cycle at 22˚C with ad libitum access to food
and water. One week before training, rats were bilaterally implant-
ed under deep anesthesia with 22-gauge guides aimed to the CA1
region of the dorsal hippocampus, the VTA, the medial prefrontal
cortex (mPFC), the pedunculopontine tegmental nucleus (PPTg),
and/or the laterodorsal tegmental nucleus (LDTg) in accordance
with coordinates taken from the atlas of Paxinos and Watson
1986 (CA1: AP 24.2/LL +3.0/DV 23.0; VTA: AP 24.8/LL +1.0/
DV 29.0; mPFC: AP +3.2/LL +0.8/DV 24.0; PPTg: AP 28.0/LL
+2.0/DV 28.0; LDTg: AP 29.1/LL +0.7/ DV 28.0). IA training
was carried out in a 50-cm × 25-cm × 25-cm Plexiglas box with a

5-cm-high, 8-cm-wide, and 25-cm-long wood platform on the
left end of a series of bronze bars making the floor of the box.
During training, the animals were placed on the platform facing
the left rear corner of the box. When they stepped down to the
grid, they received a 0.4 mA (weak training) or a 0.8 mA (strong
training) scrambled footshock during 2 sec and were immediately
withdrawn from the training box. LTM was assessed 2 d or 14 d
later. Latency to step down during the test session was taken as
an indicator of retention. Placement of the cannulas was verified
postmortem. Only data from rats with correct implants were in-
cluded in the statistical analyses. All efforts were made to reduce
the number of animals used and to minimize their suffering.
Experimental procedures followed the guidelines set by the US
National Institutes of Health.

When IA training was performed using a weak footshock

as reinforcer, it generated a LTM that decayed rapidly, lasting no

more than 2 d. On the contrary, IA training with a strong foot-

shock induced a long-lasting LTM persisting 14 d or longer (Fig.

1A; t(15) ¼ 4.083, P , 0.01 for 2 d post-training; t(12) ¼ 5.170, P ,

0.001 for 14 d post-training). Bilateral intra-VTA infusion of nico-

tine (NIC) 12 h after weak IA training facilitated retention 14 d but

not 2 d post-training (Fig. 1B; F(3,53) ¼ 0.162, P ¼ 0.92 for 2 d post-

training and F(3,58) ¼ 6.545, P , 0.001 for 14 d post-training; q ¼
4.359, P , 0.001 for 6-mg/side NIC vs. VEH in Dunnet’s test after

ANOVA). Conversely, intra-VTA administration of the nonsub-

type specific nAChR antagonist mecamylamine (MEC) (Fig. 1C;

F(3,40) ¼ 3.791, P , 0.05; q ¼ 2.511, P , 0.05 for 5 mg/side and

q ¼ 3.162, P , 0.01 for 10 mg/side vs. VEH in Dunnet’s test after

ANOVA), or of the a7-nAChR antagonist methyllycaconitine

(MLA) (Fig. 1D; F(2,27) ¼ 9.717, P , 0.001; q ¼ 3.273, P , 0.01 vs.

VEH in Dunnet’s test after ANOVA) 12 h after strong IA training

impaired LTM 14 d later. The a4/b2-nAChR antagonist dihydro-

b-erythroidine (DHbE) had no effect on memory when given in

VTA 12 h post-training (Fig. 1D; q ¼ 0.921, P . 0.05 vs. VEH in

Dunnet’s test after ANOVA).
Earlier, we demonstrated that late post-training activation of

hippocampal D1/D5 receptors controls BDNF signaling to pro-
mote the lasting storage of the mnemonic trace (Rossato et al.
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2009). Here, we found that bilateral intra-CA1 infusion of the do-
pamine D1/D5 receptor antagonist SCH23390 (SCH) blocked the
promnesic effect of intra-VTA NIC (Fig. 2A; F(2,33) ¼ 14.210, P ,

0.001; q ¼ 4.827, P , 0.001 for NIC vs. VEH and q ¼ 0.248, P .

0.05 for NIC + SCH vs. VEH in Dunnet’s test after ANOVA). On
the contrary, intra-CA1 administration of the dopamine D1/D5
receptor agonist SKF38393 (SKF) reversed the amnesia caused by
intra-VTA MEC (Fig. 2B; F(2,15) ¼ 5.641, P , 0.05; q ¼ 2.530, P ,

0.05 for MEC vs. VEH and q ¼ 0.668 for MEC + SKF vs. VEH in
Dunnet’s test after ANOVA).

Cholinergic projections to the VTA derive mainly from PPTg
(Sugimoto and Hattori 1984; Hallanger and Wainer 1988;
Oakman et al. 1995, Geisler and Zahm 2005). PPTg activation in-
creases dopamine neurons firing (Klitenick and Kalivas 1994;
Floresco et al. 2003), and it has been suggested that this nucleus
controls goal-directed behavior by integrating sensory and limbic
inputs to modulate the motivational, rewarding, and novelty-
detection functions of the VTA (Olmstead et al. 1998). Indeed, it
was proposed that PPTg neurons could relay the excitatory com-
ponents of both expected and actual reward signals to VTA dopa-
mine neurons (Laviolette et al. 2002; Pidoplichko et al. 2004;
Kobayashi and Okada 2007; Okada et al. 2009). In that respect,
it is known that reversible inactivation of the PPTg suppresses con-
ditioned sensory responses of dopamine neurons in rats (Pan and
Hyland 2005), and that PPTg lesions hinder the acquisition of as-
sociations between rewards and neutral stimuli (Inglis et al. 2000)

as well as conditioned-place preference to drugs of abuse (Bechara
and van der Kooy 1989; Olmstead and Franklin 1993). Nicotine
application, paired with postsynaptic stimulation, contributes to
the induction of long-term potentiation (LTP) of VTA dopamine
neurons, an effect attributed to presynaptic a7-nAChRs on glu-
tamatergic afferents, and it has been speculated that such cho-
linergic mechanisms could be associated with modifications in
synaptic strength subserving learning and memory (Mansvelder
and McGehee 2000; Fagen et al. 2003; Jones and Wonnacott
2004). We found that reversible inactivation of the PPTg 12 h after
strong training, but not of the LDTg which also sends cholinergic
projections to VTA (Oakman et al. 1995), impaired LTM persis-
tence. Intra-VTA infusion of NIC or intra-CA1 infusion of SKF re-
versed the amnesia induced by PPTg inactivation (Fig. 3A; F(3,33) ¼

8.310, P , 0.001; q ¼ 3.181, P , 0.01 for muscimol [MUS] vs.
VEH; q ¼ 0.951, P . 0.05 for MUS + SKF vs. VEH; q ¼ 0.566, P .

0.05 for MUS + NIC vs. VEH in Dunnet’s test after ANOVA. Fig.
3B; t(17) ¼ 0.636, P ¼ 0.53). Likewise, temporary inactivation of
the mPFC hindered LTM persistence, and this effect was reversed
by infusion of NIC or N-methyl-D-aspartate (NMDA) in VTA (Fig.
3C; F(3,41) ¼ 5.259, P , 0.01; q ¼ 2.530, P , 0.05 for MUS vs. VEH;
q ¼ 1.444, P . 0.05 for MUS + NIC vs. VEH; q ¼ 0.008, P . 0.05
for MUS + NMDA vs. VEH in Dunnet’s test after ANOVA), as
well as by SKF and recombinant BDNF microinjected in dorsal
CA1 12 h post-training (Fig. 3D; F(3,42) ¼ 3.882, P , 0.05; q ¼
3.133, P , 0.01 for MUS vs. VEH; q ¼ 0.480, P . 0.05 for MUS +
SKF vs. VEH; q ¼ 0.620, P . 0.05 for MUS + BDNF vs. VEH in
Dunnet’s test after ANOVA). Pharmacological activation of PPTg
NMDA receptors increases burst firing of VTA dopamine neurons
(Lodge and Grace 2006a), and recently it has been proposed that
a7-nAChR activation in VTA-containing brain slices enhances
glutamatergic synaptic strength on dopamine neurons by modu-
lating glutamate presynaptic release (Jin et al. 2011). We found
that, when given in PPTg 12 h after weak training, NMDA facilitat-
ed LTM retention 14 d later (Fig. 3E; F(2,27) ¼ 15.220, P , 0.001;
q ¼ 4.885, P , 0.001 vs. VEH in Dunnet’s test after ANOVA).
However, this promnesic effect was totally blocked by co-infusion
of muscimol in mPFC (Fig. 3E; q ¼ 0.221, P . 0.05 vs. VEH in
Dunnet’s test after ANOVA), further endorsing the idea that a
fully functional mPFC is necessary late after training for enduring
consolidation of IA memory, and indicating that this cortex is

Figure 1. Activation of VTA a7-nAChR late after training modulates
long-term memory persistence. (A) Animals were trained in IA using a
weak (0.4 mA/2 sec) or a strong (0.8 mA/2 sec) footshock and long-term
memory retention was assessed either 2 d or 14 d later. (B) Animals were
trained in IA using a weak footshock and 12 h later received bilateral
intra-VTA infusions of vehicle (VEH; 0.1% DMSO in saline) or nicotine
(NIC). Retention was evaluated 2 d or 14 d later. (C) Animals were
trained in IA using a strong footshock and 12 h later received bilateral
intra-VTA infusions of VEH or mecamylamine (MEC). Retention was eval-
uated 2 d or 14 d later. (D) Animals trained in IA using a strong footshock
received bilateral intra-VTA infusions of VEH, methyllycaconitine (MLA), or
dihydro-b-erythroidine (DHbE) 12 h post-training. Long-term memory
was assessed 14 d thereafter. Data are presented as mean+SEM; n ¼
8–10 per group. (∗∗∗) P , 0.001, (∗∗) P , 0.01, and (∗) P , 0.05 in
Dunnet’s test after ANOVA.

Figure 2. The modulatory effect of VTA a7-nAChR on long-term mem-
ory persistence depends on the activation state of hippocampal dopamine
D1/D5 receptors. Animals were trained in the IA task using a weak (A) or a
strong (B) 2-s footshock as unconditioned stimulus, and long-term mem-
ory was assessed 14 d later. (A) Twelve hours after training, animals re-
ceived bilateral infusions of either vehicle (VEH; 0.1% DMSO in saline)
in both VTA and dorsal CA1, or nicotine (NIC; 6-mg/side) in VTA plus
VEH in dorsal CA1, or NIC in VTA plus SCH23390 (SCH; 1.5-mg/side) in
dorsal CA1. (B) Twelve hours after training, animals received bilateral infu-
sions of either vehicle (VEH; 0.1% DMSO in saline) in both VTA and dorsal
CA1, or mecamylamine (MEC; 10 mg/side) in VTA plus VEH in dorsal CA1,
or MEC in VTA plus SKF38393 (SKF; 12.5 mg/side) in dorsal CA1. Data are
presented as mean+SEM; n ¼ 8–10 per group.
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essential to elicit the promnesic effect induced by pharmacologi-
cal stimulation of the cholinergic system. Taken together, our re-
sults suggest that PPTg/mPFC interactions, probably mediated by
a7-nAChR, would control the activation state of the VTA–hippo-
campus dopaminergic loop to modulate the persistent storage
of fear memories (Fig. 4). Alternatively, the PPTg–mPFC circuit
could be operating in parallel and not in series with the VTA–hip-

pocampus loop during late memory processing and therefore
pharmacological activation of VTA would be merely compensat-
ing for inactivation of PPTg and/or mPFC. However, since (1)
our experiments indicate that PPTg needs a functioning mPFC
to modulate memory persistence, (2) the amnesia induced by
PPTg inactivation was reversed by pharmacological activation of
VTA, (3) we have previously demonstrated that the amnesic effect
of VTA inactivation is reversed only by the pharmacological acti-
vation of hippocampal D1/D5 receptors, and (4) to the best of our
knowledge there are no direct dopaminergic projections from ei-
ther mPFC or PPTg to the hippocampus but, instead, burst-like ac-
tivation of mPFC massively increases dopamine neuron firing in
VTA (Lodge 2011), we believe such a mechanism, although it is
not completely implausible, is also unlikely to account for our re-
sults. Compensatory effects on VTA function mediated by mPFC/
accumbens/VTA feedback connections (Rahman and McBride
2002; McFarland et al. 2004; Schmidt et al. 2009) are also unlikely
to account for our results since pharmacological modulation of
the nucleus accumbens 12 h after training does not affect IA
LTM persistence. No less importantly, our finding that late post-
training inactivation of PPTg, but not of LDTg, impairs memory
storage is consistent with the idea that cholinergic afferents
from PPTg directly regulate firing of DA neurons in the VTA
(Lokwan et al. 1999; Floresco et al. 2003), and suggest that partic-
ipation of this system in LTM persistent storage does not involve a
LDTg-mediated shift from single-spike (i.e., tonic) to burst-firing
(i.e., phasic) mode, a change in the firing pattern of dopamine

Figure 3. Late post-training inactivation of PPTg or mPFC hinders LTM
persistence and this effect is reversed by stimulation of the VTA–hippo-
campal loop and by intra-CA1 administration of BDNF. Animals were
trained in the IA task using a strong (A–D; 0.8 mA/2 sec) or a weak (E;
0.4 mA/2 sec) footshock, and LTM was assessed 14 d later. (A) Twelve
hours after training, animals received bilateral infusions of either vehicle
(VEH; 0.1% DMSO in saline) in both PPTg and dorsal CA1, or muscimol
(MUS; 0.5 mg/side) in PPTg plus VEH in dorsal CA1, or MUS in PPTg
plus SKF38393 (SKF; 12.5 mg/side) in dorsal CA1, or MUS in PPTg plus
nicotine (NIC; 6 mg/side) in VTA. (B) Twelve hours after training,
animals received bilateral infusions of either vehicle (VEH; 0.1% DMSO
in saline) or muscimol (MUS; 0.5 mg/side) in LDTg. (C) Twelve hours
after training, animals received bilateral infusions of either vehicle (VEH;
0.1% DMSO in saline) in both mPFC and VTA, or muscimol (MUS; 0.5
mg/side) in mPFC plus VEH in dorsal VTA, MUS in mPFC plus NIC in
dorsal VTA, or MUS in mPFC plus NMDA (0.2 mg/side) in VTA. (D)
Twelve hours after training, animals received bilateral infusions of either
vehicle (VEH; 0.1% DMSO in saline) in both mPFC and dorsal CA1, or
muscimol (MUS; 0.5 mg/side) in mPFC plus VEH in dorsal CA1, MUS in
mPFC plus SKF in dorsal CA1, or MUS in mPFC plus BDNF (0.25 mg/
side) in dorsal CA1. (E) Twelve hours after training, animals received bilat-
eral infusions of either vehicle (VEH; 0.1% DMSO in saline) in both PPTg
and mPFC, or NMDA (0.2 mg/side) in PPTg plus VEH in mPFC, or NMDA
in PPTg plus muscimol (MUS; 0.5 mg/side) in mPFC. Data are presented
as mean+SEM; n ¼ 8–10 per group.

Figure 4. Diagram showing the putative events mediating the involve-
ment of a7-nAChR in the persistent storage of long-lasting memory. ACh
released late after training in the VTA from PPTg efferents (Klitenick and
Kalivas 1994; Floresco et al. 2003; Chen et al. 2006) activates
a7-nAChR located on the axon terminals of mPFC glutamatergic
neurons, thus increasing glutamate release and potentiating excitatory
inputs to VTA dopamine neurons (Mansvelder and McGehee 2000;
Good and Lupica 2009). This potentiation would increase dopamine
release in CA1 and, hence, the activation state of dopamine D1/D5 recep-
tors in this region, which in turn induces the synthesis of hippocampal
BDNF necessary and sufficient for memory storage.
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VTA neurons that has been earlier associated with the acquisition
of new information, albeit not with memory storage (Schultz
1998; Lodge and Grace 2006b; Grace et al. 2007). In this regard,
while this paper was under revision it was demonstrated that in-
puts to VTA from LDTg preferentially synapse on dopamine neu-
rons projecting to the nucleus accumbens and elicit appetitive but
not aversive memories (Lammel et al. 2012).

In conclusion, our data add to previous findings suggesting
that the VTA–hippocampus dopaminergic loop is a final common
pathway for both top-down and bottom-up influences on late
memory processing and indicates, as proposed formerly, that
modulation of a7-nAChR may represent an important target for
treatment of the increased forgetting observed in normal aging,
mild cognitive impairment, and AD patients (Woodruff-Pak
et al. 2010; Kawamata and Shimohama 2011; Wallace and Porter
2011).
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