Electronic Journal of Differential Equations, Vol. 2007(2007), No. 05, pp. 1-21. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

MULTIPLE SOLUTIONS TO A SINGULAR LANE-EMDEN-FOWLER EQUATION WITH CONVECTION TERM

CARLOS C. ARANDA, ENRIQUE LAMI DOZO

Abstract

This article concerns the existence of multiple solutions for the problem $$
\begin{gathered} -\Delta u=K(x) u^{-\alpha}+s\left(\mathcal{A} u^{\beta}+\mathcal{B}|\nabla u|^{\zeta}\right)+f(x) \text { in } \Omega \\ u>0 \quad \text { in } \Omega \\ u=0 \quad \text { on } \partial \Omega \end{gathered}
$$ where Ω is a smooth, bounded domain in \mathbb{R}^{n} with $n \geq 2, \alpha, \beta, \zeta, \mathcal{A}, \mathcal{B}$ and s are real positive numbers, and $f(x)$ is a positive real valued and measurable function. We start with the case $s=0$ and $f=0$ by studying the structure of the range of $-u^{\alpha} \Delta u$. Our method to build K 's which give at least two solutions is based on positive and negative principal eigenvalues with weight. For s small positive and for values of the parameters in finite intervals, we find multiplicity via estimates on the bifurcation set.

1. Introduction

Singular bifurcation problems of the form

$$
\begin{gather*}
-\Delta u=K(x) u^{-\alpha}+s \mathcal{G}(x, u, \nabla u)+f(x) \quad \text { in } \Omega \\
u>0 \quad \text { in } \Omega \tag{1.1}\\
u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

where α is a positive number, $K(x)$ is a bounded measurable function, $\mathcal{G}(x, \cdot, \cdot)$ a non-negative Carathéodory function, $f(x)$ a non-negative bounded measurable function and Ω a bounded domain in \mathbb{R}^{n}, are used in several applications. As examples, we mention: Modelling heat generation in electrical circuits [17, fluid dynamics [7, 8, 27], magnetic fields [25], diffusion in contained plasma [26], quantum fluids [18], chemical catalysis [2, 28, boundary layer theory of viscous fluids [37, super-diffusivity for long range Van der Waal interactions in thin films spreading on solid surfaces [19], laser beam propagation in gas vapors [31, 32] and plasmas [33], exothermic reactions [6, 36], cellular automata and interacting particles systems with self-organized criticality [9, etc.

[^0]Our main concern in this paper is on the existence of multiple solutions for the problem

$$
\begin{gather*}
-\Delta u=K(x) u^{-\alpha}+s\left(\mathcal{A} u^{\beta}+\mathcal{B}|\nabla u|^{\zeta}\right)+f(x) \quad \text { in } \Omega \\
u>0 \quad \text { in } \Omega \tag{1.2}\\
u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

where Ω is a smooth, bounded domain in \mathbb{R}^{n} with $n \geq 2, \alpha, \beta, \zeta, \mathcal{A}, \mathcal{B}$ and s are real positive numbers and $f(x)$ is a non-negative measurable function.

We start with the case $s=0$ and $f \equiv 0$. The situation with positive K has been widely studied by several authors. For example in [4, 14, 17, 22, 24, 29, under different hypothesis on K, they prove the existence and unicity of solutions for equation 1.2 . In Theorem 2.4 , we build a family of K 's, such that problem (1.2), with $s=0, f \equiv 0$ and α positive small enough has at least two solutions. We apply the classical Lyapunov-Schmidt method to the map $F: \mathcal{C}^{+} \rightarrow \mathcal{D}$,

$$
\begin{equation*}
F(u)=-u^{\alpha} \Delta u \tag{1.3}
\end{equation*}
$$

where \mathcal{C}^{+}is defined in 3.4, 3.5 and \mathcal{D} is defined in 3.6 to search a bifurcation point for $F(u)$. This point will be an eigenfunction corresponding to a negative principal eigenvalue of a linear weighted eigenvalue problem. To prove it, we give a Lemma concerning the localization of the maximum value of such an eigenfunction (see Lemma 2.1). We also use a Harnack inequality to establish a necessary estimate (see Lemma 2.3). A final technical matter is differentiability of $F(u)$ (Lemma 3.1). To our knowledge there are no previous similar results for 1.2 with $s=0$ and $f \equiv 0$.

Concerning the existence of at least one solution to 1.1 or 1.2 we may recall:
For $K(x) \equiv 1, \mathcal{A}=1, \mathcal{B}=0, f \equiv 0, \alpha>0$ and $\beta>0$ in (1.2), Coclite-G. Palmieri [13] have shown that there exists $0<s^{*} \leq \infty$ such that this problem (1.2) has at least one solution for all $s \in\left(0, s^{*}\right)$.

Similar results for problem (1.2) can be found in Zhang and Yu 35] under the conditions $K(x) \equiv 1, \alpha>0, \mathcal{A} \equiv 0, \mathcal{B} \equiv 1,0<\zeta \leq 2$ and $f(x)$ equivalent to a non-negative constant.

In a recent work about (1.1), Ghergu and Rădulescu 20 prove existence and nonexistence results for a more general singular equation. They study

$$
\begin{gather*}
-\Delta u=g(u)+\lambda|\nabla u|^{\zeta}+\mu f(x, u) \quad \text { in } \Omega \\
u>0 \quad \text { in } \Omega \tag{1.4}\\
u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

where $g:(0, \infty) \rightarrow(0, \infty)$ is a Hölder continuous function which is non-increasing and $\lim _{s \backslash 0} g(s)=\infty$. They prove in [20, Theorem 1.4]) that for $\zeta=2, f \equiv 1$ and fixed μ, 1.4 has a unique solution. Under the assumption $\lim \sup _{s \backslash 0} s^{\alpha} g(s)<$ $+\infty$, they also prove existence of a bifurcation at infinity for some $\lambda^{*}<\infty$. In this article we also obtain bifurcations from infinity at $s=0$ (see Theorems 2.7 and 2.8).

Concerning existence of multiple solutions for problem (1.2), Haitao [23], using a variational method, proves existence of two classical solutions under the assumptions $K(x) \equiv 1,0<\alpha<1<\beta \leq \frac{N+2}{N-2}, \mathcal{A}=1 s \in\left(0, s^{*}\right)$ for some $s^{*}>0$, $\mathcal{B} \equiv 0$ and $f \equiv 0$. We remark that our problem $\sqrt{1.2}$ has not a variational structure because of the convection term $\mathcal{B}|\nabla u|^{\zeta}$.

Aranda and Godoy [5] proved the existence of two weak solutions for the problem, involving the p-laplacian,

$$
\begin{gather*}
-\Delta_{p} u=g(u)+s \mathcal{G}(u) \quad \text { in } \Omega \\
u>0 \quad \text { in } \Omega \tag{1.5}\\
u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

where $s>0$ is small enough. This is done under the assumptions
(i) $g:(0, \infty) \rightarrow(0, \infty)$ is a locally Lipschitz and non-increasing function such that $\lim _{s \backslash 0} g(s)=\infty$.
(ii) $1<p \leq 2, \mathcal{G}$ is a locally Lipschitz on $[0, \infty), \inf _{s>0} \mathcal{G}(s) / s^{p-1}>0$ and $\lim _{s \rightarrow \infty} \mathcal{G}(s) / s^{q}<\infty$ for some $q \in(p-1, n(p-1) /(n-p)]$.
(iii) Ω is a bounded convex domain.

We remark that for $p=2$ and using the change of variable $v=e^{u}-1$ (see [20]), we can immediately obtain existence of two classical solutions of the singular problem with a particular convection term

$$
\begin{gathered}
-\Delta u=\frac{g\left(e^{u}-1\right)}{e^{u}}+s \frac{\mathcal{G}\left(e^{u}-1\right)}{e^{u}}+|\nabla u|^{2} \quad \text { in } \Omega \\
u>0 \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

for s is small enough. In comparison with this result, Theorems 2.8 and 2.9 give results on the existence of two classical solutions for $\zeta \neq 2$. This indicates a complex relation between the convection term, the function $f(x)$ and the domain Ω.

For dimension $n=1$ results on multiplicity can be found, for example, in Agarwal and O'Reagan [1].

To prove Theorems 2.7, 2.8 and 2.9 , we apply an "inverse function" strategy. We use that problem $-\Delta u=u^{-\alpha}+f(x)$ in $\Omega, u=0$ on $\partial \Omega, u>0$ on Ω (see Theorem 3.1 in [4]) has a unique solution for $f(x) \geq 0$. Moreover the solution operator defined by $H(f):=u$ is a continuous and compact map from P into P, where P is the positive cone in $C^{1}(\bar{\Omega})$ (see Lemma 3.2 and Lemma 3.3). Therefore, we may write the problem (1.1) as $u=H(s \mathcal{G}(x, u, \nabla u)+f(x))$.

Properties of H and a classical theorem on nonlinear eigenvalue problems stated in [3], give existence of an unbounded connected set of solution pairs (s, u), in an appropriate norm, to problem (1.1). Estimates on this solution set, combined with nonexistence results, give a bifurcation from infinity at $s=0$. We use similar ideas to establish Theorems 2.8 and 2.9 .

2. Statement of the main Results

Let us consider the weighted eigenvalue problem

$$
\begin{align*}
-\Delta u & =\lambda m(x) u \quad \text { in } \Omega \\
u & =0 \quad \text { on } \partial \Omega, \tag{2.1}
\end{align*}
$$

where Ω is a bounded domain in \mathbb{R}^{n}. Suppose $m=m^{+}-m^{-}$in $L^{\infty}(\Omega)$, where $m^{+}=\max (m, 0), m^{-}=-\min (m, 0)$. Denote

$$
\Omega_{+}=\{x \in \Omega: m(x)>0\}, \quad \Omega_{-}=\{x \in \Omega: m(x)<0\}
$$

and $\left|\Omega_{+}\right|,\left|\Omega_{-}\right|$its Lebesgue measures. It is well known (see [16] for a nice survey) that if $\left|\Omega_{+}\right|>0$ and $\left|\Omega_{-}\right|>0$, then 2.1 has a double sequence of eigenvalues

$$
\cdots \leq \lambda_{-2}<\lambda_{-1}<0<\lambda_{1}<\lambda_{2} \leq \ldots
$$

where λ_{1} and λ_{-1} are simple and the associated eigenfunctions $\varphi_{1} \in C(\bar{\Omega}), \varphi_{-1} \in$ $C(\bar{\Omega})$ can be taken $\varphi_{1}>0$ on $\Omega, \varphi_{-1}>0$ on Ω. Where λ_{1} and λ_{-1} are the principal eigenvalues of (2.1) φ_{1} and φ_{-1} are the associated principal eigenfunctions. Our first result is as follows.

Lemma 2.1. Suppose $m=m^{+}-m^{-}$in $L^{\infty}(\Omega)$ such that $\left|\Omega^{+}\right|>0,\left|\Omega^{-}\right|>0$. Then the principal eigenfunctions $\varphi_{1}>0, \varphi_{-1}>0$ of (2.1) satisfy

$$
\begin{align*}
\left\|\varphi_{1}\right\|_{L^{\infty}(\Omega)} & =\left\|\varphi_{1}\right\|_{L^{\infty}\left(r m s u p p m^{+}, m^{+} d x\right)} \tag{2.2}\\
\left\|\varphi_{-1}\right\|_{L^{\infty}(\Omega)} & \left.=\left\|\varphi_{-1}\right\|_{L^{\infty}\left(r m s u p p m^{-}\right.}, m^{-} d x\right)
\end{align*}
$$

where $\left\|\varphi_{1}\right\|_{L^{\infty}\left(\text { rmsupp } m^{+}, m^{+} d x\right)}$ (respectively $\left\|\varphi_{-1}\right\|_{L^{\infty}\left(\text { rmsupp } m^{-}, m^{-} d x\right)}$) is the essential supremum on rmsupp m^{+}with respect to the measure $m^{+} d x$ (respectively on rmsupp m^{-}w.r. t. $\left.m^{-} d x\right)$.

Here rmsupp m^{+}is the support of the distribution m^{+}in Ω. We take $s=0$ in (1.1) or (1.2) and look for multiple solutions of

$$
\begin{gather*}
-u^{\alpha} \Delta u=K(x) \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega . \tag{2.3}
\end{gather*}
$$

We fix $p>n$ and consider $K \in L^{p}(\Omega)$. It is shown in [4] that for $\alpha>0,0<$ $K \in L^{p}(\Omega), 2.3$ has a unique solution $u \in W_{\mathrm{loc}}^{2, p}(\Omega) \cap C(\bar{\Omega})$. On the other hand, for $\alpha>0$ and $K<0$, we deduce from the Maximum Principle that 2.3 has no solution. Thus, if we want multiple solutions, K should change sign.

We give now two auxiliary results which will provide a family of α and K 's giving multiple solutions to 2.3 Let $\lambda_{ \pm j}((m))$ denote the eigenvalues of the problem $-\Delta u=\lambda m(x) u$ in $\Omega, u=0$ on $\partial \Omega$.

Lemma 2.2. The function

$$
\alpha(t):=-\frac{\lambda_{1}\left(\left(m^{+}-t m^{-}\right)\right)}{\lambda_{-1}\left(\left(m^{+}-t m^{-}\right)\right)}
$$

is continuous on $(0, \infty)$ and satisfies $\lim _{t \rightarrow 0^{+}} \alpha(t)=0$ and $\lim _{t \rightarrow \infty} \alpha(t)=\infty$.
Our next lemma says that a weight m with "a positive and a negative bump" gives a bifurcation point to $F(u)$ for the proof of Theorem 2.4 .

Lemma 2.3. Let y_{+}, y_{-}be fixed points of Ω, let $\delta>0$ be such that the ball $B_{20 \delta}\left(\frac{y_{+}+y_{-}}{2}\right)$ with radius 20δ centered at $\frac{y_{+}+y_{-}}{2}$ is contained in Ω, in such a way that the distance between y_{+}and y_{-}is 8δ. If φ_{-1} is the principal positive eigenfunction associated to the principal negative eigenvalue λ_{-1} and φ_{1} is the principal positive eigenfunction associated to the principal positive eigenvalue λ_{1} of the problem

$$
\begin{gather*}
-\Delta u=\lambda\left(m^{+}(x)-t m^{-}(x)\right) u \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega, \tag{2.4}
\end{gather*}
$$

where $m(x)=m^{+}(x)-m^{-}(x) \in C(\bar{\Omega})$, is such that rmsupp $m^{+}=\overline{B_{\delta}\left(y_{+}\right)}$, rmsupp $m^{-}=\overline{B_{\delta}\left(y_{-}\right)}$and $m^{-}(x)>0$ in $B_{\delta}\left(y_{-}\right)$. Then there exists a positive
constant $\epsilon\left(m^{+}, m^{-}\right)>0$ depending on m^{+}, m^{-}such that for all $t \in\left(0, \epsilon\left(m^{+}, m^{-}\right)\right)$

$$
\begin{equation*}
\int_{\Omega}\left(m^{+}-t m^{-}\right) \varphi_{-1}^{-1} \varphi_{1}^{3} d x \neq 0 \tag{2.5}
\end{equation*}
$$

We give now a family of α and K providing multiple solutions to (2.3).
Theorem 2.4. Suppose $m=m^{+}-m^{-}$as in Lemma 2.3. For $t>0$, denote $m_{t}=m^{+}-t m^{-}$. Let $\lambda_{1}\left(m_{t}\right)>0$ in $\mathbb{R}, \varphi_{1}(t)>0$ in $C(\bar{\Omega}), \lambda_{-1}\left(m_{t}\right)<0$ in \mathbb{R}, $\varphi_{-1}(t)>0$ in $C(\bar{\Omega})$, be the principal eigenvalues and eigenfunctions of

$$
\begin{aligned}
-\Delta u & =\lambda m_{t}(x) u \quad \text { in } \Omega \\
u & =0 \quad \text { on } \partial \Omega
\end{aligned}
$$

Define

$$
\alpha(t)=-\frac{\lambda_{1}\left(m_{t}\right)}{\lambda_{-1}\left(m_{t}\right)}, \quad t>0
$$

If $\alpha=\alpha(t)$ in 2.3 and

$$
K=K(t, \rho)=\lambda_{-1}\left(m_{t}\right) m_{t} \varphi_{-1}(t)^{\alpha(t)+1}+\rho \varphi_{-1}(t)
$$

Then (2.3) has at least two solutions for $t>0$ and $\rho>0$ small enough.
Remark 2.5. The first term in K is a negative function on Ω^{+}, the second a positive one.

Remark 2.6. For $\rho=0,\left(\alpha(t), \varphi_{-1}(t)\right) \in \mathbb{R}^{+} \times C(\bar{\Omega})^{+}$could be a bifurcation pair for (2.3) since $u=\varphi_{-1}$ is a solution for $\alpha=\alpha(t)$ and $K=K(t, 0)$.

Now we consider $K(x) \equiv 1$. Hence for $s=0$, 1.1 has a unique solution. Our next theorem is related to the topological nature of this nonlinear eigenvalue problem (1.1). Let P be the positive cone in $C^{1}(\bar{\Omega})$ with its usual norm.

Theorem 2.7. Suppose $0<\alpha<1 / n, K(x) \equiv 1, \mathcal{G}$ is nonnegative continuous and let $f(x)$ be a non-negative bounded measurable function. Then, the set of pairs (s, u) of solutions of (1.1) is unbounded in $\mathbb{R}^{+} \times P$. Moreover, if $\mathcal{G}(x, \eta, \xi) \geq g_{0}+|\xi|^{2}$ where $g_{0}>0$ in \mathbb{R}. Then, we have $s \leq 2 n / \sqrt{g_{0}} r(\Omega)$, where $r(\Omega)$ is the inner radius of Ω. As a consequence, there is bifurcation at infinity for some $s_{*}<\infty$.

Recall that the inner radius of Ω is given by $\sup \left\{r: B_{r}(x) \subset \Omega\right\}$.
Finally, we obtain two results dealing with multiplicity for our singular elliptic problem (1.2) with a convection term, as in our title.

Theorem 2.8. Suppose that
(i) $0<\alpha<\frac{1}{n}, 1<\beta<\frac{n+1}{n-1}$ and $0<\zeta<\frac{2}{n}$.
(ii) $f \in L^{\infty}(\Omega), f>0$.
(iii) $K(x) \equiv 1$.
(iv) $\mathcal{A}=1$ and

$$
0 \leq \mathcal{B}<C\left\{\frac{\int_{\Omega} f \varphi_{1} d x \int_{\Omega} \varphi_{1}^{2} d x}{\int_{\Omega} \varphi_{1} d x}\right\}^{\beta-1}
$$

where φ_{1}, λ_{1} are the principal eigenfunction an principal eigenvalue of the operator $-\Delta\left(-\Delta \varphi_{1}=\lambda_{1} \varphi_{1}\right)$ with Dirichlet boundary conditions and C is a constant depending only in $\Omega, \beta, \lambda_{1}$.

Then there exist $0<s^{* *} \leq s^{*}<\infty$ such that for all $s \in\left(0, s^{* *}\right)$ problem 1.2 admits at least two solutions and no solutions for $s>s^{*}$. Furthermore there is bifurcation at infinity at $s=0$.

For a particular form of f and for K with indefinite sign but in a more restricted class we have the following result.

Theorem 2.9. Suppose that
(i) $0<\alpha<\frac{1}{n}, 1<\beta<\frac{n+1}{n-1}$, and $\zeta<\frac{2}{n}$.
(ii) $f=t \varphi_{1}, t \geq B^{\frac{1}{1+\alpha}}\left[\lambda_{1}\left(\frac{\alpha}{\lambda_{1}}\right)^{\frac{1}{1+\alpha}}+\left(\frac{\lambda_{1}}{\alpha}\right)^{\frac{\alpha}{1+\alpha}}\right]$.
(iii) $|K(x)| \leq B \varphi_{1}^{1+\alpha}(x)$.
(iv) $\mathcal{A}=1$ and $0 \leq \mathcal{B}<C$ where C is a constant depending only in λ_{1}, β, B.

Then there exists $0<s^{* *} \leq s^{*}<\infty$ such that for all $s \in\left(0, s^{* *}\right)$ problem (1.2) has at least two solutions and no solutions for $s>s^{*}$. Furthermore there is bifurcation at infinity for $s=0$.

We remark that estimate (ii) is needed at the end of the following section.

Figure 1. Behaviour of the two branches near $s=0$ in Theorem 2.9

3. Auxiliary Results

It is our purpose in this section to prove some preliminary results.
Proof of Lemma 2.1. We set $\gamma>2$. Then from the identity

$$
-\Delta \varphi_{-1}^{\gamma}=\gamma \lambda_{-1}\left(m^{+}-m^{-}\right) \varphi_{-1}^{\gamma}-\gamma(\gamma-1) \varphi_{-1}^{\gamma-2}\left|\nabla \varphi_{-1}\right|^{2}
$$

and using that

$$
\int_{\Omega} \Delta \varphi_{-1}^{\gamma} d x=\int_{\Omega} \operatorname{div} \nabla \varphi_{-1}^{\gamma} d x=\int_{\partial \Omega}\left\langle\nabla \varphi_{-1}^{\gamma}, n\right\rangle d x=\int_{\partial \Omega} \gamma \varphi_{-1}^{\gamma-1}\left\langle\nabla \varphi_{-1}^{\gamma}, n\right\rangle d x=0
$$

where the last equality holds because $\varphi_{-1}^{\gamma-1}=0$ on $\partial \Omega$. So

$$
\begin{aligned}
-\gamma \lambda_{-1} \int_{\Omega} m^{-} \varphi_{-1}^{\gamma} d x & =-\gamma \lambda_{-1} \int_{\Omega} m^{+} \varphi_{-1}^{\gamma} d x+\gamma(\gamma-1) \int_{\Omega} \varphi_{-1}^{\gamma-2}\left|\nabla \varphi_{-1}\right|^{2} d x \\
& \geq \gamma(\gamma-1) \int_{\Omega} \varphi_{-1}^{\gamma-2}\left|\nabla \varphi_{-1}\right|^{2} d x
\end{aligned}
$$

and consequently

$$
\gamma^{1 / \gamma}\left(-\lambda_{-1}\right)^{1 / \gamma}\left(\int_{\Omega} m^{-} \varphi_{-1}^{\gamma} d x\right)^{1 / \gamma} \geq \gamma^{1 / \gamma}(\gamma-1)^{1 / \gamma}\left(\int_{\Omega} \varphi_{-1}^{\gamma-2}\left|\nabla \varphi_{-1}\right|^{2} d x\right)^{1 / \gamma} .
$$

Letting $\gamma \rightarrow \infty$, we find

$$
\left\|\varphi_{-1}\right\|_{L^{\infty}\left(r m s u p p m^{-}, m^{-} d x\right)} \geq\left\|\varphi_{-1}\right\|_{L^{\infty}\left(\Omega,\left|\nabla \varphi_{-1}\right|^{2} d x\right)}
$$

where $\left\|\varphi_{-1}\right\|_{L^{\infty}\left(\Omega,\left|\nabla \varphi_{-1}\right|^{2} d x\right)}=\operatorname{ess} \sup _{\Omega}\left|\varphi_{-1}\right|$ is taken with respect the measure $\left|\nabla \varphi_{-1}\right|^{2} d x$. We observe that $-\Delta \varphi_{-1}=0$ in $\Omega-\left\{\right.$ rmsupp $\left.m^{-} \cup \operatorname{supp} m^{+}\right\}$to conclude that the Lebesgue's measure of thee set $\left\{x \in \Omega-\left\{r m s u p p m^{-} \cup r m s u p p m^{+}\right\}\right.$: $\left.\nabla \varphi_{-1}(x)=0\right\}$ is zero.

From $-\Delta \varphi_{-1}<0$ in rmsupp m^{+}, we infer that

$$
\sup _{\text {rmsupp } m^{+}} \varphi_{-1} \leq \sup _{\partial r m s u p p m^{+}} \varphi_{-1}
$$

and find that

$$
\begin{aligned}
\left\|\varphi_{-1}\right\|_{L^{\infty}\left(\Omega,\left|\nabla \varphi_{-1}\right|^{2} d x\right)} & \left.\left.\geq\left\|\varphi_{-1}\right\|_{L^{\infty}(\Omega-\{r m s u p p} m^{+} \cup \text { rmsupp } m^{-}\right\},\left|\nabla \varphi_{-1}\right|^{2} d x\right) \\
& =\left\|\varphi_{-1}\right\|_{L^{\infty}\left(\Omega-\left\{\text { rmsupp } m^{+}+\cup r m s u p p m^{-}\right\}\right)} \\
& =\left\|\varphi_{-1}\right\|_{L^{\infty}\left(\Omega-\left\{r m s u p p m^{-}\right\}\right)} ;
\end{aligned}
$$

hence

$$
\left\|\varphi_{-1}\right\|_{L^{\infty}\left(r m s u p p m^{-}, m^{-} d x\right)} \geq\left\|\varphi_{-1}\right\|_{L^{\infty}\left(\Omega-\left\{\text { rmsupp }^{-}\right\}\right)}
$$

With the aid of this last expression, we arrive to the desired conclusion.
Proof of Lemma 2.2. Continuity follows from well known results ([16]). Since $m^{+}-$ $t m^{-}<m^{+}$for all $t>0$, we conclude that $\lambda_{1}\left(\left(m^{+}-t m^{-}\right)\right)>\lambda_{1}\left(\left(m^{+}\right)\right)([16])$. Clearly

$$
\lim _{t \rightarrow \infty} \lambda_{-1}\left(\left(m^{+}-t m^{-}\right)\right)=\lim _{t \rightarrow \infty} \frac{1}{t} \lambda_{-1}\left(\left(\frac{m^{+}}{t}-m^{-}\right)\right)=0
$$

Then $\lim _{t \rightarrow \infty} \alpha(t)=\infty$. Using $m^{+}-t m^{-}>-t m^{-}$, we deduce that $\lambda_{-1}\left(\left(m^{+}-\right.\right.$ $\left.\left.t m^{-}\right)\right)<\lambda_{-1}\left(\left(-t m^{-}\right)\right)=\frac{1}{t} \lambda_{-1}\left(\left(-m^{-}\right)\right)$and therefore

$$
\lim _{t \rightarrow 0^{+}} \lambda_{-1}\left(\left(m^{+}-t m^{-}\right)\right)=-\infty
$$

Finally, from $\lim _{t \rightarrow 0^{+}} \lambda_{1}\left(\left(m^{+}-t m^{-}\right)\right)=\lambda_{1}\left(\left(m^{+}\right)\right)$, we find $\lim _{t \rightarrow 0^{+}} \alpha(t)=0$.
Proof of Lemma 2.3. To prove this lemma, we bound $t\left|\lambda_{-1}\left(\left(m^{+}-t m^{-}\right)\right)\right|$. From $m^{+}-t m^{-}>-t m^{-}$, we deduce $\lambda_{-1}\left(\left(m^{+}-t m^{-}\right)\right)<\lambda_{-1}((-t m))([16)$ and therefore

$$
-t \lambda_{-1}\left(\left(m^{+}-t m^{-}\right)\right)>-\lambda_{-1}\left(\left(-m^{-}\right)\right)>0 .
$$

From the equation

$$
\begin{gathered}
-\Delta \varphi_{-1}=\lambda_{-1}\left(m^{+}-t m^{-}\right) \varphi_{-1} \quad \text { in } \Omega \\
\varphi_{-1}=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

we see that

$$
\begin{gathered}
-\Delta \varphi_{-1}=-\lambda_{-1}\left(t m^{-}-m^{+}\right) \varphi_{-1} \quad \text { in } \Omega \\
\varphi_{-1}=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

We conclude that

$$
-\lambda_{-1}\left(\left(m^{+}-t m^{-} ; \Omega\right)\right)=\lambda_{1}\left(\left(t m^{-}-m^{+} ; \Omega\right)\right)
$$

Using rmsupp $m^{-} \subset \Omega$, it follows that

$$
\lambda_{1}\left(\left(t m^{-}-m^{+} ; \Omega\right)\right) \leq \lambda_{1}\left(\left(t m^{-}-m^{+} ; r m s u p p m^{-}\right)\right)=\lambda_{1}\left(\left(t m^{-} ; r m s u p p m^{-}\right)\right)
$$

Thus, we have

$$
\begin{equation*}
0<-\lambda_{-1}\left(\left(-m^{-}\right)\right)<t\left|\lambda_{-1}\left(\left(m^{+}-t m^{-} ; \Omega\right)\right)\right|<\lambda_{1}\left(\left(m^{-} ; \text {rmsupp }^{-}\right)\right) \tag{3.1}
\end{equation*}
$$

Our next tool is Harnack inequality. It asserts that if $u \in W^{1,2}(\Omega)$ satisfies

$$
\begin{gathered}
-\Delta u+m u=0 \quad \text { in } \Omega \\
u \geq 0 \quad \text { on } \Omega,
\end{gathered}
$$

then for any ball $B_{4 R}(y) \subset \Omega$, we have
(see Theorem 8.20 [21]).
Now we are ready to deal with 2.5). We may suppose $\left\|\varphi_{-1}\right\|_{L^{\infty}(\Omega)}=1$. From Harnack inequality and Lemma 2.1, we find

$$
1 \leq C(N)^{1+R \sqrt{t\left|\lambda_{-1}\right|}} \inf _{r m s u p p m^{-}} \varphi_{-1}
$$

Then

$$
\begin{equation*}
t \int_{\Omega} m^{-} \varphi_{-1}^{-1} \varphi_{1}^{3} d x \leq t C(N)^{1+R \sqrt{t\left|\lambda_{-1}\right|}} \int_{\Omega} m^{-} \varphi_{1}^{3} d x \tag{3.2}
\end{equation*}
$$

Assume the claim in this Lemma false, i. e.,

$$
\int_{\Omega}\left(m^{+}-t m^{-}\right) \varphi_{-1}^{-1} \varphi_{1}^{3} d x=0
$$

Then

$$
\begin{aligned}
\int_{\Omega} m^{+} \varphi_{1}^{3} d x & \leq \int_{\Omega} m^{+} \varphi_{-1}^{-1} \varphi_{1}^{3} d x \\
& =t \int_{\Omega} m^{-} \varphi_{-1}^{-1} \varphi_{1}^{3} d x \\
& \leq t C(N)^{1+R \sqrt{t\left|\lambda_{-1}\right|}} \int_{\Omega} m^{-} \varphi_{1}^{3} d x .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left(\inf _{\text {rmsupp } m^{+}} \varphi_{1}\right)^{3} \int_{\text {rmsupp } m^{+}} m^{+} d x & \leq t C(N)^{1+R \sqrt{t\left|\lambda_{-1}\right|}} \int_{\Omega} m^{-} \varphi_{1}^{3} d x \\
& \leq t C(N)^{1+R \sqrt{t\left|\lambda_{-1}\right|}}\left(\sup _{\text {rmsupp } m^{-}} \varphi_{1}\right)^{3} \int_{\text {rmsupp } m^{-}} m^{-} d x
\end{aligned}
$$

Consequently,

$$
\left(\inf _{B_{5 R}\left(\frac{1}{2}\left(y_{+}+y_{-}\right)\right)} \varphi_{1}\right)^{3} \leq t C(N)^{1+R \sqrt{t\left|\lambda_{-1}\right|}}\left(\sup _{B_{5 R}\left(\frac{1}{2}\left(y_{+}+y_{-}\right)\right)} \varphi_{1}\right)^{3} \frac{\int_{r m s u p p} m^{-} m^{-} d x}{\int_{\text {supp } m^{+}} m^{+} d x}
$$

Hence

$$
\begin{equation*}
\frac{1}{C(N)^{\left(1+R \sqrt{t\left|\lambda_{-1}\right|}\right)}+3+15 R \sqrt{\max \left(\lambda_{1}, t \lambda_{1}\right)}} \frac{\int_{\text {rmsupp } m^{+}} m^{+} d x}{\int_{\text {rmsupp } m^{-}} m^{-} d x} \leq t . \tag{3.3}
\end{equation*}
$$

For small t, using (3.1), we deduce that (3.3) is a contradiction.
Recall that the vector space

$$
C(\bar{\Omega})_{e}=\{u \in C(\bar{\Omega}) ;-s e \leq u \leq s e \text { for some } s>0 \text { in } \mathbb{R}\}
$$

where e is the solution of $-\Delta e=1$ in $\Omega, e=0$ on $\partial \Omega$, endowed with the norm

$$
\|u\|_{e}=\inf \{s>0 ;-s e \leq u \leq s e\}
$$

is a Banach space [3]. We will use the Banach space

$$
\begin{equation*}
\mathcal{C}=W^{2, p}(\Omega) \cap C(\bar{\Omega})_{e} \tag{3.4}
\end{equation*}
$$

for the norm $\|\cdot\|_{\mathcal{C}}=\|\cdot\|_{W^{2, p}(\Omega)}+\|\cdot\|_{e}$. Hence, the cone of positive functions

$$
\begin{equation*}
\mathcal{C}^{+}=W^{2, p}(\Omega) \cap C(\bar{\Omega})_{e}^{+} \tag{3.5}
\end{equation*}
$$

has non empty interior \mathcal{C}^{+}. We also need

$$
\begin{equation*}
\mathcal{D}=\left\{f: f e^{-\alpha} \in L^{p}(\Omega)\right\} \tag{3.6}
\end{equation*}
$$

which is a Banach space for the norm

$$
\|f\|_{\mathcal{D}}=\left(\int_{\Omega}|f|^{p} e^{-p \alpha} d x\right)^{1 / p}
$$

Note that all principal eigenfunctions are in $\check{\mathcal{C}}^{+}$.
Lemma 3.1. The map $F: \dot{\mathcal{C}}^{+} \rightarrow \mathcal{D}$,

$$
F(u)=-u^{\alpha} \Delta u
$$

is regular and has first and second derivatives

$$
\begin{gathered}
d F(u) v=-\alpha u^{\alpha-1} v \Delta u-u^{\alpha} \Delta v \\
d^{2} F(u)[v, h]=-\alpha(\alpha-1) u^{\alpha-2} v h \Delta u-\alpha u^{\alpha-1} v \Delta h-\alpha u^{\alpha-1} h \Delta v
\end{gathered}
$$

Proof. Consider

$$
\begin{equation*}
\omega(t)=\frac{F(u+t v)-F(u)}{t}+\alpha u^{\alpha-1} v \Delta u+u^{\alpha} \Delta v \tag{3.7}
\end{equation*}
$$

To prove Gateaux differentiability, we need to establish

$$
\begin{equation*}
\lim _{t \rightarrow 0}\|\omega(t)\|_{\mathcal{C}}=0 \tag{3.8}
\end{equation*}
$$

From the Mean-Value Theorem one has (at almost every $x \in \Omega$)

$$
\begin{aligned}
F(u+t v)-F(u) & =-\int_{0}^{1} \frac{d}{d \xi}\left\{(u+\xi t v)^{\alpha} \Delta(u+\xi t v)\right\} d \xi \\
& =-t \int_{0}^{1}\left\{\alpha(u+\xi t v)^{\alpha-1} v \Delta(u+\xi t v)+(u+\xi t v)^{\alpha} \Delta v\right\} d \xi
\end{aligned}
$$

Thus

$$
\begin{align*}
\|\omega(t)\|_{\mathcal{D}} \leq & \left\|\int_{0}^{1} \alpha v\left\{u^{\alpha-1} \Delta u-(u+\xi t v)^{\alpha-1} \Delta(u+\xi t v)\right\} d \xi\right\|_{\mathcal{D}} \\
& +\left\|\int_{0}^{1} \Delta v\left\{u^{\alpha}-(u+\xi t v)^{\alpha}\right\} d \xi\right\|_{\mathcal{D}} \tag{3.9}
\end{align*}
$$

Using the definition of $\|\cdot\|_{\mathcal{D}}$, Jensen inequality and Fubini Theorem, we obtain

$$
\begin{aligned}
\left\|\int_{0}^{1} \Delta v\left\{u^{\alpha}-(u+\xi t v)^{\alpha}\right\} d \xi\right\|_{\mathcal{D}}^{p} & =\int_{\Omega}\left|\int_{0}^{1} \Delta v\left\{u^{\alpha}-(u+\xi t v)^{\alpha}\right\} d \xi\right|^{p} e^{-p \alpha} d x \\
& \leq \int_{0}^{1} d \xi \int_{\Omega}\left|\Delta v\left\{u^{\alpha}-(u+\xi t v)^{\alpha}\right\}\right|^{p} e^{-p \alpha} d x
\end{aligned}
$$

A similar estimate is valid for the second term in (3.9) and consequently, the Lebesgue Dominated-Convergence Theorem implies (3.8). Next we prove continuity of the map

$$
d_{G} F: \mathcal{C}^{+} \rightarrow L(\mathcal{C}, \mathcal{D})
$$

where $L(\mathcal{C}, \mathcal{D})$ is provided with the operator norm. Recall that

$$
\left\|d_{G} F\left(u_{j}\right)-d_{G} F(u)\right\|_{L(\mathcal{C}, \mathcal{D})}=\sup _{v \in \mathcal{C},\|v\|_{\mathcal{C}} \leq 1}\left\|d_{G} F\left(u_{j}\right) v-d_{G} F(u) v\right\|_{\mathcal{D}}
$$

Furthermore,

$$
\begin{aligned}
\left\|d_{G} F\left(u_{j}\right) v-d_{G} F(u) v\right\|_{\mathcal{D}}= & \left\|-\alpha u_{j}^{\alpha-1} v \Delta u_{j}-u_{j}^{\alpha} \Delta v+\alpha u^{\alpha-1} v \Delta u+u^{\alpha} \Delta v\right\|_{\mathcal{D}} \\
\leq & \left\|\alpha v\left(u^{\alpha-1} \Delta u-u_{j}^{\alpha-1} \Delta u_{j}\right)\right\|_{\mathcal{D}}+\left\|\left(u^{\alpha}-u_{j}^{\alpha}\right) \Delta v\right\|_{\mathcal{D}} \\
\leq & \left\|\alpha v \Delta u\left(u^{\alpha-1}-u_{j}^{\alpha-1}\right)\right\|_{\mathcal{D}}+\left\|\alpha v u_{j}^{\alpha-1}\left(\Delta u-\Delta u_{j}\right)\right\|_{\mathcal{D}} \\
& +\left\|\left(u^{\alpha}-u_{j}^{\alpha}\right) \Delta v\right\|_{\mathcal{D}}
\end{aligned}
$$

If $\left\|u-u_{j}\right\|_{\mathcal{C}}$, that is $\left|u-u_{j}\right| \leq \frac{1}{j} e$ in Ω, we prove now that each of these last three terms tends to zero. From

$$
\begin{aligned}
\left|u(x)^{\alpha-1}-u_{j}(x)^{\alpha-1}\right| & =\left|(\alpha-1) \int_{0}^{1}\left(\xi u_{j}(x)+(1-\xi) u(x)\right)^{\alpha-2} d \xi\left(u(x)-u_{j}(x)\right)\right| \\
& \leq \frac{|1-\alpha|}{j} C e(x)^{\alpha-1}
\end{aligned}
$$

and using $|v| \leq \varphi_{-1}$, we get

$$
\left\|\alpha v \Delta u\left(u^{\alpha-1}-u_{j}^{\alpha-1}\right)\right\|_{\mathcal{D}} \leq C \frac{\alpha|1-\alpha|}{j}\left\|e^{\alpha} \Delta u\right\|_{\mathcal{D}}=C \frac{\alpha|1-\alpha|}{j}\|\Delta u\|_{L^{p}(\Omega)}
$$

Similarly,

$$
\begin{gathered}
\left\|\alpha v u_{j}^{\alpha-1}\left(\Delta u-\Delta u_{j}\right)\right\|_{\mathcal{D}} \leq C\left\|\Delta u-\Delta u_{j}\right\|_{L^{p}(\Omega)} \\
\left\|\left(u^{\alpha}-u_{j}^{\alpha}\right) \Delta v\right\|_{\mathcal{D}} \leq C \frac{\alpha}{j}
\end{gathered}
$$

This proves continuity of the Gateaux derivative and hence F is Fréchet differentiable. For the second derivative we proceed similarly.

In [4, Theorem 3.1] it is stated that

$$
\begin{gather*}
-\Delta u=u^{-\alpha}+f \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega \tag{3.10}
\end{gather*}
$$

with non-negative $f \in L^{p}(\Omega)(p>n)$, has a unique solution $u \in W_{\mathrm{loc}}^{2, p}(\Omega) \cap C(\bar{\Omega})$.
Lemma 3.2. Suppose $0<\alpha<\frac{1}{n}$. Then the solution map of problem (3.10) $f \rightarrow u$, denoted H is well defined from $\{f \in C(\bar{\Omega}): f(x) \geq 0, x \in \Omega\}$ into $\left\{u \in C^{1}(\bar{\Omega})\right.$: $u(x) \geq 0, x \in \Omega, u(x)=0$ and $\left.\frac{\partial u}{\partial n}(x)<0, x \in \partial \Omega\right\}$. Moreover H is a continuous and compact map.
Proof. $0<\alpha<\frac{1}{n}$ allow us to fix $p>n$ such that $\alpha p<1$. In the proof of this Lemma we will use this p. From the proof in [4. Theorem 1], we know that $u_{j}=H f_{j} \geq w$, where w satisfies

$$
\begin{gathered}
-\Delta w=u_{1}^{-\alpha} \quad \text { in } \Omega \\
w=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

and $u_{1} \in W^{2, p}(\Omega)$ is the unique solution of the problem

$$
\begin{gathered}
-\Delta u_{1}=u_{1}^{-\alpha}+f_{j} \quad \text { in } \Omega \\
u_{1}=1 \quad \text { on } \partial \Omega
\end{gathered}
$$

Using the Maximum Principle, we have $u_{1}^{-\alpha} \leq w_{1}^{-\alpha}$, where w_{1} is the solution of the problem

$$
\begin{gathered}
-\Delta w_{1}=f_{j} \quad \text { in } \Omega \\
w_{1}=1 \quad \text { on } \partial \Omega
\end{gathered}
$$

Using again the Maximum Principle we see that $u_{1}^{-\alpha} \leq 1$ on $x \in \bar{\Omega}$. We recall a Uniform Hopf Principle as it is formulated in Diaz-Morel-Oswald [15]. It asserts that there exists a constant C, depending only on Ω, such that for all $f \geq 0$, $f \in L^{1}(\Omega)$, each weak solution u of

$$
\begin{gather*}
-\Delta u=f \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega \tag{3.11}
\end{gather*}
$$

satisfies

$$
\begin{equation*}
u \geq C\left(\int_{\Omega} f e\right) e \tag{3.12}
\end{equation*}
$$

Applying this Uniform Hopf Principle, we get

$$
w(x) \geq C(\Omega)\left(\int_{\Omega} u_{1}^{-\alpha} e d x\right) e(x)
$$

Jensen inequality implies

$$
\left(\int_{\Omega} u_{1}^{-\alpha} e d x\right)^{-\alpha} \leq\left(\int_{\Omega} e d x\right)^{\alpha-1}\left(\int_{\Omega} u_{1}^{\alpha^{2}} e d x\right)
$$

As before, we have $u_{1} \leq w_{j}$ where w_{j} is the unique solution of

$$
\begin{gathered}
-\Delta w_{j}=1+f_{j} \quad \text { in } \Omega \\
w_{j}=1 \quad \text { on } \partial \Omega .
\end{gathered}
$$

Thus

$$
\begin{equation*}
u_{j}(x)^{-\alpha} \leq C(\Omega)^{-\alpha}\left(\int_{\Omega} e d x\right)^{\alpha-1}\left(\int_{\Omega} w_{j}^{\alpha^{2}} e d x\right) e^{-\alpha} \tag{3.13}
\end{equation*}
$$

If $f_{j} \rightarrow f$ in $C(\bar{\Omega})$, then there exist a constant C, independent of j, such that

$$
\left\|u_{j}^{-\alpha}\right\|_{L^{p}(\Omega)}<C .
$$

Then $\left\|u_{j}\right\|_{W^{2, p}(\Omega)}<C$, so Rellich-Kondrachov Theorem implies $u_{j} \rightarrow u$ strongly in $C^{1}(\bar{\Omega})$. Using 3.13 we conclude that $u_{j}^{-\alpha} \rightarrow u^{-\alpha}$ strongly in $L^{p}(\Omega)$, and therefore u is a solution of the problem

$$
\begin{aligned}
-\Delta u & =u^{-\alpha}+f \quad \text { in } \Omega \\
u & =0 \quad \text { on } \partial \Omega
\end{aligned}
$$

Compactness is deduced from 3.13.
Lemma 3.3. Suppose $\mathcal{L}=\Delta+c(x)$ satisfies the maximum principle and suppose

$$
\begin{equation*}
|K(x)| \leq B \varphi_{1}^{1+\alpha}(x) \quad \text { for some } B>0 \text { in } \mathbb{R} \tag{3.14}
\end{equation*}
$$

where φ_{1} is the principal eigenfunction corresponding to the principal positive eigenvalue of the problem $-\mathcal{L} u=\lambda u$ in Ω, $u=0$ on $\partial \Omega$. If $f \in L^{p}(\Omega)$, $p>n$, satisfies

$$
f \geq t_{0} \varphi_{1} \quad p . p
$$

where $t_{0}=B^{\frac{1}{1+\alpha}}\left[\lambda_{1}\left(\frac{\alpha}{\lambda_{1}}\right)^{\frac{1}{1+\alpha}}+\left(\frac{\lambda_{1}}{\alpha}\right)^{\frac{\alpha}{1+\alpha}}\right]$. Then

$$
\begin{gather*}
-\mathcal{L} u+K(x) u^{-\alpha}=f(x) \quad \text { in } \Omega \\
u>0 \tag{3.15}\\
\text { in } \Omega \\
u=0 \\
\text { on } \Omega
\end{gather*}
$$

has a strong solution $u \in W^{2, p}(\Omega)$. Moreover, if $f>t_{0} \varphi_{1}$ then $u>\left(\frac{\alpha B}{\lambda_{1}}\right)^{\frac{1}{1+\alpha}} \varphi_{1}$ and it is unique within the set $\left\{v>\left(\frac{\alpha B}{\lambda_{1}}\right)^{\frac{1}{1+\alpha}} \varphi_{1}\right\}$. If instead of f we consider $f_{1} \geq f_{2} \geq t \varphi_{1}$ in $C(\bar{\Omega})$ with $t>t_{0}$, then corresponding solutions u_{1}, u_{2} in $\{u \in$ $\left.C(\bar{\Omega}): u \geq C(t) \varphi_{1}\right\}$ satisfy $u_{1}>u_{2}$.

Proof. Let us consider, for $g \in L^{\infty}(\Omega)$, the solution operator $h=(-\mathcal{L})^{-1} g$ defined by $-\mathcal{L} h=g$ in $\Omega, h=0$ on $\partial \Omega$. Then h lies in $W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)$ for all $1<p<\infty$. We define

$$
G_{C}=\left\{u \in C(\bar{\Omega}): u \geq C \varphi_{1}\right\}
$$

If $t \geq t_{0}$, then there exists a unique $C(t) \geq\left(\frac{\alpha B}{\lambda_{1}}\right)^{\frac{1}{1+\alpha}}$ satisfying $t=\lambda_{1} C(t)+\frac{B}{C(t)^{\alpha}}$. We prove now that for $f \in G_{t}, u \in G_{C(t)}$ the operator

$$
F(u)=(-\mathcal{L})^{-1}\left(f-K u^{-\alpha}\right)
$$

is well defined from $G_{C(t)}$ into $G_{C(t)}$. Moreover, it is continuous for the usual topology on $C(\bar{\Omega})$. Indeed, if $u \in G_{C(t)}$ then $-K u^{-\alpha} \geq-C(t)^{-\alpha} B \varphi_{1}$ and consequently $f-K u^{-\alpha} \geq \lambda_{1} C(t) \varphi_{1}$. Now positivity of \mathcal{L}^{-1} implies $(-\mathcal{L})^{-1}\left(f-K u^{-\alpha}\right) \geq C(t) \varphi_{1}$.

To see that F is a continuous map, let $\left(u_{n}\right) \in G_{C(t)}$ be a sequence such that $u_{n} \rightarrow u$ in $C(\bar{\Omega})$, then $K(x) u_{n}(x)^{-\alpha} \rightarrow K(x) u(x)^{-\alpha}$, pointwise on Ω. Since $\left|K(x) u_{n}^{-\alpha}(x)\right| \leq C(t)^{-\alpha} B \varphi_{1}(x)$, Lebesgue's Dominated Convergence Theorem gives $f-K u_{n}^{-\alpha} \rightarrow f-K u^{-\alpha}$ in $L^{p}(\Omega), 1<p<\infty$. Then the classical L^{p} theory for elliptic operators implies

$$
(-\mathcal{L})^{-1}\left(f-K u_{n}^{-\alpha}\right) \rightarrow(-\mathcal{L})^{-1}\left(f-K u^{-\alpha}\right)
$$

in $W^{2, p}(\Omega)$ for all $1<p<\infty$ and then $F\left(u_{n}\right) \rightarrow F(u)$ in $C(\bar{\Omega})$. Moreover $\overline{F\left(G_{C(t)}\right)}$ is a compact set in $C(\bar{\Omega})$. In fact, we have

$$
\left\|(-\mathcal{L})^{-1}\left(f-K u^{-\alpha}\right)\right\|_{W^{2, p}(\Omega)} \leq C_{0}\left\|f-K u^{-\alpha}\right\|_{L^{p}(\Omega)} \leq C
$$

for all $u \in G_{C(t)}, 1<p<\infty$, then it is clear that $\overline{F\left(G_{C}\right)}$ is compact in $C(\bar{\Omega})$. Since $G_{C(t)}$ is a convex closed set, Schauder Fixed Point Theorem provides a fixed point for F in $G_{C(t)}$, so a solution to 3.15 .

Suppose now that for $f \in G_{t}$ there exist two different solutions, u and v of 3.15), then

$$
\begin{aligned}
-\mathcal{L}(u-v) & =-K\left(u^{-\alpha}-v^{-\alpha}\right) \\
& =\alpha K\left(\int_{0}^{1}(r u+(1-r) v)^{-\alpha-1} d r\right)(u-v)
\end{aligned}
$$

We define $m=K \int_{0}^{1}(r u+(1-r) v)^{-\alpha-1} d r$. Thus, we can write, recalling that $\mathcal{L}=\Delta+c(x)$,

$$
\begin{gathered}
\Delta(u-v)+(c+\alpha m)(u-v)=0 \quad \text { in } \Omega \\
u-v=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

Since $u \not \equiv v$ we may suppose $u-v$ is positive somewhere in Ω. Now, 10 , Corollary 1.1] implies that the principal eigenvalue $\lambda_{1}((\Delta+c+\alpha m))$ of the problem

$$
\begin{gathered}
\Delta h+(c+\alpha m) h=\lambda h \quad \text { in } \Omega \\
h=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

is a nonpositive number. We recall Lipschitz continuity of this eigenvalue with respect to L^{∞}-norm of the coefficient function $c+\alpha m$ (see for example [10, Proposition 2.1]) and the estimate $|m| \leq B C(t)^{-1-\alpha}$ to infer that

$$
\left|\lambda_{1}((\Delta+c+\alpha m))-\lambda_{1}((\Delta+c))\right| \leq\|c+\alpha m-c\|_{L^{\infty}(\Omega)} \leq \frac{\alpha B}{C(t)^{1+\alpha}}
$$

Considering the choice of $C(t)$, we find

$$
0<\lambda_{1}-\frac{\alpha B}{C(t)^{1+\alpha}} \leq \lambda_{1}((\Delta+c+\alpha m))
$$

and this is a contradiction.
If $u_{1} \ngtr u_{2}$ in our last assertion, then there exists $x_{0} \in \Omega$ such that $u_{2}\left(x_{0}\right) \geq$ $u_{1}\left(x_{0}\right)$, and $u_{2}-u_{1}$ is a nontrivial solution of

$$
\begin{gathered}
\mathcal{L}\left(u_{2}-u_{1}\right)+\alpha \tilde{m}\left(u_{2}-u_{1}\right) \geq 0 \quad \text { in } \Omega \\
u_{2}-u_{1}=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

where \tilde{m} is similar to m. From [10, Corollary 1.1] we obtain $\lambda_{1}((\Delta+c+\alpha \tilde{m})) \leq 0$ and this is a contradiction, because $0 \leq \tilde{m} \leq B C(t)^{-1-\alpha}$ and as before, we have $\lambda_{1}((\Delta+c+\alpha \tilde{m}))>0$.

Remark 3.4. When $\mathcal{L}=\Delta, t_{0}$ is sharp under condition 3.14 for $K=B \varphi_{1}^{1+\alpha}$ and $f \in\left\{t \varphi_{1}: t>0\right\}$. Indeed

$$
\begin{gathered}
-\Delta u+B \varphi_{1}^{1+\alpha} u^{-\alpha}=t \varphi_{1} \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

implies

$$
t_{0} \int_{\Omega} \varphi_{1}^{2} d x \leq \int_{\Omega}\left(\lambda_{1} \frac{u}{\varphi_{1}}+B\left(\frac{u}{\varphi_{1}}\right)^{-\alpha}\right) \varphi_{1}^{2} d x=t \int_{\Omega} \varphi_{1}^{2} d x
$$

4. Proofs

Proof of Theorem 2.4. Consider the map $F: \mathcal{C}^{+} \rightarrow \mathcal{D}$ given by $F(u)=-u^{\alpha} \Delta u$. According to Lemma 3.1, $d F(u) v=0$ if and only if v satisfies

$$
\begin{gather*}
-\Delta v=\alpha \frac{\Delta u}{u} v \quad \text { in } \Omega \tag{4.1}\\
v=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

Suppose m is as in Lemma 2.1 and consider the eigenvalue problem

$$
\begin{gathered}
-\Delta u=\lambda m u \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega .
\end{gathered}
$$

At $u=\varphi_{-1}$ and for $\alpha=-\frac{\lambda_{1}}{\lambda_{-1}}$ in 4.1 , $d F\left(\varphi_{-1}\right) v=0$ is equivalent to

$$
\begin{gather*}
-\Delta v=\lambda_{1} m v \quad \text { in } \Omega \\
v=0 \quad \text { on } \partial \Omega \tag{4.2}
\end{gather*}
$$

which implies $\operatorname{ker} d F\left(\varphi_{-1}\right)=\left\langle\varphi_{1}\right\rangle$. The equation $d F\left(\varphi_{-1}\right) v=f$ is equivalent to

$$
\begin{gather*}
-\Delta v=\lambda_{1} m v+\varphi_{-1}^{-\alpha} f \quad \text { in } \Omega \tag{4.3}\\
v=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

By hypothesis $f \varphi_{-1}^{-\alpha} \in L^{p}(\Omega)$ with $p>n$, hence the Fredholm alternative yields that (4.3) has a solution $v \in H_{0}^{1,2}(\Omega)$ if and only if $\int_{\Omega} \varphi_{-1}^{-\alpha} f \varphi_{1} d x=0$. If we have a solution v since $m \in L^{\infty}(\Omega)$ a Brezis-Kato result (see for example Struwe appendix B [14]) implies that $v \in \mathcal{C}$.

We want to solve the equation

$$
\begin{equation*}
F\left(\varphi_{-1}+\widehat{v}\right)=F\left(\varphi_{-1}\right)+\rho \varphi_{-1} \tag{4.4}
\end{equation*}
$$

Inserting Taylor formula in (4.4,

$$
F\left(\varphi_{-1}+\widehat{v}\right)=F\left(\varphi_{-1}\right)+d F\left(\varphi_{-1}\right) \widehat{v}+\Psi(\widehat{v})
$$

we find

$$
\begin{equation*}
d F\left(\varphi_{-1}\right) \widehat{v}+\Psi(\widehat{v})=\rho \varphi_{-1} \tag{4.5}
\end{equation*}
$$

We use now the well known Lyapunov-Schmidt method. First we denote

$$
\begin{aligned}
& \left\langle\varphi_{-1}^{-\alpha} \varphi_{1}\right\rangle_{\mathcal{C}}^{\perp}=\left\{w \in \mathcal{C}: \int_{\Omega} w \varphi_{-1}^{-\alpha} \varphi_{1} d x=0\right\} \\
& \left\langle\varphi_{-1}^{-\alpha} \varphi_{1}\right\rangle_{\mathcal{D}}^{\perp}=\left\{w \in \mathcal{D}: \int_{\Omega} w \varphi_{-1}^{-\alpha} \varphi_{1} d x=0\right\}
\end{aligned}
$$

Observe that $\int_{\Omega} \varphi_{-1} \varphi_{-1}^{-\alpha} \varphi_{1} d x \neq 0$, thus we have the decompositions as direct sums

$$
\mathcal{C}=\left\langle\varphi_{-1}\right\rangle \oplus\left\langle\varphi_{-1}^{-\alpha} \varphi_{1}\right\rangle^{\perp}, \quad \mathcal{D}=\left\langle\varphi_{-1}\right\rangle \oplus\left\langle\varphi_{-1}^{-\alpha} \varphi_{1}\right\rangle_{\mathcal{D}}^{\perp}
$$

and consequently if $\widehat{v} \in \mathcal{D}$, we get the unique decomposition

$$
\widehat{v}=\widehat{s} \varphi_{-1}+w
$$

with $w \in\left\langle\varphi_{-1}^{-\alpha} \varphi_{1}\right\rangle_{\mathcal{D}}^{\perp}$. Let us denote

$$
P: \mathcal{D} \rightarrow\left\langle\varphi_{-1}\right\rangle, \quad Q: \mathcal{D} \rightarrow\left\langle\varphi_{-1}^{-\alpha} \varphi_{1}\right\rangle_{\mathcal{D}}^{\perp}
$$

linear operators such that $P \widehat{v}=\widehat{s} \varphi_{-1}$ and $Q \widehat{v}=w$. We can replace 4.5 by the equivalent system

$$
\begin{gather*}
Q d F\left(\varphi_{-1}\right) \widehat{v}+Q \Psi(\widehat{v})=0 \tag{4.6}\\
P \Psi(\widehat{v})=\rho \varphi_{-1} \tag{4.7}
\end{gather*}
$$

To solve (4.6), we define the function

$$
\begin{gathered}
\Gamma: \mathbb{R} \times\left\langle\varphi_{-1}^{-\alpha} \varphi_{1}\right\rangle_{\mathcal{C}}^{\perp} \rightarrow\left\langle\varphi_{-1}^{-\alpha} \varphi_{1}\right\rangle_{\mathcal{D}}^{\perp} \\
\Gamma(\widehat{s}, w)=Q d F\left(\varphi_{-1}\right)\left(\widehat{s} \varphi_{-1}+w\right)+Q \Psi\left(\widehat{s} \varphi_{-1}+w\right)
\end{gathered}
$$

This function satisfies

$$
\begin{gather*}
\Gamma(0,0)=0 \tag{4.8}\\
d_{w} \Gamma(0,0) w_{0}=Q d F\left(\varphi_{-1}\right) w_{0} \tag{4.9}\\
d_{\widehat{s}} \Gamma(0,0)=Q d F\left(\varphi_{-1}\right) \varphi_{-1} \tag{4.10}
\end{gather*}
$$

The operator $d_{w} \Gamma(0,0)$ has inverse from $\left\langle\varphi_{-1}^{-\alpha} \varphi_{1}\right\rangle_{\mathcal{C}}^{\perp}$ to $\left\langle\varphi_{-1}^{-\alpha} \varphi_{1}\right\rangle \frac{\perp}{\mathcal{D}}$. The Implicit Function Theorem applies to Γ : there exist an interval $\left(-s^{*}, s^{*}\right)$ and a function

$$
W:\left(-s^{*}, s^{*}\right) \rightarrow\left\langle\varphi_{-1}^{-\alpha} \varphi_{1}\right\rangle_{\mathcal{C}}^{\perp}
$$

such that $\widehat{v}=s \varphi_{-1}+W(s)$ solves 4.6, with

$$
W(0)=0 \quad \text { and } \quad W^{\prime}(0)=-\left[Q d F\left(\varphi_{-1}\right)\right]^{-1} Q d F\left(\varphi_{-1}\right) \varphi_{-1}
$$

Using $\operatorname{Im} d F\left(\varphi_{-1}\right)=\left\langle\varphi_{-1}^{-\alpha} \varphi_{1}\right\rangle \frac{\perp}{\mathcal{D}}$ and $W^{\prime}(0) \in\left\langle\varphi_{-1}^{-\alpha} \varphi_{1}\right\rangle_{\mathcal{C}}^{\perp}$, we conclude

$$
d F\left(\varphi_{-1}\right) W^{\prime}(0)=-d F\left(\varphi_{-1}\right) \varphi_{-1}
$$

Hence $W^{\prime}(0)+\varphi_{-1} \in \operatorname{KerdF}\left(\varphi_{-1}\right)=\left\langle\varphi_{1}\right\rangle$. Thus

$$
\begin{equation*}
W^{\prime}(0)=r \varphi_{1}-\varphi_{-1} \tag{4.11}
\end{equation*}
$$

with $r \neq 0$ because $\varphi_{-1} \notin\left\langle\varphi_{-1}^{\alpha} \varphi_{1}\right\rangle^{\perp}$. From 4.7), we find

$$
\rho=\int_{\Omega} \varphi_{-1} P \Psi\left(s \varphi_{-1}+W(s)\right) d x=\left\langle\varphi_{-1}, P \Psi\left(s \varphi_{-1}+W(s)\right)\right\rangle
$$

The function

$$
\chi(s)=\left\langle\varphi_{-1}, P \Psi\left(s \varphi_{-1}+W(s)\right)\right\rangle
$$

is regular and has first and second derivatives given by

$$
\begin{aligned}
& \chi^{\prime}(s)=\left\langle\varphi_{-1}, P d \Psi\left(s \varphi_{-1}+W(s)\right)\left[\varphi_{-1}+W^{\prime}(s)\right]\right\rangle \\
& \chi^{\prime \prime}(s)= \\
& \quad\left\langle\varphi_{-1}, P d^{2} \Psi\left(s \varphi_{-1}+W(s)\right)\left[\varphi_{-1}+W^{\prime}(s), \varphi_{-1}+W^{\prime}(s)\right]\right\rangle \\
& +\left\langle\varphi_{-1}, P d \Psi\left(s \varphi_{-1}+W(s)\right)\left[W^{\prime \prime}(s)\right]\right\rangle
\end{aligned}
$$

From $d \Psi(0)=0$ and $d^{2} \Psi(0)=d^{2} F\left(\varphi_{-1}\right)$, we obtain

$$
\begin{gathered}
\chi^{\prime}(0)=0 \\
\chi^{\prime \prime}(0)=\left\langle\varphi_{-1}, P d^{2} F\left(\varphi_{-1}\right)\left[r \varphi_{1}, r \varphi_{1}\right]\right\rangle
\end{gathered}
$$

Direct calculations show that

$$
d^{2} F\left(\varphi_{-1}\right)\left[\varphi_{1}, \varphi_{1}\right]=\lambda_{1}\left(1-\frac{\lambda_{1}}{\lambda_{-1}}\right) \varphi_{-1}^{\alpha-1} \varphi_{1}^{2} m
$$

Using the decomposition $d^{2} F\left(\varphi_{-1}\right)[r \varphi, r \varphi]=s \varphi_{-1}+w$ with $w \in\left\langle\varphi_{-1}^{-\alpha} \varphi_{1}\right\rangle \mathcal{D}$, we find

$$
s=r^{2} \lambda_{1}\left(1-\frac{\lambda_{1}}{\lambda_{-1}}\right) \frac{\int_{\Omega} m \varphi_{-1}^{-1} \varphi_{1}^{3} d x}{\int_{\Omega} \varphi_{-1}^{1-\alpha} \varphi_{1} d x} .
$$

Then $\chi^{\prime \prime}(0) \neq 0$ is equivalent to

$$
\begin{equation*}
\int_{\Omega} m \varphi_{-1}^{-1} \varphi_{1}^{3} d x \neq 0 . \tag{4.12}
\end{equation*}
$$

If $(4.12$) is true, then there exist an nonempty open interval such that the equation (4.7) has at least two solutions. Lemma 2.3 states the existence of a class m 's satisfying 4.12).
Proof of Theorem 2.7. From Lemma 3.2 the operator

$$
F(s, u):=H(s \mathcal{G}(x, u, \nabla u)+f)
$$

is well defined and is continuous, compact from $\mathbb{R}_{\geq 0} \times P^{+}$to P where P is the cone of positive functions in $C^{1}(\bar{\Omega})$ with the usual norm. Furthermore a solution v of the equation

$$
\begin{equation*}
F\left(s, v+u_{*}\right)-u_{*}=v \tag{4.13}
\end{equation*}
$$

where u_{*} is the unique solution of the problem

$$
\begin{gather*}
-\Delta u_{*}=u_{*}^{-\alpha}+f \quad \text { in } \Omega \tag{4.14}\\
u_{*}=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

satisfies the equation

$$
\begin{gather*}
-\Delta\left(v+u_{*}\right)=\left(v+u_{*}\right)^{-\alpha}+s \mathcal{G}\left(x, v+u_{*}, \nabla\left(v+u_{*}\right)\right)+f \text { in } \Omega \tag{4.15}\\
v+u_{*}>0 \quad \text { in } \Omega \\
v+u_{*}=0 \quad \text { on } \partial \Omega .
\end{gather*}
$$

The operator $T(s, v):=F\left(s, v+u_{*}\right)-u_{*}$ is well defined from $\mathbb{R}_{\geq 0} \times P$ to P and is a continuous compact operator, moreover $T(0,0)=0$ and since $T(0, v)=0$ for all $v \in P \cup\{0\}, v=0$ is the unique fixed point of $T(0, \cdot)$. For each $\sigma \geq 1$ and $\rho>0$, we have also that $T(0, v) \neq \sigma v$ for $v \in P \cap \rho \partial B$ where B denotes the open unit ball centered at 0 in $C^{1}(\bar{\Omega})$. Using Theorem 17.1 in Amman's article 3 there exist a nonempty set Σ of pairs (s, v) in $\mathbb{R}_{\geq 0} \times P$ that solves the equation (4.16). Moreover Σ is a closed, connected and unbounded subset of $\mathbb{R}_{\geq 0} \times P$ containing (0,0). The nonexistence Corollary 1.1 in [34 implies the last affirmation.

Proof of Theorem 2.8. We start as in the proof of Theorem 2.7. Hence, from Lemma 3.2 the operator

$$
F(s, u):=H\left(s\left(\mathcal{A} u^{\beta}+\mathcal{B}|\nabla u|^{\zeta}\right)+f\right)
$$

is well defined, continuous and compact from $\mathbb{R}_{\geq 0} \times P^{+}$to P where P is the cone of positive functions in $C^{1}(\bar{\Omega})$ with the usual norm. We study the fixed point equation

$$
\begin{equation*}
F\left(s, v+u_{*}\right)-u_{*}=v \tag{4.1.}
\end{equation*}
$$

where u_{*} is the unique solution of

$$
\begin{align*}
-\Delta u_{*} & =u_{*}^{-\alpha}+f \quad \text { in } \Omega \tag{4.17}\\
u_{*} & =0 \quad \text { on } \partial \Omega .
\end{align*}
$$

Moreover if v is a solution of (4.16), $v+u_{*}$ is a solution of problem (1.2). Using Amman's article [3, Theorem 17.1], we obtain the existence of a nonempty, closed, connected and unbounded set Σ of pairs (s, v) in $\mathbb{R}_{\geq 0} \times P$ that solves 4.16).

To prove existence of two solutions we obtain a constant C_{1} and a estimate $C(\delta)>0$ for $\delta>0$ such that:
(a) If (s, u) solves equation 1.2 then $s \leq C_{1}$.
(b) If (s, u) solves 1.2 then $\|u\|_{L^{\infty}(\Omega)} \leq C(\delta)$ for all $s \geq \delta$.

Using that Σ is unbounded, the conclusion of Theorem 2.8 follows.
First we prove (a). The function $Q(u)=\lambda_{1} \beta u-s u^{\beta}$ where and $1<\beta<\infty$, has a global maximum on the set of positive real numbers at $u=\left(\frac{\lambda_{1}}{s}\right)^{\frac{1}{\beta-1}}$, furthermore

$$
Q\left(\left(\frac{\lambda_{1}}{s}\right)^{\frac{1}{\beta-1}}\right)=C\left(\beta, \lambda_{1}\right) s^{-\frac{1}{\beta-1}}
$$

where $C\left(\beta, \lambda_{1}\right)$ is a strictly positive constant depending only on β and λ_{1}. From the inequality

$$
\lambda_{1} \beta u-s u^{\beta} \leq C\left(\beta, \lambda_{1}\right) s^{-\frac{1}{\beta-1}}
$$

Using equation (1.2), we deduce

$$
-\Delta u \geq \lambda_{1} \beta u-C\left(\beta, \lambda_{1}\right) s^{-\frac{1}{\beta-1}}
$$

and therefore

$$
\lambda_{1} \int_{\Omega} u \varphi_{1} d x \geq \lambda_{1} \beta \int_{\Omega} u \varphi_{1} d x-C\left(\beta, \lambda_{1}\right) s^{-\frac{1}{\beta-1}} \int_{\Omega} \varphi_{1} d x
$$

Finally

$$
\begin{equation*}
\int_{\Omega} u \varphi_{1} d x \leq \frac{C\left(\beta, \lambda_{1}\right) s^{-\frac{1}{\beta-1}}}{\lambda_{1}(\beta-1)} \int_{\Omega} \varphi_{1} d x \tag{4.18}
\end{equation*}
$$

From $\sqrt{1.2}$, we have $-\Delta u \geq f$. Using the Uniform Hopf Principle (3.11), (3.12) and 4.18), it follows that

$$
\begin{equation*}
s \leq\left\{\frac{C\left(\beta, \lambda_{1}\right) \int_{\Omega} \varphi_{1} d x}{\lambda_{1}(\beta-1) C(\Omega) \int_{\Omega} f \varphi_{1} d x \int_{\Omega} \varphi_{1}^{2} d x}\right\}^{\beta-1} \tag{4.19}
\end{equation*}
$$

This is the constant C_{1} and (a) is proved.
Now we prove (b). We establish a priori bounds for solutions of problem 1.2 using a Brezis-Turner technique (see [12]). Multiplying (1.2) by φ_{1} and integrating, we find

$$
\lambda_{1} \int_{\Omega} u \varphi_{1} d x=s \int_{\Omega} u^{\beta} \varphi_{1} d x+s \mathcal{B} \int_{\Omega}|\nabla u|^{\zeta} \varphi_{1} d x+\int_{\Omega} u^{-\alpha} \varphi_{1} d x+\int_{\Omega} f \varphi_{1} d x
$$

From (4.18) it follows that

$$
\begin{equation*}
s \int_{\Omega} u^{\beta} \varphi_{1} d x \leq \frac{\lambda_{1} C\left(\beta, \lambda_{1}\right) s^{-\frac{1}{\beta-1}}}{\lambda_{1}(\beta-1)} \int_{\Omega} \varphi_{1} d x \tag{4.20}
\end{equation*}
$$

Using the hypothesis $\zeta<\frac{2}{n}$ and Young inequality, we obtain a $q \geq 1$ such that $0<\zeta q \leq 2, \frac{1}{q}+\frac{1}{\vartheta+1}=1,0 \leq \vartheta<\frac{n+1}{n-1}$ and

$$
\begin{equation*}
|\nabla u|^{\zeta} u \leq \frac{|\nabla u|^{\zeta q}}{q}+\frac{u^{\vartheta+1}}{\vartheta+1} \leq|\nabla u|^{2}+1+u^{\vartheta} u \tag{4.21}
\end{equation*}
$$

Using the assumption

$$
\mathcal{B}<\left\{\frac{\lambda_{1}(\beta-1) C(\Omega) \int_{\Omega} f \varphi_{1} d x \int_{\Omega} \varphi_{1}^{2} d x}{C\left(\beta, \lambda_{1}\right) \int_{\Omega} \varphi_{1} d x}\right\}^{\beta-1}
$$

inequalities 4.19, 4.21, and multiplying (1.2) by u and then integrating, we find

$$
\begin{equation*}
C_{1} \int_{\Omega}|\nabla u|^{2} d x \leq s \int_{\Omega} u^{\beta} u d x+s C_{2} \int_{\Omega} u^{\vartheta} u d x+C_{3}\|u\|_{H_{0}^{1}(\Omega)}+C_{4} \tag{4.22}
\end{equation*}
$$

where C_{i} for $i=1, \ldots 4$ are positive constants independent of s. Using Hölder inequality, 4.20 and the fact that if $1<\beta<\frac{n+1}{n-1}$ then for all $\epsilon>0$ there exist a positive constant C_{ϵ} such that for all $s>0$ holds $s^{\beta} \leq \epsilon s^{\frac{n+1}{n-1}}+C_{\epsilon}$, we deduce

$$
\begin{aligned}
\int_{\Omega} u^{\beta} u d x= & \int_{\Omega} u^{\gamma \beta} \varphi_{1}^{\gamma} u^{(1-\gamma) \beta} \varphi_{1}^{-\gamma} u d x \\
\leq & \left(\int_{\Omega} u^{\beta} \varphi_{1} d x\right)^{\gamma}\left(\int_{\Omega} u^{\beta} \varphi_{1}^{\frac{-\gamma}{1-\gamma}} u^{\frac{1}{1-\gamma}} d x\right)^{1-\gamma} \\
\leq & \left(C s^{-1-\frac{1}{\beta-1}}\right)^{\gamma}\left(\int_{\Omega} u^{\beta}\left(\frac{u}{\varphi_{1}^{\gamma}}\right)^{\frac{1}{1-\gamma}} d x\right)^{1-\gamma} \\
\leq & C s^{-\gamma-\frac{\gamma}{\beta-1}}\left\{\epsilon^{1-\gamma}\left(\int_{\Omega} \frac{u^{\frac{n+1}{n-1}+\frac{1}{1-\gamma}}}{\varphi_{1}^{\frac{\gamma}{1-\gamma}}} d x\right)^{1-\gamma}\right. \\
& \left.+C_{\epsilon}^{1-\gamma}\left(\int_{\Omega}\left(\frac{u}{\varphi_{1}^{\gamma}}\right)^{\frac{1}{1-\gamma}} d x\right)^{1-\gamma}\right\}
\end{aligned}
$$

For $\gamma=2 /(n+1)$, we find

$$
\begin{aligned}
\int_{\Omega} u^{\beta} u d x \leq & C s^{-\gamma-\frac{\gamma}{\beta-1}} \epsilon^{1-\gamma}\left(\int_{\Omega}\left(\frac{u}{\varphi_{1}^{1 /(n+1)}}\right)^{2 \frac{n+1}{n-1}} d x\right)^{\frac{n-1}{2(n+1)} 2} \\
& +C s^{-\gamma-\frac{\gamma}{\beta-1}} C_{\epsilon}^{1-\gamma}\left(\int_{\Omega}\left(\frac{u}{\varphi_{1}^{2 /(n+1)}}\right)^{\frac{n+1}{n-1}} d x\right)^{\frac{n-1}{n+1}}
\end{aligned}
$$

Since

$$
\frac{1}{2 \frac{n+1}{n-1}}=\frac{1}{2}-\frac{1}{n}+\frac{\frac{1}{n+1}}{n}, \quad \frac{1}{q}=\frac{1}{2}-\frac{1}{n}+\frac{\frac{2}{n+1}}{n}
$$

with $q>\frac{n+1}{n-1}$, we apply Hardy-Sobolev inequality in [12, Lemma 2.2],

$$
\left\|\frac{v}{\varphi_{1}^{\tau}}\right\|_{L^{q}(\Omega)} \leq C\|v\|_{H_{0}^{1}(\Omega)} \quad \text { for all } v \text { in } H_{0}^{1}(\Omega)
$$

where C is a non-negative constant, $0 \leq \tau \leq 1, \frac{1}{q}=\frac{1}{2}-\frac{1}{n}+\frac{\tau}{n}, \varphi_{1}$ is the principal eigenfunction of the operator $-\Delta\left(-\Delta \varphi_{1}=\lambda_{1} \varphi_{1}\right)$ with Dirichlet boundary condition, and the Hölder inequality to obtain

$$
\int_{\Omega} u^{\beta} u d x \leq C s^{-\gamma-\frac{\gamma}{\beta-1}}\left\{\epsilon^{1-\gamma}\|\nabla u\|_{L^{2}(\Omega)}^{2}+C_{\epsilon}^{1-\gamma}\|\nabla u\|_{L^{2}(\Omega)}\right\} .
$$

From 4.22, we conclude that

$$
\begin{align*}
C_{1}\|\nabla u\|_{L^{2}(\Omega)}^{2} \leq & C s^{1-\gamma-\frac{\gamma}{\beta-1}}\left\{\epsilon^{1-\gamma}\|\nabla u\|_{L^{2}(\Omega)}^{2}+C_{\epsilon}^{1-\gamma}\|\nabla u\|_{L^{2}(\Omega)}\right\} \\
& +C\|\nabla u\|_{L^{2}(\Omega)}+C(\delta) \tag{4.23}
\end{align*}
$$

where C is a non-negative constant independent of s. The condition $\beta<\frac{n+1}{n-1}$ implies

$$
1-\gamma-\frac{\gamma}{\beta-1}=\frac{n-1}{n+1}-\frac{2}{(n+1)(\beta-1)}<0
$$

Therefore if $s \geq \delta$, we can choose $\epsilon>0$ such that

$$
C s^{1-\gamma-\frac{\gamma}{\beta-1}} \epsilon^{1-\gamma} \leq \frac{C_{1}}{2}
$$

It now follows from 4.23 that

$$
\begin{equation*}
\frac{C_{1}}{2}\|\nabla u\|_{L^{2}(\Omega)}^{2} \leq C\left\{1+C_{\epsilon}^{1-\gamma} s^{1-\gamma-\frac{\gamma}{\beta-1}}\right\}\|\nabla u\|_{L^{2}(\Omega)}+C(\delta) \tag{4.24}
\end{equation*}
$$

Finally if u is a solution of the problem 1.2 with $s>\delta>0$, there exists a constant $C(\delta)>0$ such that $\|u\|_{H_{0}^{1,2}(\Omega)}<C(\delta)$ and using classical Hölder estimates for weak solutions (see [21]) and Sobolev imbedding theorem we conclude the proof of (b). The proof is complete.

Proof of Theorem 2.9. From Lemma 3.3, the problem

$$
\begin{gathered}
-\Delta u=K(x) u^{-\alpha}+f \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

under the conditions $|K(x)| \leq B \varphi_{1}^{1+\alpha}(x)$ for some $B>0$ in $\mathbb{R}, f>t_{0} \varphi_{1}$ where $t_{0}=B^{\frac{1}{1+\alpha}}\left[\lambda_{1}\left(\frac{\alpha}{\lambda_{1}}\right)^{\frac{1}{1+\alpha}}+\left(\frac{\lambda_{1}}{\alpha}\right)^{\frac{\alpha}{1+\alpha}}\right]$, has a unique strong solution $u \in W^{2, p}(\Omega)$ within the set $\left\{v>\left(\frac{\alpha B}{\lambda_{1}}\right)^{\frac{1}{1+\alpha}} \varphi_{1}\right\}$. Furthermore if we denote H the solution map $f \rightarrow u$, it is a continuous and compact map from the set $\left\{f \in C^{1}(\bar{\Omega}): f>t_{0} \varphi_{1}\right\}$ to $\left\{u \in C^{1}(\bar{\Omega}): u>\left(\frac{\alpha B}{\lambda_{1}}\right)^{\frac{1}{1+\alpha}} \varphi_{1}\right\}$ (see Lemma 3.3). Hence the map

$$
F(s, u)=H\left(s\left(u^{\beta}+|\nabla u|^{\zeta}\right)+t \varphi_{1}\right)
$$

with $t \geq t_{0}$ is well from $\mathbb{R}_{\geq 0} \times P$ to P, where P is the cone of positive functions in $C^{1}(\bar{\Omega})$. Like in the proof of previous theorems, we study the fixed point equation

$$
\begin{equation*}
F\left(s, u+u_{*}\right)-u_{*}=u \tag{4.25}
\end{equation*}
$$

where u_{*} is the unique solution in in the set $\left\{v>\left(\frac{\alpha B}{\lambda_{1}}\right) \varphi_{1}\right\}$ (see Lemma 3.3)

$$
\begin{gathered}
-\Delta u_{*}=K u_{*}^{-\alpha}+t \varphi_{1} \quad \text { in } \Omega \\
u_{*}=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

If (s, u) solves 4.25 then $\left(s, u+u_{*}\right)$ solves equation 1.2 . Now using again the Corollary 17.2 in [3], we find a connected, closed unbounded in $\mathbb{R} \times P$ and emanating from $(0,0)$ set Σ of pairs (s, u) satisfying the equation 4.25$)$. Since the obtained solution u of problem (1.2) satisfies $u \geq\left(\frac{\alpha B}{\lambda_{1}}\right)^{\frac{1}{1+\alpha}} \varphi_{1}$, we deduce

$$
|K| u^{-\alpha} \leq B^{\frac{1}{1+\alpha}}\left(\frac{\lambda_{1}}{\alpha}\right)^{\frac{\alpha}{1+\alpha}} \varphi_{1}
$$

and from $\sqrt[1.2]{ }$, we have

$$
-\Delta u \geq s u^{\beta} \geq \lambda_{1} \beta u-C\left(\beta, \lambda_{1}\right) s^{-\frac{1}{\beta-1}}
$$

Multiplying by φ_{1} and integrating, we find

$$
\lambda_{1} \int_{\Omega} u \varphi_{1} d x \geq \lambda_{1} \beta \int_{\Omega} u \varphi_{1} d x-C\left(\beta, \lambda_{1}\right) s^{-\frac{1}{\beta-1}} \int_{\Omega} \varphi_{1} d x
$$

Thus

$$
\left(\frac{\alpha B}{\lambda_{1}}\right)^{\frac{1}{1+\alpha}} \int_{\Omega} \varphi_{1}^{2} d x \leq \int_{\Omega} u \varphi_{1} d x \leq \frac{C\left(\beta, \lambda_{1}\right) s^{-\frac{1}{\beta-1}}}{\lambda_{1}(\beta-1)} \int_{\Omega} \varphi_{1} d x
$$

Consequently,

$$
s \leq\left\{\frac{C\left(\beta, \lambda_{1}\right)}{\lambda_{1}(\beta-1)}\left(\frac{\lambda_{1}}{\alpha B}\right)^{\frac{1}{1+\alpha}} \frac{\int_{\Omega} \varphi_{1} d x}{\int_{\Omega} \varphi_{1}^{2} d x}\right\}^{\beta-1} .
$$

Recalling that

$$
\lambda_{1} \int_{\Omega} u \varphi_{1} d x=s \int_{\Omega} u^{\beta} \varphi_{1} d x+t \int_{\Omega} \varphi_{1}^{2} d x-\int_{\Omega} K(x) u^{-\alpha} \varphi_{1} d x
$$

we see that

$$
s \int_{\Omega} u^{\beta} \varphi_{1} d x \leq \frac{C\left(\beta, \lambda_{1}\right) s^{-\frac{1}{\beta-1}}}{\beta-1} \int_{\Omega} \varphi_{1} d x
$$

The rest of the proof is similar to that one of Theorem 2.8 .

References

[1] R. Agarwal and D. O'Reagan. Existence theory for single and multiple solutions to singular positone boundary value problems, J. Differential Equations 175 (2001) 393-414.
[2] R. Aris. The mathematical theory of diffusion and reaction in permeable catalysts, Clarendon Press, Oxford, 1975.
[3] H. Amann. Fixed Point Equations and Nonlinear eigenvalue Problems in Ordered Banach Spaces, SIAM Review 18 (1976), 620-709.
[4] C. C. Aranda, T. Godoy. On a nonlinear Dirichlet problem with a singularity along the boundary, Diff. and Int. Equat., Vol 15, No. 11 (2002) 1313-1322.
[5] C. C. Aranda, T. Godoy. Existence and Multiplicity of positive solutions for a singular problem associated to the p-laplacian operator, Electron. J. Diff. Eqns., Vol. 2004(2004), No. 132, pp. 115.
[6] T. Boddington, P. Gray, G. C. Wake. Criteria for thermal explosions with an without reactant consumptions, Proc. Roy. Soc. London, Ser A, Math. Phys. Eng. Sci. 357 (1977) 403-422.
[7] A. Callegari, A. Nachman. Some singular nonlinear equations arising in boundary layer theory, J. Math. Anal. Appl. 64 (1978) 96-105.
[8] A. Callegari, A. Nachman. A nonlinear singular boundary value problem in the theory of pseudoplastic fluids, SIAM J. Appl. Math. 38 (1980), 275-281.
[9] J. T. Chayes, S. J. Osher, J. V. Ralston. On a singular diffusion equation with appications to self-organized criticality Comm. Pure Appl. Math. 46 (1993), 1367-1377.
[10] H. Berestycki, L. Nirenberg, S. R. S. Varadhan. The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math. 47 (1994), no. 1, 4792.
[11] C. M. Brauner, B. Nicolaenko. On nonlinear eigenvalue problems which extended into free boundaries problems Nonlinear eigenvalue problems and bifurcation. Lecture Notes in Math. 782, Springer-Verlag, Berlin 61-100 (1980).
[12] H. Brezis, R. E. L. Turner. On a class of superlinear elliptic problems, Comm. in Part. Diff. Eq., 2(6), 1977 601-614.
[13] M. M. Coclite, G. Palmieri. On a singular nonlinear Dirichlet problem, Comm. Part. Diff. Eq., 14 (1989), 1315-1327.
[14] M. G. Crandall, P. H. Rabinowitz, L. Tartar. On a Dirichlet problem with a singular nonlinearity, Comm. Part. Diff. Eq., 2 (1977), 193-222.
[15] J. I. Diaz, J. M. Morel, L. Oswald. An elliptic equation with singular nonlinearity, Comm. Part. Diff. Eq., 12 (1987), 1333-1344.
[16] D. G. de Figueiredo. Positive Solutions of Semilinear Elliptic Equations, Lecture Notes in Mathematics. 957 Berlin: Springer 1982, pp 3487
[17] W. Fulks, J. S. Maybee. A singular nonlinear equation, Osaka Math. J. 12 (1960), 1-19.
[18] I. M. Gamba, A. Jungel. Positive solutions to a singular second and third order differential equations for quantum fluids, Arch. Ration. Mech. Anal. 156, no. 3, 183-203 (2001).
[19] P. G. de Gennes. Wetting: statics and dynamics, Review of Modern Physics 57 (1985), 827863.
[20] M. Ghergu-V. Rădulescu. Multiparameter bifurcation and asymptotics for the singular Lane-Emden-Fowler equation with a convection term, Proc. Roy. Soc. Edinburgh Sect. A 135 (2005), no. 1, 61-83.
[21] D. Gilbarg-N. Trudinger. Elliptic partial differential equations of second order, Second edition 1983-Springer-Verlag.
[22] S. M. Gomes. On a singular nonlinear elliptic problem, SIAM J. Math. Anal., 176 (1986), 1359-1369.
[23] Y. Haitao. Multiplicity and asymptotic behavior of positive solutions for a singular semilinear elliptic problem, J. Differential Equations 189 (2003), 487-512.
[24] A. C. Lazer-P. J. McKenna. On a singular nonlinear elliptic boundary value problem, Proc. Amer. Math. Soc. 111 (1991), 721-730.
[25] B. C. Low. Resistive diffusion of force-free magnetic fields in passive medium, The Astrophysical Journal, 181, 209-226, 1973 April 1.
[26] B. C. Low. Nonlinear classical diffusion in a contained plasma, Phys. Fluids 25(2) 402-407 (1982).
[27] C. D. Luning-W. L. Perry. An interactive method for the solution of a boundary value problem in Newtonian fluid flow, J. Non-Newtonian Fluid Mech. 15 (1980), 145-154.
[28] W. L. Perry. A monotone iterative technique for solution of pth order $(p<0)$ reactiondiffusion problems in permeable catalysis, J. Comp. Chemistry 5 (1984), 353-357.
[29] M. A. Del Pino. A global estimate for the gradient in a singular elliptic boundary value problem, Proc. Royal Soc. Edinburg 122A (1992), 341-352.
[30] M. Struwe. Variational Methods: Applications to nonlinear partial differential equations and hamiltonian systems, Second edition 1996 Springer.
[31] C. A. Stuart. Self-trapping of an electromagnetic field and bifurcation from the essential spectrum, Arch. Rational Mech. Anal. 113 (1991), 65-96.
[32] C. A. Stuart, H. S. Zhou. A variational problem related to self trapping of an electromagnetic field, Math. Methods Appl. Sci. 19 (1996), 1397-1407.
[33] C. Sulem-P. L. Sulem. The nonlinear Schrödinger Equation. Self-focusing and wave collapse, Appl. Math. Sci., vol.139, Springer-Verlag, New York, 1999.
[34] D. Žubrinić. Nonexistence of solutions for quasilinear elliptic equations with p-growth in the gradient, Electron. J. Diff. Eqns., Vol. 2002(2002) No. 54, pp. 1-8.
[35] Z. Zhang, J. Yu. On a singular nonlinear Dirichlet problem with a convection term, SIAM J. Math. Anal. 4 (2000) 916-927.
[36] S. H. Wang. Rigorous analysis and estimates of S-shaped bifurcation curves in a combustion problem with general Arrhenius reaction-rate laws, Proc. Roy. Soc. London, Ser. A Nath. Phys. Eng. Sci. 454 (1998), 1031-1048.
[37] J. S. W. Wong. On the generalized Emden-Fowler equation, SIAM Rev. 17 (1975).
Carlos C. Aranda
Mathematics Department, Universidad Nacional de Formosa, Argentina
E-mail address: carloscesar.aranda@gmail.com
Enrique Lami Dozo
CONiCET-Universidad de Buenos Aires and Univ. Libre de Bruxelles
E-mail address: lamidozo@ulb.ac.be

[^0]: 2000 Mathematics Subject Classification. 35J25, 35J60.
 Key words and phrases. Bifurcation; weighted principal eigenvalues and eigenfunctions.
 (C) 2007 Texas State University - San Marcos.

 Submitted August 12, 2007. Published January 2, 2008.

