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Introduction

This paper is devoted to the study of the following operator norm inequalities when an additional
seminorm is consider on a complex Hilbert space H:

() IfV, W € L(H) are semidefinite positive then || W!V!| < |WV||* forevery t € [0, 1];
(I) IfV, W, X € L(H) then [|[WW*X + XVV*|| > 2| W*XV;
(1) If S, R € L(H) are invertible then ||[SXR™! 4+ (S*)~1XR*|| > 2||X|| for every X € L(H).
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Here, L(#) denotes the algebra of all bounded linear operators on #, T* denotes the adjoint operator
of T € L(H) and || - || denotes the operator uniform norm. Inequality (I) is due to Cordes [8] (see also
the paper by Furuta [13] for another proof). Inequality (II) is due to McIntosh [17] and it is known
as the arithmetic-geometric-mean inequality. Different proofs of this property and its extension for
every unitarily invariant norm can be found in [4,5,15]. Finally, Corach et al. [7] gave the first proof of
inequality (III) for S = R invertible and selfadjoint operators, which is known as CPR-inequality. Later,
Kittaneh [16] proved the nonsymmetric version of it valid for every unitarily invariant norm, for all
X € L(H) and all invertible S, R € L(*+). See [1] for several equivalent expressions of inequality (III).

The main goal of this article is to study these properties if we consider an additional seminorm || - ||4,
defined by means of a positive semidefinite operator A € L(#) by ||§ ||/§ =(£,&E)a=(A5,8), E e,
and we replace the operator norm in inequalities (I), (II) and (III) by the quantity

[ITlla = sup{lIT&la : IE[la = 1}.

The extension of these properties is not trivial since many difficulties arise. For instance, it may happen
that ||T||4 = oo for some T € L(#). In addition, not every operator admits an adjoint operator for the
semi-inner product (, )a.

The contents of the paper are the following. In Section 1 we set up notation, terminology and we
describe the preliminary material on operators which are bounded for the A-seminorm. In Section 2
we study the concept of an A-positive operator and we extend Cordes inequality for the seminorm in
matter. In Section 3 we generalize the arithmetic-geometric-mean inequality for this seminorm and,
as a consequence, we obtain different extensions of the CPR-inequality. At the end of this section we
describe the classes of operators which satisfy these extensions.

1. Preliminaries

Along this work 7 denotes a complex Hilbert space with inner product (, ). L(%) is the algebra of
all bounded linear operators on ‘H, L()™ is the cone of positive (semidefinite) operators of L(%), i.e.,
L(H)":={T € L(H) : (T, £) >0V£ € H}and L, (H) is the subset of L(#) of all operators with closed
range. Forevery T € L(H) its range is denoted by R(T), its nullspace by N(T) and its adjoint operator by
T*.Inaddition, if Ty, T, € L() thenT; > T, meansthatT; — T, € L(*)T. Givena closed subspace S of
'H, Ps denotes the orthogonal projection onto S. On the other hand, T' stands for the Moore-Penrose
inverse of T € L(#). Recall that T is the unique linear mapping from D(T) = R(T) @ R(T)* to 1
which satisfies the four “Moore-Penrose equations”:

TXT:T, XTX:X, XT:PR(T*)' and TXzPW'D(TT)'

In general, T* ¢ L(H). Indeed, TT € L(#) if and only if T € L(#) has closed range [18]. On the other
hand, given T, C € L(#) such that R(C)  R(T) then it holds TTC € L() even if TT is not bounded.
Given A € L(H)T, the functional

(JaHxH—>C (& na=(AEn)

isasemi-inner producton #.By || - |4 we denote the seminorminduced by (, )4,i.e., ||E]la = (&, é)}*/z.
Observe that ||£]l4 = 0 if and only if £ € N(A). Then || - ||4 is a norm if and only if A € L(%)™ is an
injective operator. Moreover, (, )4 induces a seminorm on a certain subset of L(7{), namely, on the
subsetofall T € L(+) for which there exists a constantc > Osuchthat || T£ ||4 <c||&]||a forevery& € H.
In such case it holds

IITE A
(Tl <0

= sup
eena) & lla

We denote
Ly (H) ={T € L(H) : ||T&|la <c||&||a for every & € H]}.

It is easy to see that L,1/2 (%) is a subalgebra of L(7). In [2] we study some properties of the operator
seminorm || - ||4. One of them shows the relationship between the A-seminorm and the operator
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uniform norm as follows: if T € Ly12(#) then A'/2T(A'/?)T is a bounded operator on D((A'/?)T).
Moreover, it holds

ITlla = IA>T@AY)T|| = [AI2T(AT2)T|| = ||(AV*)TT*A1/2],
where A1/2T(A1/2)T denotes the unique bounded linear extension of AY2T(AY/2)T to L().
Given T € L(H), an operator W € L(H) is called an A-adjoint of T if
(TE, n)a = (§, Wn)a forevery&,n € X,

or, which is equivalent, if W satisfies the equation AW = T*A. The operator T is called 4-selfadjoint
if AT = T*A. The existence of an A-adjoint operator is not guaranteed. Observe that T admits an
A-adjoint operator if and only if the equation AX = T*A has solution. This kind of equations can be
studied applying the next theorem due to Douglas (for its proof see [10] or [11]).

Theorem 1. Let B, C € L(H). The following conditions are equivalent:
1. R(C) C R(B).
2. There exists a positive number A such that CC* < ABB*.

3. There exists D € L(H) such that BD = C.

If one of these conditions holds then there exists a unique operator E € L(H) such that BE = C and
R(E) C R(B*).

Therefore, if we denote by L, (%) the subalgebra of L(7¢) of all operators which admit an A-adjoint
operator then

La(H) = {T € L(H) : T*R(A) C R(A)}.

Furthermore, applying Douglas theorem we can see that
Lyz2(H) = (T € L(K) : T*R(A?) € R@A'/?)).

In [14, Theorem 5.1], the following relationship between the above sets is proved:
La(H) C Lyij2(H).

Moreover, it can be checked that the equality holds if and only if A has closed range.

If an operator equation BX = C has solution then it is easy to see that the distinguished solution of
Douglas theorem is given by BIC. Therefore, given T € Ly(H), if we denote by T? the unique A-adjoint
operator of T whose range is included in R(A) then

T4 = ATT*A.

Note that if W is an A-adjoint of T then W = T* 4 Z, withZ € L() such thatR(Z) € N(A).In the next
proposition we collect some properties of T* which we shall use along this work. For its proof see [2,3].

Proposition 1.1. Let T € Ly(H). Then:

1. T% € La(H), (TF)F = PregyTPraay and ((THH* = 17,

2. IfW € La(H) then TW € Ly(H) and (TW)* = WATE,
1/2

3. (Tl = IT81a = 757112

4. |Wlla = |IT?||a for every W € L(#) which is an A-adjoint of T.

2. Cordes inequality for the A-seminorm

Cordes inequality [8] states that if W, V are bounded positive operators then
WV < Iwv|* (1)
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for every t € [0, 1]. Furuta [13] gave an alternative proof of (1) and he proved that this inequality is
equivalent to the well-known Léwner-Heinz inequality:

if 0SW <V then W! < V! for every t € [0,1].

This section is devoted to obtain a version of the well-known Cordes inequality for the operator
seminorm || - ||4. In order to extend (1) we prove the following two technical lemmas. In the sequel

we say that T € L() is an A-positive operator if AT € L(H)T.
Lemma 2.1. LetA € L(H) " and T € L(H). The following assertions are equivalent:

1. T is an A-positive operator;
2. T € Lyi2(H) and AV2T(AV2)T € L(H) ™.

Proof. If AT € L(H)T then AT = T*Aand so T € Ls(H) C Lyi/2(H). Then A'V/2T(AV/?)T = (A1/2)TT*
A2 | p((a1/2)t) is @ bounded positive operator on D((A'/?)"). Therefore, A1/2T(A1/2)T € L(#)*. On the

contrary, if A1/2T(A1/2)T € L(#) " then (AY/2)TT*A/2 € L(#)*. Hence we get A/2(A1/2)TT*A1/241/2
= P@|D((A1/2)T)T*A =T*A € L(H)™. So T is an A-positive operator. [J

Lemma 2.2. Let A, T € L(H) ™. The following assertions are equivalent:

1. T is an A-positive operator;
2. T is an A'/2-positive operator.

Proof. If T € L(H)™ is an A-positive operator then AT = TA. So, A"T = TA" for every n € N. Thus,
p(A)T = Tp(A) for every polynomial p. Now, consider f(t) = t'/2. Then there exists a sequence of
polynomials {p,} such that p, (t) et f(t) uniformly. So, p,(A) =% f(A) = A'/2. As a consequence

we get that AV2T = TAY2? and so T is an Al/z-positive operator. Conversely, if T € L(#)™T is an A2
positive operator then A'/2T = TA'/2. Therefore AT = A'/>TA'/? is a positive operator. So, T is A-
positive. [

The next proposition is a restricted version of Cordes inequality for the A-seminorm.

Proposition 2.3. Let A, V,W € L(H)*. IfV and W are A-positive operators then

1/2
W22, < w3/,

Proof. First note that since W € L(H)™ is an A-positive operator then, by Lemma 2.2, the operator
wl/2is A-positive too. So, W, w2 e Ly1/2(H) and, by Lemma 2.1, we get that (AI/Z)TWAV2 e L(H)T
and (A'/2)Tw1/241/2 ¢ L(1)T. Now, observe that ((A'/2)TWA1/2)1/2 = (A1/2)TW1/241/2_ The same
remarks hold for the operator V. Then we get,

||W1/2V1/2 ”A — ||A1/2W1/2V1/2(A1/2)T”
— ”(Al/Z)Tvl/ZAl/Z(Al/Z)TWl/ZA]/Z ”
— ”((Al/Z)TVA1/2)1/2((A1/2)TWA1/2)1/2 ”
< ”(A]/Z)TvAl/Z(Al/Z)TWA]/Z”]/2

1/2
=W

where the inequality holds by Cordes inequality for t = % O
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In the following result we present a generalization of Cordes inequality for the A-seminorm. In
the proof, the concept of spectral radius of a bounded linear operator appears. Remember that, given
T € L(H), the spectral radius of T is the number

r(T) = sup |Al;
reo (T)

where o (T) denotes the spectrum of T. In addition, it holds that r(T) = lim,_ oo || T" ||1/”. From this
we get, r(T) < || T||. On the other hand, if T = T* then r(T) = ||T|| and for every T,S € L(*) it holds
r(TS) = r(ST). For a proof of the above facts the reader is referred to the books of Reed and Simon [19],
Conway [6] and Davidson [9]. The proof of the next theorem follows the idea of Fujii and Furuta [12].

Theorem 2.4. Let A, V, W € L(H)T.IfV and W are A-positive operators then for every t € [0, 1] it holds

WV la < IWVI3. (2)
Proof. Note that since W € L(®)™ is an A-positive operator then, a similar argument to that of the
proof of Lemma 2.2 shows that W' is A-positive for every t € [0, 1]. Now, we claim that it is sufficient

to prove the inequality (2) in a dense subset D of [0, 1]. In fact, let ty € [0, 1]. Then, there exists a

sequence {tx} € D such that ty —> tg. So, V&kW% — VoW, On the other hand, since W* and
k— 00 k—o00

V! are A-positive for every t € [0, 1] then, by Lemma 2.2, we get A'/2VIW! = VIW!A'/2 for every
t € [0, 1]. In consequence, ||W% V]| 4 = [Wiyto| 4. Indeed,
—00

WSV — WOV la|= |I[AY2)TVEW A2 — | A1) TV WAl 2
< ”(Al/Z)T (Vtkwtk _ Vt[)Wt0>A1/2”
— Il(Al/Z)TAl/z (VtkWtk _ VtOWto) ”

< ViEkwk — ylowh| —s 0.
k— 00

Therefore, if the inequality (2) holds for every t € D then

toy /L . iy st : t 11
[WOVP|a = lim [[W*VE|a< lim [[WV] 5 = [[WV]|,.
k— o0 k— 00

Now consider D = {zﬂn m=1,...,2"n¢ N}which isadense subset of [0, 1]. Note that the inequal-

ity(2)holdsfort =0, t = %andt = 1.Therefore, to prove that it holds for every element of D it is suf-
ficient to show that if | W VS|4 < [WV|3 and |[W'VE |4 < [[WV], fors, t € Dthen [W'VT |4 < [[WV]}
forr = % Now, since AW'V" = W'V"A then

A2Wryr (A1/2)F = (A1/2)TwryTal/2, (3)

On the other hand, since W VW' € L(%)* and AW VW™ = W' V¥ WA then AW™VZ W' is positive
and so, by Lemma 2.1,

AZWTVZr W (A1/2)T = (A2 TwTvZrwral/? (4)
is positive too. Now, from equalities (3) and (4) we get
WV =AWV a2 T)?
= |[A2WVT(AT2)T AV WV AT
— ” (Al/Z)TWrVrAl/Z (A1/2)T(err)*A1/2 ”
=l Twvrwal?|
:r((Al/z)TererrAl/z).



M.C. Gonzalez / Linear Algebra and its Applications 434 (2011) 370-378 375

On the other hand, as WSV*A = AWSVS then (VSW*)# = PIWWSVS. Therefore
VWS4 = [IWV 4.
Now, by properties of spectral radius and by the fact that W™ and V2" belong to Ly1/2 () we get
r((Al/Z)TWTVZTWrA]/Z) Zr((Al/Z)TWTAl/Z (Al/Z)TVZTAl/Z (A]/Z)TWTAl/Z)
:r((Al/Z)TVZTA1/2(Al/Z)TWZTAl/Z)
:r((A1/2)TVtW[A]/2 (Al/Z)TWSVSAl/Z)
<IUWVIAIVWE g = WV WPV 4
<IWVIE™ = IwvIig.
Therefore, the proof is complete. []
3. The arithmetic-geometric-mean inequality for the A-seminorm
We begin this section by presenting the following operator form of the so-called “arithmetic-
geometric-mean inequality”
[WW*X + XVV*| = 2| W*XV|],

valid forany V, W, X € L(H).The above inequality is due to McIntosh [17] and it also holds for every uni-
tarily invariant norm (see [5,15]). But here, we only shall deal with the version of McIntosh’s inequality
for the operator uniform norm. In the following result we generalize the arithmetic-geometric-mean
inequality for the operator seminorm induced by A € L(#) ™.

Proposition 3.1. Let V,W € [4(H) and X € Ly12(H). The following inequalities hold and they are
equivalent:

L [WEWX + XVEV |4 > 2| WXV | 4;
2. [WWEX 4 XVEV |4 > 2| WEXVE | 4;
3. [WWEX 4+ XUV |4 = 2| WEXV | 4.

Proof. First let us prove that the inequality of item 1 holds. Note thatA”ZW(AVZ)T, Al/ZV(Al/Z)Jr and
A'2X(A'/2)T are bounded operators on D((A'/?)T). Now, it holds

[WEWX + XVEV || = [|A2ATW*AWX (A'/2)T + A'2XATV* AV (AT
> 2||A1/2W(A]/Z)TA]/ZX(A]/Z)T(Al/z)TV*Al/z I
> 2||A1V2W (AV2)TAT2X (AT2)T (AY2) VA2 | oy |
—2||A12W (A1/2)TA12X (A1/2)T (A1/2)Ty=A(A1/2)T)|
=2||AV2WxATV*AAV AT
=2[WXVF||;

where the first inequality holds by the arithmetic-geometric-mean inequality. So item 1 holds.
1 — 2. Observe that

IWWEX + XVEV || g = || Proy WPry WFX + XVEV |4

= [(WHP WX + XVPV |5
> 2 WAXV? 4,

where the inequality holds by item 1. Then item 2 is obtained. Employing a similar argument to that
used above we prove implications 2 — 3and3 — 1. [
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3.1. CPR-type-inequalities for the A-seminorm

In this subsection we obtain a Corach-Porta-Recht (CPR) type inequality for the A-operator semi-
norm. The CPR-inequality [7] asserts that if S, X € L(#) with S invertible and selfadjoint then
ISXs™! + s7IXs|| = 2|1X].
Later, Kittaneh [16] proved it for general invertible R, S € L(#), X € L(H) and unitarily invariants
norms in L(H), that is
ISXR™" + ($*) " XR*|| > 2[IX]I. (5)

He proved this inequality by showing that it is equivalent to the arithmetic-geometric-mean inequality.
Following the same lines of the Kittaneh’s proof, the inequality (5) can be extended to the case S, R
injective operators in L. () . In such case, for every X € L(+) and every unitarily invariant norm it
holds

ISXRT + ($*)TXR*[| > 2/1X]]. (6)
Remark 3.2. If S or R is not an injective operator then inequality (6) is false, in general. In fact, let
H = R?. Now take S = G }) R = I (the identity operator) and X = (1(/)2 8). It is easy to check

2
that ST = (}?j };3).Now, observe that ||SX + STX||?> = H (g?g g) H = g—g. Therefore ||SX + STX|| =

50 _
0 <1 =2|x].

In the next result we generalize the CPR-inequality for the A-seminorm in two different ways. The
proof follows the idea used in [16, Corollary 1].

Theorem 3.3. Let X € Lj12(H) and S € L (H) an injective operator such that S, ST € La(H). Then the
following assertions hold:
1. IfR € L (M) is an injective operator such that R, RT € L () then:
ISXRT + (S)*XR? 14 > 21| -
2. If R is a surjective operator such that R, RT € Ly(*) then:
ISXRD)? + (ST)*XR]la > 2[1X]l-

Proof. It is well-known that S € L., (%) if and only if S* € L, (). Therefore ST, (*)T € L(%) and

(SH* = (5*)T.Now, as S € L () is an injective operator such that S, S" € L, (%) thenS*(s")? = Pray-

1. Since R is injective then R'R = I. Thus

ISXRT + (ST)2XR® || = |1SS*(ST)*XRT + (ST)*XRTRR? |4
>215%(S)?XR Rila = 2[1PgayX 14
=2X]|a,
where the inequality holds by item 3 in Proposition 3.1.
2. Since R is surjective then RT € L(#) and RR" = I. So (R")?R? = Preay- Now,
ISXRD? + (SHEXRIIa= 155" (SH*X RN + (SHEX RN RER]a
> 2||S*(S)EX RN R |4 = 2| PrgayXPrcaylla
=2X]|a,
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where the inequality holds by item 2 in Proposition 3.1. [

In the sequel we study the sets of operators which satisfy Theorem 3.3, namely,
A= (T € Le(H) : Tisinjectiveand T, T" € Ly(H)}
and
Y ={T € L(®) : Tissurjective and T, TM € La(H)}.

The description of A and X will be done by means of the matrix representation of operators of L(#)
induced by the decomposition H = N (A)* @& N(A). In such case, A € L(®) T has the representation

(59
where a € L(N(A)1)™ and N(a) = {0}.

Proposition 3.4. Let T € L.-(H) and A € L(H)" with the matrix representation (7). Then the following
assertions are equivalent:

1.T € A;
2.T = (2; g); where t; € Ly (N(A)J-) is injective, t4 € Lo (N(A)) is injective, R(tfa) < R(a) and

R((t})*a) € R(a).

Proof. 1 — 2. Consider the following matrix representations of T and T" under the decomposition
H=N@A)" ®N@A),

T = (tl tz) and T = <r1 r2> .
t3 1ty 3 I
Since T, T' € Lx(*) and N(a) = {0} thent, =0, r, = 0, R(tfa) € R(a) and R(r{a) € R(a). Now, as

T'T = I then ryt; and rat4 are the identity operator on N(A)L and N(A), respectively. So t; and t,
are injective operators. Furthermore, since TT" is selfadjoint then r; = (t;)" and r4 = (t4)'. Therefore
t1 € L (N(A)Y), ta € Ly (N(A)) and R((E))*a) € R(a).

2 — 1.SinceT = (g 21) and R(tfa) € R(a) thenR(T*A) € R(A)andsoT € L4(*).On the other
hand, since t; and t4 are injective operators then T is injective. As, in addition, t; and t4 have closed range

i
then it is easy to check that T" = (_;13 i 3) Furthermore, as R((tT)*a) C R(a) then R((TH)*A) C
a3ty 4y

R(A). Therefore T € L4(#) andsoT € A. O

Proposition 3.5. Let T € L(H) and A € L(H)™ with the matrix representation (7). The following asser-
tions are equivalent:

1.Te X,
2.T= (g g); where t; € LIN(A)L) is surjective, ts € L(N(A)) is surjective, R(tJa) C R(a),

R((t)*a) € R(a) and R(t}) € R(t}).

Proof. 1 — 2. Consider the following matrix representations of T and T' under the decomposition
H=N@A)" ®N®A),

_(t1 B f_ ("1 1
T_<t3 t4> and T _<r3 r4>‘
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Since T, T' € Ly(+) and N(a) = {0} thent, =0, r, = 0, R(tfa) € R(a) and R(rfa) < R(a). Now, as
TTT = I then t;r; and tyry4 are the identity operator on N(A)L and N(A), respectively. So t; and t4
are surjective operators. Furthermore, since T'T is a selfadjoint projection then r; = (t; )T and i1} =

—t¥r%. So R((t])*a) € R(a) and R(t}) = R(tir}) € R(£3).
2 — 1.SinceT = (g g) and R(t{a) € R(a) thenT € L,(#). On the other hand, since t; and t4

—tyt3t]  ty
R((t;r)*a) C R(a) then TT € L,(#). Therefore, as TTT = I, the operator T is surjective and thenT € X.
O

i
are surjective operators and R(tj) € R(t]) then it is easy to check that Tt = < :ﬁ] ¥ 2) and, as

Remark 3.6

1. GivenT € A thenT' € Aifand only if T € GI(H).
2. GivenT € X thenT' € X ifand only if T € GI(H).
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