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A general method for constructing wavelet-like bases in a Hilbert space H starting
from any orthonormal basis in H and any periodic orthonormal wavelet basis is
presented. With this method we can take advantage of the characteristics of both
types of bases to obtain orthonormal wavelet-like bases that are suitable to repre-
sent functions and operators efficiently. © 2010 American Institute of Physics.
�doi:10.1063/1.3462714�

I. INTRODUCTION

The applicability of wavelets in different areas of pure and applied mathematics depends on
their ability to represent a wide class of functions and operators efficiently �for a treatment of the
theory of wavelets see, e.g., Refs. 3, 10, 13, 14, and 16�. In particular, this fact is useful in the
development of fast adaptive numerical algorithms �see, e.g., Refs. 1, 2, 5, and 6�. As mentioned
in Ref. 15 �see also Ref. 11�, wavelets are applied to the study of problems in different physical
fields such as astrophysics, turbulence, meteorology, plasma physics, atomic and solid state phys-
ics, multifractals occurring in physics, biophysics �in medicine and physiology�, and computa-
tional and mathematical physics.

New examples of wavelets with good properties are always required. One important property
is that functions and operators should have representations in the wavelet basis with only a small
number of significant coefficients, i.e., effective sparse representations. If wavelet bases are asso-
ciated with a multiresolution analysis, we can change the level of the approximation of functions
and operators using wavelet transforms. Smooth wavelets are important to represent differential
operators. Explicit expressions of wavelets are useful for performing computations.

Based on the ideas introduced in Refs. 7 and 9 but using a different approach, we present in
this paper a general method for constructing wavelet-like bases in a Hilbert space H, associated
with multiresolution analysis, starting from any orthonormal basis in H and any periodic ortho-
normal wavelet basis. With this method we can take advantage of the characteristics of both types
of bases to obtain orthonormal wavelet-like bases that are suitable to represent functions and
operators efficiently. The method admits variants, and, in particular, we can obtain smoothness,
explicit expressions, and effectively sparse representations for the wavelet-like functions.

The construction method is the combination of two procedures for obtaining orthonormal
wavelet-like bases. In one of them, we use any given unitary operator and any given periodic
orthonormal wavelet basis. This procedure is intended to lead to orthonormal wavelet-like bases
that permit effectively sparse representations. The second procedure uses any given unitary matrix
and any given orthonormal basis in H and permits to obtain smoothness and explicit expressions.
We then combine these two procedures for constructing smooth wavelet-like functions with ex-
plicit expressions that permit effectively sparse representations.

We illustrate the method by obtaining orthonormal wavelet-like bases based on trigonometric
functions and eigenfunctions of Schrödinger and Chebyshev differential operators. We show that
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using eigenfunctions of an operator L, if S is certain perturbation of L, then the stiffness matrix in
the wavelet-Galerkin scheme for differential equations associated with S can be preconditioned by
a diagonal matrix so that the condition number is uniformly bounded.

The rest of this paper is organized as follows. In Sec. II we introduce the concepts of multi-
resolution analysis, scaling-like and wavelet-like vectors in a separable Hilbert space. We also
establish some basic results. In Sec. III we present the general method for constructing wavelet-
like bases. Then, in Sec. IV, some examples of wavelet-like bases based on trigonometric func-
tions and eigenfunctions of differential operators are presented. Finally, some final remarks are
included in Sec. V.

II. WAVELET-LIKE ORTHONORMAL BASES IN A HILBERT SPACE

In this section we introduce some basic concepts and results that will be use in the rest of the
paper. Let H be a separable Hilbert space and let j0�0.

Definition 2.1: The sequence �Vj : j� j0� is a multiresolution analysis �MRA� of H if

�1� Vj is a subspace of H, j� j0;
�2� the dimension of Vj is 2 j, j� j0;
�3� Vj �Vj+1, j� j0;
�4� � j=j0

� Vj is dense in H.

Theorem 2.2: If �Vj : j� j0� is a MRA of H, Wj =Vj+1�Vj
�=Vj+1 � Vj and j1� j0, then H

=Vj1
� �� j=j1

� Wj�.
Definition 2.3: If

�1� �� j,k�k=0
2j−1, j� j0, is an orthonormal system in H;

�2� the sequence Vj =span�� j,k�k=0
2j−1, j� j0, is a MRA of H;

then � j=j0
� �� j,k�k=0

2j−1 is called a scaling-like system in H and each � j,k is called a scaling-like
vector.

Definition 2.4: If

�1� � j=j0
� �� j,k�k=0

2j−1 is an orthonormal system in H;

�2� there exists a scaling-like system � j=j0
� �� j,k�k=0

2j−1 for H, such that for all j� j0, k ,k�
=0, . . . ,2 j −1, �� j,k ,� j,k�	H=0;

then � j=j0
� �� j,k�k=0

2j−1 is called a wavelet-like system for H, associated with � j=j0
� �� j,k�k=0

2j−1, and each
� j,k is called a wavelet-like vector.

Theorem 2.5: If � j=j0
� �� j,k�k=0

2j−1 is a scaling-like system for H with a wavelet-like system

� j=j0
� �� j,k�k=0

2j−1 and Wj is as in Theorem 2.2, then Wj =span�� j,k�k=0
2j−1.

From Theorem 2.2 and Theorem 2.5, we obtain the following.

Theorem 2.6: If � j=j0
� �� j,k�k=0

2j−1 is a scaling-like system for H with a wavelet-like system

� j=j0
� �� j,k�k=0

2j−1 and j1� j0, then �� j1,k�k=0
2j1−1�� j=j1

� �� j,k�k=0
2j−1 is an orthonormal basis of H.

We will call the basis of Theorem 2.6 a wavelet-like basis for H.
Remark 2.7: As a consequence of the finite dimensionality, each MRA of H, �Vj : j� j0�, has

an associated scaling-like system � j=j0
� �� j,k�k=0

2j−1, such that Vj =span�� j,k�k=0
2j−1, j� j0. Also, for each

scaling-like system for H, there exists an associated wavelet-like system.
In the sequel, �pj� denotes the column vector with components pj,k, k=0, . . . ,2 j −1, where

each pj,k is an element of a certain class. For example, �� j� denotes the column vector with
components � j,k, k=0, . . . ,2 j −1, and if f �H, then ��f ,� j	H� denotes the column vector with
components �f ,� j,k	H, k=0, . . . ,2 j −1.

Definition 2.8: Let j�1. If Hj ,Gj are matrices of order 2 j−1�2 j, such that HjHj
�=GjGj

�= I,
HjGj

�=GjHj
�=O, and Hj

�Hj +Gj
�Gj = I, then �Hj ,Gj� will be called a filter pair.
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Theorem 2.9: � j=j0
� �� j,k�k=0

2j−1 is a scaling-like system for H with a wavelet-like system

� j=j0
� �� j,k�k=0

2j−1, if and only if there exists j1� j0, such that �� j1,k�k=0
2j1−1�� j=j1

� �� j,k�k=0
2j−1 is an ortho-

normal basis of H and there exist �unique� filter pairs, �Hj ,Gj�, j� j0+1, such that for j� j0+1,

�� j−1� = Hj�� j�, �� j−1� = Gj�� j�,�� j� = Hj
��� j−1� + Gj

��� j−1� . �1�

Proof: Suppose � j=j0
� �� j,k�k=0

2j−1 is a scaling-like system for H with a wavelet-like system

� j=j0
� �� j,k�k=0

2j−1. Let Hj ,Gj, j� j0+1, be the matrices of order 2 j−1�2 j, with entries �� j−1,k ,� j,k�	H
and �� j−1,k ,� j,k�	H, k=0, . . . ,2 j−1−1, k�=0, . . . ,2 j −1, respectively. Since Vj ,Wj �Vj+1, Vj+1=Vj

� Wj, �� j,k�k=0
2j−1 is an orthonormal basis of Vj and �� j,k�k=0

2j−1 is an orthonormal basis of Wj, j� j0,
it is easy to see that �1� holds and �Hj ,Gj� are filter pairs. Moreover, by Theorem 2.6, for all j1

� j0, �� j1,k�k=0
2j1−1�� j=j1

� �� j,k�k=0
2j−1 is an orthonormal basis of H.

Suppose now that there exists j1� j0, such that �� j1,k�k=0
2j1−1�� j=j1

� �� j,k�k=0
2j−1 is an orthonormal

basis of H and there exist filter pairs, �Hj ,Gj�, j� j0+1, such that �1� holds. Let Vj

=span�� j,k�k=0
2j−1, Wj =span�� j,k�k=0

2j−1, j� j0. Since �� j1,k�k=0
2j1−1�� j=j1

� �� j,k�k=0
2j−1 is an orthonormal

system in H and �Hj ,Gj� are filter pairs, by �1�, � j=j0
� �� j,k�k=0

2j−1�� j=j0
� �� j,k�k=0

2j−1 is an orthonormal
system in H, Hj ,Gj, j� j0+1, are the matrices with entries �� j−1,k ,� j,k�	H and �� j−1,k ,� j,k�	H,
k=0, . . . ,2 j−1−1, k�=0, . . . ,2 j −1, respectively, and Vj ,Wj �Vj+1, Vj+1=Vj � Wj. Since

�� j1,k�k=0
2j1−1�� j=j1

� �� j,k�k=0
2j−1 is an orthonormal basis of H, then H=Vj1

� �� j=j1
� Wj� and thus

� j=j0
� Vj is dense in H. We conclude that � j=j0

� �� j,k�k=0
2j−1 is a scaling-like system for H and

� j=j0
� �� j,k�k=0

2j−1 is an associated wavelet-like system. �

In view of Theorem 2.9 we say that �Hj ,Gj�, j� j0+1, are the filter pairs of � j=j0
� �� j,k�k=0

2j−1 and

� j=j0
� �� j,k�k=0

2j−1. Hj and Gj are the matrices with entries �� j−1,k ,� j,k�	H and �� j−1,k ,� j,k�	H, k
=0, . . . ,2 j−1−1, k�=0, . . . ,2 j −1, respectively.

As a consequence of Theorem 2.9, we obtain the following.

Theorem 2.10: If � j=j0
� �� j,k�k=0

2j−1 is a scaling-like system for H with a wavelet-like system

� j=j0
� �� j,k�k=0

2j−1, filter pairs �Hj ,Gj�, j� j0+1, and f �H, then

��f ,� j−1	H� = Hj��f ,� j	H�,��f ,� j−1	H� = Gj��f ,� j	H� , �2�

��f ,� j	H� = Hj
���f ,� j−1	H� + Gj

���f ,� j−1	H� . �3�

Although the concepts of MRA, scaling-like and wavelet-like vectors, and their properties are
simple, to exhibit concrete interest examples for particular Hilbert spaces H can be a difficult task.
The most studied case is H=L2�T�. The simplest way to construct a MRA for L2�T� is the
periodization �see, e.g., Refs. 10, 13, and 16�. Let � ,��L2�R��L1�R� be a scaling function and
a wavelet, respectively, of a multiresolution analysis on the real line. Let � j,k

per ,� j,k
per, j�0, be the

functions obtained by the periodization of the scaling functions � j,k and the wavelets � j,k, respec-
tively, i.e.,

� j,k
per = 


l�Z
� j,k�x + l� = 2 j/2


l�Z
��2 j�x + l� − k� �4�

and

� j,k
per = 


l�Z
� j,k�x + l� = 2 j/2


l�Z
��2 j�x + l� − k� . �5�

In the sequel we suppose that both � ,� have radial decreasing L1�R�-majorants �for a definition of

radial decreasing L1�R�-majorant see �3.1� of Chap. 5 in Ref. 13�. In this case � j=j0
� �� j,k

per�k=0
2j−1 is a
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scaling-like system for L2�T� with an associated wavelet-like system � j=j0
� �� j,k

per�k=0
2j−1 �see, e.g., Ref.

13�.
Lemma 2.11: Suppose that � j,k=
m�Zak,m

j+1� j+1,m and � j,k=
m�Zbk,m
j+1� j+1,m. If Hj

per ,Gj
per are the

matrices of order 2 j−1�2 j, j	0, with entries Hj
per�k ,m�=
s�Zak,m+2js

j and Gj
per�k ,m�

=
s�Zbk,m+2js
j , then

�� j−1
per� = Hj

per�� j
per� , �6�

�� j−1
per� = Gj

per�� j
per�,�� j

per� = �Hj
per���� j−1

per� + �Gj
per���� j−1

per� . �7�

As a consequence of the above lemma, �Hj
per ,Gj

per�, j	0, are the filter pairs of � j=j0
� �� j,k

per�k=0
2j−1 and

� j=j0
� �� j,k

per�k=0
2j−1.

III. CONSTRUCTION OF WAVELET-LIKE ORTHONORMAL BASES

In this section we describe procedures to obtain a MRA of H.

A. Construction of a MRA of H starting from a MRA of L2
„T… and a unitary operator

U :L2
„T…\H

Theorem 3.1: � j=j0
� �� j,k�k=0

2j−1 is a scaling-like system for H with a wavelet-like system

� j=j0
� �� j,k�k=0

2j−1 and filter pairs �Hj ,Gj�= �Hj
per ,Gj

per� if and only if there exists a �unique� unitary
operator U :L2�T�→H, such that

� j,k = U� j,k
per �8�

and

� j,k = U� j,k
per. �9�

Proof: Suppose that U :L2�T�→H is a unitary operator such that � j,k=U� j,k
per and � j,k

=U� j,k
per.

Since U preserves inner products, �� j,k
per�k=0

2j−1, j� j0, and � j=j0
� �� j,k

per�k=0
2j−1 are orthonormal sys-

tems in L2�T�, then �� j,k�k=0
2j−1, j� j0, and � j=j0

� �� j,k�k=0
2j−1 are orthonormal systems in H. Therefore,

�� j,k�k=0
2j−1 is linearly independent and thus the dimension of Vj is 2 j.

We also have Vj =UVj
per and Wj =UWj

per. Then Vj =UVj
per�UVj+1

per =Vj+1.
Let g�H and 
	0. Since U is onto, there exists f �L2�T�, such that g=Uf . Since � j=j0

Vj
per

is dense in L2�T�, there exists f
�� j=j0
Vj

per, such that �f − f
�L2�T��
. Suppose f
�Vj
per. Then

Uf
�Vj and �g−Uf
�H= �Uf −Uf
�H= �f − f
�L2�T��
. This shows that � j=j0
Vj is dense in H.

Thus we have proven that � j=j0
� �� j,k�k=0

2j−1 is a scaling-like system for H.
Since U preserves inner products, we also have for j� j0, k ,k�=0, . . . ,2 j −1, �� j,k ,� j,k�	H

= �� j,k
per ,� j,k�

per 	L2�T�=0. Then � j=j0
� �� j,k�k=0

2j−1 is an associated wavelet-like system.
Finally, for k=0, . . . ,2 j−1−1 and k�=0, . . . ,2 j −1, �� j−1,k ,� j,k�	H= �� j,k

per ,� j−1,k�
per 	L2�T� and

�� j−1,k ,� j,k�	H= �� j,k
per ,� j−1,k�

per 	L2�T�. Then, Hj =Hj
per and Gj =Gj

per.

Suppose now that � j=j0
� �� j,k�k=0

2j−1 is a scaling-like system for H with a wavelet-like system

� j=j0
� �� j,k�k=0

2j−1 and filter pairs �Hj ,Gj�= �Hj
per ,Gj

per�. For j1� j0 consider the unique unitary opera-
tor U :L2�T�→H, such that � j1,k=U� j1,k

per and � j,k=U� j,k
per, j� j1. We have
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� j1−1,k = 

l=0

2j1−1

Hj1
�k,l�� j1,l = 


l=0

2j1−1

Hj1
per�k,l�U� j1,l

per = U� j1−1,k
per .

Following in this manner it can be proven that for j� j1, � j,k=U� j,k
per. Similarly, � j,k=U� j,k

per for
j� j1. We now have

� j1+1,k = 

l=0

2j1−1

Hj1+1
� �k,l�� j1,l + 


l=0

2j1−1

Gj1+1
� �k,l�� j1,l = 


l=0

2j1−1

�Hj1+1
per ���k,l�U� j1,l

per

+ 

l=0

2j1−1

�Gj1+1
per ���k,l�U� j1,l

per = U� j1+1,k
per . �10�

Repeating this reasoning it can be proven that for j	 j1, � j,k=U� j,k
per. �

Taking into account the previous theorem, we can consider unitary operators U :L2�T�→H to
construct MRAs in the separable Hilbert H. Given U we define � j,k and � j,k by �8� and �9�,
respectively.

Remark 3.2: If several coefficients of an element of H in a wavelet-like basis are small, i.e.,
we have an effectively sparse representation, we say that the basis compresses these coefficients.
Given f �H, since �f ,� j,k	H= �U�f ,� j,k

per	L2�T� and �f ,� j,k	H= �U�f ,� j,k
per	L2�T�, then the compres-

sion of the coefficients of f depends on the compression of the coefficients of U�f .
Remark 3.3: For f �H, let Pn�f� be the projection of f onto Vn. We have

Pn�f� = 

k=0

2j0−1

�f ,� j0,k	H� j0,k + 

j=j0

n



k=0

2j−1

�f ,� j,k	H� j,k.

Since U is unitary,

�f − Pn�f��H
2 = �U�f − U�Pn�f��L2�T�

2 .

Thus, the rate of approximation of Pn�f� to f in the norm of H is the same as the rate of
approximation of U�Pnf to U�f in the norm of L2�T�. Note that

U�Pn�f� = 

k=0

2j0−1

�U�f ,� j0,k
per 	L2�T�� j0,k

per + 

j=j0

n



k=0

2j−1

�U�f ,� j,k
per	L2�T�� j,k

per

is the projection of U�f onto Vn
per.

B. Construction of a MRA for H starting from an orthonormal basis of H, filter pairs,
and a unitary matrix

Theorem 3.4: Let �en�n=0
� be an orthonormal basis of H and �Hj ,Gj�, j� j0+1 be filter pairs.

Then � j=j0
� �� j,k�k=0

2j0−1 is a scaling-like system for H with a wavelet-like system � j=j0
� �� j,k�k=0

2j−1 and
filter pairs �Hj ,Gj�, j� j0+1, if and only if there exist j1� j0 and a unitary matrix

T =�
Aj1

Bj1

Bj1+1

]

 ,

i.e., its rows and columns form orthonormal systems in �2�Z�, such that

�� j1
� ª Aj1

�u� , �11�
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�� j� ª Bj�u�, j � j1, �12�

�� j−1� = Hj�� j�, j0 + 1 � j � j1, �13�

�� j−1� = Gj�� j�, j0 + 1 � j � j1, �14�

and

�� j� = Hj
��� j−1� + Gj

��� j−1�, j 	 j1. �15�

Proof: With � j=j0
� Vj the matrix with entries �� j1,k ,el	H, k=0, . . . ,2 j1 −1, l�0 and Bj the

matrix with entries �� j,k ,el	H, k=0, . . . ,2 j −1, l�0, j� j1, the proof follows immediately from
Theorem 2.9. �

Remark 3.5: If

Mj,j� = � �
s=j+1

j�

Hs�Aj�, j � j�, �16�

Nj,j� = � �
s=j+1

j�

Gs�Aj�, j � j�, �17�

Mj,j� = � �
s=j�+1

j

Hj+j�+1−s
� �Aj�, j � j�, �18�

and

Nj,j� = � �
s=j�+2

j

Hj+j�+2−s
� �Gj�+1

� Bj�, j 	 j�, �19�

then

�� j� ª Mj,j1
�u�, j0 � j � j1, �20�

�� j� ª Nj,j1
�u�, j0 � j � j1, �21�

�� j� ª Mj,j1
�u� + 


j�=j1

j−1

Nj,j��u�, j 	 j1, �22�

and

�� j�: = Bj�u�, j � j1. �23�

C. A hybrid procedure

We have presented above two ways of defining a MRA on H.

�1� Take a unitary operator U :L2�T�→H and define the scaling-like vectors � j,k and wavelet-
like vectors � j,k in H as the image under U of the scaling functions � j,k

per and wavelets � j,k
per,

respectively. This method is described in Theorem 3.1. Moreover, by this theorem, this
method is the only way to obtain a MRA in H with filters Hj

per and Gj
per.
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�2� Take an orthonormal basis �en� of H, filters Hj, Gj and a unitary matrix T and define the
scaling-like vectors � j,k and wavelet-like vectors � j,k in H using relations �11�–�15�. This
method is described in Theorem 3.4.

In the first approach we work with known filters that have good properties. For example, the
compression action of any wavelet �or wavelet-like� basis depends on the filters �see, e.g., Ref.
12�. Moreover, as was noted in Remarks 3.2 and 3.3, the obtained MRA in H and the periodic
MRA in L2�T� have the same rate of convergence of the projections and the same compression
properties.

With the second approach we can obtain scaling-like and wavelet-like vectors in H that
special properties. If each row of T has only a finite number of non-null entries, i.e., � j,k and � j,k

are finite linear combinations of the elements of the basis �en�n=0
� and each en is, for example, C�

or a polynomial, � j,k and � j,k will also be C� or a polynomial. Moreover, if each en has an explicit
expression � j,k and � j,k will also have an explicit expression.

For taking the advantages of both approaches, we can combine them considering in the second
procedure the filters Hj

per, Gj
per and a unitary matrix T with only a finite number of non-null entries

in each row. Given 0� j0� j1, a concrete and simple case is to consider Vj =span�en�n=0
2j−1 and Wj

=span�en�n=2j
2j+1−1 for j� j1. Now, given the filters �Hj

per ,Gj
per�, we define �� j−1� , �� j−1�, j0+1� j

� j1, using �13� and �14�, respectively. The projection onto Vj1
of a function can have a dense

representation in the original basis �en�n=0
2j1−1 but can be effectively sparse in the new basis

�� j0,k�k=0
2j0−1�� j=j0

j1−1�� j,k�k=0
2j−1. In Sec. IV we present wavelet-like bases constructed in this manner.

It is important to note that the coefficients corresponding to the new basis can be obtained from
those corresponding to the original basis using �2�.

IV. SOME EXAMPLES

In the following examples the filters �Hj
per ,Gj

per� correspond to the periodic Daubechies scal-
ing and wavelet functions with 6 vanishing moments.

A. Orthonormal trigonometric wavelet-like bases

Given 0� j0� j1, for j� j1, we consider in L2�T� the spaces

Vj+1 = span�1,cos x, . . . ,cos�2 j − 1�x,sin x, . . . ,sin 2 jx�

and

Wj+1 = span�cos 2 jx, . . . ,cos�2 j+1 − 1�x,sin�2 j + 1�x, . . . ,sin 2 j+1x� .

These spaces are considered in Ref. 4. Considering j0=2 and j1=7, Fig. 1 shows the graphs of
some of these scaling-like and wavelet-like functions. Figure 2 shows the pattern and the number
nz of coefficients in the representation of some functions in this basis that are greater than 10−7 in
absolute value. Considering also the number nzo of coefficients in the representation of the func-
tions in the original basis that are greater than 10−7 in absolute value, the compression ratios c
=nzo /256 and cn=nz /256 are also included. For the last function the roles of Hj and Gj were
interchanged to obtain a greater compression. In all cases the coefficients in the original basis were
sorted in ascending order to improve the compression action of Hj and Gj.

B. Orthonormal wavelet-like bases based on eigenfunctions

Let  be a �Borel� measure on the interval J and consider the Hilbert space H=L2� ;J�. Let
�en�n=0

� be an orthonormal basis of L2� ;J�. Let L be a self-adjoint positive differential operator
defined on the set C��J�. Suppose that the elements of the basis �en�n=0

� �C��J� are eigenfunctions
of L with positive eigenvalues �n, i.e., Len=�nen. Suppose now that S is a self-adjoint positive
differential operator, such that �Sg ,g	L2�;J���Lg ,g	L2�;J�, g�C��J�. Consider the equation
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Su = f , �24�

with f �L2� ;J�. A Galerkin scheme for Eq. �24� is to consider some j1	 j0�0 and to find v
�Vj1

, such that

�Sv,w	L2�;J� = �f ,w	L2�;J�, ∀ w � Vj1
. �25�

The Galerkin scheme converges in the norm �g�L= �Lg ,g	L2�;J�. Noting that Vj1
=span�en�n=0

2j1−1,
solving �25� is equivalent to finding a 2 j1-dimensional vector d, such that
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FIG. 1. Orthonormal trigonometric scaling-like functions �left column� and wavelet-like functions �right column� for j
=7 , . . . ,2 with k=1,1 ,17,13,1 ,2, respectively.
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FIG. 2. Pattern and number nz of coefficients in the representation of some functions in the orthonormal trigonometric
wavelet-like bases that are greater than 10−7 in absolute value, along with the compression coefficients c and cn. For the
last function the roles of Hj and Gj were interchanged to improve the compression.
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S2j1d = s2j1, �26�

where S2j1 is the matrix with entries �Sem ,en	L2�;J� and s2j1 is the vector with entries �f ,en	L2�;J�.
Consider the diagonal matrix D2j1 with diagonal entries equal to �m

1/2, m=0, . . . ,2 j1 −1. �26� can be
rewritten as

M2j1x = b2j1, �27�

where M2j1 =D2j1

−1S2j1D2j1

−1, x=D2j1d, and b2j1 =D2j1

−1s2j1. Let g=
n=0
2j1−1 �n

−1/2xnen. Since �M2j1x ,x	
= �Sg ,g	L2�;J���Lg ,g	L2�;J�= �x�2, then the ratios of the largest and smallest eigenvalues of the
matrices M2j1 are uniformly bounded, i.e., are independent of j1. So, the condition numbers of the

matrices M2j1 are uniformly bounded. Since the transformation from the basis �en�n=0
2j1−1 to the new

basis �� j0,k�k=0
2j0−1�� j=j0

j1−1�� j,k�k=0
2j−1 is orthogonal, in this new basis the conditions numbers are

uniformly bounded too.
Next we apply the previous analysis to perturbed Schrödinger and Chebyshev differential

equations. These equations were considered in Refs. 8 and 9, respectively �see Remark 4.3 below�.
Example 4.1: Let J= �−� ,��, �1, and en be the Hermite functions, i.e., en�x�

=hn�x�e−x2/2 /�2nn !��, where hn are the Hermite polynomials. These en are eigenfunctions of the
Schrödinger operator −d2 /dx+x2I. Let a�x� ,b�x� be measurable functions, such that 0�a1

�a�x��a2, 0�b1 /x2�b�x��b2 /x2 for some positive constants a1 ,a2 ,b1 ,b2. Then, by the pre-
vious discussion, the resultant algebraic system for the Galerkin scheme of the perturbed
Schrödinger equation,

− �a�x�u��x��� + b�x�u�x� = f�x� , �28�

can be preconditioned by a diagonal matrix so that the condition number is uniformly bounded.
Equation �28� can be viewed as a model of second-order elliptic operators with unbounded coef-
ficients.

Example 4.2: A similar result can be obtained for the degenerate elliptic equation,

− �1 − x2�1/2 d

dx
�a�x�

du

dx
� = f�x� , �29�

with 0�a1�1−x2�1/2�a�x��a2�1−x2�1/2, if we consider J= �−1,1�, = �1−x2�−1/2dx, e0�x�
=1 /��, en�x�=�2 /�Tn�x�, n=1,2 , . . ., where Tn�x�=cos�n arc cos t� are the Chebyshev polyno-
mials. The en are eigenfunctions of the Chebyshev operator −�1−x2�1/2d /dx��1−x2�1/2d /dx�.

The graphs of some of the scaling-like and wavelet-like functions considered in Example 4.1
with j0=2 and j1=6, and in Example 4.2 with j0=2 and j1=8, appear in Figs. 3 and 4, respec-
tively.

Remark 4.3: The eigenfunctions in the previous examples are considered in the articles8,9 for
constructing orthonormal wavelet-like bases using a different approach. Nevertheless, if we con-
sider the Meyer scaling function � and wavelet �, and j1� j0=0, these scaling-like and wavelet-
like functions can be obtained as in Theorem 3.4 with the filter pairs of � j,k

per, � j,k
per, and

T�k ,��n��=� j1,k
̂�2�n� for k=0, . . . ,2 j1 −1, �n�� 2

32 j1, T�2 j +k ,��n��=� j,k
̂�2�n� for j� j1, k

=0, . . . ,2 j −1, 1
32 j � �n�� 4

32 j, where � :Z→Z+ is given by ��n�=2n if n�0 and ��n�=2�n�−1 if
n�0. The resultant algebraic systems for Eqs. �28� and �29� corresponding to the Galerkin scheme
in these wavelet-like bases are also considered. It is proved that they can be preconditioned by a
diagonal matrix and that the scheme converges in the L2� ;J� norm. A periodic pseudodifferential
operator connected with the equation Su= f is introduced.
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V. FINAL REMARKS

We have presented a general method for constructing wavelet-like bases in a Hilbert space
that can lead to smooth wavelet-like functions with explicit expressions that permit effectively
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FIG. 3. Orthonormal wavelet-like bases based on Hermite polynomials. Scaling-like functions �left column� and wavelet-
like functions �right column� for j=5 ,4 ,3 ,2 with k=1,15,1 ,1, respectively.
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sparse representations. The method was illustrated in a particular simple case using trigonometric
functions and eigenfunctions of differential operators. Future investigations can explore other
implementations of the method and other special functions. In particular, if the en are multivariate
functions or are defined on certain domain, then we can obtain wavelet-like functions with this
characteristic. Also, different filter pairs and matrices T can be used.
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