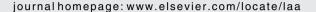


Contents lists available at ScienceDirect

Linear Algebra and its Applications



Operator norm inequalities in semi-Hilbertian spaces

María Celeste Gonzalez *,1

Instituto Argentino de Matemática "Alberto P. Calderón" (IAM-CONICET), Saavedra 15, Piso 3 (1083), Buenos Aires, Argentina Departamento de Matemática, Facultad de Economía y Administración, Universidad Nacional del Comahue, Neuquén, Argentina

ARTICLE INFO

Article history: Received 17 May 2010 Accepted 20 August 2010 Available online 22 September 2010

Submitted by R.A. Brualdi

Dedicated with much affection to the memory of Silvia Mercader.

AMS classification:

46C05

47A05

47A30

Kevwords:

Semi-inner products

Norm inequality

ABSTRACT

In this work we extend Cordes inequality, McIntosh inequality and CPR-inequality for the operator seminorm defined by a positive semidefinite bounded linear operator A.

© 2010 Elsevier Inc. All rights reserved.

Introduction

This paper is devoted to the study of the following operator norm inequalities when an additional seminorm is consider on a complex Hilbert space \mathcal{H} :

- (I) If $V, W \in L(\mathcal{H})$ are semidefinite positive then $||W^t V^t|| \le ||WV||^t$ for every $t \in [0, 1]$;
- (II) If $V, W, X \in L(\mathcal{H})$ then $||WW^*X + XVV^*|| \ge 2||W^*XV||$;
- (III) If $S, R \in L(\mathcal{H})$ are invertible then $||SXR^{-1} + (S^*)^{-1}XR^*|| \ge 2||X||$ for every $X \in L(\mathcal{H})$.

Address: Instituto Argentino de Matemática "Alberto P. Calderón" (IAM-CONICET), Saavedra 15, Piso 3 (1083), Buenos Aires,

E-mail address: celeste.gonzalez@conicet.gov.ar

¹ Partially supported by PICT FONCYT 808-2008, UBACYT 1023, PIP 5272.

Here, $L(\mathcal{H})$ denotes the algebra of all bounded linear operators on \mathcal{H} , T^* denotes the adjoint operator of $T \in L(\mathcal{H})$ and $\|\cdot\|$ denotes the operator uniform norm. Inequality (I) is due to Cordes [8] (see also the paper by Furuta [13] for another proof). Inequality (II) is due to McIntosh [17] and it is known as the arithmetic–geometric-mean inequality. Different proofs of this property and its extension for every unitarily invariant norm can be found in [4,5,15]. Finally, Corach et al. [7] gave the first proof of inequality (III) for S = R invertible and selfadjoint operators, which is known as CPR-inequality. Later, Kittaneh [16] proved the nonsymmetric version of it valid for every unitarily invariant norm, for all $X \in L(\mathcal{H})$ and all invertible $S, R \in L(\mathcal{H})$. See [1] for several equivalent expressions of inequality (III).

The main goal of this article is to study these properties if we consider an additional seminorm $\|\cdot\|_A$, defined by means of a positive semidefinite operator $A \in L(\mathcal{H})$ by $\|\xi\|_A^2 = \langle \xi, \xi \rangle_A = \langle A\xi, \xi \rangle$, $\xi \in \mathcal{H}$, and we replace the operator norm in inequalities (I), (II) and (III) by the quantity

$$||T||_A = \sup\{||T\xi||_A : ||\xi||_A = 1\}.$$

The extension of these properties is not trivial since many difficulties arise. For instance, it may happen that $||T||_A = \infty$ for some $T \in L(\mathcal{H})$. In addition, not every operator admits an adjoint operator for the semi-inner product \langle , \rangle_A .

The contents of the paper are the following. In Section 1 we set up notation, terminology and we describe the preliminary material on operators which are bounded for the *A*-seminorm. In Section 2 we study the concept of an *A*-positive operator and we extend Cordes inequality for the seminorm in matter. In Section 3 we generalize the arithmetic–geometric-mean inequality for this seminorm and, as a consequence, we obtain different extensions of the CPR-inequality. At the end of this section we describe the classes of operators which satisfy these extensions.

1. Preliminaries

Along this work $\mathcal H$ denotes a complex Hilbert space with inner product $\langle \ , \ \rangle$. $L(\mathcal H)$ is the algebra of all bounded linear operators on $\mathcal H$, $L(\mathcal H)^+$ is the cone of positive (semidefinite) operators of $L(\mathcal H)$, i.e., $L(\mathcal H)^+:=\{T\in L(\mathcal H): \langle T\xi,\xi\rangle\geqslant 0\ \forall \xi\in \mathcal H\}$ and $L_{CT}(\mathcal H)$ is the subset of $L(\mathcal H)$ of all operators with closed range. For every $T\in L(\mathcal H)$ its range is denoted by R(T), its nullspace by R(T) and its adjoint operator by T^* . In addition, if $T_1,T_2\in L(\mathcal H)$ then $T_1\geqslant T_2$ means that $T_1-T_2\in L(\mathcal H)^+$. Given a closed subspace $\mathcal S$ of $\mathcal H$, $P_{\mathcal S}$ denotes the orthogonal projection onto $\mathcal S$. On the other hand, T^\dagger stands for the Moore–Penrose inverse of $T\in L(\mathcal H)$. Recall that T^\dagger is the unique linear mapping from $\mathcal D(T^\dagger)=R(T)\oplus R(T)^\perp$ to $\mathcal H$ which satisfies the four "Moore–Penrose equations":

$$TXT = T$$
, $XTX = X$, $XT = P_{\overline{R(T^*)}}$, and $TX = P_{\overline{R(T)}}|_{\mathcal{D}(T^{\dagger})}$.

In general, $T^{\dagger} \notin L(\mathcal{H})$. Indeed, $T^{\dagger} \in L(\mathcal{H})$ if and only if $T \in L(\mathcal{H})$ has closed range [18]. On the other hand, given $T, C \in L(\mathcal{H})$ such that $R(C) \subseteq R(T)$ then it holds $T^{\dagger}C \in L(\mathcal{H})$ even if T^{\dagger} is not bounded. Given $A \in L(\mathcal{H})^+$, the functional

$$\langle , \rangle_A : \mathcal{H} \times \mathcal{H} \to \mathbb{C}, \quad \langle \xi, \eta \rangle_A := \langle A\xi, \eta \rangle$$

is a semi-inner product on \mathcal{H} . By $\|\cdot\|_A$ we denote the seminorm induced by $\langle \,,\, \rangle_A$, i.e., $\|\xi\|_A = \langle \xi, \xi \rangle_A^{1/2}$. Observe that $\|\xi\|_A = 0$ if and only if $\xi \in N(A)$. Then $\|\cdot\|_A$ is a norm if and only if $A \in L(\mathcal{H})^+$ is an injective operator. Moreover, $\langle \,,\, \rangle_A$ induces a seminorm on a certain subset of $L(\mathcal{H})$, namely, on the subset of all $T \in L(\mathcal{H})$ for which there exists a constant c > 0 such that $\|T\xi\|_A \leqslant c\|\xi\|_A$ for every $\xi \in \mathcal{H}$. In such case it holds

$$||T||_A = \sup_{\xi \notin N(A)} \frac{||T\xi||_A}{||\xi||_A} < \infty.$$

We denote

$$L_{A^{1/2}}(\mathcal{H}) = \{ T \in L(\mathcal{H}) : ||T\xi||_A \le c ||\xi||_A \text{ for every } \xi \in \mathcal{H} \}.$$

It is easy to see that $L_{A^{1/2}}(\mathcal{H})$ is a subalgebra of $L(\mathcal{H})$. In [2] we study some properties of the operator seminorm $\|\cdot\|_A$. One of them shows the relationship between the A-seminorm and the operator

uniform norm as follows: if $T \in L_{A^{1/2}}(\mathcal{H})$ then $A^{1/2}T(A^{1/2})^{\dagger}$ is a bounded operator on $\mathcal{D}((A^{1/2})^{\dagger})$. Moreover, it holds

$$||T||_A = ||A^{1/2}T(A^{1/2})^{\dagger}|| = ||\overline{A^{1/2}T(A^{1/2})^{\dagger}}|| = ||(A^{1/2})^{\dagger}T^*A^{1/2}||,$$

where $\overline{A^{1/2}T(A^{1/2})^{\dagger}}$ denotes the unique bounded linear extension of $A^{1/2}T(A^{1/2})^{\dagger}$ to $L(\mathcal{H})$.

Given $T \in L(\mathcal{H})$, an operator $W \in L(\mathcal{H})$ is called an A-adjoint of T if

$$\langle T\xi, \eta \rangle_A = \langle \xi, W\eta \rangle_A$$
 for every $\xi, \eta \in \mathcal{H}$,

or, which is equivalent, if W satisfies the equation $AW = T^*A$. The operator T is called A-**selfadjoint** if $AT = T^*A$. The existence of an A-adjoint operator is not guaranteed. Observe that T admits an A-adjoint operator if and only if the equation $AX = T^*A$ has solution. This kind of equations can be studied applying the next theorem due to Douglas (for its proof see [10] or [11]).

Theorem 1. *Let B, C* \in $L(\mathcal{H})$. *The following conditions are equivalent:*

- 1. $R(C) \subseteq R(B)$.
- 2. There exists a positive number λ such that $CC^* \leq \lambda BB^*$.
- 3. There exists $D \in L(\mathcal{H})$ such that BD = C.

If one of these conditions holds then there exists a unique operator $E \in L(\mathcal{H})$ such that BE = C and $R(E) \subseteq \overline{R(B^*)}$.

Therefore, if we denote by $L_A(\mathcal{H})$ the subalgebra of $L(\mathcal{H})$ of all operators which admit an A-adjoint operator then

$$L_A(\mathcal{H}) = \{ T \in L(\mathcal{H}) : T^*R(A) \subseteq R(A) \}.$$

Furthermore, applying Douglas theorem we can see that

$$L_{A^{1/2}}(\mathcal{H}) = \{ T \in L(\mathcal{H}) : T^*R(A^{1/2}) \subseteq R(A^{1/2}) \}.$$

In [14, Theorem 5.1], the following relationship between the above sets is proved:

$$L_A(\mathcal{H}) \subseteq L_{A^{1/2}}(\mathcal{H}).$$

Moreover, it can be checked that the equality holds if and only if A has closed range.

If an operator equation BX = C has solution then it is easy to see that the distinguished solution of Douglas theorem is given by $B^{\dagger}C$. Therefore, given $T \in L_A(\mathcal{H})$, if we denote by T^{\sharp} the unique A-adjoint operator of T whose range is included in $\overline{R(A)}$ then

$$T^{\sharp} = A^{\dagger} T^* A$$
.

Note that if W is an A-adjoint of T then $W = T^{\sharp} + Z$, with $Z \in L(\mathcal{H})$ such that $R(Z) \subseteq N(A)$. In the next proposition we collect some properties of T^{\sharp} which we shall use along this work. For its proof see [2,3].

Proposition 1.1. *Let* $T \in L_A(\mathcal{H})$. *Then*:

- 1. $T^{\sharp} \in L_A(\mathcal{H})$, $(T^{\sharp})^{\sharp} = P_{\overline{R(A)}} T P_{\overline{R(A)}}$ and $((T^{\sharp})^{\sharp})^{\sharp} = T^{\sharp}$.
- 2. If $W \in L_A(\mathcal{H})$ then $TW \in L_A(\mathcal{H})$ and $(TW)^{\sharp} = W^{\sharp} T^{\sharp}$.
- 3. $||T||_A = ||T^{\sharp}||_A = ||T^{\sharp}T||_A^{1/2}$.
- 4. $||W||_A = ||T^{\sharp}||_A$ for every $W \in L(\mathcal{H})$ which is an A-adjoint of T.

2. Cordes inequality for the A-seminorm

Cordes inequality [8] states that if *W*, *V* are bounded positive operators then

$$\|W^t V^t\| \le \|WV\|^t \tag{1}$$

for every $t \in [0, 1]$. Furuta [13] gave an alternative proof of (1) and he proved that this inequality is equivalent to the well-known Löwner-Heinz inequality:

if
$$0 \le W \le V$$
 then $W^t \le V^t$ for every $t \in [0, 1]$.

This section is devoted to obtain a version of the well-known Cordes inequality for the operator seminorm $\|\cdot\|_A$. In order to extend (1) we prove the following two technical lemmas. In the sequel we say that $T \in L(\mathcal{H})$ is an A-**positive** operator if $AT \in L(\mathcal{H})^+$.

Lemma 2.1. Let $A \in L(\mathcal{H})^+$ and $T \in L(\mathcal{H})$. The following assertions are equivalent:

- 1. *T is an A-positive operator*;
- 2. $T \in L_{A^{1/2}}(\mathcal{H}) \text{ and } \overline{A^{1/2}T(A^{1/2})^{\dagger}} \in L(\mathcal{H})^+.$

Proof. If $AT \in L(\mathcal{H})^+$ then $AT = T^*A$ and so $T \in L_A(\mathcal{H}) \subseteq L_{A^{1/2}}(\mathcal{H})$. Then $A^{1/2}T(A^{1/2})^{\dagger} = (A^{1/2})^{\dagger}T^*A^{1/2}$ $A^{1/2}|_{\mathcal{D}((A^{1/2})^{\dagger})}$ is a bounded positive operator on $\mathcal{D}((A^{1/2})^{\dagger})$. Therefore, $\overline{A^{1/2}T(A^{1/2})^{\dagger}} \in L(\mathcal{H})^+$. On the contrary, if $\overline{A^{1/2}T(A^{1/2})^{\dagger}} \in L(\mathcal{H})^+$ then $(A^{1/2})^{\dagger}T^*A^{1/2} \in L(\mathcal{H})^+$. Hence we get $A^{1/2}(A^{1/2})^{\dagger}T^*A^{1/2}A^{1/2} = P_{\overline{R(A)}}|_{\mathcal{D}((A^{1/2})^{\dagger})}T^*A = T^*A \in L(\mathcal{H})^+$. So T is an A-positive operator. □

Lemma 2.2. Let $A, T \in L(\mathcal{H})^+$. The following assertions are equivalent:

- 1. *T* is an A-positive operator;
- 2. T is an $A^{1/2}$ -positive operator.

Proof. If $T \in L(\mathcal{H})^+$ is an A-positive operator then AT = TA. So, $A^nT = TA^n$ for every $n \in \mathbb{N}$. Thus, p(A)T = Tp(A) for every polynomial p. Now, consider $f(t) = t^{1/2}$. Then there exists a sequence of polynomials $\{p_n\}$ such that $p_n(t) \underset{n \to \infty}{\longrightarrow} f(t)$ uniformly. So, $p_n(A) \underset{n \to \infty}{\longrightarrow} f(A) = A^{1/2}$. As a consequence we get that $A^{1/2}T = TA^{1/2}$ and so T is an $A^{1/2}$ -positive operator. Conversely, if $T \in L(\mathcal{H})^+$ is an $A^{1/2}$ -positive operator then $A^{1/2}T = TA^{1/2}$. Therefore $AT = A^{1/2}TA^{1/2}$ is a positive operator. So, T is A-positive. \square

The next proposition is a restricted version of Cordes inequality for the A-seminorm.

Proposition 2.3. Let A, V, $W \in L(\mathcal{H})^+$. If V and W are A-positive operators then

$$\|W^{1/2}V^{1/2}\|_A \leq \|WV\|_A^{1/2}.$$

Proof. First note that since $W \in L(\mathcal{H})^+$ is an A-positive operator then, by Lemma 2.2, the operator $W^{1/2}$ is A-positive too. So, W, $W^{1/2} \in L_{A^{1/2}}(\mathcal{H})$ and, by Lemma 2.1, we get that $(A^{1/2})^\dagger W A^{1/2} \in L(\mathcal{H})^+$ and $(A^{1/2})^\dagger W^{1/2} A^{1/2} \in L(\mathcal{H})^+$. Now, observe that $((A^{1/2})^\dagger W A^{1/2})^{1/2} = (A^{1/2})^\dagger W^{1/2} A^{1/2}$. The same remarks hold for the operator V. Then we get,

$$||W^{1/2}V^{1/2}||_{A} = ||A^{1/2}W^{1/2}V^{1/2}(A^{1/2})^{\dagger}||$$

$$= ||(A^{1/2})^{\dagger}V^{1/2}A^{1/2}(A^{1/2})^{\dagger}W^{1/2}A^{1/2}||$$

$$= ||((A^{1/2})^{\dagger}VA^{1/2})^{1/2}((A^{1/2})^{\dagger}WA^{1/2})^{1/2}||$$

$$\leq ||(A^{1/2})^{\dagger}VA^{1/2}(A^{1/2})^{\dagger}WA^{1/2}||^{1/2}$$

$$= ||WV||_{A}^{1/2};$$

where the inequality holds by Cordes inequality for $t = \frac{1}{2}$.

In the following result we present a generalization of Cordes inequality for the A-seminorm. In the proof, the concept of spectral radius of a bounded linear operator appears. Remember that, given $T \in L(\mathcal{H})$, the **spectral radius** of T is the number

$$r(T) = \sup_{\lambda \in \sigma(T)} |\lambda|;$$

where $\sigma(T)$ denotes the spectrum of T. In addition, it holds that $r(T) = \lim_{n \to \infty} \|T^n\|^{1/n}$. From this we get, $r(T) \le \|T\|$. On the other hand, if $T = T^*$ then $r(T) = \|T\|$ and for every $T, S \in L(\mathcal{H})$ it holds r(TS) = r(ST). For a proof of the above facts the reader is referred to the books of Reed and Simon [19], Conway [6] and Davidson [9]. The proof of the next theorem follows the idea of Fujii and Furuta [12].

Theorem 2.4. Let $A, V, W \in L(\mathcal{H})^+$. If V and W are A-positive operators then for every $t \in [0, 1]$ it holds

$$\|W^t V^t\|_A \leqslant \|WV\|_A^t. \tag{2}$$

Proof. Note that since $W \in L(\mathcal{H})^+$ is an A-positive operator then, a similar argument to that of the proof of Lemma 2.2 shows that W^t is A-positive for every $t \in [0, 1]$. Now, we claim that it is sufficient to prove the inequality (2) in a dense subset \mathcal{D} of [0, 1]. In fact, let $t_0 \in [0, 1]$. Then, there exists a sequence $\{t_k\} \subseteq \mathcal{D}$ such that $t_k \underset{k \to \infty}{\longrightarrow} t_0$. So, $V^{t_k}W^{t_k} \underset{k \to \infty}{\longrightarrow} V^{t_0}W^{t_0}$. On the other hand, since W^t and

 V^t are A-positive for every $t \in [0,1]$ then, by Lemma 2.2, we get $A^{1/2}V^tW^t = V^tW^tA^{1/2}$ for every $t \in [0,1]$. In consequence, $\|W^{t_k}V^{t_k}\|_A \underset{k \to \infty}{\longrightarrow} \|W^{t_0}V^{t_0}\|_A$. Indeed,

$$\begin{split} \left| \| W^{t_k} V^{t_k} \|_A - \| W^{t_0} V^{t_0} \|_A \right| &= \left| \| (A^{1/2})^{\dagger} V^{t_k} W^{t_k} A^{1/2} \| - \| (A^{1/2})^{\dagger} V^{t_0} W^{t_0} A^{1/2} \| \right| \\ &\leq \| (A^{1/2})^{\dagger} \left(V^{t_k} W^{t_k} - V^{t_0} W^{t_0} \right) A^{1/2} \| \\ &= \| (A^{1/2})^{\dagger} A^{1/2} \left(V^{t_k} W^{t_k} - V^{t_0} W^{t_0} \right) \| \\ &\leq \| V^{t_k} W^{t_k} - V^{t_0} W^{t_0} \| \underset{k \to \infty}{\longrightarrow} 0. \end{split}$$

Therefore, if the inequality (2) holds for every $t \in \mathcal{D}$ then

$$\|W^{t_0}V^{t_0}\|_A = \lim_{k \to \infty} \|W^{t_k}V^{t_k}\|_A \le \lim_{k \to \infty} \|WV\|_A^{t_k} = \|WV\|_A^{t_0}.$$

Now consider $\mathcal{D} = \left\{ \frac{m}{2^n}; \ m = 1, \dots, 2^n, n \in \mathbb{N} \right\}$ which is a dense subset of [0, 1]. Note that the inequality (2) holds for t = 0, $t = \frac{1}{2}$ and t = 1. Therefore, to prove that it holds for every element of \mathcal{D} it is sufficient to show that if $\|W^s V^s\|_A \leq \|WV\|_A^s$ and $\|W^t V^t\|_A \leq \|WV\|_A^t$ for $s, t \in \mathcal{D}$ then $\|W^r V^r\|_A \leq \|WV\|_A^r$ for $t = \frac{s+t}{2}$. Now, since $t = \frac{s+t}{2}$. Now, since $t = \frac{s+t}{2}$.

$$\overline{A^{1/2}W^rV^r(A^{1/2})^{\dagger}} = (A^{1/2})^{\dagger}W^rV^rA^{1/2}.$$
(3)

On the other hand, since $W^r V^{2r} W^r \in L(\mathcal{H})^+$ and $AW^r V^{2r} W^r = W^r V^{2r} W^r A$ then $AW^r V^{2r} W^r$ is positive and so, by Lemma 2.1,

$$\overline{A^{1/2}W^rV^{2r}W^r(A^{1/2})^{\dagger}} = (A^{1/2})^{\dagger}W^rV^{2r}W^rA^{1/2}$$
(4)

is positive too. Now, from equalities (3) and (4) we get

$$\begin{split} \|W^{r}V^{r}\|_{A}^{2} &= \|A^{1/2}W^{r}V^{r}(A^{1/2})^{\dagger}\|^{2} \\ &= \|\overline{A^{1/2}W^{r}V^{r}(A^{1/2})^{\dagger}}(A^{1/2})^{\dagger}(W^{r}V^{r})^{*}A^{1/2}\| \\ &= \|(A^{1/2})^{\dagger}W^{r}V^{r}A^{1/2}(A^{1/2})^{\dagger}(W^{r}V^{r})^{*}A^{1/2}\| \\ &= \|(A^{1/2})^{\dagger}W^{r}V^{2r}W^{r}A^{1/2}\| \\ &= r((A^{1/2})^{\dagger}W^{r}V^{2r}W^{r}A^{1/2}). \end{split}$$

On the other hand, as $W^sV^sA=AW^sV^s$ then $(V^sW^s)^{\sharp}=P_{\overline{R(A)}}W^sV^s$. Therefore

$$||V^{s}W^{s}||_{A} = ||W^{s}V^{s}||_{A}.$$

Now, by properties of spectral radius and by the fact that W^r and V^{2r} belong to $L_{A^{1/2}}(\mathcal{H})$ we get

$$\begin{split} r((A^{1/2})^{\dagger}W^{r}V^{2r}W^{r}A^{1/2}) &= r((A^{1/2})^{\dagger}W^{r}A^{1/2}(A^{1/2})^{\dagger}V^{2r}A^{1/2}(A^{1/2})^{\dagger}W^{r}A^{1/2}) \\ &= r((A^{1/2})^{\dagger}V^{2r}A^{1/2}(A^{1/2})^{\dagger}W^{2r}A^{1/2}) \\ &= r((A^{1/2})^{\dagger}V^{t}W^{t}A^{1/2}(A^{1/2})^{\dagger}W^{s}V^{s}A^{1/2}) \\ &\leqslant \|W^{t}V^{t}\|_{A}\|V^{s}W^{s}\|_{A} = \|W^{t}V^{t}\|_{A}\|W^{s}V^{s}\|_{A} \\ &\leqslant \|WV\|_{A}^{t+s} = \|WV\|_{A}^{2r}. \end{split}$$

Therefore, the proof is complete. \Box

3. The arithmetic-geometric-mean inequality for the A-seminorm

We begin this section by presenting the following operator form of the so-called "arithmetic-geometric-mean inequality"

$$||WW^*X + XVV^*|| \ge 2||W^*XV||$$

valid for any V, W, $X \in L(\mathcal{H})$. The above inequality is due to McIntosh [17] and it also holds for every unitarily invariant norm (see [5,15]). But here, we only shall deal with the version of McIntosh's inequality for the operator uniform norm. In the following result we generalize the arithmetic–geometric-mean inequality for the operator seminorm induced by $A \in L(\mathcal{H})^+$.

Proposition 3.1. Let $V, W \in L_A(\mathcal{H})$ and $X \in L_{A^{1/2}}(\mathcal{H})$. The following inequalities hold and they are equivalent:

- 1. $||W^{\sharp}WX + XV^{\sharp}V||_{A} \ge 2||WXV^{\sharp}||_{A}$;
- 2. $\|WW^{\sharp}X + XV^{\sharp}V\|_{A} \ge 2\|W^{\sharp}XV^{\sharp}\|_{A}$;
- 3. $\|WW^{\sharp}X + XVV^{\sharp}\|_{A} \ge 2\|W^{\sharp}XV\|_{A}$.

Proof. First let us prove that the inequality of item 1 holds. Note that $A^{1/2}W(A^{1/2})^{\dagger}$, $A^{1/2}V(A^{1/2})^{\dagger}$ and $A^{1/2}X(A^{1/2})^{\dagger}$ are bounded operators on $\mathcal{D}((A^{1/2})^{\dagger})$. Now, it holds

$$\begin{split} \|W^{\sharp}WX + XV^{\sharp}V\|_{A} &= \|A^{1/2}A^{\dagger}W^{*}AWX(A^{1/2})^{\dagger} + A^{1/2}XA^{\dagger}V^{*}AV(A^{1/2})^{\dagger}\| \\ &\geqslant 2\|\overline{A^{1/2}W(A^{1/2})^{\dagger}A^{1/2}X(A^{1/2})^{\dagger}}(A^{1/2})^{\dagger}V^{*}A^{1/2}\| \\ &\geqslant 2\|\overline{A^{1/2}W(A^{1/2})^{\dagger}A^{1/2}X(A^{1/2})^{\dagger}}(A^{1/2})^{\dagger}V^{*}A^{1/2}|_{\mathcal{D}((A^{1/2})^{\dagger})}\| \\ &= 2\|\overline{A^{1/2}W(A^{1/2})^{\dagger}A^{1/2}X(A^{1/2})^{\dagger}(A^{1/2})^{\dagger}V^{*}A(A^{1/2})^{\dagger}\| \\ &= 2\|A^{1/2}WXA^{\dagger}V^{*}A(A^{1/2})^{\dagger}\| \\ &= 2\|WXV^{\sharp}\|_{A}; \end{split}$$

where the first inequality holds by the arithmetic-geometric-mean inequality. So item 1 holds.

 $1 \rightarrow 2$. Observe that

$$||WW^{\sharp}X + XV^{\sharp}V||_{A} = ||P_{\overline{R(A)}}WP_{\overline{R(A)}}W^{\sharp}X + XV^{\sharp}V||_{A}$$

$$= ||(W^{\sharp})^{\sharp}W^{\sharp}X + XV^{\sharp}V||_{A}$$

$$\geq 2||W^{\sharp}XV^{\sharp}||_{A},$$

where the inequality holds by item 1. Then item 2 is obtained. Employing a similar argument to that used above we prove implications $2 \to 3$ and $3 \to 1$. \Box

3.1. CPR-type-inequalities for the A-seminorm

In this subsection we obtain a Corach–Porta–Recht (CPR) type inequality for the A-operator seminorm. The CPR-inequality [7] asserts that if $S, X \in L(\mathcal{H})$ with S invertible and selfadjoint then

$$||SXS^{-1} + S^{-1}XS|| \ge 2||X||.$$

Later, Kittaneh [16] proved it for general invertible $R, S \in L(\mathcal{H})$, $X \in L(\mathcal{H})$ and unitarily invariants norms in $L(\mathcal{H})$, that is

$$|||SXR^{-1} + (S^*)^{-1}XR^*||| \ge 2|||X|||.$$
(5)

He proved this inequality by showing that it is equivalent to the arithmetic–geometric-mean inequality. Following the same lines of the Kittaneh's proof, the inequality (5) can be extended to the case S, R injective operators in $L_{cr}(\mathcal{H})$. In such case, for every $X \in L(\mathcal{H})$ and every unitarily invariant norm it holds

$$|||SXR^{\dagger} + (S^*)^{\dagger}XR^*||| \ge 2||X||.$$
 (6)

Remark 3.2. If S or R is not an injective operator then inequality (6) is false, in general. In fact, let $\mathcal{H} = \mathbb{R}^2$. Now take $S = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, R = I (the identity operator) and $X = \begin{pmatrix} 1/2 & 0 \\ 0 & 0 \end{pmatrix}$. It is easy to check that $S^{\dagger} = \begin{pmatrix} 1/4 & 1/4 \\ 1/4 & 1/4 \end{pmatrix}$. Now, observe that $\|SX + S^{\dagger}X\|^2 = \left\| \begin{pmatrix} 5/8 & 0 \\ 5/8 & 0 \end{pmatrix} \right\|^2 = \frac{50}{64}$. Therefore $\|SX + S^{\dagger}X\| = \sqrt{\frac{50}{64}} < 1 = 2\|X\|$.

In the next result we generalize the CPR-inequality for the *A*-seminorm in two different ways. The proof follows the idea used in [16, Corollary 1].

Theorem 3.3. Let $X \in L_{A^{1/2}}(\mathcal{H})$ and $S \in L_{cr}(\mathcal{H})$ an injective operator such that $S, S^{\dagger} \in L_A(\mathcal{H})$. Then the following assertions hold:

1. If $R \in L_{cr}(\mathcal{H})$ is an injective operator such that $R, R^{\dagger} \in L_A(\mathcal{H})$ then:

$$||SXR^{\dagger} + (S^{\dagger})^{\sharp}XR^{\sharp}||_{A} \ge 2||X||_{A}.$$

2. If R is a surjective operator such that R, $R^{\dagger} \in L_A(\mathcal{H})$ then:

$$||SX(R^{\dagger})^{\sharp} + (S^{\dagger})^{\sharp}XR||_{A} \ge 2||X||_{A}.$$

Proof. It is well-known that $S \in L_{cr}(\mathcal{H})$ if and only if $S^* \in L_{cr}(\mathcal{H})$. Therefore S^{\dagger} , $(S^*)^{\dagger} \in L(\mathcal{H})$ and $(S^{\dagger})^* = (S^*)^{\dagger}$. Now, as $S \in L_{cr}(\mathcal{H})$ is an injective operator such that S, $S^{\dagger} \in L_A(\mathcal{H})$ then $S^{\sharp}(S^{\dagger})^{\sharp} = P_{\overline{R(A)}}$.

1. Since *R* is injective then $R^{\dagger}R = I$. Thus

$$||SXR^{\dagger} + (S^{\dagger})^{\sharp}XR^{\sharp}||_{A} = ||SS^{\sharp}(S^{\dagger})^{\sharp}XR^{\dagger} + (S^{\dagger})^{\sharp}XR^{\dagger}RR^{\sharp}||_{A}$$

$$\geq 2||S^{\sharp}(S^{\dagger})^{\sharp}XR^{\dagger}R||_{A} = 2||P_{\overline{R(A)}}X||_{A}$$

$$= 2||X||_{A},$$

where the inequality holds by item 3 in Proposition 3.1.

2. Since *R* is surjective then $R^{\dagger} \in L(\mathcal{H})$ and $RR^{\dagger} = I$. So $(R^{\dagger})^{\sharp}R^{\sharp} = P_{\overline{R(A)}}$. Now,

$$||SX(R^{\dagger})^{\sharp} + (S^{\dagger})^{\sharp}XR||_{A} = ||SS^{\sharp}(S^{\dagger})^{\sharp}X(R^{\dagger})^{\sharp} + (S^{\dagger})^{\sharp}X(R^{\dagger})^{\sharp}R^{\sharp}R||_{A}$$

$$\geq 2||S^{\sharp}(S^{\dagger})^{\sharp}X(R^{\dagger})^{\sharp}R^{\sharp}||_{A} = 2||P_{\overline{R(A)}}XP_{\overline{R(A)}}||_{A}$$

$$= 2||X||_{A},$$

where the inequality holds by item 2 in Proposition 3.1. \Box

In the sequel we study the sets of operators which satisfy Theorem 3.3, namely,

$$\Delta = \{T \in L_{cr}(\mathcal{H}) : T \text{ is injective and } T, T^{\dagger} \in L_A(\mathcal{H})\}$$

and

$$\Sigma = \{T \in L(\mathcal{H}) : T \text{ is surjective and } T, T^{\dagger} \in L_A(\mathcal{H})\}.$$

The description of Δ and Σ will be done by means of the matrix representation of operators of $L(\mathcal{H})$ induced by the decomposition $\mathcal{H} = N(A)^{\perp} \oplus N(A)$. In such case, $A \in L(\mathcal{H})^+$ has the representation

$$A = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}, \tag{7}$$

where $a \in L(N(A)^{\perp})^+$ and $N(a) = \{0\}$.

Proposition 3.4. Let $T \in L_{cr}(\mathcal{H})$ and $A \in L(\mathcal{H})^+$ with the matrix representation (7). Then the following assertions are equivalent:

- 1. $T \in \Delta$; 2. $T = \begin{pmatrix} t_1 & 0 \\ t_3 & t_4 \end{pmatrix}$; where $t_1 \in L_{cr}(N(A)^{\perp})$ is injective, $t_4 \in L_{cr}(N(A))$ is injective, $R(t_1^*a) \subseteq R(a)$ and $R((t_1^{\dagger})^*a) \subseteq R(a)$.
- **Proof.** $1 \to 2$. Consider the following matrix representations of T and T^{\dagger} under the decomposition $\mathcal{H} = N(A)^{\perp} \oplus N(A)$,

$$T = \begin{pmatrix} t_1 & t_2 \\ t_3 & t_4 \end{pmatrix}$$
 and $T^{\dagger} = \begin{pmatrix} r_1 & r_2 \\ r_3 & r_4 \end{pmatrix}$.

Since $T, T^{\dagger} \in L_A(\mathcal{H})$ and $N(a) = \{0\}$ then $t_2 = 0$, $r_2 = 0$, $R(t_1^*a) \subseteq R(a)$ and $R(r_1^*a) \subseteq R(a)$. Now, as $T^{\dagger}T = I$ then r_1t_1 and r_4t_4 are the identity operator on $N(A)^{\perp}$ and N(A), respectively. So t_1 and t_4 are injective operators. Furthermore, since TT^{\dagger} is selfadjoint then $r_1 = (t_1)^{\dagger}$ and $r_4 = (t_4)^{\dagger}$. Therefore $t_1 \in L_{cr}(N(A)^{\perp})$, $t_4 \in L_{cr}(N(A))$ and $R((t_1^{\dagger})^*a) \subseteq R(a)$.

 $2 \to 1$. Since $T = \begin{pmatrix} t_1 & 0 \\ t_3 & t_4 \end{pmatrix}$ and $R(t_1^*a) \subseteq R(a)$ then $R(T^*A) \subseteq R(A)$ and so $T \in L_A(\mathcal{H})$. On the other hand, since t_1 and t_4 are injective operators then T is injective. As, in addition, t_1 and t_4 have closed range then it is easy to check that $T^{\dagger} = \begin{pmatrix} t_1^{\dagger} & 0 \\ -t_4^{\dagger}t_3t_1^{\dagger} & t_4^{\dagger} \end{pmatrix}$. Furthermore, as $R((t_1^{\dagger})^*a) \subseteq R(a)$ then $R((T^{\dagger})^*A) \subseteq R(A)$. Therefore $T^{\dagger} \in L_A(\mathcal{H})$ and so $T \in \Delta$. \square

Proposition 3.5. Let $T \in L(\mathcal{H})$ and $A \in L(\mathcal{H})^+$ with the matrix representation (7). The following assertions are equivalent:

1. $T \in \Sigma$; 2. $T = \begin{pmatrix} t_1 & 0 \\ t_3 & t_4 \end{pmatrix}$; where $t_1 \in L(N(A)^{\perp})$ is surjective, $t_4 \in L(N(A))$ is surjective, $R(t_1^*a) \subseteq R(a)$, $R((t_1^{\dagger})^*a) \subseteq R(a)$ and $R(t_3^*) \subseteq R(t_1^*)$.

Proof. $1 \to 2$. Consider the following matrix representations of T and T^{\dagger} under the decomposition $\mathcal{H} = N(A)^{\perp} \oplus N(A)$,

$$T = \begin{pmatrix} t_1 & t_2 \\ t_3 & t_4 \end{pmatrix}$$
 and $T^{\dagger} = \begin{pmatrix} r_1 & r_2 \\ r_3 & r_4 \end{pmatrix}$.

Since $T, T^{\dagger} \in L_A(\mathcal{H})$ and $N(a) = \{0\}$ then $t_2 = 0$, $r_2 = 0$, $R(t_1^*a) \subseteq R(a)$ and $R(r_1^*a) \subseteq R(a)$. Now, as $TT^{\dagger} = I$ then t_1r_1 and t_4r_4 are the identity operator on $N(A)^{\perp}$ and N(A), respectively. So t_1 and t_4 are surjective operators. Furthermore, since $T^{\dagger}T$ is a selfadjoint projection then $r_1 = (t_1)^{\dagger}$ and $t_3^*r_4^* = t_1^*$ $-t_1^*r_3^*$. So $R((t_1^{\dagger})^*a) \subseteq R(a)$ and $R(t_3^*) = R(t_3^*r_4^*) \subseteq R(t_1^*)$.

2 \rightarrow 1. Since $T = \begin{pmatrix} t_1 & 0 \\ t_3 & t_4 \end{pmatrix}$ and $R(t_1^*a) \subseteq R(a)$ then $T \in L_A(\mathcal{H})$. On the other hand, since t_1 and t_4 are surjective operators and $R(t_3^*) \subseteq R(t_1^*)$ then it is easy to check that $T^{\dagger} = \begin{pmatrix} t_1^{\dagger} & 0 \\ -t_A^{\dagger} t_3 t_1^{\dagger} & t_A^{\dagger} \end{pmatrix}$ and, as $R((t_1^{\dagger})^*a) \subseteq R(a)$ then $T^{\dagger} \in L_A(\mathcal{H})$. Therefore, as $TT^{\dagger} = I$, the operator T is surjective and then $T \in \Sigma$.

Remark 3.6

- 1. Given $T \in \Delta$ then $T^{\dagger} \in \Delta$ if and only if $T \in Gl(\mathcal{H})$. 2. Given $T \in \Sigma$ then $T^{\dagger} \in \Sigma$ if and only if $T \in Gl(\mathcal{H})$.

References

- [1] E. Andruchow, G. Corach, D. Stojanoff, Geometric operator inequalities, Linear Algebra Appl. 258 (1997) 295–310.
- [2] M.L. Arias, G. Corach, M.C. Gonzalez, Metric properties of projections in semi-Hilbertian spaces, Integral Equations Operator Theory 62 (1) (2008) 11-28.
- [3] M.L. Arias, G. Corach, M.C. Gonzalez, Partial isometries in semi-Hilbertian spaces, Linear Algebra Appl. 428 (7) (2008) 1460-1475.
- [4] R. Bhatia, C. Davis, More matrix forms of the arithmetic-geometric mean inequality, SIAM J. Matrix Anal. Appl. 14 (1) (1993) 132-136.
- [5] R. Bhatia, F. Kittaneh, On the singular values of a product of operators, SIAM J. Matrix Anal. Appl. 11 (2) (1990) 272–277.
- [6] J.B. Conway, A Course in Functional Analysis, Graduate Texts in Mathematics, vol. 96, second ed., Springer Verlag, New York, 1990.
- [7] G. Corach, H. Porta, L. Recht, An operator inequality, Linear Algebra Appl. 142 (1990) 153–158.
- [8] H.O. Cordes, Spectral Theory of Linear Differential Operators and Comparison Algebras, London Mathematical Society Lecture Note Series, vol. 76, Cambridge University Press, Cambridge, 1987.
- [9] K.R. Davidson, C*-Algebras by Example, Fields Institute Monographs, vol. 6, Amer. Math. Soc., Providence, 1996.
- [10] R.G. Douglas, On majorization, factorization and range inclusion of operators in Hilbert space, Proc. Amer. Math. Soc. 17 (1966) 413-416.
- [11] P.A. Fillmore, J.P. Williams, On operator ranges, Adv. Math. 7 (1971) 254–281.
- [12] M. Fujii, T. Furuta, Löwner-Heinz, Cordes and Heinz-Kato inequalities, Math. Japon. 38 (1) (1993) 73-78.
- [13] T. Furuta, Norm inequalities equivalent to Löwner-Heinz theorem, Rev. Math. Phys. 1 (1) (1989) 135-137.
- [14] S. Hassi, Z. Sebestyén, H.S.V. De Snoo, On the nonnegativity of operator products, Acta Math. Hungar. 109 (1-2) (2005)
- [15] F. Kittaneh, A note on the arithmetic-geometric-mean inequality for matrices, Linear Algebra Appl. 171 (1992) 1-8.
- [16] F. Kittaneh, On some operator inequalities, Linear Algebra Appl. 208/209 (1994) 19–28.
- [17] A. McIntosh, Heinz inequalities and perturbation of spectral families, Macquarie Mathematical Reports 79-0006, Macquarie Univ., 1979.
- [18] M.Z. Nashed, Inner, outer and generalized inverses in Banach and Hilbert spaces, Numer. Funct. Anal. Optim. 9 (3-4) (1987) 261-325
- [19] M. Reed, B. Simon, Methods of modern mathematical physics. I. Functional analysis, second ed., Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980.