Rev Argent Microbiol. 2013;45(2):131-132

REVISTA ARGENTINA DE MICROBIOLOGÍA

IMAGEN MICROBIOLÓGICA

Las micorrizas arbusculares y *Rhizobium*: una simbiosis dual de interés

Arbuscular mycorrhizae and Rhizobium: A dual symbiosis of interest

Federico N. Spagnoletti^{a,c}, Agustina Fernandez di Pardo^b, Natalia E. Tobar Gómez^c y Viviana M. Chiocchio^{a,c,*}

Recibido el 18 de marzo de 2013; aceptado el 9 de abril de 2013

Los microorganismos benéficos juegan un rol fundamental en los agroecosistemas naturalmente sustentables. Algunos de ellos pueden ser utilizados como inoculantes para beneficiar a las plantas, ya que desarrollan actividades que involucran una promoción de su crecimiento y su protección. Las asociaciones de *Rhizobium*-micorrizas arbusculares (MA) actúan sinérgicamente en los niveles de infección, nutrición mineral y crecimiento de las plantas^{1,3}.

Es conocido que el principal efecto de las MA de realzar la actividad de *Rhizobium* es a través de una estimulación generalizada de la nutrición del hospedante, aunque pueden ocurrir algunos efectos más localizados a nivel de raíz o de nódulo⁴. Las interacciones pueden tener lugar en el estadio de precolonización, cuando los dos microorganismos interactúan como habitantes rizosféricos, o durante el desarrollo de la simbiosis tripartita; el genotipo del hospedante también influye en esta interacción².

Al experimentar con una cepa de MA (Glomus intraradices) y una cepa de Sinorhizobium meliloti sobre alfalfa, leguminosa utilizada como pastura, la técnica de tinción de raíces con azul de Tripán reveló un elevado porcentaje de colonización fúngica⁵ (fig. 1A) y una presencia muy importante de vesículas (fig. 1B). Resulta evidente también la presencia de apresorios, puntos de entrada de la hifa fúngica en la raíz (fig. 1C). En el interior de los nódulos (fig. 1D) se observa un número importante de esporas como así también los puntos de entrada del micelio externo en el nódulo.

Dado que estos microorganismos simbiontes son tan importantes para la captación de nutrientes por parte de las plantas, al contribuir al ciclo del N y del P en el suelo, es interesante poder reconocer en los nódulos un nuevo nicho donde las esporas micorrícicas pueden quedar preservadas de la degradación por otros microorganismos del suelo.

Correo electrónico: chiocchi@agro.uba.ar (V.M. Chiocchio).

^aCátedra de Microbiología Agrícola, Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina

^bFacultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina ^cInstituto de investigación en Biociencias Agricolas y Ambientales, Consejo Nacional de Investigaciones Científicas y Técnicas (INBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina

^{*}Autor para correspondencia.

132 F.N. Spagnoletti et al

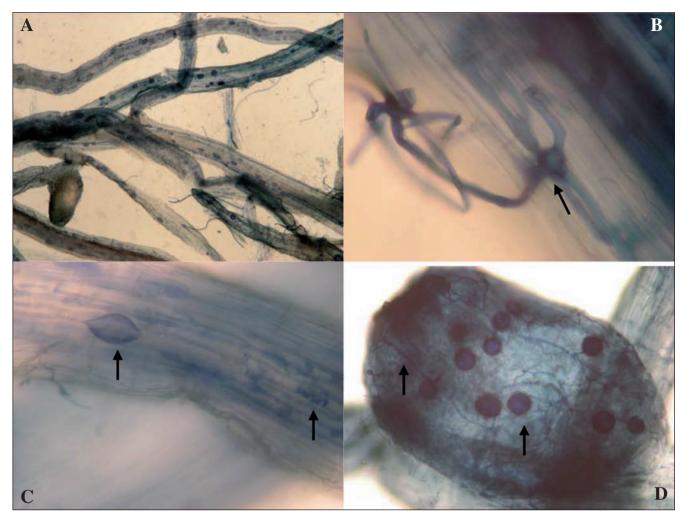


Figura 1 A. Raíces micorrizadas de alfalfa con nódulo teñidas con azul de Tripán (100X). B. Apresorio de MA (1000X). C. Vesículas y arbúsculos (100X). D. Nódulos con esporas y micelio en su interior (400X).

Bibliografía

- Barea JM. Mycorrhiza/bacteria interactions on plant growth promotion. En: Ogoshi A, Kobayashi I, Homma Y, Kodama F, Kondon N, Akino S, editores. Plant growth promoting rhizobacteria, present status and future prospects. París, Francia, OECD, 1997, p. 150-8.
- Barea JM, Azcón-Aguilar C, Azcón R. Interactions between mycorrhizal fungi and rhizosphere microorganisms within the context of sustainable soil plant systems. En: Gange AC, Brown
- C, editores. Multitrophic interactions in terrestrial systems. Oxford, Reino Unido, Blackwell Science, 1997, p. 65-77.
- 3. Fitter AH, Garbaye J. Interactions between fungi and other soil organisms. Plant Soil. 1994;159:123-32.
- Melo de Miranda E, Saggin Junior OJ, Ribeiro da Silva EM. Selection of arbuscular mycorrhizal fungi for the forage peanut intercropped with signal grass. Pesq Agropec Bras. 2008;43:1185-91.
- Reinhardt DR, Miller RM. Size class of root diameter and mycorrhizal fungal colonization in two temperate grassland communities. New Phytol. 1990;116:129-36.