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ABSTRACT 

Digestion is a mediating factor between the animals and their environment, one of the variables 

related to the efficiency in extracting energy from nutrients is rate of hydrolysis. Phylogenetical 

and functional hypothesis has been proposed linking dietary flexibility and enzyme lability. Species 

belong to Parvclass Galloanserae, studied until now, did not modulate aminopeptidase-N activity 

but they did modulate disaccharidases activities. Additionally, peptide hydrolysis has been 

demonstrated in avian caeca, but not in chickens. Finally, dietary proteins are essential for chicken 

growth in the first stages of development, but little information is available in chickens beyond 42 

days of life. Chickens beyond that age were fed for 15 days either a high protein (DHP = 49.72% 

protein and 11.92% carbohydrates) or a high starch diet (DHS = 52.82% carbohydrates and 10.49% 

protein). Aminopeptidase-N, maltase and sucrase, were assessed in chicken's small intestines and 

caeca. Body mass of DHP birds was 37.5% higher than body mass of DHS birds, at the end ofthe trial. 

Aminopeptidase-N and sucrase did not change, but maltase exhibited higher activity in DHS than 

in DHP birds. The lack of aminopeptidase-N modulation and its relatively high activity in caeca, 

together with a modulation of maltase. contribute and give apparent support to the functional 

hypothesis. Surprisingly, a high quantity of protein resulted important for growth in chickens after 

42 days of life. Also it is important to notice that a casein diet has been demonstrated as a high 

digestible meal for chickens, so the last data may be of interest for poultry industry. 

Key words: Chickens, caeca, dietary carbohydrates, dietary proteins, enzyme digestion, growth 

pattern, phenotypic flexibility 

INTRODUCTION 

Digestion is a mediating factor between the animals and their environment. The efficiency of 
the digestive system in extracting energy from nutrients is directly related to three variables: (1) 

Digesta retention time, (2) Rates of hydrolysis, fermentation and absorption and (3) Digestive tract 

surface area and volume. Enterocyte membrane bound enzymes hydrolyse the food molecules that 
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arrive to the small intestine (McWhorter et al., 2009). Aminopeptidase-N (EC 3.4.11.2) also known 

as leucine-aminopeptidase and amino-oligopeptidase (Vonk and Western, 1984), is an intestinal 

dipeptidase that hydrolyses oligopeptides into amino acids and accounts for most peptidase activity 
of the brush border membrane (Maroux et al., 1973). Carbohydrates, as maltose and small 

oligosaccharides are broken down to monosaccharides by enzyme complexes located in the brush 
border of intestinal cells, the maltase-glucoamylase (EC 3.2.1.20) and the sucrase-isomaltase 
(EC 3.2.1.48) (Noren et al., 1986). In this study they will be called sucrase and maltase, 

respectively. Sucrase catalyzes sucrose hydrolysis into its constituent sugars. In addition, this 
enzyme complex catalyzes maltose hydrolysis, a disaccharide derived from the hydrolysis of starch 
and glycogen. Maltose is also hydrolyzed by a specific enzyme, maltase (Semenza and Auricchio, 

1989; Martinez Del Rio, 1990; Marlinez Del Rio et al., 1995). 
Intestinal disaccharidase activities have been studied in chickens fed diets with variable protein 

and carbohydrate contents and it has been found that the activities of these enzymes are 

modulated by the availability oftheir substrates (Siddons, 1972; Biviano et al., 1993). As for peptide 
hydrolysis, we failed to find information for aminopeptidase-N activity in chickens beyond 42 days 
old. 

An interesting pattern of plasticity of the intestinal enzyme activities in birds has emerged. 
Birds with vestigial caeca belonging to the Parvclass Passerae modulate the aminopeptidase-N 

activity, whereas disaccharidase activities remain constant and conversely, most bird species with 

functional caeca of the Parvclass Galloanserae did not exhibit an apparent flexibility of their 
aminopeptidase-N activity but they did modulate disaccharidases activities according to the amount 

of disaccharides present in the diet (Martinez Del Rio et al., 1995; Afik et al., 1995; Ciminari, 1997; 

Sabat et al., 1998; Levey et al., 1999; Caviedes-Vidal et al., 2000; Ciminari et al., 2003; 
Ciminari et al., 2005; Foye and Black, 2006; Brzek et al., 2010). To date, two hypotheses have been 
proposed to explain this intestinal modulation pattern (Caviedes-Vidal et al., 2000). The first, 

conceived under a phylogenetical framework, proposes that differences in the modulation 
mechanisms of intestinal enzymes between Passerae and Galloanserae reflect differences in 
phylogenetical history. The second hypothesis, posed under a functional approach, proposes that 

birds having vestigial non-functional caeca modulate intestinal peptidases, while birds with 
developed functional caeca do not. Caviedes-Vidal et al. (2000) supported this last hypothesis 

arguing that a small intestinal escape of amino nitrogen, as peptides, to functional caeca could 

support microbial growth in these organs. In addition, the small intestine of birds with vestigial 
non-functional caeca has probably been selected to extract the maximum available amino nitrogen 

rather than excreting it as waste. 

Several functions have been attributed to the avian caeca, including fiber digestion, recycling 
of urinary nitrogen, osmoregulation, water and solutes absorption, vitamin synthesis and protein 
digestion, but the quantitative significance of these functions is still unclear (McWhorter et al., 
2009; Svihus et al., 2013). To our knowledge, peptide hydrolysis in the cecae has not yet been 
demonstrated for chickens, although the surface of the caeca has numerous villi (Strong et al., 
1989) and is similar to the jejunum surface (Ferrer et al., 1991) as well as caecal active sugar and 

amino acid uptakes have been described in these birds (Obst and Diamond, 1989; Moreto et al., 
1991). For these reasons digestion and final nutrient extraction may occur in the caeca. 

There are essential amino acids that are required for synthesis of indispensable proteins. Birds 

given diets supplemented with these amino acids have greatly increased the rate of protein 
synthesis and hence the rate of poultry growth and egg-laying. Experiments on chicken growth 
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have been carried out by feeding birds from 7-28 days old on diet with different protein content 

(from 0-70%) for 10 days. In these studies those birds fed on a high protein diet gained more 

weight than those on a low protein diet (Imondi and Bird, 1967; Davis and Austic, 1997; 

Rosebrough et al., 2002). In most of the studies related to the influence of the dietary protein 

content on the growth pattern and performed in chickens, they were used birds from hatch to four 

or six weeks old of age, very little information is available after that age. Only one study showed 
that chickens fed on a 52.5% carbohydrate-25% protein diet from day 1 to 73 grew up at higher 

rates and achieved higher masses than birds fed on a 76% protein-carbohydrate-free diet 

(Biviano et al., 1993). 
Therefore, the goals of this study were: (1) To assess the modulation of the small intestine 

aminopeptidase-N, maltase and sucrase in chickens fed diets differing protein and carbohydrate 
content, (2) To evaluate the magnitude and importance of protein and carbohydrate breakdown 

activity in the caeca and (3) To investigate the growth pattern of chickens beyond 42 days of life 

[the common slaughter age of broiler chickens (Leterrier et al., 1998) and up to 57 days under the 
effect of a protein-rich diet. 

Based on previous observations, we predicted that: (1) Chickens do not modulate the activity 

of aminopeptidase-N, but they will modulate maltase and sucrase activities when exposed to 
diets with an increase in their specific enzyme substrates, (2) The caeca would reached peptidase 

and carbohydrase activities founded in the small intestine distal section and (3) In chickens over 

42 days of age, growth rate would not differ significantly between high-protein and high-starch 

diet. 

MATERIALS AND METHODS 
Animal care and housing: Thirteen hatch-day Cobbs chickens were obtained from Forrajera San 
Luis (San Luis, Argentina). The birds were housed alone in individual cages (0.50xO.30xO.35 m) 

in our animal room under constant environmental conditions (room temperature: 25.2±O.3°C, 
relative humidity: 50±9%, photoperiod: 14:10 h light: dark) with ad libitum water and food. 

A commercial diet was used (Ganave® Alimentos Pilar S.A., Argentina), with the 

following composition: 

• Total protein: 20% 

• Total fat: 4% 

• Crude fiber: 3.9% 

Animal maintenance, trial protocols and sample collection followed protocols reviewed by the 

Animal Care Committee of the Facultad de Quimica, Bioquimica y Farmacia of the Universidad 

Nacional de San Luis. 

Diet acclimation: On day 42 chickens were randomly divided into two groups, six birds were fed 

with a 49.72% protein, 11.92% carbohydrate diet (DHP) and seven birds with a 10.49% 

protein, 52.82% carbohydrate diet (DHs)' Casein and corn starch were used as sources of protein 
and carbohydrate, respectively. These semi-synthetic and isocaloric diets (ME DHP=15.47 kJ g-l 

and ME DHs=16.03 kJ g-l) were formulated according to Caviedes-Vidal et al. (2000), based on 

Murphy and King (1982) (Table 1). Food and water were offered ad libitum for 15 days and body 

mass was monitored. 

3 



Asian J. Poult. Sci., 2014 

Table 1: Composition of the semi-synthetic diets fed to chickens 

Semi -synthetic diets 

Chemical composition (% w/w) 

Proteins 

Carbohydrates 

Lipids 

Components (% w/w) 
Caseina 

Corn oilb 

Corn starch' 

Salt mixtured 

Sodium bicarbonate 

Choline chloride 

Vitamin mixturee 

Cellulose! 

Ground silica sand 

Totals 

Diets 

*Low protein (Drcrs) 

10.49 

52.82 

8.34 

12.3 

8 

62 

5.5 

1 

0.2 

1 

5 

5 

100 

High protein (DHP) 

49.72 

11.92 

9.17 

60.3 

8 

14 

5.5 

1 

0.2 

1 

5 

5 

100 

Metabolizable energy content (kJ g-l)¥ 16.03 15.47 

*Caviedes-Vidal et al. (2000), High starch diet modified from Murphy and King (1982). ¥Estimation based on metabolizable energy 

prediction equations and data for poultry for foodstuffs (NRC, 1994) and values provided by diet component manufacturers. aConcentrado 

de proteinas de leche en paIva (lVIilkaut® SA, Argentina), bAceite Mazola® (Aceitera General Deheza S.A., Argentina) Maizena® 

(Unilever SA, Argentina), dgalt mixture Fox-Briggs (Fox and Briggs, 1960) and H 3B03 (9xlO-4 g), Na2Mo04.2H20 (9x10-4 g), CoS04.2H20 

(1xlO-4 g), Na2Se03 (2xlO-5), eVitamin mixture AIN 76 and fCelufil-hydrolysed USB corp 

Sample collection: Experiment was terminated when chickens were 57 days old. Briefly, birds 
were anesthetized using ethyl ether and the entire gastrointestinal tract was removed and chilled 
in ice-cold avian saline solution as done by Caviedes-Vidal and Karasov (1996). The small intestine 

was separated from the rest of the gastrointestinal tract and extraneous tissues were removed. The 

content was flushed out with cold avian saline and the intestine was measured for length and 
weighed. Immediately after, 10 em-long segments from the proximal, medial and distal parts 
(relative to the pylorus) of the small intestine were cut. Pieces were weighed and rapidly frozen and 
stored at -140°C. The two caeca were processed exactly as the small intestines and were divided into 
three portions: the neck section (closest to the small intestine), the medium section and the end 
section (the fundus). 

Sample preparation: Intestinal and caeca segments were thawed at 4°C and homogenized for 

30 sec using a Fisher Scientific homogenizer in 350 mM mannitol in 1 mM Hepes/KOH (PH 7), 
using 10 mL g-l tissue. The activity of membrane-bound enzymes was measured in whole tissue 

homogenates (Martinez Del Rio, 1990). 

Enzyme assays 
Disaccharidases assay for intestinal and caecal enzymes: Disaccharidase activities, maltase 
(E.C. 3.2.1.20) and sucrase (E.C. 3.2.1.48), were determined in the small intestine and caeca 
homogenates. The colorimetric method developed by Dahlqvist (1984) and modified by Martinez 

Del Rio (1990) was used. Briefly, aliquots of 40 flL of tissue homogenate appropriately diluted were 
incubated with 40 flL of 56 mM sugar (maltose or sucrose) solutions in 0.1 M maleate/NaOH 

pH 6.5. After a 10 min incubation at 40°C, there was added 1 mL of Glicemia 
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Enzimatica study reagent (glucose-oxidase 1000 U mL, peroxidase 120 U mL, 26 mM L-' 
4-aminophenazone, 55 M L -I phenol, 0.92 M L -I Tris buffer pH 7.4; Wiener® Laboratorios, 

Argentina). The mixture was allowed to stand at room temperature and after 20 min the 

absorbance was read at 505 nm in a Spectronic 21D spectrophotometer. Enzyme activity was 
determined using a glucose standard curve. 

Aminopeptidase-N assay: Aminopeptidase-N (E.C. 3.4.11.2) was assayed using 

L-alanine-p-nitroanilide as a substrate (Maroux et al., 1973). Aliquots of 10 flL of the tissue 
homogenate were added to 1 mL assay solution, made of 2.0 mM L-alanine-p-nitroanilide in 0.2 M 

phosphate buffer (NaH2POiNa2HP04, pH 7). The reaction was incubated during 10 min at 40°C 
and then, stopped with 3 mL of chilled 2 M acetic acid. Absorbance was measured at 384 nm and 

activity was determined using a p-nitroanilide standard curve. 

Protein measurement: The protein concentration in our samples was estimated using the 
commercial Wiener® Lab Proti 2 Assay (EDTA/Cu reagent; Wiener® Laboratorios, 

Argentina). Absorbance was read at 540 nm and the serum standard from the kit was used as 
standard. 

Standardization: On the basis of absorbance standards constructed for glucose and p-nitroanilide, 

standardized intestinal activities were calculated. Enzyme activities were calculated as summed 
(total) hydrolysis activity (flmol min-I), specific activity per unit intestinal (or caeca) wet mass 

(flmol min-I g wet tissue-I), specific activity per g of protein (flmol min-I g protein-I) and specific 
activity per nominal surface area (flmol min-I cm-2

). Although we made all those calculations, we 

present the data in flmol min-I g wet tissue-I, because oftheir advantages in using the mass of the 
tissue instead of the amount of enzyme protein, that allows ({scaling up)) the measurements done 

in the test tube to the whole organ and hence estimating its capacity to perform a certain 
function (Martinez Del Rio, 1990; Karasov and Martinez Del Rio, 2007). The summed hydrolysis 

activity of the entire small intestine and caeca were calculated by multiplying activity per gram 
tissue in each region by 1/3 ofthe small intestine and caeca total mass and summed over the three 

reglons. 

Data analysis: Results are given as Means±SEM and n is the number of individuals (n = 6 for 

DHP birds and n = 7 for DHS birds). A standard least-square method was used to estimate parameters 
of linear regressions. ANOVA-RM was used to examine the effect of the diets and the gut regions 

on enzyme activities and a paired t-test was used to assess statistical differences for all other 
comparisons. Data were tested for normality (Kolmogorov-Smirnov test) and homogeneity of the 
variance (Levene test). VVhen data did not meet these assumptions, a nonparametric test was 
used (Mann-VVhitney U-test). Lengths, nominal surface areas, masses and summed enzymes 
activities of the small intestines and caeca were normalized by body mass to test the effect of 

animal size on these parameters. None of these parameters were correlated to body mass 
(p>0.05), probably because the range of body mass in each group was too small. Thus, 

absolute values were normalized by dividing them by the body mass. Significance level for all 
tests was set at p<0.05. Kinetic parameters were determined by fitting the kinetic data by 

non-linear curve fitting (Wilkinson, 1992) to the equation: 

Activity = Vrnaxxconcentration 
Km* + concentration 
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Table 3: Small intestine, caeca and total hydrolysis capacities of aminopeptidase-N, sucrase and maltase of chickens treated either with 

a high protein-low starch (Dr,rp) or a low protein-high starch (DHS) diets 

Parameters 

Small intestine 

Caeca 

Total hydrolysis capacity 

Caeca contribution (%) 

Aminopeptidase-N (mmol min- 1) 

0.47 

0.022 

0.49 

4.53 

0.37 

0.019 

0.39 

4.93 

Sucrase (mmol min- 1) 

0.91 

0.029 

0.944 

3.18 

0.78 

0.029 

0.81 

3.60 

Maltase (mmol min-1) 

5.66 

0.11 

5.77 

1.92 

6.71 

0.11 

6.81 

1.56 

were observed along the different sections of the caeca for aminopeptidase-N activity. Maltase 

and sucrase activities of the DHS dietary group were higher in the fundus than in the medial 
section and neck (Tukey HSD p<0.05) and no differences were detected for the DHP 

group. 

Giving support to the third prediction, the contrast of the different caeca and small intestine 
segments between dietary groups ofthe specific aminopeptidase-N activity revealed that the values 

obtained for the neck section were about half of the proximal and distal small intestine activities 
and around 30% of the medial intestine section hydrolysis rate (Fig. 2c). On the contrary, 

carbohydrases activities did not hold the prediction since activities in the caeca were much lower 
than in the small intestine: (1) The neck and medial caeca sections exhibited 10 times and 20 times 

lower maltase activity than in the proximal and medial region ofthe small intestine, respectively 

while in the fundus, maltase achieved half of the activity assayed in the small intestine distal 
section, (2) Sucrase activities of the neck and medial sections of the caeca were 10 times smaller 

than in the proximal and medial small intestine and, in the fundus, the activity reached similar 
values than in the distal small intestine (Fig. 3a, b). 

Inter diet comparisons with diet effect: No differences were apparent in the activities of the 
three enzymes between the dietary groups (Fig. 3, Table 2). 

Protein content: No differences were observed for summed hydrolysis rates between the dietary 
groups for maltase (t=0.0629, p=0.951), sucrase (t=0.0566, p=0.958) and aminopeptidase-N 

(U=28.0, p=0.317). However, as previously noted for the small intestine, this lack of difference 

between treatments may be due to a body size effect. Thus, body size normalized summed activity 

rates were tested and again we failed to find significant differences among the dietary groups 

(aminopeptidase-N, U=14.0 p=0.317; maltase, U=13.0 p=0.253; sucrase, t=-0.807 p=0.436). The 

caeca contribution to the total enzyme hydrolysis capacity is limited in both dietary groups 
(Table 3). 

Summed activity: Caeca protein content did not change between diets in any of the caeca regions 
and the average was 0.239±0.0102 g g-l caeca. Caeca protein content was not significantly 

correlated with caeca mass (Fl. 72 = 0.047 p=0.829). 

DISCUSSION 
Growth: This is the first study where chickens raised on a high protein diet beyond 42 days of 

life, reached heavier body masses than birds fed on a high starch diet (Fig. 1). Nevertheless, our 

results suggest that only a high protein content in the diet is not enough to achieve an adequate 
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growth, dietary carbohydrates must be present in the diet too. Biviano et al. (1993) raised 

chickens on a carbohydrate-free diet (0%) and a high protein level (76.5%) and they gained smaller 

body masses than those fed on a high carbohydrate diet (52.5%) with a low content in proteins 

(25%). In another study chickens from 42-56 days old fed on diets with protein levels higher 

than those fed the control group generally did not increase final body weight but generally 

improved feed utilization and decreased carcass fat content (Cabel and Waldroup, 
1991). 

Gut morphology: Changes in the size of the gastrointestinal tract have been related to 

incremental feeding rates, cold exposure, low quality diet (high fiber) or reproduction 

(Karasov and Martinez Del Rio, 2007). In our study, relative small intestine and caeca masses, 

lengths and nominal surface areas of chickens were not affected by the high protein treatment or 
the high starch diet (Fig. 2a-c). In other words, the ability to process diets with dissimilar 

composition does not rely on morphological adjustments of the gut in chickens. Our birds 

compensated the lack of gut size variation when challenged with the contrasting diets, by 
displaying a high fixed aminopeptidase-N enzyme activity level and an adequate amount of 

flexibility of the tissue specific maltase activity. 

Diet effect 
Specific activities: Aminopeptidase-N wasn't assayed in chickens beyond 42 days old before and 

as for sucrase, they did not show significantly different levels between birds fed on the two diets 
(Fig. 3a-c). Maltase showed the expected positive correlation between dietary substrate and enzyme 

activity. These results support the prediction based on the observed pattern for most Galloanserae 
studied to date (except for domestic ducks and wild turkeys) that carbohydrase activity is modulated 

according to the level of carbohydrate available in the diet and that aminopeptidase-N remains 

constant. The ability to up-regulate an intestinal carbohydrase and the limited ability to 

up-regulate an intestinal protease is expected to occur in a domestic animal such as the chicken that 

has been exposed to high carbohydrate food for centuries. In addition, it is important to notice that 
our aminopeptidase-N activity values are much higher than those reported for bird species that 

modulate this enzyme (Sabat et al., 1998; Levey et al., 1999; Caviedes-Vidal et al., 2000; 

Ciminari et al., 2005). Therefore, these elevated aminopeptidase-N constitutive levels in chickens 

suggest that these birds have an adequate biochemical machinery to afford the digestion of 
protein -rich diets. 

Sucrase activity was not affected by any of the diets (DHP and DHs)' However, this result was 

expected given that sucrose may not be an important constituent ofthe diet in a granivorous bird. 

Similar results were obtained in Chickens (Siddons, 1972), Snow geese (Ciminari et al., 1999) and 

Canada geese (Ciminari et al., 1998). 

Summed hydrolysis rates: Modulation of the hydrolytic and transport activity of the intestine's 

brush border may involve changes in absorption and hydrolysis rates due to altered densities of 
transporters and hydrolases per unit intestinal mass and/area C'specific modulation))) or, may 

involve changes in intestinal mass and/or area Cnon -specific modulation)), Karasov and Diamond, 

1983). We only found specific modulation in one ofthe intestinal enzyme activity studied in maltase 

and we didn't find changes in small intestine lengths, nominal surface area and masses, 
consequently we only found non-specific modulation in maltase (Fig. 4b-c). 
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Caeca enzyme activities 

Contribution of the caeca to the total hydrolysis rate of peptides and carbohydrates: 

Results show the importance of the caeca in recovering the pep tides and less the carbohydrates, 

who reached to this organ and may be broken down by the animal membrane bound enzymes, 

aminopeptidase-N and the disaccharidases maltase and sucrase. Besides, even though the 

contribution of the caeca proteolytic capacity to the total protein degradation is scant (4.5-5%, 

Table 3), the specific activity measured is considerable. This high rate of membrane bound 

proteolysis activity is in agreement with the uptake level of amino acids observed by several 

researchers in chicken caeca (Obst and Diamond, 1989; Calonge et al., 1990; Planas et al., 1990; 
Moreto et al., 1991) which was similar to that of the jejunum. Similar high specific peptidase 

activities in the caeca were measured for Canada and Snow geese (Ciminari, 1997). Nitsan and 

Alumot (1963) also reported a high proteolytic activity in the caeca of chickens fed on a raw 

soybean diet. These authors suggested that when raw soybean is fed, protein digestion is inhibited 

in the small intestine. Therefore, the undigested protein reaches the caeca where it is digested and 

absorbed through their walls or through the colon walls. 

Caeca contribution to the total hydrolysis of carbohydrates is smaller than that of pep tides 

(1.5-3.5%). These results are consistent with a modest contribution of the caeca to the total gut 

capacity to absorb sugars (Obst and Diamond, 1989). As for the specific sucrase activity of the 

caeca, the levels measured were very low in the neck and medial section, but in the fundus, this 

enzyme exhibited similar levels to those found in the distal small intestine. The relatively high 

levels of sucrase found in the fundus are in agreement with the idea that considerable amounts of 

polysaccharides not digested by intestinal carbohydrases are hydrolyzed to disaccharides by 

microbes (Jorgensen et al., 1996) and also this is consisten with the types of material that enter the 

caeca, like finely-ground particles and/or soluble, low molecular weight, non-viscous molecules 

(Svihus et al., 2013). 

However, these activity levels pose an intriguing question about the functional significance of 

this enzyme and use of the disaccharides breakdown products by the animal, since according to 

(Planas et al., 1987), the sugar active transport ability of the fundus is null for chickens. One 

possible explanation might be that caeca paracellular absorption pathway plays an important role 

in sugar absorption as it occurs for the small intestine of birds (Caviedes-Vidal, 2003, 2007). Future 

research on passive absorption of pep tides and sugars in the caeca of galliforms would be of interest 

to test this hypothesis. 

Dietary modulation patterns in birds: Our results contribute and give apparent support to the 

functional hypothesis (Caviedes-Vidal et al., 2000) that, in the Galloanserae, a small escape of 

amino nitrogen as peptides from the intestine to the caeca can support microbial growth whereas 

the small intestine ofthe passerines, seems to have been selected to extract the maximum available 

amino nitrogen, rather than excreting it as waste. Additionally, in the chicken's caeca a small 

amount of proteins and carbohydrates digestion takes place. On the other hand, our findings are 

not enough to reject hypothesis that the observed lack of intestinal protease dietary modulation 

has a phylogenetical component because chickens belong to the Parvclass Galloanserae and they 

have an important caeca. Thus, even though our observations are an important contribution to 

enhance the amount of species tested, especially in the galliforms group, a definitive answer would 

requIre testing Passerae specIes having functional caeca and Galloanserae species 

lacking caeca. 
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Chickens raised on a high protein diet: It must be underscore that the utilization of a 

semisynthetic diet using casein as a protein source has some advantages when compared to 

commercial poultry diets, most of which are based on maize, wheat or barley. These commercial 

foods have considerable levels of fibers which reduce the level of digestibility and increase the 

amount of wastes (Jozefiak et al., 2004). Maize is the most frequent grain used in poultry diets 

among the above-mentioned cereals and even though it represents an excellent source of 

metabolizable energy for poultry, protein content of maize is both quantitatively and qualitatively 
poor (Cowieson, 2005). Peptide digestibility was very high in chicks fed on a dextrose-casein diet 

compared with corn-soy bean meal and corn-canola meal diets (Batal and Parsons, 2002). These 

results are consistent with the observation that casein is highly digestible even immediately after 

hatch (Sulistiyanto et al., 1999). 

CONCLUSION 
The observation that chickens notably improved their growth when fed on a high protein diet 

(49.72%) after day 42 (usually the slaughter day) achieving significant higher body masses (37.5% 

more at day 57) may be of interest for poultry industry. 
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