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ABSTRACT 

We extend a recently proposed Quantum Field Theory (QFT) approach to the Lifshitz formula, originally implemented 
for a real scalar field, to the case of a fluctuating vacuum Electromagnetic (EM) field, coupled to two flat, parallel mir- 
rors. The general result is presented in terms of the invariants of the vacuum polarization tensors due to the media on 
each mirror. We consider mirrors that have small widths, with the zero-width limit as a particular case. We apply the 
latter to models involving graphene sheets, obtaining results which are consistent with previous ones. 
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1. Introduction 

Lifshitz’ formula [1], provides a quite useful tool for the 
evaluation of the Casimir force [2] between bodies with 
parallel planar interfaces, and rather arbitrary frequency- 
dependent dielectric functions. In its original version, 
two disjoint media-filled half-spaces with plane, parallel 
boundaries were considered; the calculation was per- 
formed at finite temperature, and the final result for the 
interaction force was presented in terms of the dielectric 
functions that described, macroscopically, the elec- 
tromagnetic properties of each media. 

The successive refinements achieved in precision ex- 
periments measuring the Casimir force have provided a 
continuous stimulus to generalize the scope of the Lif- 
shitz formula, in order to encompass either new or more 
realistic situations [3]. One of those generalizations has 
been considered models where the fluctuating vacuum 
field, rather than being subject to ideal, “sharp and 
strong” boundary conditions, is instead in the presence of 
background potentials, localized on the mirrors [4,5]. 
These potentials are meant to implement smooth versions 
of the perfect boundary conditions. A possible way to 
justify them is by resorting to the microscopic point of 
view. Indeed, by taking into account the interaction of 
the internal degrees of freedom on the mirrors with the 
fluctuating field [5,6], one may derive an approximate 
effective action for the vacuum field, containing po- 

tentials with support at the positions of the material slabs. 
Even assuming them, as we shall do throughout this 
paper, to have time independence and translation in- 
variant properties along the two “parallel” directions, 

 1 2,x xx , the potentials are, in general, nonlocal 
functions of time  0x  as well as of  and 3x x . The 
non locality in  0 1 2, ,x x x x  can be dealt with by a 
Fourier transformation in x , since this yields a potential 
which is local in frequency as well as in the parallel 
components of the momentum. The resulting Fourier 
transformed potential will still carry a dependence on the 
normal coordinate 3 , the direction along which the 
effect of the potential on the fluctuating field is strongest. 
The potential must be, then, necessarily non invariant 
under translations in 

x

3x . We shall nevertheless assume 
that its dependence on 3x  is local1. 

In [8], a QFT approach was used to derive Lifshitz 
formula for a fluctuating real scalar field coupled to two 
material slabs, in a situation like the previously described 
one regarding both the geometry involved and the 
simplifying assumptions made. It is the aim of this article 
to adapt the approach of that reference to the case of a 
fluctuating Abelian gauge field. The derivation in [8] 
relied upon the application of the Gelfand-Yaglom (G-Y) 
formula for functional determinants [9] (for a modern 

1Non localities along the normal coordinate can be incorporated, for 
example, in an approach like the one of [7]. 
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review, see [10]), objects which arise quite naturally 
within the path integral formulation, for example, when 
incorporating corrections due to fluctuations, in the pre- 
sence a nontrivial background. 

Although we shall mostly deal with zero temperature 
calculations, it is convenient, for the sake of generality, 
to formulate the problem in terms of the Casimir free 
energy per unit area,  C  . This may, in turn, be ob- 
tained from the partition function   : 

   
 2

0

1 1
lim log ,C
L L




 

 
   

 




         (1) 

where  is a length that characterizes the size of the 
plates. 

L
   can be written as an Euclidean functional 

integral: 

   e AA     ,              (2) 

where  A  is the Euclidean action for the gauge field, 
including its coupling to the mirrors. The integral over 
the time-like Euclidean coordinate 0x  is understood to 
be taken over a finite interval of length  , with periodic 
boundary conditions for the field. The spatial coordinates 
are assumed to be confined to a box of side length , 
with Dirichlet boundary conditions2. 

L

Since we shall be interested in the Casimir force, we 
discard factors independent of , the distance between 
the mirrors. That is represented in (1) by the division by 

0 , which denotes the partition function when the 
mirrors are infinitely far apart. 

l



Relevant physical observables shall be the vacuum 
energy per unit area  limvac C  

 C

, as well as the 
Casimir force per unit area,  : 

   
,C

C l





 


              (3) 

and its zero-temperature limit  limC C   . 
In this article, we derive expressions for  C   as a 

function of the invariants that define the vacuum polari- 
zation tensor for the media on the mirrors, as well as of 
the “shape” of the mirrors, understanding by that the 
specific form of the 3x  dependence of those tensors. We 
do that for (finite) small-width mirrors and for zero- 
width mirrors, as an important special case of the former. 
In both cases we consider, we take advantage of the fact 
that the problem is essentially one-dimensional, and that 
it can be reduced to a collection of scalar problems. For 
them, we apply G-Y theorem for its exact evaluation. 

This paper is organized as follows: in Section 2 we 
introduce the class of model that we shall consider, 
writing the partition function in terms of the physical 
objects that define the system: the positions and shapes 

of the mirrors and their vacuum polarization tensors. 
Then in Section 3, we transform the system into two 
one-dimensional scalar problems. 

In 4, we start from the partition function and show that 
it can be so transformed as to be evaluated using the 
results of [8]. We then present the corresponding Lifshitz 
formula. 

The Casimir effect for systems involving graphene 
sheets has been recently studied in a series of interesting 
papers ([11-13]), including thermal effects. In Section 5 
we apply the general formula to that kind of system as a 
consistency check, deriving an explicit expression for 
cases involving graphene mirrors as a function of the 
parameters defining the vacuum polarization tensor. In 
Section 6 we present our conclusions. 

2. The Model 

Throughout this article, we consider models where the 
EM field is coupled to two imperfect mirrors modeled by 
“potentials” which are local in 3x  and translation 
invariant in x . Note, however, that those potentials, 
since they couple to the gauge field, will also have a 
tensor structure. 

As in the approach of [8], we define the system in 
terms of its Euclidean action, . Denoting by  A  the 
Abelian gauge field, that action may be written as 
follows: 

    0 ,int A A    A            (4) 

where  0 A  denotes the free gauge field action and 
 int A  the term that accounts for the coupling to the 

mirrors. The former has the standard form: 

  4
0 d inv gfA x              (5) 

with the gauge invariant piece: 

1
,

4inv F F               (6) 

and for the gauge-fixing term we assume the form: 

 21

2gf A
a

   , with  being a positive real constant. a

The interaction action int  is assumed to be com- 
posed of two terms, each one describing the interaction 
between 



A  and a mirror: 

.int L R                    (7) 

 ,I I L R

cox

, will be assumed to describe the 
interaction with a single mirror, whose properties are 
time independent as well as homogeneous and isotropic 
on each 3 nstant  plane. Regarding the 3x  di- 
rection (normal to both mirrors), we assume the 
properties of the mirrors to be local functions of that 
coordinate. 

2The final result, for , shall be insensitive to the choice oL  f 
boundary conditions on that spatial box. 
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Besides, we use the fact that the interaction terms 
preserve gauge invariance. This is guaranteed, if the 
current due to the charged microscopic degrees of 
freedom which induce the coupling terms is conserved. 
Finally, the coupling terms are assumed to be quadratic 
in A , which is a reasonable assumption to make when 
one deals with media that may be appropriately described 
by linear response theory. 

Then IS  may be put into a more explicit form: using 
a shorthand notation for the integrations, and assuming 
the I  mirror to be centered at 3 Ix a , we may write 
the term that describes its interaction with the gauge field 
as follows: 

        
3

3 3
, ,

1
, , ; ,

2
I

I
x x x

3 ,IA A x x x x x a A x x  


  
 

    

(8) 

where  I J J     is the vacuum polarization tensor, 
i.e., the correlator between currents, for the matter fields 
on the I  mirror. 

Equation (8) suggests the consideration of two situa- 
tions, the second a particular case of the first, regarding 
the mirror’s extent along the normal coordinate. Firstly, 
we may regard it to have small width, in the sense that 
the charge carriers in the medium are strongly concentrat- 
ed in a finite 3x  region. Since there is no current along 

3x , the vacuum polarization tensor (a correlator between 
currents) will be zero when one or two of its indices 
equals 3. Secondly, we shall deal with the zero-width 
limit of the previous case. 

Here, the currents are essentially planar, and we shall 
then neglect the action of  I

  on the third component 
of the gauge field. 

Thus, in the small width case we shall have, 

        
3

3 3
, ,

1
, ;

2
I

I I
x x x

3,A A x x x x x a A x x  


    
 

   

(9) 

where  I
  is the vacuum polarization tensor for the 

medium confined to the I  mirror. A convention we use 
is that in (9),   and   run from  to . This im- 
plies that the mirrors shall only involve the parallel com- 
ponents of the electric field,  and the normal com- 
ponent of the magnetic field, . 

0 2

E
3B

The tensor ,    0 3, ;y x y
I  y x x   is assumed  

to be, as a function of 3x , concentrated on a region 
centered around . Note that we are not assuming  3 0x 

that    3;I y x   necessarily can be written as the pro- 

duct of a function of 3x  by a function of y , 
0,1, 2  . For the case of very thin slabs, like the ones 

we shall consider when dealing with graphene-like 
mirrors, that factorization is a natural assumption to 

make. However, one could consider vacuum polarization 
tensors which properties depends non trivially on the 
normal coordinate. 

Performing a partial Fourier transformation in (9), i.e., 
just for the time and the parallel coordinates, we see that: 

        
3

3 3
,

1
, , , 32

I
I I

k x

.A A k x k x a A k x  
    



    (10) 

Here, and in what follows, we use the notation 
   0 1 2 0, , ,k k k k k  k

0k
 . We implicitly assume that the 

 component is summed over discrete values,  

0

2 n




nk   (the Matsubara frequencies) at finite   

temperature, and integrated (continuum values) at zero 
temperature. 

We have thus set up the general structure of the kind 
of systems that we shall consider here. In the next section 
we show how to decompose the problem of evaluating 

C  for the gauge field into two independent one-di- 
mensional systems, each one corresponding to a single 
real scalar field. 

3. Reduction to One-Dimensional Systems 

Thus each mirror has been characterized by its vacuum 
polarization tensor  I . It is convenient to decompose 
each one of them in terms of scalar functions, something 
that can be achieved, for example, by expanding the 
tensor into a complete set of orthogonal projectors. That 
decomposition is rather general, since it can be obtained 
as a consequence of the assumptions we have made. 

Let us first note that, current conservation of the 
charge carriers in the media implies that, for each 3x , 
the tensor  I

  is transverse, namely: 

  0.Ik                      (11) 

Regarding the condition above, we can find two 
independent solutions to the transversality condition, so 
that  I

  may be decomposed into two irreducible 
transverse tensors (projectors), in terms of two scalars. 
Indeed, the assumed isotropy and homogeneity of the 
media along the parallel directions, means that we can 
construct two independent transverse tensors using as 
building blocks the elements: 0k k k n  


 , and 

n n   

0x

 


, where . Note that the 

presence of  is allowed since Poincaré invariance on 
the 


n

 0,01,n 

3   spacetime does not hold necessarily true. 
Two independent projectors  and  that are 

solutions of (11) may be written as follows: 

t l

2
t k k

k
 

  

 


              (12) 

and 
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l t
  

                  (13) 

where 

2

k k
P

k
 

   


               (14) 

is the transverse projector corresponding to a 2 1  
dimensional Poincaré covariant theory. For the sake of 
completeness, we also introduce the ‘parallel’ projector 

: 

2
.

k k

k
 

 


                (15) 

They satisfy the following algebraic properties: 

, t lI        

2 l

 

0, 0, 0t l l t t t l l              

       2 22
, , , ,t t l               (16) 

where I  . Therefore we can express  I
  as 

follows: 

           2 2 2 2
3 0 3 0 3, , , , ,I I It l

t lk x f k x f k x .   k k
     

(17) 

In this way, we have succeeded in characterizing the 
I  mirror by two functions,  

,
I

t lf . To proceed to the 
reduction of the problem of evaluating    to one- 
dimensional functional determinants, we shall perform 
the same Fourier transformation we used for the inter- 
action terms, for the free action . Adopting the 
Feynman  gauge choice, 

0
 1a  

    4 2
0

1
d

2
xA x A x             (18) 

we see that 

    

    
3

2 2
0 3 3

,

2 2
3 3 3 3 3

1
, ,

2

, ,

k x
3

.

A k x k A k x

A k x k A k x

 




  

   

  

 




 

  



    (19) 

Then, the complete action may be split into two 
terms, one depending on 

  
 A A 

  and the other on 

3A : 

   3 3 ,A A  
                (20) 

with: 

 

      
3

3
,

2 2
3 3 

1
,

2

, ,

k x

I
I

I

A k x

k k x a A k x



  



        












 

   3

(21) 

and 

   
3

2 2
3 3 3 3 3

,

1
, , 32 k x

.A k x k A k x    


        (22) 

Note that, because of (20), and the fact that 3  does 
not involve any coupling to the mirrors, we may write the 
ratio between 



   and  0   as follows: 

 
 

 
 0 0


 

 





 
             (23) 

with: 

   e
A

A 
 

  
 


  .             (24) 

Applying the properties satisfied by the projectors, we 
see that: 

t l
                      (25) 

which allows us to write: 

   
    

3

2 2
3 3 3

,

2 2
3 3 3

1
, ,

2

, ,

t
t

k x

l
l

A k x k V x k

k V x k A k x ,

 

 

      

     

  



 





   

  

   (26) 

where 

     2 2
, 3 , 0 3, , ,I

t l t l I
I

V x k f k x a k
  ,

l

      (27) 

what concludes the reduction. Indeed, note that the action 
has been reduced to a quadratic form for an operator 
which has been decomposed into orthogonal rank-one 
projectors. 

4. Lifshitz Formula 

To obtain the Lifshitz formula for this kind of model, we 
proceed as follows: In the path integral for , we may 
decompose the gauge field: 



   tA A A   
                (28) 

   , ,t l t lA A
   under which the path integral measure 

factorizes. Thus, 

         t l    

,A

          (29) 

where each factor is obtained as the result of performing 
a functional integral over one scalar degree of freedom, 
namely, 

          , , ,expt l t l t l t lA             (30) 

where 

    
         

3

, ,

, ,2 2
3 3 , 3 3

,

1
, ,

2

t l t l

t l t l
t l

k x

A

, .A k x k V x k A k x 
      



 





   

(31) 
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Then we see that the free energy becomes: 

     C t l                (32) 

where 

 
   
   

,

, 2 ,
0

1 1
lim log

t l

t l t lL L




 

 
    

  




       (33) 

or 

 
 

 
 

3
,

, 3
0

detd1
log

2 det2

t l

t l

T kk

T k


 
  
   









       (34) 

where: 

   2 2
, 3 , 3 ,t l t lT k k V x k    

  



 

  2 2
0 3 .T k k  

                  (35) 

The system has been reduced to two independent 
Casimir problems, each one of them corresponding to a 
real scalar field in the presence of its potential backg- 
round ,t l . These potentials are built in terms of the 
functions that appear in the decomposition of the vacuum 
polarization tensor into a set of irreducible tensors. 

V

Applying the general formula derived in [8], we may 
write for each contribution above: 

 
 

 

 

 

2 2
212 21

, 1 1
11 11 ,

1
log 1 e ,

2

k l

t l
k t l

T T

T T
  

   
  

 



      (36) 

where ,t l  is the result of performing the following 
change of basis to the matrix 

T

,t lA : 
1

,t l t lT B A B ,                (37) 

with 

1 11
,

1 12
B

 
   

              (38) 

and ,t lA  are defined as in [8], regarding each one,  or 
, as due to an independent field, in its own background 

potential. 

t
l

5. Zero Width Mirrors 

We characterize thin mirrors here as systems where the 
interaction between field and mirrors is confined to 
zero-width planes. Thus, in this case, 

        2 2 2 2
, 0 3 3 , 0, , , ,I I

t l I I t lf k x a x a g k  k k

, .

   (39) 

and 

       2 2
, 3 3 , 0, I

t l I t l
I

V x k x a g k  k
      (40) 

Recalling the known result of [8] for the case of a real 
scalar field in the presence of zero width mirrors, we see 

that: 

 
   

     
2

, ,
,

, ,

e1
log 1 .

2 2 2

k lL R
t l t l

t l L
k t l t l

g g

k g k g




R

 
    

   




  

  (41) 

Then, the Casimir force per unit area becomes: 

         t l
C C C                (42) 

with 

   

   

,

2

, ,

,
2 2

1 1 1 e

t l
C

k k l

L R
t l t l

k

k k

g g

 
  
    
  
  


 



 

      (43) 

where the arguments of  and    2 2
, 0 ,L

t lg k k     2 2
, 0 ,R

t lg k k  
were omitted. 

For a graphene sheet ([11-13]), which can be reasona- 
bly described by a zero-width mirror, the corresponding 
g  functions may be read off from its vacuum polariza- 
tion tensor, the result being: 

 2 2 2 2 2
0 0,t Fg k k v k k  

 
2 2

2 2 0
0 2 2 2

0

,l

F

k
g k

k v
 




k
k

k
         (44) 

with 
2

16

e N  , where  is the number of fermion 

flavours,  the couppling constant, and 

N

e Fv  the Fermi 

velocity. 
Using these expressions into the general formula for 

thin mirrors, we obtain the Casimir force for cases 
involving either two graphene sheets or, as a limiting 
case, a graphene sheet and a conducting mirror. The 
latter may be obtained from the graphene case by setting 
the Fermi velocity to 1 and    in one of the 
mirrors. 

In Figure 1 we plot the zero temperature pressure 
times  as a function of 4l   for the case of a perfectly 
conducting mirror in front of a graphene sheet, for 
different values of Fv

Fv

, and in Figure 2 for two identical 
graphene sheets. Note that in both figures the solid line 
corresponding to 1  represents a ‘relativistic 
matter’ case, where    I I

t lf f , considered in [6]. 

6. Conclusions 

We have derived a general expression for the Casimir 
free energy, using an entirely field theoretic approach, 
whereby the problem is analyzed in terms of the func- 
tional determinant for a fluctuating Abelian gauge field. 
We have shown that, under some assumptions regarding 
form of the coupling between the gauge field and the 
mirrors, the problem can be reduced to scalar systems,  
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Figure 1. Casimir force times  as a function of l 4  , for a perfectly conducting and a graphene mirror with different values 
of . The solid line corresponds to , the dashed line to Fv Fv 1 Fv 0.2  and the dotted one to . Fv 0

 

 

Figure 2. Casimir force times  as a function of l 4  , for two identical graphene mirrors characterized by . The solid line 

corresponds to , the dashed line to  and the dotted one to 
Fv

Fv 1 Fv 0.2 Fv 0 . 
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The result is expressed in terms of the invariants of the 
Euclidean version of the vacuum polarization tensor due 
to the charged matter inside the mirror. In this way one 
may bypass the calculation of the reflection coefficients 
of each mirror, as it would be the case with the usual 
version of Lifshitz formula. Besides, the result for small- 
width mirrors allows for cases where the material media 
have a non trivial dependence along the normal direction; 
for example, one could consider vacuum polarization 
tensors corresponding to stratified media. 
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