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Orbital Kondo spectroscopy in a double quantum dot system

L. Tosi,1 P. Roura-Bas,2 and A. A. Aligia1
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We calculate the nonequilibrium conductance of a system of two capacitively coupled quantum dots, each
one connected to its own pair of conducting leads. The system has been used recently to perform pseudospin
spectroscopy by controlling independently the voltages of the four leads. The pseudospin is defined by the orbital
occupation of one or the other dot. Starting from the SU(4) symmetric point of spin and pseudospin degeneracy
in the Kondo regime, for an odd number of electrons in the system, we show how the conductance through each
dot varies as the symmetry is reduced to SU(2) by a pseudo-Zeeman splitting, and as bias voltages are applied to
any of the dots. We analyze the expected behavior of the system in general, and predict characteristic fingerprint
features of the SU(4) → SU(2) crossover that have not been observed so far.
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The Kondo effect, originally observed in systems of mag-
netic impurities in metals,1 has reappeared more recently in
the context of semiconductor quantum-dot (QD) systems, with
a single “impurity,” in which an unprecedented control of the
parameters could be achieved.2–5 The effect is characterized by
the emergence of a many-body singlet ground state formed by
the impurity spin and the conduction electrons in the Fermi sea.

The role of the impurity spin can be replaced by another
quantum degree of freedom (pseudospin) that distinguishes
degenerate states, such as orbital momentum. A particularly
interesting case is when both a twofold orbital degeneracy
and spin degeneracy are present, leading to an SU(4) Kondo
effect.6–19 This exotic Kondo effect has been observed in dif-
ferent systems, such as quantum dots in carbon nanotubes,9–15

silicon nanowires,16 and organic molecules deposited on
Au(111).18

Recently, a double QD with strong interdot capacitive
coupling, and each QD tunnel coupled to its own pair of leads,
has been experimentally19,20 and theoretically19,21–23 studied
[see Fig. 1(a)]. The occupation of one QD or the other plays
the role of the pseudospin. These occupations, the tunneling
matrix elements, and the voltages at the four leads can be
controlled independently. While the spin degeneracy can be
broken by a magnetic field, this also affects the conduction
leads. Instead, a pseudo-Zeeman splitting can be applied on
the QDs solely, opening the exciting possibility to explore in
detail the orbital structure of the SU(4) Kondo state and how it
is changed as the pseudo-Zeeman field reduces the symmetry
to SU(2).

So far, the theoretical study of this system has been
concentrated in equilibrium properties, for which accurate
techniques such as numerical renormalization group (NRG)
and density-matrix renormalization group can be applied.
A much richer physics is expected in the nonequilibrium
situation, which arises for finite bias voltages between the
leads connected to any of the QDs in the experiment, because
of the presence of inelastic processes. Unfortunately, the
theoretical treatment is much more difficult in this case. For one
QD, the experimental study at finite bias voltages24 allowed
the test of universality and scaling relations within different
nonequilibrium theories.25,26 Here we use the Keldysh formal-
ism within the noncrossing approximation (NCA),27,28 which

reproduces well the scaling relations mentioned above29 and
was also successfully used to interpret experimental results
on a controlled crossover between SU(4) and SU(2) Kondo
states driven by magnetic field in a nanoscale Si transistor,16

and quantum phase transitions involving singlet and triplet
states.30

We report calculations of the conductances through both
QDs in the general nonequilibrium case. We describe in
particular nontrivial changes in the conductance through one
QD as a voltage is applied to the other. We also describe how
the spectral densities evolve under application of different bias
voltages. Fingerprints of the SU(4) → SU(2) crossover are
predicted.

Our starting model is the SU(4) Anderson model which
mixes a singlet configuration |s〉 with two degenerate spin
doublets |iσ 〉 (i = 1 or 2) corresponding to one additional
electron (or hole) in QD i, through couplings �1 = �2 to a
continuum of extended states. The Hamiltonian is

H = Es |s〉〈s| +
∑
iσ

Ei |iσ 〉〈iσ | +
∑
iνkσ

ενkc
†
νkiσ cνkiσ

+
∑
iνkσ

(
V ν

i |iσ 〉〈s|cνkiσ + H.c.
)
, (1)

where c
†
νkiσ create conduction states at the source (ν = S)

or drain (ν = D) lead, and V ν
i is the hopping between the

lead ν and dot i, assumed independent of k for simplicity.
The symmetry is reduced to SU(2) by a pseudo-Zeeman
splitting δ = E2 − E1, which raises the energy of a particle
in QD2 (E2) with respect to the corresponding one for QD1
(E1). The tunnel couplings of each QD to the leads are
�νi = 2π

∑
k |V ν

i |2δ(ω − ενk), and we take the unit of energy
�i = �Si + �Di = 1 unless otherwise stated. �i correspond
to the total width at half maximum of the spectral density
in the noninteracting system. It is of the order of 20 μeV in
the experiments.19,20 Since charge configurations with two
particles are excluded, the model assumes infinite on-site
repulsions Ui and interdot repulsion U12. This assumption is
not essential in the Kondo regime for one particle (electron
or hole) in the system, which is the focus of our study. A
scheme of the setup and basic parameters is represented in
Fig. 1. In real systems, �1 �= �2 and SU(4) symmetry is lost
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FIG. 1. (Color online) (a) Scheme of the experimental setup
(Refs. 19 and 20). (b) On-site energies of our model and occupations
of both quantum dots. Our convention for application of voltages is
in (c) for a symmetric voltage drop and (d) for voltage applied only
to the source leads.

even for δ = 0. However, we find that tuning appropriately δ,
the equilibrium spectral densities for both dots ρi(ω) can be
made to coincide at low temperatures. This indicates that the
SU(4) symmetry is recovered as an emergent (approximate)
symmetry31 at low temperatures.

The NCA formalism is explained in Ref. 32 (for a more
general case) and in the Supplemental Material.33 We start
reporting the differential conductances Gi = dIi/dVi in the
SU(4) symmetric case. In Fig. 2 we show G2 as a function
of both Vi for symmetric voltage drops [VSi = −VDi = Vi/2;
see Fig. 1(c)] and coupling to the leads (�Si = �Di). By SU(4)
symmetry, G1 has the same form interchanging V1 and V2.
For V1 = V2 = 0, there is a maximum of the conductance due
to the SU(4) Kondo effect.10,11,17 At temperature T = 0, this
maximum is slightly below G0/2, where G0 = 2e2/h, due to
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FIG. 2. (Color online) Conductance of QD2 as a function of V1

and V2 for δ = 0, E1 = −4, and T = 0.005.

some degree of intermediate valence, according to the Friedel
sum rule14,17,33 (the filling is slightly below 1/4). Application
of either V1 or V2 tends to destroy the Kondo effect and
the conductance decreases. Note that application of V2 has
a stronger effect on decreasing G2 than V1. In fact for V2 = 0
and any V1, one expects that the spin Kondo effect on QD2 still
remains, although weakened, and this is consistent with our
results. As in the usual SU(2) Kondo effect, Gi(Vi) drops to
Gi(0)/2 at a bias voltage such that eVi ≈ T

SU(4)
K , where T

SU(4)
K

is the Kondo temperature for δ = 0 as discussed below. For
our parameters, T SU(4)

K ≈ 0.02 and it increases to near 0.3 if E1

is changed from −4 to −2. Since experimentally temperatures
T ≈ 0.1 can be reached, and E1 can be tuned, a wide range of
ratios T/T

SU(4)
K is accessible.

Nontrivial correlation effects between both QDs are appar-
ent in the fact that Gi increases on the lines V1 = ±V2. This is
related to the evolution of the spectral densities ρi(ω) as both Vi

are varied. We find that keeping V2 = 0 and increasing V1 (or
conversely) the Kondo peak at ω = 0 in ρi(ω) is weakened and
two peaks at ω ≈ ±eV1/2 split from it. In the general case,
when both Vi �= 0, four peaks are present in both ρi(ω) for
ω ≈ ±eVi/2. When V1 = ±V2 these peaks merge in two more
intense peaks and therefore an increase in both Gi is expected.

In Fig. 3 we show how the Gi change when a finite
pseudo-Zeeman splitting δ is introduced. It is known that the
spectral density of the dot with lower energy ρ1(ω) has still the
Kondo peak near ω = 0 and an additional peak for ω ≈ −δ,
while ρ2(ω) has only a peak for ω ≈ δ (see Fig. 4).10,14 As
a consequence, only G1 has a peak near V1 = V2 = 0, while
G2 is vanishingly small at that point. The energy scale of
the variation of G1 with V1 is again given by the Kondo
temperature TK , but it is smaller than that of the SU(4) case.
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FIG. 3. (Color online) Conductance of (a) QD1 and (b) QD2
as a function of V1 and V2 for δ = E2 − E1 = 0.5, E1 = −4, and
T = 0.005.
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FIG. 4. (Color online) (a) Spectral densities for QD1 (black solid line) and QD2 (red dashed line). (b) Gi as a function of its bias voltage
Vi keeping the other bias voltage 0. Parameters as in Fig. 3. 
 = �/2.

We have found that the binding energy of the singlet ground
state obtained from a simple variational calculation can be
described by the following expression:14

TK (δ)

TK (0)
=

√
1 + δ̃/d + δ̃2 − δ̃,

(2)

δ̃ = δ

2TK (0)
, d = D

2TK (0)
,

where TK (0) = T
SU(4)
K with T

SU(N)
K ≈ D exp[2πE1/(N�)]

and D is half the bandwidth (we took D = 10). Note that
TK (∞) = T

SU(2)
K , so that Eq. (2) interpolates between the

known Kondo temperature for both limits.14 The width of
the Kondo peak calculated within the NCA agrees remarkably
well with this expression.14 Specifically for E1 = −4 the total
width of the Kondo peak in the spectral density is found to be
1.2TK (δ).

We find that for T < TK (δ) and V1 > TK (δ), G1(V1) for
V2 = 0 presents a structure with three peaks [see Fig. 4(b)]
which has not been observed experimentally yet and is
characteristic of the SU(4) → SU(2) crossover.38 Since TK (δ)
varies over several orders of magnitude, we believe that an
experimental observation of this fingerprint of the crossover is
near the present experimental possibilities.19,20

Another apparent feature is the increase of both conduc-
tances along the lines eV1 = ±eV2 ± 2δ (shown dashed in
Fig. 3). This can be understood from the onset of cotunneling
events near these equalities.34 Let us assume first that V1 =
V2 = 0. The cotunneling event in which the electron that
occupies QD1 jumps to its source (S1) or drain (D1) lead
and an electron from S2 or D2 jumps to QD2 is inhibited
because of the energy cost δ. However, when e|V2| reaches 2δ,
an event of this type becomes possible, in which as a net result
an electron flows from S2 to D2 or conversely depending on
the sign of V2, and another electron moves from QD1 to QD2
with a possible spin flip. In a second event the electron of QD2
jumps to its lead of less chemical potential and an electron
from S1 or D1 jumps to QD1, leaving the QDs in the same
charge configuration as initially. This results in an increase of
the current flow I2 and thus to a peak in the conductance G2.

On average I1 = 0. However, a small |V1| breaks the symmetry
between S1 and D1 in the above events, leading to a large G1

also. A similar reasoning can be followed for nonzero V1.
More insight into the structure of the nonequilibrium

conductance is obtained from the spectral densities ρi(ω). At
equilibrium and low temperatures, both ρi(ω) have a Kondo
peak slightly above the Fermi energy (which we take as the
origin of energies) for δ < T

SU(4)
K ,14 while for δ > T

SU(4)
K , as

seen in Fig. 4(a), the Kondo peak in ρ1(ω) moves to the Fermi
energy and an inelastic peak near −δ appears (δ = 0.5 in the
figure). The width of the Kondo peak is ∼TK (δ). Instead ρ2(ω)
has only an inelastic peak near energy δ. We find that the width
of both inelastic peaks is of the order of T

SU(4)
K for small δ (but

δ > T
SU(4)
K in order to ensure that the inelastic peak is split

from the Kondo peak) and increases with increasing δ. This
behavior is reminiscent of the evolution of the peaks of the
ordinary SU(2) Kondo model under an applied magnetic field,
which has been studied by Bethe ansatz techniques.35

The equilibrium spectral densities can be investigated by
orbital spectroscopy controlling the parameters so that the
configuration is similar to that used in scanning tunneling
spectroscopy (STS). Specifically if �Si 	 �Di , and only the
potential at one of the drains VDi is displaced from the Fermi
level, then the dots are in equilibrium with the source leads
and for T 
 TK (δ), Gi ∝ ρi(eVi). Our calculations show that
a ratio �Si/�Di = 9 is enough to reach this STS regime. This
property was used to study the equilibrium spectral density
and to compare it with that resulting from an NRG calculation
for a case in which both spin and pseudospin Zeeman terms
were present.19 However, this destroys the Kondo effect and
the two-peak structure like that shown in Fig. 4(a) remains
unexplored. In Fig. 5 we show the evolution of the spectral
density starting from the SU(4) case and increasing δ for
parameters reached experimentally in recent work,19,20 in
particular �i = 20 μeV, T = 23 mK. While the peaks become
sharper at lower temperature, the displacement of the Kondo
peak to the Fermi energy from above, and the splitting of
the inelastic peak as δ increases, can be clearly seen. Due to
the limitations of resolution of NRG at finite energies36,37 our
NCA results are a useful complement at equilibrium42 and have
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FIG. 5. (Color online) Spectral density for QD1 for E1 = −2.5,
T = 0.1, and several values of δ.

the advantage that they can be extended to the nonequilibrium
situation.

In general, and particularly for a symmetric voltage drop,
the spectral densities change under application of bias voltages
Vi . Assuming as a first crude approximation that the ρi(ω)
are fixed, one expects that G1(V1) has a peak at V1 = 0
corresponding to the Kondo peak in ρ1(ω), and two peaks
at V1 = ±2δ/e corresponding to the inelastic peak of ρ1(ω).
This is in fact what happens for V2 = 0 [see Fig. 4(b)] but not
for V2 �= 0 [see Fig. 3(a)]. Similarly one expects only inelastic
peaks at V2 = ±2δ/e for G2(V2), as it happens for V1 = 0 but
not for V1 �= 0.

The differences with the expected behavior for rigid bands
when both Vi �= 0 are due to changes in the spectral weight
with respect to the equilibrium case. To illustrate these changes
we consider the nonequilibrium situation represented in
Fig. 4(d) of Ref. 20, in which the coupling to the source leads is
larger and the voltages are applied only in one of these sources
VSi , keeping the other three voltages at zero. Specifically we
keep �i = 1 but use �S1/�D1 = 3 and �S2/�D2 = 12, as
described in the Supplemental Material of Ref. 20. We also
changed E1 = −3 and δ = 1 to correspond approximately to

the experimental parameters. The evolution of ρ1(ω) with VS2

is shown in Fig. 6(a). At equilibrium (VS2 = 0), the spectral
density of QD1 has the two peaks mentioned above. The
inelastic peak can be understood as a mixture of the ground
state for zero hopping with an excited state in which the
electron at QD1 is displaced to QD2 and an an electron from
S2 is displaced to D1. Both states are connected in second
order in the lead-QDs’ hopping. The excitation energy is δ. As
a consequence of this mixture, when an electron is destroyed
in QD1, there is a finite probability of leaving an excited state
with energy δ. This leads to a peak at −δ in ρ1(ω). When the
chemical potential at S2 is increased, the excitation energy
decreases and the peak displaces towards the Fermi energy.
When this potential reaches δ, the inelastic peak merges with
the elastic one and this leads to a peak in G1(V1) at V1 = 0, even
at temperatures above TK (δ) for which the original elastic peak
disappears. This agrees with the result presented in Fig. 4(d)
of Ref. 20. We obtain a qualitative agreement with experiment,
but the ratio of intensities is larger in our case. This might be
due to uncertainties in the ratio E1/�i or to fluctuations in δ

introduced by decoherence effects.43

A similar reasoning as above can be followed for a
symmetric voltage drop and brings an alternative explanation
of the increase in intensity along the lines eV1 = ±eV2 ± 2δ

displayed in Fig. 3.
In Fig. 6(b) we show how ρ2(ω) changes with VS2. In con-

trast to ρ1(ω), much of the spectral weight lies above the Fermi
energy. Therefore its magnitude is proportional to the amount
of the singlet configuration without particles in the ground
state, or in other words, to the degree of intermediate valence.
We observe that ρ2(ω) increases as VS2 approaches δ.

In summary, we predict the values of the conductance
through any of two capacitively coupled QDs as the volt-
age through any of them is varied. We believe that our
results are important to stimulate further experimental re-
search along the lines of recent pseudospin-resolved transport
measurements.19,20 In particular, the presence of three peaks in
G1(V1) for V2 = 0 (or two peaks in an STS configuration) with
one of them at (V1) = 0 is characteristic of the SU(4) → SU(2)
crossover.38 This has not been observed in experiment yet.19,20

However, giving the large experimental possibilities of tuning
the parameters and the particular sensitivity of TK (δ) with the
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FIG. 6. Spectral density of (a) QD1 and (b) QD2 as a function of frequency for E1 = −3, δ = 1, and several bias voltages at source 2.
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pseudo-Zeeman splitting δ we believe that it can be observed
in the near future. An experimental study of the dependence of
the lowest energy scale TK with the pseudo-Zeeman splitting
δ would also contribute to our present understanding of the
SU(4) → SU(2) crossover.
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