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Abstract:

• There is a vast literature on robust estimators, but in some situations it is still not
easy to make inferences, such as confidence regions and hypothesis testing. This is
mainly due to the following facts. On one hand, in most situations, it is difficult to
derive the exact distribution of the estimator. On the other one, even if its asymptotic
behaviour is known, in many cases, the convergence to the limiting distribution may
be rather slow, so bootstrap methods are preferable since they often give better small
sample results. However, resampling methods have several disadvantages including
the propagation of anomalous data all along the new samples. In this paper, we dis-
cuss the problems arising in the bootstrap when outlying observations are present.
We argue that it is preferable to use a robust bootstrap rather than to bootstrap
robust estimators and we discuss a robust bootstrap method, the Influence Function
Bootstrap denoted IFB. We illustrate the performance of the IFB intervals in the uni-
variate location case and in the logistic regression model. We derive some asymptotic
properties of the IFB. Finally, we introduce a generalization of the Influence Function
Bootstrap in order to improve the IFB behaviour.
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1. INTRODUCTION

It is well known, that outliers or contamination have often an undesirable

effect on statistical procedures. For this reason, robust methods provide more

reliable inferences. However, in most situations, it is difficult to derive the exact

distribution of robust estimators. On the other hand, even when its asymptotic

distribution may be derived, the convergence to it may be rather slow. This

suggests the use of bootstrap methods which are preferable since they can give

even better small sample results. It is easy to understand that the outliers’

effect increases when bootstrapping. Indeed, due to propagation effects, many

bootstrap samples may have a higher contamination level than the original one.

For that reason, the breakdown point for the whole procedure decreases and may

become very small, even when based on an estimator with a high breakdown

point. Besides, bootstrapping a robust estimator poses other challenges since

the frequency of mathematical and numerical difficulties increases and also, the

computation time grows up dramatically. These facts motivates the search of

robust bootstrap procedures.

To allow for a small proportion of contamination on the data, we assume

that the actual distribution of the data belongs to a contamination “neighbour-

hood”of a certain specified“central”parametric model, PΩ with Ω = (θ, τ ), where

θ ∈ Θ ⊂ Rq stands for the parameter of interest while τ ∈ Rs denotes the nui-

sance parameters. In other words, we assume that X1, ...,Xn are a random sample

with the same distribution as X ∈ Rp, where X ∼ PΩ. The problem is to per-

form robust inference for the parameter θ, but with the snag that the sampling

distribution of the statistics (pivot variable) is unknown.

As far as we know, the first work related to estimating the sampling distri-

bution of robust estimators is due to Ghosh et al. (1984). This author showed that

it is necessary to impose a tail condition on the underlying distribution, to ensure

that the bootstrap variance estimate of the sample median converges. Athreya

(1987) also showed that the bootstrap fails for heavy tailed distributions, while

Shao (1990) again pointed out the non-robustness of the classical bootstrap. Shao

(1992) proposed a“tail truncation” in order to obtain consistency of the bootstrap

variance estimators, however it is not clear how to apply this in practice. Later

on, Stromberg (1997) recommended either a robust estimate of the variance (of

the bootstrap distribution) or the use of the deleted-d jackknife, as alternative

bootstrap estimates for the robust estimators variability. Stromberg (1997) also

studied a different resampling scheme (Limited Replacement Bootstrap), but con-

cluded that it does not perform very well. Singh (1998) suggested a robust version

of the bootstrap, for certain univariate L and M -estimators, by resampling from

a winsorized sample instead of the original sample. This method is denoted, from

now on, WB. Salibian–Barrera and Zamar (2002) introduced a robust bootstrap,
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denoted RB, based on a weighted representation of MM -regression and univari-

ate location estimates. In Willems and Van Aelst (2005) and Salibian–Barrera et

al. (2006), these methods were extended to other families of estimators. These

proposals, being fast and stable, solve most of the problems pointed out above.

Amado and Pires (2004) suggested another method, also fast and stable,

which consists on forming each bootstrap sample by resampling with different

probabilities so that the potentially more harmful observations have smaller prob-

abilities of selection. This method, denoted IFB, performs robust inference for

a parameter based on the influence function (at the central model) of a classical

point estimator. In this paper, we investigate the performance of the IFB pro-

cedure by simulation. To adapt for the sample size, a generalized procedure will

also be considered.

The paper is organized as follows. In Section 2, we review the IFB proce-

dure. In Section 3, we give different simulation results concerning the bootstrap

intervals for univariate location and for logistic regression parameters. In Section

4, we present a generalization of the method and compare the results obtained

with the new proposal and with the WB and RB procedures. Conclusions are

given in Section 5, while technical results are relegated to the Appendix.

2. INFLUENCE FUNCTION BOOTSTRAP

The Influence Function Bootstrap is based on three main ideas: (1) re-

sample less frequently highly influential observations (in the sense of Hampel’s

influence function); (2) at the same time, resample with equal probabilities the

observations belonging to the “main structure”; (3) use a classical estimator on

each “robustified” resample. Let us first consider a non robust estimator of θ,

θ̂
nr

, based on the random sample with influence function IF
(
x; θ̂

nr
, PΩ

)
and its

Standardized Influence Function, i.e.

SIF(x; θ̂
nr
, PΩ) =

[
IF
(
x; θ̂

nr
, PΩ

)t
V −1

(θ̂
nr,PΩ)

IF
(
x; θ̂

nr
, PΩ

)]1/2

,

with V(θ̂,PΩ) = EPΩ

[
IF
(
x; θ̂, PΩ

)
IF
(
x; θ̂, PΩ

)t]
stands for the asymptotic vari-

ance of the estimator θ̂. Assume that, as usual, SIF(x; θ̂
nr
, PΩ) depends on PΩ

only through the vector of unknown parameters, Ω = (θ, τ ), and that appro-

priate invariance properties hold. Now, define a Robust Standardized Empirical

Influence Function by plugging into the SIF robust estimates, Ω̂r = (θ̂
r
, τ̂ r), of

the unknown parameters and denote this function by RESIF(x; θ̂
nr
, Ω̂r).

As a simple example on the computation of the RESIF(x; θ̂
nr
, Ω̂r), consider

multivariate location, θ, with a multivariate normal distribution as central model.
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In this case, the nuisance parameter τ = Σ is the scatter matrix, so that Ω̂r =

(θ̂
r
, Σ̂

r
) are robust estimators of the location and scatter parameters. Thus, it is

easy to verify that, when θ̂
nr

= x̄, RESIF(x; θ̂
nr
, Ω̂r) is the robust Mahalanobis

distance currently used for outlier detection in multivariate data sets.

We now proceed to recall the IFB procedure introduced in Amado and

Pires (2004). Given c > 0, let 0 ≤ η(c, ·) ≤ 1 be a weight function verifying

∂ η (c, t)

∂t

∣∣∣
t=c

= 0(2.1)

lim
t→∞

t2 η(c, t) = 0 ,(2.2)

for each fixed value of the tuning constant c. As pointed out in Proposition 1 in

Amado and Pires (2004), the condition (2.2) protects the bootstrap distribution

from the harmful effect of outliers.

The Influence Function Bootstrap (IFB) procedure is described in the fol-

lowing steps:

a) Obtain RESIFi = RESIF(xi; θ̂
nr
, Ω̂r), i = 1, 2, ..., n.

b) Compute weights, wi, according to

wi = I[0,c] (|RESIFi|) + η (c, |RESIFi|) × I]c,+∞] (|RESIFi|) .

c) Compute the resampling probabilities p = (p1, p2, ..., pn) as pi = wi/∑n
j=1wj .

d) Resample with replacement according to p and for each robustified

bootstrap sample compute the non-robust version of the estimate of

interest.

Remark 2.1. The tuning constant c can be calibrated so as to obtain

highly efficient procedures. Effectively, it is enough to determine or simulate the

distribution of the SIF at the central parametric model and choose for c a very

high percentile of this distribution.

Remark 2.2. A flexible family of functions from where the η function can

be chosen is the kernel of the p.d.f. of the t-distribution and its limiting form,

the normal distribution, that is,

ηd,γ(c, x) =





[
1 +

(x− c)2

γ d2

]− γ+1
2

0 < γ <∞

exp

[
−(x− c)2

2d2

]
γ = ∞

.
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More details about the method can be found in Amado and Pires (2004).

However, this method does not provide an explicit estimator to being boot-

strapped. To identify this estimator, we will consider the case of a univariate

parameter, to be more precise, the simplest case of an univariate location param-

eter with known scale.

Let us fix some notation which will be helpful in the sequel.

At the sample level we have: the sample denoted (x1, x2, ···, xn); the em-

pirical distribution function, Pn =
∑n

i=1 δxi
/n with δx the point mass at x; the

weights, wi = w(xi;Pn), 1 ≤ i ≤ n, defined in b); the weighted empirical distri-

bution function denoted Pwn,n =
∑n

i=1 piδxi
, with pi = wi/

∑n
i=1wi introduced in

c).

Related to the above description, at the population level we have: an uni-

variate random variable X; its probability density function, f with related dis-

tribution function P and a random variable denoted Xw with probability density

function, fw, called the weighted density function, with related weighted distri-

bution function, Pw defined through

fw(x) =
w(x;P )f(x)∫
w(x;P )f(x)dx

and Pw(x) =

∫ x

−∞
fw(u)du .

Besides, we can also define the mean, µ (Pw), and variance, σ2 (Pw), of Xw. If

limx→∞ x2w(x; ·) <∞, then both µ (Pw) and σ2 (Pw) are well defined and finite.

Moreover, µ (Pw) ≡ µw (P ). The IFB procedure actually bootstraps the sample

mean from Pwn,n.

Concerning the asymptotic behaviour of the bootstrap proposal, Proposi-

tion 6.1 in the Appendix states that if Ω̂r a.s.−→ Ω and w(x; ·) is a Lipschitz contin-

uous function of the unknown parameters, then Pwn,n(I(−∞,x])
a.s.−→ Pw(I(−∞,x]),

uniformly in x. This result entails easily that if limx→∞ x2w(x; ·) = 0, the vari-

ance of the weighted empirical distribution converges to σ2 (Pw). We will now

show that σ2 (Pw) is related to the asymptotic variance of a robust estimator with

score function u
√
w(u).

By the Central Limit Theorem,
√
n (µ (Pwn,n) − µ (Pw))

d−→ N
(
0, σ2 (Pw)

)

(see Proposition 6.1b) in the Appendix for a related result concerning the Influ-

ence Function Bootstrap distribution). Thus, for large n, we have that

(2.3) Var (µ(Pwn,n)) ≃ σ2 (Pw)

n
=

∫
(x− µ(Pw))2w(x)f(x)dx

n
∫
w(x)f(x)dx

.

Let us consider a location M -functional with score function ψM (u) = u
√
w(u),

denoted by µ√w(P ) and its related estimator, µ√w(Pn). The asymptotic variance
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of µ√w(Pn), at the central model, is given by

(2.4)

∫
(x− µ)2w(x)f(x) dx

n
[
Eψ′

M (X − µ)
]2 =

∫
(x− µ)2w(x)f(x)dx

n

[∫ (√
w(u) + u

(√
w(u)

)′)
dP

]2 ,

where h′ stands for the derivative of the function h : R → R. It is worth noting

that the difference between expressions (2.3) and (2.4) is the denominator which

will lead to the correction term to be introduced in Section 4. Almost equivalently,

we may consider a weighted estimator (W -estimator) with a fixed number of steps

and weights
√
w(u). As we will see in Section 4 this relation give us a initial start

point to perform a generalization of IFB method.

3. NUMERICAL RESULTS

In this section, we illustrate the IFB method in two models. We first

consider the problem of computing confidence intervals for the location parameter

under a location-scale model. Then, we focus on the problem of providing exact

inferences for the regression parameter under a logistic regression model.

3.1. Univariate location model

We now present, as an example, the results of a simulation study concerning

an univariate location parameter, µ, in the framework of a location-scale model.

The aim is to compute confidence intervals for the parameter µ. In this simula-

tion study we choose the nominal confidence level equal to 90%. We considered

data sets X1, ..., Xn, with sample size n = 20 and 50. The uncontaminated ob-

servations, which we label as C0 in the Tables, are generated from N(0, 1). Three

contamination situations are also studied

• C1: Under this contamination, the data are generated from a 0.75N(0,1)+

0.25N(0, 9) distribution.

• C2: This contamination corresponds to a high pointwise contamination,

where 90% of the data have a standard normal distribution, N(0, 1),

and 10% of the points are replaced by 10.

• C3: The observations have the same distribution as Y/U where Y ∼
N(0, 1) and U ∼ U(0, 1), with Y and U independent.

The estimator is X̄ and the intervals computed are: the classical t-intervals

(CIml), the classical bootstrap with uniform weights (BCIml), the robust influ-
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ence function bootstrap (BCIif) and the bootstrap intervals obtained by resam-

pling from a winsorized sample (BCIwin). For the three bootstrap procedures

the bootstrap percentile method was used for obtaining the confidence inter-

vals. For BCIif intervals, we take RESIF(x) = |x− median(Xi)|/MAD(Xi) and

η(c, ·) = ηd,γ(c, ·) with d = c =
√
χ2

1;0.99 and γ = ∞. The number of bootstrap

samples was B = 2000 in all cases and the number of simulation runs was 1000.

The nominal level of the confidence intervals is 0.90.

Table 1 summarizes the results obtained by reporting coverage probability

estimates, as well as mean and standard deviation of the lengths of the 1000

simulated confidence intervals.

Table 1: Confidence intervals for univariate location
with confidence nominal level 0.90.

n = 20 n = 50
Coverage

Length Length
Cont.

Scheme
Method

n = 20 n = 50 Mean Std.Dev. Mean Std.Dev.

CIml 0.899 0.901 0.7646 0.1252 0.4727 0.0484
C0 BCIml 0.874 0.895 0.7070 0.1165 0.4583 0.0475

BCIif 0.871 0.892 0.7061 0.1155 0.4584 0.0478
BCIwin 0.764 0.805 0.5570 0.1150 0.3764 0.0465

CIml 0.917 0.903 1.2799 0.3621 0.8073 0.1322
C1 BCIml 0.873 0.883 1.1811 0.3337 0.7813 0.1283

BCIif 0.888 0.900 1.0770 0.2644 0.7107 0.1020
BCIwin 0.766 0.765 0.7914 0.2203 0.7813 0.1283

CIml 0.820 0.048 2.4879 0.0655 1.5049 0.0244
C2 BCIml 0.598 0.015 2.2919 0.0767 1.4555 0.0375

BCIif 0.864 0.890 0.8299 0.2096 0.5410 0.0928
BCIwin 0.673 0.426 0.7158 0.1391 0.4937 0.0659

CIml 0.951 0.939 22.748 163.06 26.478 202.24
C3 BCIml 0.858 0.829 20.093 141.56 24.184 181.13

BCIif 0.880 0.883 1.8251 0.4686 1.1783 0.1883
BCIwin 0.698 0.678 1.8900 1.1634 1.1495 0.3450

From Table 1, we conclude that in the non-contaminated setting, C0, the

bootstrap intervals BCIml and BCIif have a behaviour similar to that of the clas-

sical t intervals, even when the latter are the optimal ones. The bootstrap inter-

vals are shorter than the exact intervals CIml, but at the cost of losing some level.

As expected, the optimal intervals CIml attain the largest coverage probabilities

values. Besides, the intervals BCIwin achieve the smallest coverage probability

for both n = 20 and 50, but they also have the smallest mean length. Under

C1, all the procedures keep a similar coverage value, even when their lengths
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are increased. On the other hand, under both C2 and C3, the coverage of the

classical t and classical bootstrap intervals is completely spoiled for n = 50. For

n = 20, the classical intervals almost keep their coverage, while classical boot-

strap intervals lose coverage, under C2. Under C3, the coverage preservation is

made at the expense of providing larger confidence intervals than those obtained

for normal samples, leading to practically non-informative intervals. Under any

contamination, for both sample sizes, the BCIwin intervals achieve smaller cov-

erage probabilities than BCIif intervals, and far away from the nominal value.

On the other hand, the coverage of BCIif intervals is very stable under all the

contamination patterns keeping at same time the length under control.

These results show that, for the location model, the IFB procedure achieves

its aim: it is a fast, robust and efficient inference method. It has also proven

to work well in other situations including inference for the correlation coefficient

(Amado and Pires, 2004) and selection of variables in linear discriminant analysis

(Amado, 2003).

3.2. The logistic regression model

In order to check the behaviour of the proposal in a more complex model,

we consider a special case of the generalized linear model (GLM), the logistic

regression model. Under a logistic regression model, the observations (Yi,Xi),

1 ≤ i ≤ n, Xi ∈ Rp, are independent with the same distribution as (Y,X) ∈ Rp+1

such that the conditional distribution of Y |X = x is Bi(1, µ(x)). The mean

µ(x) = E(Y |X = x) is modelled linearly through a known link function, that

is, µ (x) = H
(
β0 + xtβ

)
where, for the logistic model, H(t) = 1/(1 + exp(−t)).

Note that in this case, the nuisance parameter τ is not present, so we will denote

the distribution of the observations Pθ . We consider Influence Function Bootstrap

intervals based on the weighted version of the Bianco and Yohai estimators (wby)

as introduced in Croux and Haesbroeck (2003). In order to guarantee existence

of solution, Croux and Haesbroeck (2003) proposed to use the score function

φ(t) =

{
t exp(−

√
d) if t ≤ d

−2(1 +
√
t) exp(−

√
t) +

(
2(1 +

√
d) + d

)
exp(−

√
d) otherwise.

(3.1)

To define the robust bootstrap, we need to compute the SIF. The influence

function of the functional βml related to the maximum likelihood estimator β̂ml

is given by

IF((y,x),βml, Pθ) = I(β)−1(y −H(xtβ))x ,(3.2)

where Pβ(y = 1|x) = H(xtβ) and I(β) = E
(
H(xtβ)(1 −H(xtβ))xxt) stands
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for the information matrix. Therefore,

SIF((y,x),βml, Pβ) =
{
(y −H(xtβ))2xtI(β)−1x

} 1
2 .

Note that the distribution of the SIF is not independent of the parameter and

so, the tuning constant c, as defined in Amado and Pires (2004), depends on β.

A data-driven procedure to compute c can be defined considering a preliminary

robust estimator of β. For the sake of simplicity, in our simulation process we

have computed a unique value c from the true value β.

To assess the performance of the bootstrapping influence robust intervals in

the logistic model, first consider uncontaminated data sets following a model simi-

lar to that presented in Croux and Haesbroeck (2003). We select a high dimension

regression parameter combined with a moderate sample size, that is p = 11 and

n = 100. Since the influence function (3.2) depends on the regression parameter,

we consider two different values for β. To be more precise, we generate 1000 sam-

ples with covariates Xi = (1,Zt
i )t with Zi ∼ N10(0, I) and binary responses Yi

such that Yi|Xi = x ∼ Bi(1, H(xtβ)). In the first case, β = (0, 0, ..., 0)t, while

in the second one, we choose β = (1, ..., 1)t/3
√

11.

We calculate the classical maximum likelihood (ml) and the robust weighted

estimators introduced in Croux and Haesbroeck (2003) and denoted β̂wby. The

robust estimators were computed using the loss function (3.1) with tuning con-

stant d = 0.5 and weights based on the robust Mahalanobis distance d(z, µ̂z, Σ̂z),

where (µ̂z, Σ̂z) stand for the Minimum Covariance Determinant estimators (mcd)

of multivariate location and scatter of the explanatory variables Zi. We compute

the asymptotic intervals based on the maximum likelihood estimators, ACIml,

the related bootstrap intervals BCIml, the asymptotic intervals associated to the

robust estimators ACIrob and the Influence Function Bootstrap intervals, BCIif,

computed using the robust weights derived from the robust estimator β̂wby. In

all cases, the number of bootstrap samples is B = 2000.

Tables 2 and 3 summarize the results in terms of coverage, mean length and

standard deviation of the length of the obtained intervals, for both values of the

regression parameter, under the central model. In Tables 2 and 3, we observe that

the coverage of all the computed intervals is close to the nominal confidence level

0.90 for all the components of the regression parameter. The observed confidence

level of the BCIif is close to the values obtained for the classical asymptotic

intervals, while the classical bootstrap intervals BCIml achieve the lowest confi-

dence levels. Besides, as expected, the asymptotic maximum likelihood intervals

ACIml are the shortest ones, showing also the smallest standard deviations of the

lengths. At the same time, we observe that BCIml intervals are the longest, while

the BCIif have smaller standard deviation of the lengths than ACIrob and BCIml

intervals. In fact, we confirm that the performance of the BCIif intervals is the

same regardless the value of the regression parameter.
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Table 2: Coverage, mean length and standard deviation of the length
for the non-contaminated samples from a logistic model with
β = (0, ..., 0)t, p = 11. Nominal level 0.90.

Comp. ACIml ACIrob BCIml BCIif

Coverage

β0 0.876 0.907 0.850 0.887
β1 0.885 0.904 0.842 0.892
β2 0.884 0.916 0.841 0.888
β3 0.898 0.908 0.868 0.894
β4 0.896 0.916 0.852 0.893
β5 0.880 0.914 0.877 0.887
β6 0.890 0.917 0.861 0.890
β7 0.867 0.888 0.851 0.866
β8 0.875 0.900 0.862 0.883
β9 0.894 0.897 0.845 0.891
β10 0.868 0.896 0.842 0.867

Mean Length

β0 0.743 0.848 0.977 0.929
β1 0.755 0.898 1.014 0.965
β2 0.758 0.904 1.016 0.967
β3 0.757 0.908 1.012 0.968
β4 0.758 0.907 1.018 0.967
β5 0.755 0.906 1.018 0.966
β6 0.756 0.903 1.015 0.966
β7 0.757 0.900 1.011 0.965
β8 0.755 0.909 1.011 0.966
β9 0.756 0.904 1.018 0.968
β10 0.755 0.907 1.015 0.966

Standard Deviation Length

β0 0.030 0.091 0.082 0.064
β1 0.064 0.158 0.137 0.106
β2 0.068 0.164 0.136 0.112
β3 0.064 0.156 0.128 0.104
β4 0.063 0.172 0.133 0.110
β5 0.064 0.163 0.128 0.108
β6 0.063 0.172 0.130 0.106
β7 0.064 0.161 0.129 0.105
β8 0.064 0.165 0.131 0.110
β9 0.065 0.162 0.132 0.118
β10 0.065 0.172 0.137 0.127
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Table 3: Coverage, mean length and standard deviation of the length
for the non-contaminated samples from a logistic model with
β = (1, ..., 1)t/3

√
11, p = 11. Nominal level 0.90.

Comp. ACIml ACIrob BCIml BCIif

Coverage

β0 0.885 0.912 0.851 0.895
β1 0.872 0.900 0.833 0.879
β2 0.873 0.900 0.857 0.887
β3 0.882 0.900 0.862 0.892
β4 0.875 0.897 0.847 0.882
β5 0.892 0.918 0.871 0.903
β6 0.895 0.925 0.843 0.901
β7 0.878 0.881 0.834 0.875
β8 0.875 0.913 0.829 0.880
β9 0.888 0.907 0.855 0.894
β10 0.876 0.907 0.853 0.888

Mean Length

β0 0.754 0.874 1.006 0.947
β1 0.772 0.937 1.054 0.988
β2 0.770 0.930 1.051 0.986
β3 0.765 0.922 1.039 0.978
β4 0.767 0.923 1.044 0.979
β5 0.766 0.923 1.041 0.977
β6 0.771 0.928 1.050 0.985
β7 0.774 0.940 1.051 0.991
β8 0.767 0.921 1.043 0.980
β9 0.769 0.927 1.046 0.980
β10 0.768 0.935 1.044 0.985

Standard Deviation Length

β0 0.034 0.110 0.103 0.069
β1 0.069 0.179 0.164 0.117
β2 0.067 0.180 0.153 0.117
β3 0.067 0.185 0.154 0.113
β4 0.067 0.182 0.148 0.113
β5 0.066 0.181 0.152 0.114
β6 0.068 0.185 0.149 0.114
β7 0.068 0.188 0.154 0.116
β8 0.067 0.175 0.144 0.112
β9 0.069 0.180 0.154 0.114
β10 0.068 0.190 0.150 0.122
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In the second part of this numerical study, we evaluate the performance of

the Influence Function Bootstrap intervals under non-contaminated and contam-

inated samples with p = 3. We generate 1000 samples of size n = 100 where X =

(1,Zt)t ∈ R3, corresponding to an intercept and two covariates. The explanatory

variables Zi are i.i.d. and such that Zi ∼ N2(0, I2), while the response variables

Yi follow a logistic model Yi|Xi = x ∼ Bi(1, H(xtβ)) with βt = (0, 2, 2). We

identify this case as the non-contaminated situation C0 and we also consider the

following contamination schemes:

• C1: 5 misclassified observations are introduced on a hyperplane parallel

to the true discriminating hyperplane xtβ with a shift equal to 1.5×
√

2

and with the first covariate x1 around 5.

• C2 : similar to scheme of C1, but with a shift equal to 5 ×
√

2.

We computed the same intervals as for p = 11. In the bootstrapping pro-

cedures, the number of resamples is B = 2000 and the simulated samples where

we detect possible non-overlapping leading to non-convergence were replaced by

new ones. Table 4 sums up the simulation results. Under the central model,

Table 4: Coverage, mean length and standard deviation of the length,
for non-contaminated and contaminated samples from a logistic
model with β = (0, 2, 2)t. Nominal level 0.90.

Coverage Mean Length Std. Dev. Length
Method

β0 β1 β2 β0 β1 β2 β0 β1 β2

C0

ACIml 0.902 0.890 0.901 1.010 1.624 1.629 0.101 0.357 0.354
ACIrob 0.929 0.930 0.933 1.072 1.810 1.827 0.157 0.566 0.584
BCIml 0.846 0.778 0.797 1.152 2.038 2.030 0.207 0.845 0.824
BCIif 0.908 0.827 0.860 1.124 1.924 1.924 0.158 0.582 0.579

C1

ACIml 0.714 0.088 0.859 0.903 0.882 1.352 0.084 0.153 0.285
ACIrob 0.882 0.860 0.844 1.003 1.647 1.632 0.134 0.504 0.506
BCIml 0.819 0.280 0.716 1.087 1.050 1.951 0.186 0.723 1.361
BCIif 0.767 0.513 0.861 0.976 1.377 1.633 0.132 0.603 0.468

C2

ACIml 0.629 0.000 0.001 0.708 0.547 0.749 0.027 0.030 0.070
ACIrob 0.881 0.860 0.843 1.004 1.647 1.634 0.137 0.500 0.510
BCIml 0.689 0.000 0.007 0.725 0.553 0.779 0.044 0.060 0.100
BCIif 0.820 0.824 0.798 0.982 1.801 1.692 0.154 0.410 0.480

we observe a similar behaviour to that described for p = 11, that is the coverage of

the BCIrob is close to the values obtained with ACIml. We can observe the serious

effect of the contamination on the classical asymptotic and bootstrap intervals
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ACIml and BCIml. Indeed, both types of intervals are completely non-informative

for β1 under both contamination schemes, since the coverage is less than 0.30

under C1 and 0 under C2. On the other hand, under C1, the intervals BCIif
achieve lower coverages than the asymptotic intervals ACIrob for components β0

and β1, but they are also shorter than the former. Besides, the intervals BCIif
obtained for β2 have higher coverage with a similar length to that of ACIrob

and the standard deviation of their length is smaller than that of the asymptotic

robust intervals based on β̂wby. Under C2, the comparison of the BCIif intervals

and the asymptotic robust ones, ACIrob, is similar to that described for C1, but

in this case the coverage values of the intervals obtained for β0 and β1 are closer.

Unlike the previous case, for β2 the BCIif intervals achieve a lower coverage than

ACIrob and BCIif intervals for β1 and β2 are larger than the robust asymptotic

ones. Moreover, the standard deviations of the length of the BCIif intervals for β2

and β3 is smaller than those of the ACIrob ones. We conclude that BCIif intervals

are comparable to the asymptotic intervals based on the robust estimator, and

this is more evident under C0 and under the case of the more severe contamination

C3 for the chosen value of the parameter.

4. GENERALIZATION OF THE INFLUENCE FUNCTION BOOT-

STRAP

As shown in the simulation study, a weakness of the IFB procedure is the

choice of the tuning constant. Effectively, in order to avoid undercoverage of the

confidence intervals (or underestimation of the variance), the constant c needs to

be a very high percentile of the SIF which restricts the degree of robustness of

the proposal.

In order to determine the needed correction, recall the discussion given

in Section 2 for an univariate location parameter with known scale, regarding

the M -estimator related to the bootstrap procedure. In fact, (2.3) and (2.4)

give the expressions for the asymptotic variance of the mean of the bootstrap

distribution and of an M -estimator with score function ψM (u) = u
√
w(u). Now,

assuming that µ√w(P ) ≈ µw(P ), which is true if P is approximately symmetric,

the bootstrap distribution of µ(Pwn,n) can be corrected, in order to be closer

to the bootstrap distribution of µ√w(Pn), by sampling nnew observations from

Pwn,n, with

nnew =

[∫ (√
w(u) + u

(√
w(u)

)′)
dP

]2

∫
w(u)dP

× n ,(4.1)

where h′ stands for the derivative of the function h : R → R. The corrected sample
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size nnew can be estimated by

n̂new =

[∑n
i=1

√
w(ui) +

∑n
i=1 ui

(√
w(ui)

)′]2

∑n
i=1w(ui)

,

where ui denotes the current standardized residuals. Another possible correction

is to sample n observations from Pwn,n and to multiply the centred bootstrap

distribution by
√
n/n̂new. Incidentally, we note that this correction is very similar

to one of the corrections needed by the robust bootstrap of Salibian–Barrera

(2000) denoted RB. The Influence Function Bootstrap with correction is denoted

by IFB∗.

In order to illustrate the generalization of the IFB to another univariate

example, we deal now with the correlation coefficient. Let Xt = (X1, X2) be a

random vector following a bivariate distribution P with mean µ and covariance

matrix

Σ =

(
σ11 σ12

σ21 σ22

)
,

with σii = Var(Xi) and σij = Cov(Xi, Xj), for i 6= j and i, j = 1, 2. The correla-

tion coefficient between X1 and X2 is given by ρ = corr(X1, X2) = σ12/
√
σ1σ2.

Assume that we have a a random sample (x11, x12), (x21, x22), ···, (x1n, x2n)

with distribution P and let ρ(Pn) be the Pearson sample correlation coefficient.

Amado and Pires (2004) give the SIF, the robust empirical function RESIF and

the weights wi for ρ(Pn). To apply the generalization and obtain the IFB∗ cor-

responding to ρ, we follow analogous calculus to those derived for the univariate

location parameter. In order to get IFB∗, we resample in each bootstrap step

nnew observations, where nnew is given in (4.1). Note that we are dealing with

the distribution of ρ√w(Pn)− ρ√w(P ), where ρ√w(Pn) is the estimator that links

original and weighted models given by

ρ√w (Pn) =

∑n
i=1wi (xi1 − µ̂1) (xi2 − µ̂2)√∑n

i=1wi (xi1 − µ̂1)
2∑n

i=1wi (xi2 − µ̂2)
2
,

with µ̂j = (
∑n

i=1wixij) (
∑n

i=1wi)
−1, j = 1, 2.

This generalization of the IFB can be extended to more complex models

with multivariate parameters such as generalized linear models, but this topic

will be the subject of future work.

In the next sections, we make a comparison between the IFB∗ distribution

and the distribution of the W -estimator for an univariate location model. We

also evaluate the performance of bootstrap confidence intervals for the univariate

location parameter and for the correlation coefficient.
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4.1. The IFB∗ distribution for the univariate location case

To study the performance of the IFB∗ distribution, we generate 500 random

samples X1, ..., Xn of size n = 20 and 50. In the non-contaminated situation,

labelled C0 in the Tables, the observations have a N(0, 1) distribution. The

contaminated model, denoted C1, is such that Xi ∼ 0.9N(0, 1) + 0.1N(10, 0.1)

which corresponds to a contaminated pattern where 10% of the observations

have a large mean with a small variance. The compared methods are IFB and

IFB∗ with RESIF(x) = |x− median(Xi)|/MAD(Xi) and η(c, ·) = ηd,γ(c, ·) with

d = c = 1.5 and γ = ∞. The number of bootstrap samples is B = 5000.

To compare the IFB∗ distribution with the distribution of the W -estimator

we need a reliable estimate of the “true” distribution. For that purpose, an

independent prior simulation was run as follows: 5000 samples were generated

from the considered distributions and the empirical percentiles (2.5, 5, 10, 25, 50,

75, 90, 95, 97.5) were determined. The selected percentiles were used in a study

to evaluate bootstrap distributions by Srivastava and Chan (1989). The previous

step was repeated 100 times. The final estimate of each percentile is the median

of the corresponding 100 observations.

Let P ∗ stand for the bootstrap distribution. Four bootstrap distributions

were actually considered

• The IFB distribution (without correction), centered at µw(Pn),

R(if)
boot(x) =

1

B

B∑

b=1

I
{
µ(P ∗

wn,n) − µw(Pn) ≤ x
}
,

• The IFB∗ distribution (with correction), centered at µ√w(Pn),

R(1)
boot(x) =

1

B

B∑

b=1

I
{
µ(P ∗

wn,n̂new
) − µ√w(Pn) ≤ x

}
,

• The IFB∗ distribution (with correction), centered at µw(Pn),

R(2)
boot(x) =

1

B

B∑

b=1

I
{
µ(P ∗

wn,n̂new
) − µw(Pn) ≤ x

}
,

• The IFB∗ distribution with two corrections, the previous one and an

empirical correction for asymmetry, centered at µw(Pn),

R(3)
boot(x) =

1

B

B∑

b=1

I
{(
µ(P ∗

wn,n̂new
) − µ∗n̂new

)
× fc + µ∗n̂new

−µw(Pn) ≤ x
}
,

with fc =(Vboot +25D2/n)/Vboot, D=µw(Pn)−µ√w(Pn) and Vboot equals

the bootstrap estimator of mean variance from the weighted sample.
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For a given percentile, p, let ̂P−1
µ√

w
(p) be the estimated percentile of the

distribution of µ√w(Pn) in the previous simulation study. For each of the 500

replications and for each p, we computed R
(m)
boot

(
̂P−1
µ√

w
(p)

)
, with m = IF, 1, 2, 3.

Note that if the bootstrap distribution is close to the distribution of µ√w, then

R
(m)
boot

(
̂P−1
µ√

w
(p)

)
must be close to p. Table 5 reports the mean (MEp) over the

500 replications, for each p. To assess a the global performance a Kolmogorov–

Smirnov type statistic is also given in the last column of Table 5 and denoted

KS = maxp |MEp − p|. The results for other distributions, including the Cauchy

and the log-normal distribution are available in Amado (2003).

Table 5: Comparison of different bootstrap distributions
with the “true” distribution of the weighted estimator
for the univariate location model when n= 20 and 50.

C0, n = 20

p 2.5 5 10 25 50 75 90 95 97.5 KS

R
(if)
boot 1.97 3.96 8.23 22.63 49.80 77.09 91.71 96.06 98.04 2.37

R
(1)
boot 2.50 4.75 9.34 23.90 49.98 76.07 90.76 95.39 97.60 1.10

R
(2)
boot 2.46 4.68 9.26 23.77 49.93 76.15 90.80 95.41 97.60 1.23

R
(3)
boot 2.49 4.73 9.32 23.84 49.93 76.08 90.73 95.37 97.57 1.16

C1, n = 20

p 2.5 5 10 25 50 75 90 95 97.5 KS

R
(if)
boot 3.29 5.17 8.97 22.26 49.33 78.92 94.63 98.56 99.80 4.63

R
(1)
boot 4.23 6.42 10.62 23.83 48.83 76.51 92.68 97.46 99.36 2.68

R
(2)
boot 2.53 4.31 7.95 20.38 45.26 73.86 91.16 96.58 98.93 4.74

R
(3)
boot 3.27 5.16 8.88 21.27 45.79 73.91 91.00 96.40 98.79 4.21

C0, n = 50

p 2.5 5 10 25 50 75 90 95 97.5 KS

R
(if)
boot 2.21 4.44 9.10 23.88 49.95 76.01 90.89 95.58 97.83 1.12

R
(1)
boot 2.44 4.83 9.66 24.48 50.03 75.45 90.33 95.16 97.57 0.52

R
(2)
boot 2.44 4.82 9.64 24.46 50.05 75.52 90.38 95.21 97.60 0.54

R
(3)
boot 2.45 4.83 9.65 24.48 50.05 75.50 90.37 95.19 97.59 0.52

C1, n = 50

p 2.5 5 10 25 50 75 90 95 97.5 KS

R
(if)
boot 2.90 5.14 9.74 24.98 52.44 79.63 93.76 97.58 99.12 4.63

R
(1)
boot 3.37 6.07 11.20 26.52 52.18 77.65 92.03 96.48 98.54 2.65

R
(2)
boot 2.35 4.63 9.18 23.58 48.98 75.31 90.78 95.76 98.13 1.42

R
(3)
boot 2.55 4.88 9.47 23.87 49.14 75.30 90.70 95.68 98.07 1.13
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The main conclusions from the overall experiment are: (1) the accuracy

of the bootstrap approximation increases with n, but it can be quite good even

for n = 20; (2) the results are better for symmetric distributions; (3) R
(3)
boot is

usually the best approximation, especially for asymmetric distributions. This

study was also performed for another contamination patterns and larger sample

sizes (n = 100) leading to analogous conclusions.

4.1.1. Confidence intervals for univariate location based on IFB∗

For this study, we consider the simulation design of Salibian–Barrera (2000,

Section 3.6.2). We generate i.i.d. observations X1, ..., Xn with n = 20, 30, 50 such

that Xi ∼ (1− ε)N(0, 1)+ εN(−7, 0.1), with ε = 0, 0.1, 0.2, 0.3. The method cho-

sen is the basic percentile method with IFB∗, where RESIF(x) = |x− µ̂LTS |/σ̂LTS

with µ̂LTS and σ̂2
LTS the least trimmed mean and variance estimators. We also

choose c = 1.5 and 2 and denote the procedure IFB∗(1.5) and IFB∗(2), respec-

tively. The number of bootstrap samples is B = 5000 and the number of simula-

tion runs is 1000.

Table 6 reports the estimated coverage and the length of 95% confidence

intervals. The results under the heading“Censored simulation”are obtained after

excluding from the simulation (not from the bootstrap) samples with more than

50% contamination, since there is no equivariant method able to deal with this

situation.

Table 6: Estimated coverage and length, between brackets, of nomi-
nal 95% confidence intervals for a univariate location model
from contaminated distribution (1−ε)N(0, 1) + εN(−7, 0.1).
Results in boldface indicate significant difference to target.

n ε IFB∗(2) IFB∗(1.5) Censored simulation

20

0.0 0.922 (0.83) 0.915 (0.85) — —
0.1 0.944 (1.14) 0.923 (0.95) — —
0.2 0.955 (1.54) 0.927 (1.13) 0.958 (1.58) 0.935 (1.12)
0.3 0.920 (2.08) 0.890 (1.36) 0.954 (2.08) 0.938 (1.33)

30

0.0 0.939 (0.70) 0.930 (0.70) — —
0.1 0.964 (0.93) 0.942 (0.79) — —
0.2 0.959 (1.29) 0.934 (0.90) — —
0.3 0.961 (1.78) 0.933 (1.08) 0.975 (1.78) 0.951 (1.06)

50

0.0 0.941 (0.55) 0.943 (0.55) — —
0.1 0.956 (0.70) 0.954 (0.60) — —
0.2 0.974 (0.98) 0.952 (0.71) — —
0.3 0.978 (1.41) 0.961 (0.83) — —
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Comparing the obtained results with those reported in Salibian–Barrera

(2000, page 129) for the studentized robust (SRB) and weighted (WB) Bootstrap

(with the same simulation conditions, but 3000 runs) we conclude that: (1) the

coverage of IFB∗ intervals is similar to the coverage of WB intervals in all cases,

and worse than that of SRB intervals only when n = 20; (2) under contamination,

the length of the intervals follows the following order, IFB∗(1.5) < WB < IFB∗(2)

< SRB.

4.2. The correlation coefficient

As in Section 4.1, we now consider the distribution of IFB∗ for the case of

the correlation coefficient. Samples with n = 20 observations were generated from

a non-contaminated and a contaminated model, labelled C0 and C1, respectively.

Under C0, Xi are i.i.d. Xi ∼ N(0,Σ), where

Σ =

(
1 0.5

0.5 1

)
.

Under C1, the observations are still independent and such that Xi ∼ N2 (0,Σ)

for 1 ≤ i ≤ n− [εn] while Xi ∼ δx when n− [εn] + 1 ≤ i ≤ n. We choose ε = 0.1

and x = (−5, 5)t.

As in Section 4.1, we consider four bootstrap distributions IFB (taking

c = 5) defined as

• R
(if)
boot(x) = (1/B)

∑B
b=1 I

{(
ρ(P ∗

wn,n) − ρw(Pn)
)
≤ x

}
,

• R
(1)
boot(x) = (1/B)

∑B
b=1 I

{(
ρ(P ∗

wn,n̂new
) − ρ√w(Pn)

)
≤ x

}
,

• R
(2)
boot(x) = (1/B)

∑B
b=1 I

{(
ρ(P ∗

wn,n̂new
) − ρw(Pn)

)
≤ x

}
,

•

R(3)
boot(x) =(1/B)

B∑

b=1

I
{(
ρ(P ∗

wn,n̂new
) − ρ∗

)
×
√
n/n̂new×

×
√
fc + ρ∗ − ρw(Pn) ≤ x

}
,

where ρ∗ is the Monte Carlo approximation of the bootstrap estimator

and the correction factor, fc, is given by

fc =
{
Vboot + n−1a3D

2
est

}
/Vboot

with Vboot = [Var(ρ(Pwn,n))]B
boot

the bootstrap estimator of the variance

of the usual estimator of the correlation coefficient in the weighted sam-

ple and Dest = ρ√w(Pn) − ρ√w(P ).

As above, the “true” distribution of ρ√w(Pn) − ρ√w(P ) was estimated thr-

ough an independent simulation study based on 5000 samples. This sample of
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5000 observations was centered using its mean. Then, the empirical percentiles

were computed. The previous step, was repeated 20 times and the final estimate

of each percentile is the median of the obtained values over the 20 replications.

Table 7: Comparison of different bootstrap distributions
with the “true” distribution of the weighted estimator
for the correlation coefficient when n = 20.

C0

p 2.5 5 10 25 50 75 90 95 97.5 KS

R
(if)
boot 2.58 4.98 9.72 24.91 53.98 80.39 91.93 95.17 96.82 5.39

R
(1)
boot 2.64 5.14 9.83 24.88 54.09 80.46 91.87 95.14 96.84 5.46

R
(2)
boot 2.49 4.96 9.61 24.63 53.92 80.43 91.88 95.13 96.82 5.43

R
(3)
boot 2.55 5.03 9.68 24.69 53.89 80.31 91.77 95.04 96.74 5.31

C1

p 2.5 5 10 25 50 75 90 95 97.5 KS

R
(if)
boot 2.72 5.26 10.02 25.32 54.99 80.98 92.08 95.18 96.77 5.98

R
(1)
boot 2.63 5.17 9.88 25.10 54.25 80.47 91.74 94.81 96.41 5.47

R
(2)
boot 2.53 5.08 9.82 25.15 54.50 80.85 92.06 95.03 96.55 5.85

R
(3)
boot 2.60 5.17 9.91 25.19 54.42 80.66 91.86 94.87 96.42 5.66

Table 7 summarizes the results obtained. We observe that the approxima-

tions are better for the extreme quantiles than for the central ones, in all cases.

It is worth noting that, for inference purposes, the extreme quantiles are the

relevant ones.

5. CONCLUSIONS

The IFB procedure discussed in this paper allows to use resampling methods

for robust inference, computing a robust estimator only for the original sample

and avoiding the problems related with bootstrapping a robust estimator. It

has shown to be effective for the location model. On the other hand, for the

logistic regression model it shows a performance similar to that of the asymptotic

confidence intervals.

To solve some problems of the procedure including the choice of the tuning

constant and the identification of the functional being bootstrapped, a generalized

influence function bootstrap is introduced. The empirical studies suggest that the

generalized procedure IFB∗ has good properties, fixing some of the drawbacks of

the original IFB procedure.
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6. APPENDIX: SOME ASYMPTOTIC RESULTS

6.1. Convergence of the weighted empirical distribution to the weighted

distribution

In this section, we will derive asymptotic results related to the consistency

properties of the proposal. Let us first introduce some notation.

Let X1, ...,Xn be i.i.d. observations such that Xi ∈ Rp with the same dis-

tribution as X, where X ∼ P and θ0 ∈ Θ ⊂ Rq. Usually, θ is the parameter

allowing to parametrize the distribution of X. Now, assume that θ̂ is a consis-

tent estimator of θ0 and denote by Pn the empirical distribution.

Given a weight function w1 : Rp × Rq → R such that w1 ≥ 0, define the

following functions

Hn(t,θ) =
1

n

n∑

i=1

w1(Xi,θ)I(−∞,t](Xi)(6.1)

H(t,θ) = EPw1(X,θ)I(−∞,t](X) = Pw1(·,θ)I(−∞,t](6.2)

and note that H(t,θ) = EPHn(t,θ).

It is worth noticing that, in Section 2 as in Amado and Pires (2004),

the weighted empirical distribution involves a weight function w1 that equals

w1(x,θ) = w(x,θ){
∫
w(u,θ)dP (u)}−1 and thus, the distribution function used

therein is of the form given in (6.2).

Let us assume that Pw1=EPw1(X,θ)=1 and thatW1(x) = supθ∈Θw1(x,θ)

is such that PW 2
1 <∞.

We consider the following family of functions

F = {fθ,t : R
p → R such that fθ,t(x) = w1(x,θ)I(−∞,t](x) ,θ ∈ Θ and t ∈ R

p}
F0 = {ft : R

p → R such that ft(x) = w1(x,θ0)I(−∞,t](x) , t ∈ R
p}

W = {fθ : R
p → R such that fθ(x) = w1(x,θ) ,θ ∈ Θ}

G = {gt : R
p → R such that gt(x) = I(−∞,t](x) , t ∈ R

p} .

We have that F = W ·G and Hn(t,θ)−H(t,θ) = (Pn −P )fθ,t. Denote by Gn =√
n(Pn − P ).

It is worth noticing that, when w1 is bounded, G and F0 are both P -

Glivenko–Cantelli and Donsker with envelope G(x) ≡ 1 and F0(x) = w1(x,θ0).
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Proposition 6.1 states that Hn(t,θ) is a uniformly strongly consistent esti-

mator of H(t,θ) giving also the rate of this convergence.

We will need the following assumptions

A1. |w1(x,θ1)−w1(x,θ2)| ≤ ‖θ1 − θ2‖F (x), with PF 2 <∞ and Θ com-

pact

A2. W = ψ(L) with L a finite-dimensional family of functions and ψ :

R → R a bounded function with bounded variation.

A3. W1 is bounded.

A4. w1(·,θ) is continuous in θ.

A5. H is continuously differentiable in θ such thatH ′(t,θ) = ∂H(t,θ)/∂θ

is bounded in Rp × V with V a neighbourhood of θ0.

Remark 6.1. W1 provides an envelope for W. Moreover, under mild

conditions on the functions w1, W is P -Glivenko–Cantelli and Donsker family.

For instance, W is both P -Glivenko–Cantelli and Donsker if either A1 or A2

holds.

Proposition 6.1. Assume θ̂ is a consistent estimator and that either A1

or A2 holds. Then,

a) sup
t∈Rp |Hn(t, θ̂) −H(t,θ0)| a.s.−→ 0 .

b) If, in addition, θ̂ has a root-n order of convergence and A3 to A5 hold,

we have that

(6.3)
√
n sup

t∈Rp

|Hn(t, θ̂) −H(t,θ0)| = OP(1) .

Proof of Proposition 6.1: a) Under either A1 or A2, we will have that

F is P -Glivenko–Cantelli and so,

sup
f∈F

|(Pn − P )f | = sup
θ∈Θ
t∈Rp

|Hn(t,θ) −H(t,θ)| a.s.−→ 0.

In particular, we have that

sup
t∈Rp

|Hn(t, θ̂) −H(t, θ̂)| a.s.−→ 0 .

Moreover, since either A1 or A2 holds, we have that M1(θ) = Pw1(·,θ) is a

continuous function. Hence, we have that the consistency of θ̂ implies that

sup
t∈Rp |H(t, θ̂) −H(t,θ0)| a.s.−→ 0 and thus, we obtain that

(6.4) sup
t∈Rp

|Hn(t, θ̂) −H(t,θ0)| a.s.−→ 0 .
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b) Using A3, we get that F is Donsker, so Gn =
√
n(Pn − P ) converges

weakly to a zero mean Gaussian process G in ℓ∞(F). Therefore, the following

equicontinuity condition holds

(6.5) lim
η→0

lim sup
n→∞

P

(
sup

ρP (fθ1,t1
−fθ2,t2

)<η
|Gn(fθ1,t1 − fθ2,t2)| > ǫ

)
= 0

with ρ2
P (f) =P (f−Pf)2. Note that, ρ2

P (fθ1,t−fθ2,t)≤EP (w1(X,θ1)−w1(X,θ2))
2

= B(θ1,θ2) where the function B(θ1,θ2) satisfies that limθ→θ0
B(θ,θ0) = 0,

since w1(·,θ) is continuous in θ and W1 is bounded. Then, using that θ̂ is con-

sistent, we obtain that sup
t∈Rp ρ2

P (fbθ,t − fθ0,t)
p−→ 0 which implies that

sup
t∈Rp

|Gn(fbθ,t − fθ0,t)|
p−→ 0 .

Therefore, Gnfbθ,t has the same asymptotic distribution as Gnfθ0,t in ℓ∞(F0).

Using that F0 is Donsker, we get that Gnfθ0,t converges to a zero mean Gaussian

process G0 in ℓ∞(F0) with covariances given by

EG0fθ0,t1G0fθ0,t1 = EPw
2
1(X,θ0)I(−∞,t1](X)I(−∞,t2](X) −

− EPw1(X,θ0)I(−∞,t1](X) EPw1(X,θ0)I(−∞,t2](X) .

In particular,
√
n sup

t∈Rp |Hn(t, θ̂) −H(t, θ̂)| is tight and has the same asymp-

totic distribution as
√
n sup

t∈Rp |Hn(t,θ0) −H(t,θ0)|.

Using that θ̂ has a root-n order of convergence and the fact that A5 implies

that H is continuously differentiable with bounded first derivative in a neighbour-

hood of θ0, we have that (6.3) holds concluding the proof of b).

Remark 6.2. The asymptotic distribution of
√
n sup

t∈Rp |Hn(t, θ̂) −
H(t,θ0)| may depend on that of

√
n(θ̂ − θ0). Using analogous arguments, it

is possible to show that

i) If EPW1(X)‖X‖ <∞, then

sup
θ∈Θ

∥∥∥∥∥
1

n

n∑

i=1

w1(Xi,θ)Xi − EPw1(X,θ)X

∥∥∥∥∥
a.s.−→ 0

and so, if A(θ) = EPw1(X,θ)X is a continuous function of θ, we have

that ∥∥∥∥∥
1

n

n∑

i=1

w1(Xi, θ̂)Xi − EPw1(X,θ0)X

∥∥∥∥∥
a.s.−→ 0 ,

ii) If EPW
2
1 (X)‖X‖2 <∞, then Zn =

√
n
(

1
n

∑n
i=1w1(Xi, θ̂)Xi − A(θ̂)

)

is tight and has the same asymptotic distribution as Zn,0 =
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√
n
(

1
n

∑n
i=1w1(Xi,θ0)Xi − A(θ0)

)
since Zn − Zn,0

p−→ 0. Moreover,

√
n

(
1

n

n∑

i=1

w1(Xi,θ̂)Xi−A(θ0)

)
= Zn +

√
n
(
A(θ0)−A(θ̂)

)

= Zn,0 +
√
n
(
A(θ0)−A(θ̂)

)
+ oP(1) .

Assume that θ̂ has a root-n order of convergence and that A(θ) is

continuously differentiable in θ. Denote A′
0 = ∂A(θ)/∂θ|θ=θ0

where

∂A(θ)/∂θ =




∂A1(θ)
∂θ1

··· ∂Ap(θ)
∂θ1

... ··· ...
∂A1(θ)

∂θq
··· ∂Ap(θ)

∂θq


 .

Then, we have that

√
n

(
1

n

n∑

i=1

w1(Xi,θ̂)Xi−A(θ0)

)
= Zn,0− (A′

0)
t√n

(
θ̂−θ0

)
+ oP(1)

and so, again depending on A′
0, the asymptotic distribution of

√
n
(∑n

i=1w1(Xi,θ̂)Xi/n−A(θ0)
)

may depend on that of
√
n
(
θ̂−θ0

)
.

Remark 6.3. As pointed out above, for the weighted empirical distribu-

tion considered in this paper, w1 equals w1(x,θ) = w(x,θ){
∫
w(u,θ)dP (u)}−1.

Thus, the function used in practice is not Hn but H̃n defined as

H̃n(t,θ) =





1

n

n∑

j=1

w(Xj ,θ)





−1

1

n

n∑

i=1

w(Xi,θ)I(−∞,t](Xi)

= Hn(t,θ)Mn(θ)−1M(θ) .

where M(θ) = Pw(·,θ) =
∫
w(u,θ)dP (u) and Mn(θ) = 1

n

∑n
j=1w(Xj ,θ). Note

that

H̃n(t, θ̂) −H(t,θ0) = Hn(t, θ̂) −H(t,θ0) + H̃n(t, θ̂) −Hn(t, θ̂)

= Hn(t, θ̂) −H(t,θ0) +Mnθ̂)−1
[
M(θ̂) −Mn(θ̂)

]

(
Hn(t, θ̂) −H(t,θ0)

)
+Mn(θ̂)−1

[
M(θ̂) −Mn(θ̂)

]
H(t,θ0) .

Hence, if we denote by ∆̂n(t) = Hn(t, θ̂) −H(t,θ0), we have that

H̃n(t, θ̂) −H(t,θ0) = ∆̂n(t)
{

1 +Mn(θ̂)−1
[
M(θ̂) −Mn(θ̂)

]}
+

+Mn(θ̂)−1
[
M(θ̂) −Mn(θ̂)

]
H(t,θ0) .
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Using that W is Glivenko–Cantelli, we get

Mn(θ̂) −M(θ̂) =
1

n

n∑

j=1

w(Xj , θ̂) −
∫
w(u, θ̂)dP (u)

a.s.−→ 0 ,

which together with (6.4) and the facts that
∫
w(u,θ0)dP (u) > 0 and M(θ) =

Pw(·,θ) is a continuous function entails that

sup
t∈Rp

|H̃n(t, θ̂) −H(t,θ0)| a.s.−→ 0 .

On the other hand, (6.3) entails that
√
n sup

t∈Rp |∆̂n(t)| = OP(1), hence

√
n sup

t∈Rp

|H̃n(t, θ̂) −H(t,θ0)| ≤ OP(1)
∣∣∣1 +Mn(θ̂)−1

[
M(θ̂) −Mn(θ̂)

]∣∣∣

+|Mn(θ̂)−1|
√
n
∣∣∣M(θ̂) −Mn(θ̂)

∣∣∣M(θ0) .

Using that W is Donsker, we obtain that
√
n
∣∣∣M(θ̂) −Mn(θ̂)

∣∣∣ = OP(1), which

implies that √
n sup

t∈Rp

|H̃n(t, θ̂) −H(t,θ0)| = OP(1) ,

as desired.

Moreover, as above, we have that
√
n
[
M(θ̂) −Mn(θ̂)

]
has the same asymp-

totic distribution as
√
n [M(θ0) −Mn(θ0)], so, using that M(θ0) 6= 0, we have

√
n
(
H̃n(t, θ̂) −H(t,θ0)

)
=
√
n∆̂n(t) −M(θ0)

−1×

×
√
n [Mn(θ0) −M(θ0)]H(t,θ0) + oP(1) .

An analogous expression can be derived for the mean computed with H̃n(t, θ̂).

6.2. Some results related with the bootstrap

In this section, we will derive some results concerning the bootstrap pro-

cedures. We will fix some notation. For the sake of simplicity denote by pi,θ =

pi(Xi,θ) = w1(Xi,θ)/n. Then, Hn(t,θ) =
∑n

i=1 pi,θI(−∞,t](Xi) and the boot-

strap distribution of Hn is

H⋆
n(t,θ) =

1

n

n∑

i=1

Wn,i,θI(−∞,t](Xi)

where (Wn,1,θ , ...,Wn,n,θ)|~X ∼ M(n, (p1,θ , ..., pn,θ) with ~X = (X1, ···,Xn).

It is worth noticing that EPWn,i,θ |~X = npi,θ entails that EP (H⋆
n(t,θ) −

Hn(t,θ)) = 0. Define µ̂θ =
∑n

i=1 pi,θXi and µ̂⋆
θ

= 1
n

∑n
i=1Wn,i,θXi. The next
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proposition states that, conditionally on the sample, the difference between µ̂θ

and µ̂⋆
θ

converges to 0 in probability.

Proposition 6.2. Assume that A3 holds. Then,

(6.6) H⋆
n(t, θ̂) −Hn(t, θ̂)|~X p−→ 0 ,

If, in addition supθ∈Θ sup
x
‖w1(x, θ)x‖ <∞, we have that µ̂⋆bθ − µ̂bθ |~X p−→ 0.

Proof of Proposition 6.2: Let us compute Var (H⋆
n(t,θ) −Hn(t,θ)). Let

ft(x) = I(−∞,t](x), then

Var (H⋆
n(t,θ) −Hn(t,θ)) =

n∑

i=1

Var

((
1

n
Wn,i,θ − pi,θ

)
ft(Xi)

)

+ 2
∑

i<j

Cov

((
1

n
Wn,i,θ − pi,θ

)
ft(Xi),

(
1

n
Wn,j,θ − pj,θ

)
ft(Xj)

)
.

Denote Zi = ((1/n)Wn,i,θ − pi,θ)ft(Xi). Then, using that EPZi = 0, we have that

Var(Zi) = EPZ
2
i = EP

[
f2
t
(Xi)EP

((
1

n
Wn,i,θ − pi,θ

)2

|~X
)]

=
1

n
EP f

2
t
(X1)p1,θ(1 − p1,θ) .

Similarly, we get that

Cov(Zi, Zj) = EPZiZj

= EP

[
ft(Xi)ft(Xj)EP

((
1

n
Wn,i,θ − pi,θ

)(
1

n
Wn,j,θ − pj,θ

)
|~X
)]

= − 1

n
EP ft(X1)ft(X2)p1,θp2,θ .

Thus,

Var (H⋆
n(t,θ) −Hn(t,θ)) = EP f

2
t
(X1)p1,θ(1 − p1,θ) − 2

1

n

(
n

2

)
EP ft(X1)ft(X2)p1,θp2,θ

=
1

n
EP f

2
t
(X1)w1(X1,θ)

(
1 − 1

n
w1(X1,θ)

)

− 2

n

(
n

2

)
1

n2
EP ft(X1)ft(X2)w1(X1,θ)w1(X2,θ) ,

which entails that H⋆
n(t,θ) −Hn(t,θ)

p−→ 0 for each fixed θ, t.

Moreover, we have the bounds
∣∣∣∣EP f

2
t
(X1)w1(X1,θ)

(
1 − 1

n
w1(X1,θ)

)∣∣∣∣ ≤ EP f
2
t
(X1)W1(X1) = A1

|EP ft(X1)ft(X2)w1(X1,θ)w1(X2,θ)| ≤ EP f
2
t
(X1)W

2
1 (X1) = A2
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which imply that

sup
θ∈Θ

Var (H⋆
n(t,θ) −Hn(t,θ)) ≤ 1

n
(A1 +A2) ,

so,

sup
θ∈Θ

P (|H⋆
n(t,θ) −Hn(t,θ)| > ǫ) ≤ 1

ǫ2
1

n
(A1 +A2) .

The fact that EPZi|~X = 0, Cov(Zi, Zj |~X) = −(1/n)ft(Xi)ft(Xj)pi,θpj,θ and

Var(Zi|~X) = (1/n)f2
t
(Xi)p

2
i,θ , imply

Var
(
H⋆

n(t,θ) −Hn(t,θ)|~X
)

=
1

n

n∑

i=1

f2
t
(Xi)p

2
i,θ −

2

n

∑

i<j

ft(Xi)ft(Xj)pi,θpj,θ .

Hence, using that W1 is a bounded function and that pi,θ = w1(Xi,θ)/n, we get

the following bound

Var
(
H⋆

n(t,θ) −Hn(t,θ)|~X
)

≤

≤ 1

n2
‖W1‖2

∞
1

n

n∑

i=1

f2
t
(Xi) +

1

n2
‖W1‖2

∞
1

n

(
n∑

i=1

ft(Xi)

)2

(6.7)

≤ 1

n2
‖W1‖2

∞
1

n

n∑

i=1

f2
t
(Xi) +

1

n
‖W1‖2

∞

(
1

n

n∑

i=1

ft(Xi)

)2

.

The fact that |f2
t
(Xi)| ≤ 1 entails that

sup
θ∈Θ

P

(
|H⋆

n(t,θ) −Hn(t,θ)| > ǫ|~X
)
≤ 1

ǫ2
2

n
‖W1‖2

∞ .

Hence,

P

(∣∣∣H⋆
n(t, θ̂) −Hn(t, θ̂)

∣∣∣ > ǫ|~X
)
≤ 1

ǫ2
2

n
‖W1‖2

∞

implying (6.6).

Let us denote µ̂θ =
∑n

i=1 pi,θXi and µ̂⋆
θ

= 1
n

∑n
i=1Wn,i,θXi. Taking f(Xi) =

Xi in (6.7), we obtain

Var
(
µ̂⋆

θ
− µ̂θ |~X

)
≤ 1

n2

1

n

n∑

i=1

‖f(Xi)‖2w2
1(Xi, θ) +

1

n

∥∥∥∥∥
1

n

n∑

i=1

f(Xi)w1(Xi, θ)

∥∥∥∥∥

2

.

Hence, since B = supθ∈Θ sup
x
‖f(Xi)w1(Xi, θ)‖ <∞, we get that

P

(
|µ̂⋆bθ − µ̂bθ | > ǫ|~X

)
≤ 1

ǫ2
2

n
B2

implying that µ̂⋆bθ − µ̂bθ |~X p−→ 0.
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