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Exploring the Antarctic soil metagenome as a source of novel 
cold-adapted enzymes and genetic mobile elements
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ABSTRACT

Metagenomic library PP1 was obtained from Antarctic soil samples. Both functional and genotypic metagenomic screen-
ing were used for the isolation of novel cold-adapted enzymes with potential applications, and for the detection of genetic 
elements associated with gene mobilization, respectively. Fourteen lipase/esterase-, 14 amylase-, 3 protease-, and 11 
cellulase-producing clones were detected by activity-driven screening, with apparent maximum activities around 35 °C 
for both amylolytic and lipolytic enzymes, and 35-55 °C for cellulases, as observed for other cold-adapted enzymes. 
However, the behavior of at least one of the studied cellulases is more compatible to that observed for mesophilic 
enzymes. These enzymes are usually still active at temperatures above 60 °C, probably resulting in a psychrotolerant 
behavior in Antarctic soils. Metagenomics allows to access novel genes encoding for enzymatic and biophysic proper-
ties from almost every environment with potential benefits for biotechnological and industrial applications. Only intI- and 
tnp-like genes were detected by PCR, encoding for proteins with 58-86 %, and 58-73 % amino acid identity with known 
entries, respectively. Two clones, BAC 27A-9 and BAC 14A-5, seem to present unique syntenic organizations, sug-
gesting the occurrence of gene rearrangements that were probably due to evolutionary divergences within the genus 
or facilitated by the association with transposable elements. The evidence for genetic elements related to recruitment 
and mobilization of genes (transposons/integrons) in an extreme environment like Antarctica reinforces the hypothesis 
of the origin of some of the genes disseminated by mobile elements among “human-associated” microorganisms. 
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RESUMEN

Explorando el metagenoma del suelo antártico como fuente de nuevas enzimas adaptadas al frío y elemen-
tos génicos móviles. A partir de muestras de suelo antártico se obtuvo la metagenoteca PP1. Esta fue sometida a 
análisis funcionales y genotípicos para el aislamiento de nuevas enzimas adaptadas al frío con potenciales aplicacio-
nes, y para la detección de elementos génicos asociados a la movilización de genes, respectivamente. Por tamizaje 
fenotípico se detectaron 14, 14, 3 y 11 clones productores de lipasas/esterasas, proteasas, amilasas y celulasas, 
respectivamente, con actividades máximas aparentes de 35 °C para las amilasas y lipasas, y de 35-55 °C para las 
celulasas, tal como se observó para otras enzimas adaptadas al frío. Sin embargo, una celulasa parece ser compatible 
con enzimas mesófilas, las que usualmente se mantienen activas hasta por sobre 60 °C. Este hecho probablemente 
esté asociado a un comportamiento psicrotolerante en los suelos antárticos. La metagenómica permite acceder a una 
nueva miríada de productos metabólicos con potenciales beneficios para aplicaciones biotecnológicas e industriales. 
Se detectaron los genes tipo intI y tnp por PCR, y sus productos génicos deducidos tuvieron identidades del 58 al 
86 % y del 58 al 73 % con secuencias conocidas, respectivamente. Dos clones, BAC 27A-9 y BAC 14A-5, parecen 
presentar organizaciones sintéticas únicas, lo cual sugiere la existencia de rearreglos génicos probablemente���� de-
bidos a divergencias evolutivas dentro del género o facilitados por la asociación de elementos de transposición. La 
evidencia de elementos génicos relacionados con el reclutamiento y la movilización de genes en ambientes extremos 
como la Antártida refuerza la hipótesis sobre el origen de algunos genes diseminados por elementos móviles entre 
los microorganismos asociados al ser humano. 

Palabras clave: metagenómica, celulasas, enzimas psicrofílicas, integrasas, metagenómica funcional

INTRODUCTION

Metagenomics includes a series of methodological ma-
nipulations developed for accessing a vast and unexplored 
genetic pool coming from essentially uncultured bacteria 
living in different samples, including environmental (wa-

ter, soil, sediments), clinical (tissues, fluids, cadaveric 
samples) and other samples containing hypothetically 
uncultured microorganisms. 

The power of metagenomics relies in the access, with-
out prior sequence information, to the so far uncultured 
majority of microorganisms on Earth, which is estimated 
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to be more than 95 % of the microorganisms in some 
habitats (14, 26).

The metagenomic approach is generally based on the 
direct cloning of environmental DNA (extracted by using 
either direct or indirect techniques and cleaved in “easy-
to-use” fragments) for the construction of metagenomic 
libraries obtained in suitable vectors and introduced in 
cultivable hosts like Escherichia coli, bypassing the 
necessity of dealing with culturing techniques (20, 46). 
In this way, metagenomics allows the isolation of novel 
sequences, genes, complete pathways and consequently 
their products (when expression is possible) by multiple 
screening approaches, paving the way for elucidating the 
functions of microbial communities, genomic analyses of 
uncultured soil microorganisms, and to search for new 
genes coding for various proteins from unbiased gene 
pools (8, 42). 

Screening of metagenomic libraries includes a functional 
approach (also known as phenotype-based, activity-driven 
or functional metagenomics) in which a specific activity is 
directly or indirectly detected from the metagenomic library, 
if the expression of the encoding gene is feasible (2, 5, 8, 
9, 19, 34, 43, 48); the other alternative is the identification 
of interesting genes based on sequence homology through 
PCR, random sequencing and large-scale shotgun se-
quencing, hybridization, etc. (genotypic or sequence-driven 
metagenomics), by which new genes can be accessed 
without the need of any activity-based detection system but 
where a minimal information of the sequences of interest 
is mandatory (19, 28, 31, 35, 37, 45).

Since evolution and natural selection have occurred 
in the environment for billions of years, the metagenomic 
approach allows the isolation of enzymes harboring tailor-
made properties, fitting the physicochemical conditions of 
the studied habitats. 

In this perspective, new enzymes having special bio-
physic features were isolated from metagenomic libraries 
built from different environments, many of them having 
good potential for being used in industrial and biotechno-
logical applications (6, 13, 21, 29, 32, 36, 40, 41, 47). 

Cold-adapted enzymes isolated from psychrophilic 
microorganisms represent an interesting field of study be-
cause these proteins are generally characterized by hav-
ing high specific activities at relatively low temperatures 
associated with a fairly high thermal sensitivity, making 
them useful for biotechnology (17). Previously studied 
cold-adapted enzymes include xylanases (EC 3.2.1.8) (7), 
cellulases (EC 3.2.1.4) (5, 15), amylases (EC 3.2.1.1) (7), 
and esterases (EC 3.1.1.1) (4), among others.

In addition, Antarctica represents a very attractive 
location for the application of metagenomic approaches 
aimed at the search for novel cold-adapted enzymes, due 
to the fact that its human-associated activity is still kept 
to a minimum.

The aim of this work was therefore to use both func-
tional and genotypic metagenomics for the isolation of 

novel cold-adapted enzymes with potential applications in 
biotechnology and industrial processes, and the detection 
of genetic elements associated with the recruitment and 
mobilization of genes. 

Materials and methods

Soil samples
The samples were collected from Pointe Geologie archipelago 

(Ile des Petrels), Terre Adélie, Antarctica (66°40’S-140°01’E) 
during the austral summer 1999-2000 expedition organized by 
IPEV (www.institut-polaire.fr/). Three different samples were 
used: a humid, crude oil-contaminated soil, and two diesel-oil-
contaminated, fertilizer-amended (~5.5 g/kg Inipol Eap-22; Elf 
Atochem) soils (one of them also containing a 20 % bird soil). 
The temperature of soils during the sampling process was 12 
°C. The samples were kept at -70 °C until the construction of 
the metagenomic library.

Environmental DNA (eDNA) extraction
The eDNA extraction was performed using the direct method 

developed by Zhou et al. (50) with modifications described by 
Henne et al. (23). Briefly, 50 g of each soil were mixed with 135 
ml DNA extraction buffer (100 mM Na2.EDTA, 100 mM Tris-HCl, 
100 mM Na2HPO4, 1.5M NaCl, 1 % CTAB) containing 10 mg pro-
teinase K, and were incubated for 30 min at 37 °C. Subsequently, 
15 ml SDS (20 %) were added and the suspension incubated for 
two hours at 65 °C with gentle inversion every 20 minutes. After 
centrifugation for 10 min at 6,000 × g the aqueous phase was 
recovered in one volume chloroform/isoamylic alcohol (24:1). The 
solution was then centrifuged as described above and the upper 
aqueous phase was recovered in 0.6 volumes of isopropanol, and 
incubated at room temperature for 24 h to precipitate the DNA. 
An eDNA pellet was obtained after centrifugation at 16,000 × g 
for 20 min. The pellet was washed twice with ethanol (70 %) and 
centrifuged as before. Finally, the precipitated eDNA was air-dried 
and resuspended in 4 ml of sterile MilliQ water.

Direct PCR-based screening of integron elements 
A direct PCR-based screening was attempted from the envi-

ronmental DNA 2G, independently from the library construction. 
For this purpose, degenerated primers targeting at conserved 
sequences in the structure of integrons (intI, 59-be) were used 
in PCR reactions (Table 1). Resulting amplicons were cloned in 
a pPCR-Script vector (Fermentas) and used for transformation 
in competent E. coli DH10B (Invitrogen). Finally, plasmid DNA 
from selected positive clones was extracted and the insert was 
sequenced.

Metagenomic library construction
The purified eDNA was partially digested using EcoRI (Fer-

mentas, St. Leon-Rot, Germany) and the resulting fragments 
were separated by overnight ultracentrifugation at 4 °C in a 
sucrose gradient (10-40 %) at 27,000 × g DNA fractions were 
resolved in 1 % agarose gels and those having molecular sizes 
higher than 5 kb were pooled and precipitated with a solution 
of 20 % polyethylene glycol (PEG) 6,000 and 2.5 M NaCl, cen-
trifuged at 16,000 × g for 30 min, washed with 70 % ethanol 
and resuspended in a suitable volume of sterile MilliQ water. 
Selected eDNA fragments were then cloned in the CopyControl 
pCC1BAC-EcoRI (Epicentre, Madison, WI, USA). After dialy-
sis in 1 % agarose containing 1.8 % glucose (3), the ligation 
mixture was used to transform electrocompetent E. coli 
TransforMax EPI300 cells (Epicentre) using the following condi-
tions: 2.5 V, 200 Ω, and 25 µF. Resulting recombinant clones 
were obtained on LB-agar plates supplemented with 12.5 µg/
ml chloramphenicol, the “LBA-Chl basic medium”, and different 
substrates (see below). 
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Characterization of the PP1 metagenomic library
A fraction of the recombinant clones was obtained on LB-agar 

plates containing chloramphenicol (12.5 µg/ml), 30 µM isopropyl-
b-thio-galactoside (IPTG), and 50 µg/ml 5-bromo-4-chloro-
3-indolyl-b-D-galactopyranoside (X-Gal) (Fermentas, USA) in 
order to estimate the efficiency of transformation by “blue-white” 
evaluation (clones harboring insert-containing vectors versus self-
ligated BAC). Moreover, for assessing the average insert size, 
BAC constructions from 40 randomly selected recombinant clones 
were isolated, EcoRI (Fermentas, USA) digested for releasing 
the insert, and resolved by electrophoresis in 1 % agarose gels. 

Functional screening for hydrolytic activities
Functional screening of the PP1 metagenomic library was 

performed by direct selection of E. coli recombinant clones on 
LBA-Chl basic medium supplemented with different substrates 
depending on the activities evaluated. For detection of cellulose-
hydrolyzing clones, 0.5 % carboxymethyl-cellulose (CMC; Sigma, 
USA) and 0.01 % Trypan Blue (Sigma-Aldrich, USA) were added, 
and positive clones were visualized as blue colonies surrounded 
by a pale hydrolytic halo. Lipolytic enzyme-producing clones 
were detected by addition of 1 % emulsified Tributyrin (Sigma; 
USA), giving the medium an opaque aspect whereas hydrolytic 
colonies produced a clear hydrolysis halo. For amylolytic enzyme-
producing clones, 0.5 % starch (Sigma, USA) was added. Positive 
clones were detected by presenting a clear hydrolytic halo which 
was highlighted by exposing plates to sublimated iodine vapors. 
Xylanase-producing clones were evaluated by addition of 0.5 % 
insoluble AZCL-Xylan (Megazyme, Ireland) and positive clones 
gave a diffuse blue precipitate due to the AZCL substrate. Pro-
tease-producing clones were detected with 1 % casein (Sigma, 
USA) and the presence of a protease was evidenced by a clear 
hydrolysis zone. All incubations were carried out overnight at 
37 °C, and followed for up to five additional days at 18-20 °C. 

In addition, cytoplasmic fractions from each clone expressing 
a specific phenotype were prepared from 5-10 ml of 72 h cultures 
at 18 °C. Cells were harvested by centrifugation at 13,000 × g 
for 5 min, resuspended in 1 ml of 20 mM sodium phosphate 
buffer (pH 7.0) and sonicated in an ice bath (3 cycles of 30 sec 
each at amplitude 10-12 µm). After centrifugation, as above, 

supernatants were recovered and used for subsequent activity 
screening at various temperatures. When available, hydrolytic 
activities were determined from crude extract preparations using 
chromogenic substrates. Assays were performed by incubation 
of crude extracts containing the tested cytoplasmic fraction with 
the substrate and incubated at room temperature for 30 min. 
Cellulolytic activity was detected using CMC (as substrate) and 
3,5-dinitro salicylic acid (DNS) quantitation assay; a positive 
result was the appearance of a dark yellow/orange color (nega-
tive: light yellow) (38). For lipase enzymes, p-nitrophenol butyr-
ate (pNPB) was used and a positive result was visualized as a 
yellow color (negative: no color) (18). Finally, the presence of 
amylolytic activity was detected using ethylidene-p-nitrophenyl-
α,D-maltoheptaoside, obtaining a yellow/pale green as positive 
(negative: no color) (33).

BAC extraction from cell pools
Pools of transformed cells containing the metagenomic library 

were inoculated in 20 ml LB supplemented with 12.5 µg/ml 
chloramphenicol and 6 µl/ml culture of an induction solution 
(Autoinduction Solution, Epicentre), and incubated overnight at 
37 °C, under agitation. After incubation, BACs were extracted 
using the GeneJet Plasmid Miniprep kit (Fermentas).

Determination of thermal dependence of hydrolytic activities
The effects of temperature on lipolytic, amylolytic and cel-

lulolytic activities were evaluated by incubating cell lysates for 
30 min at 15-70 °C, and remaining activity was determined as 
above at 20 °C.

 
PCR-screening of integrase-producing metagenomic clones

In order to screen for integrase-encoding genes and to de-
termine the associated genetic background, a PCR-screening 
using different degenerate primers was performed. Briefly, a first 
PCR was attempted using total BAC extracted from each pool, 
0.5 U GoTaq polymerase (Promega, USA), and 0.8 µM primers 
intI-255F and intI-948R (Table 1). Positive BAC discriminated the 
pools to be tested in the second step, where positive metage-
nomic pools were spread on LB agar plates supplemented with 
12.5 µg/ml chloramphenicol. After overnight incubation at 37 °C, 

Table 1. Primers used for direct screening of integron elements

Name	 Sequence (5´-3´)	 Target DNA	 Reference

intI-255F	 ACSCAGAACCAGGCGYTSKCSGCN	 Conserved TQNQALSA in	 (11)
		  environmental genes
intI-480F	 GGGTCAAGGAYSTSGAYTTCGG	 Position 461-482 in intI1	 (11)

intI-528F	 CGNGAYGGYAARGGSRNVAAGGAYCGS	 GKGG(N)KDR at patch II	 (11)
		  from environmental genes

intI-864R	 YAGCAGATGNGTGGCRAAVSWRTGSCG	 RHSFATHLL at box II	 (11)
		  in environmental genes

intI-948R	 NARTACRTGNGTRTADATCATNGT	 925-948 (compl.) in intI1	 (11)
attCdir	 GCSGCTKANCTCVRRCGTTAGSC	

Gene cassettes – set 1
	 This study

attCrev	 TCSGCTKGARCGAMTTGTTAGVC		  This study

CGP1	 GCSGCTKANCTCVRRCGTTRRRY	
Gene cassettes – set 2

	 (11)
CGP2	 TCSGCTKGARCGAMTTGTTRRRY	 	 (11)
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a representative number of clones was sub-cultured and used 
in colony-PCR assays in the same conditions as above but using 
primers intI-480F or intI-528F (forward primers) and intI-864R (Ta-
ble 1). Positive clones were recovered and the BAC was extracted 
and sequenced by genome walking. Alternatively, the inserts from 
positive clones were digested with EcoRI/HindIII/BamHI, the gel 
was purified and sub-cloned (after polishing of the resulting sticky 
ends) using the CloneJet PCR Cloning Kit (Fermentas).

DNA sequencing and sequence analyses
DNA sequencing was performed at the GIGA sequencing 

platform of the University of Liège (Belgium) using universal 
M13 reverse and forward primers. Additional primers were used 
to complete the sequencing of the inserts by a genome walking 
strategy as necessary. Comparative sequence analysis was 
carried out using the BLAST2.0 tool (http://www.ncbi.nlm.nih.
gov/BLAST/). Analysis of the encoded proteins was done using 
the Expasy Molecular Biology Server (http://www.expasy.org/).

Nucleotide sequences accession numbers
Sequence data of BAC 27A-9 and BAC 14A-5 clones were 

deposited in the Genbank/EMBL nucleotide databases under the 
accession numbers FR716471 and FR716472, respectively.

Results and discussion

The metagenomic library PP1 from Antarctic soils was 
obtained in a BAC system (pCC1BAC) after transforma-
tion into E. coli EPI300 cells. The library contains 113,742 
clones harboring inserts ranging between 5-10 kb (aver-
age size of 5.4 kb) (Figure 1), conserved at -70 °C in 41 
pools, each of them including between 2,000-4,000 clones. 
The fact that relatively short insert sizes were selectively 
cloned in the library probably indicates either an over 
digestion or a previous shearing of the eDNA.

The total amount of genetic information covered in the 
PP1 library is approximately 650 Mb, which is equivalent 
to 130X, 155X, and 72X the complete genomes of E. coli 
(4.9 Mb), Bacillus licheniformis (4.2 Mb), and Streptomy-
ces coelicolor (9.02 Mb), respectively.

In order to evaluate the diversity of genes cloned in the 
metagenomic library PP1, a random selection of ten different 
clones was performed and a BAC-end sequencing approach 
was carried out (39). All the selected clones harbored differ-
ent types of eDNA inserts matching a variety of prokaryotic 
classes, such as Alphaproteobacteria (Sphingomonas sp., 
Erythrobacter sp., Silicibacter sp.), Gammaproteobacteria 
(Photobacterium profundum, Azotobacter vinelandii and 
Pseudomonas mendocina), Actinobacteria (Mycobacterium 
gilvum, Nocardia farcinica, Rhodococcus sp.), and Aquificae 
(Sulfurihydrogenibium sp.), among others. 

From these results, it is expected that the metagenomic 
library PP1 will possess a high diversity of genes, and 
therefore the possibilities of screening for an interesting 
activity and/or gene of interest is also feasible.

Screening for different “non-selective” biochemical 
properties was directly performed on the transformed cells, 
using differential media containing substrates for detection 
of enzymatic activities with potential biotechnological or 
industrial applications. 

Distribution of hydrolytic clones is shown in Figure 1. 
In summary, 14 tributyrin-, 14 starch-, 3 casein-, and 11 
cellulose-hydrolyzing clones were detected, representing 
0.044, 0.051, 0.019 and 0.12% of the total clones screened 
for each activity, respectively. 

Active clones were replicated in selective media for 
phenotype confirmation. Crude cell extracts were ob-
tained from amylolytic, cellulolytic and lipolytic clones, 
and hydrolytic activity was observed for all of them 
when tested with specific chromogenic substrates. In 
addition, the same phenotype was observed (data not 
shown) after purification of BAC-constructions from 
each clone and re-transformation in a different host 
(E. coli DH10B).

Selected clones were analyzed by DNA sequencing. 
For example, E. coli 39.5 clone harbors a 4.5 kb-insert, in-
cluding ORFs with a relevant identity with putative proteins 
from Pseudomonas stutzeri A1501. The first ORF of the 
insert encodes a putative 351-amino acids endo-1,4-b-
glucanase named RBcel1, which was extensively studied 
at a biochemical level and published elsewhere (5).

Another selected clone showing lipolytic activity was 
analyzed. The E. coli 31.8 clone harbored a 7 kb-DNA 
insert. An ORF of 1,908 bp (deduced protein of 635 
amino acids) was sequenced and showed 63 % identity 
with an auto transporting lipolytic enzyme from Pseu-
domonas spp. Specifically, the putative protein (named 
DPestI) is strongly related to proteins from different spe-
cies of Pseudomonas such as P. syringae (YP_272949, 
YP_237674, NP_790416), P. aeruginosa (CAC14200, 
EAZ61448, EAZ55624, NP_253799, ZP_01368126, 
ZP_00966082, YP_001351164, AAB61674) and P. pu-
tida (YP_001265806). Among these enzymes, the vast 
majority are lipases/esterases although some others have 
attributed functions of hemolysins/phospholipases. 

These lipases/esterases are serine triacylglicerol li-
pases (EC 3.1.1.3) containing a consensus amino acid 
motif composed of Gly-Asp-Ser-Leu around their active-
site-serine, and therefore named as GDSL-lipases (1). In 
addition, DPestI includes the conserved residues Ser, Gly, 
Asn, and His in boxes I, II, III and V, respectively (Figure 
2), which are typically present in the SGNH-subfamily of 
GDSL hydrolases and play important roles in their catalytic 
activity (1, 27).

Metagenomics allows to access novel genes encoding 
for particular enzymatic and biophysic properties from 
almost every environment, including those in which hu-
man-related activities are kept to a minimum rate such 
as Antarctica.

In addition, metagenomics expands the availability 
of a novel myriad of metabolic products with potential 
benefits for biotechnological and industrial applications. 
Among these enzymes, several esterases (EC 3.1.1.1) 
and lipases (EC 3.1.1.3) (10, 24, 30), cellulases (EC 
3.2.1.4) (22), and amylases (EC 3.2.1.1) (49), xylanases 
(EC 3.2.1.8) (25) have been isolated for this purpose. 
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As an example, the isolation of new putative cellulases, 
including those derived from extreme environments, 
offers an attractive feature for use in the production of 
biofuels (lignocellulosic ethanol) from cellulose-derived 
substrates. Also, lipase/esterase enzymes represent an 
important part of the industrial enzymes, being currently 
used for the production of various food products and in 
fine chemistry.

Due to the fact that the soil sample comes from a low-
temperature environment, it is expected that the isolated 
clones will express new psychrophilic enzymes. Thus, 
we examined the effects of temperature on the hydrolytic 
activities of both recombinant clones and their derivative 
cell lysates to verify the thermal dependence of their ac-
tivity. Assays were performed by incubating either pure 
cultures or cell lysate preparations at various temperatures 
(15 °C to 75 °C) and monitoring their ability to hydrolyze 
specific substrates. 

The apparent maximum activities were determined 
around 35 °C for both amylolytic and lipolytic enzymes, 
whereas for cellulose-hydrolyzing enzymes the optimal 
activity seems to be observed between 35-55 °C. An in-
crease of the incubation temperature induces a complete 
loss (after 30 min incubation) of the hydrolytic activity 
beyond 40 °C, 45 °C and 40 °C for lipolytic, amylolytic 
and cellulolytic enzymes, respectively, except for a single 
cellulolytic clone that retained activity even after incubation 
at 55 °C; this clone (E. coli 39.5) was further characterized 
and the cellulose was studied in detail due to its enlarged 
thermal tolerance (5).

The importance of isolating novel enzymes from cold 
environments relies in their unique and not-yet-com-
pletely-understood behavior. Cold-adapted enzymes have 
generally been observed to possess high activities at low 
temperatures (equivalent to that for mesophilic enzymes 
at 37 °C in some cases), which is associated with thermal 
instability due to a localized increase in the active site 
flexibility (12).

The major part of cold-adapted enzymes is character-
ized by showing a shift in their apparent Topt (optimum 

Figure 1. Description of metagenomic library PP1, containing 
113,742 clones that harbor inserts of average size of 5.2 kb, 
along with phenotypic screening and analysis of active clones. 
The chart shows the number (and percentages) of clones scree-
ned for each activity (for example: “11,668, 10 %”, etc). Activities 
screened include: lipase/esterase (LIP/EST), cellulose (CEL), 
amylase (AMY), protease (PROT), laccase (LAC), and xylanase 
(XYL); clones without specific activity-based screening are shown 
as CIX (chloramphenicol, IPTG/XGal system). Details about the 
screening system, number of positive clones, screening on crude 
lysates and temperature influence on enzymatic activity is shown 
next to each activity slice, matching the corresponding color (light 
blue: proteases; violet: amylases; red: lipases/esterases; green: 
cellulases). All plates contained LB-agar as the basic media, 
supplemented with 12.5 µg/ml chloramphenicol (CopyControl 
pCC1BAC resistance).
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temperature) to lower temperatures resulting in stability 
decrease and a compensatory high-reaction rate by de-
creasing the activation free-energy barrier between the 
ground state and the transition state (16, 44). The effect 
of temperature on hydrolytic activities from tested clones 
seems to be well correlated with what has been reported 
for other cold-adapted enzymes, presenting an apparent 
optimal activity around 35-45 °C and gradual loss of activ-
ity or instability over 50 °C. However, the behavior of at 
least one of the studied cellulases is more compatible to 

that observed for mesophilic enzymes that are usually still 
active at temperatures above 60 °C (5). Such a mesophilic 
property could result from psychrotolerant bacteria inhabit-
ing Antarctic soils, and deserves to be further studied. 

The possibility of isolating novel enzymes relies on 
the “taxonomic” diversity present in the samples studied, 
which is in turn dependent on the reliability of the DNA 
purification methodologies (direct versus indirect, relative 
abundance of bacterial, eukaryotic and archaeal DNA), 
efficiency of the cloning strategy (diversity and size of 

Figure 2: Amino acid sequence alignment of N-terminal domains of membrane esterase DPest1 and other members of auto trans-
porting lipolytic enzymes. Signal peptides are boxed in light grey, and five conserved domains in dark squares. Active-site serine 
is highlighted with a star, and other conserved residues playing important roles in catalytic activity for SGNH-subfamily of GDSL-
hydrolases are shown with black arrows.

Figure 3. Schematic representation of gene organization and restriction map of BAC 27A-9 (A; GenBank FR716471) and BAC 
14A-5 (B; GenBank FR716472) clones. Elements compatible with genetic mobile elements and selected restriction sites are shown, 
and their respective position in the insert are in parenthesis. BAC CC1 indicates both ends of the pCC1BAC CopyControl cloning 
system flanking the insert.
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the inserts, efficiency of ligation and transformation), and 
availability of screening approaches.

By direct PCR-amplification from eDNA it was possible 
to screen for intI-type genes without the need of cloning 
strategies or metagenomic approaches. The amplified 
product is part of an intI-type gene encoding a putative 
integrase having 58 % amino acid identity (E-value 6e-49) 
with an integrase from Marinobacter sp.

The main limitation of this approach is that only known 
genes are screened by this methodology, more than one 
PCR-product could be obtained having the same size 
(and therefore only those sequenced are detected), and 

genes having a low degree of similarity with the known 
genes may escape from the discrimination power of the 
primers used. 

On the other hand, the absence of positive results for 
β-lactamase-encoding genes (bla) indicates that either 
eDNA does not contain this type of gene, or the previously 
mentioned factors are involved (presence of unknown bla 
genes, failures in the PCR, etc.).

In addition, no gene cassettes were detected by direct 
PCR, using different primer combinations. As previously 
reported, the detection of gene cassettes by this approach 
in different samples is feasible (37), suggesting that the 

Table 2. ORFs and closest matches in the inserts from intI-positive clones

BAC/Clone	 ORF	 Encoded protein	 Closest match / Description	 Amino acid 	 Accession number
				    identity (%)

	 tnpB	 Hypothetical transposase	 IS6110 transposase TnpB from 	 61	 GenBank EFD78722.1
			   Mycobacterium tuberculosis		

	 tnpA	 Hypothetical transposase	 ISMyma03_aa1-like transposase	 58	 NCBI YP_001849722.1
7A-182			   from Mycobacterium sp.		

7A-284	 greA	 Hypothetical transcription	 Transcription elongation factor GreA	 35	 NP_215596.1
10A-42		  elongation protein	 from Mycobacterium tuberculosis

	 ORF1	 Hypothetical alkylmercury	 Alkylmercury lyase from 	 34	 NCBI YP_001134100.1
		  lyase	 Mycobacterium gilvum		

	 ORF2	 Transcriptional regulator	 Fis family regulator from 	 39	 YP_639762.1
			   Mycobacterium sp
	
	 lysC	 Putative Asp-kinase	 Aspartate kinase from Clavibacter	 79	 NCBI YP_001221642.1
10A-148			   michiganensis subsp michiganensis		

	 asdA	 Putative Asp-dehydrogenase	 Aspartate-semialdehyde 	 76	 NCBI YP_001221643	
			   dehydrogenase from Clavibacter 		
			   michiganensis  subsp michiganensis

	 pbp-like	 Putative PBP	 Penicillin binding protein 1a	 37	 NCBI YP_001221659.1
			   (carboxipeptidase) from Clavibacter		
			   michiganensis subsp michiganensis		

	 ORF1	 Putative phosphohydrolase	 Predicted phosphohydrolase from	 54	 NCBI YP_001221658.1
			   Clavibacter michiganensis		
			   subsp michiganensis

14A-5	 int	 Integrase	 Integron catalytic subunit	 86	 NCBI YP_579984
			   from Psychrobacter cryohalolentis		

	 tnpA	 Hypothetical transposase	 IS3/IS911 transposase from	 73	 NCBI YP_579985
			   Psychrobacter cryohalolentis

	 ORF1	 Hypothetical protein	 Predicted membrane protein from	 97	 NCBI YP_580905
			   Psychrobacter cryohalolentis		

	 ppnK	 NAD(+) kinase	 Inorganic polyphosphate/	 97	 NCBI YP_580904
			   ATP-NAD kinase from Psychrobacter
			   cryohalolentis

27A-9	 int	 Putative integrase	 Phage integrase from	 79	 NCBI YP_002784538	
			   Rhodococcus opacus		

	 ORF1	 Hypothetical recombinase/	 Hypothetical DNA breaking-rejoining	 42	 NCBI YP_002784537
		  topoisomerase	 enzyme from Rhodococcus opacus

	 ORF2	 Transcriptional regulatory	 Hypothetical HTH AraC transcriptional	 75	 NCBI ZP_04384921
		  protein	 regulator from Rhodococcus erythropolis		
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Figure 4. Aminoacid sequence relationship between metagenomic-derived hypothetical integrases (Int 27A-9, Int 14A-5, and Int 
eDNA) and transposases (ISMyma03 aa1 7A-182, Tnp 27A-9 and IS6110 TnpB 7A-182).

intI-like genes detected in the eDNA studied in this work 
could be associated with other types of genetic elements 
non homologous to the already known gene cassettes. 

By PCR-screening of DNA extracted from the clone 
pools containing the metagenomic library PP1, six pools: 
7, 10, 14, 21, 22 and 27, yielded a positive result when 
integrase-specific (degenerate) primers were used. 

The second step was to isolate clones included in 
each positive pool, and colony-PCR was performed 
using different primer combinations (Table 1) on nearly 
3,500 clones from the PP1 library. Two positive clones 
were detected in pools 7 (7A-182 and 7A-284) and 10 
(10A-42 and 10A-148), and one positive clone in pools 
14 (14A-5) and 27 (27A-9). None of the tested clones 
from the remaining pools yielded a positive result, prob-
ably indicating that false positives had been obtained in 
the first screening.

Positive clones were isolated, BACs extracted and 
EcoRI-digested to assess the molecular size of the inserts; 
BAC 7A-182, 7A-284 and 10A-42 possess an insert of 
around 6 kb, and BACs 10A-148, 14A-5 and 27A-9 con-
tain inserts of 8 kb, 3.5 kb and 2.5 kb, respectively. The 
inserts were partially sequenced by genome walking and 
the results are shown in Figure 3 and Table 2.

The BAC 27A-9 insert (Figure 3A) includes three ORFs 
encoding for a hypothetical integrase having 78 % amino 
acid identity with a phage integrase family from Rhodococcus 
opacus (GenBank YP_002784538), a putative recom-
binase having 41 % identity with a hypothetical recom-
binase/topoisomerase also from R. opacus (GenBank 
YP_002784537), and a putative regulatory protein with 
74 % identity with a helix-turn-helix (HTH) domain-con-
taining regulator from the AraC family of transcriptional 
regulators from Rhodococcus erythropolis (GenBank 
EEN87802). The GC content of the whole insert and the 
individual genes was calculated as 64 % (insert), 62 % 

(ORF1), 70 % (ORF2), and 60 % (ORF3). From these 
results, it seems highly probable that the ORFs contained 
in the insert are strongly related to Rhodococcus (GC% 
complete genome: 68 %). In addition, the first two ORFs 
are part of a 111-kb plasmid (pKNR) from R. opacus B4 
strain (GenBank NC_012523), keeping the same arrange-
ment observed in the BAC clone, whereas the third one is 
absent from the pKNR plasmid, being the closest match 
an ORF present in the genome from a Rhodococcus 
erythropolis SK121 strain (GenBank ACNO01000037). 
These results suggest that the gene organization in BAC 
27A-9 appears to be unique, and a gene rearrangement 
within the genus could have occurred, probably facilitated 
by the presence of plasmids harbored by some strains 
like R. opacus B4.

On the other hand, BAC 14A-5 harbors an insert 
containing four genes closely related to genes from 
Psychrobacter cryohalolentis (Figure 3B and Table 2), 
encoding for a putative integrase, a hypothetical IS3/
IS911 transposase, a predicted membrane protein and an 
inorganic polyphosphate/ATP-NAD kinase, having 86 %, 
73 %, 97 % and 97 % amino acid identity (GC contents of 
41 %, 42 %, 45 % and 49 %) with equivalent genes in the 
chromosome of Psychrobacter cryohalolentis K5 (Gen-
Bank NC_007969; GC content 43 %), respectively. As for 
the gene arrangement observed in BAC 27A-9, BAC 14A-5 
presents an apparently unique genetic synteny different 
from that from the P. cryohalolentis reference sequence, 
suggesting that the observed lack of syntenic linkage or 
arrangement could be due to evolutionary divergence 
within the species.

The most remarkable features found in the intI-positive 
BACs are the presence of several transposase-encod-
ing genes which could be related to the mobilization of 
transposon-associated genes between different microor-
ganisms. In addition, the intI-specific primers seem to be 
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also suitable for the detection of transposon-associated 
elements. This could be related to a high variability within 
both families of genes (tnp and int) and/or to a low-discrimi-
nation power of the used primers. In fact, in silico analysis 
including sequence multi-alignment on both reference 
sequences and recombinant clones harboring either int 
or tnp genes shows that primer hybridization could occur 
indistinctively (data not shown) and are somewhat related 
(Figure 4). A more complete analysis on the sequences 
and their features is needed in order to look for similarities 
between transposases and integrases, and to know if a 
common evolution process has taken place.

The evidence for the presence of genetic elements 
related to recruitment and mobilization of genes such as 
transposons and integrons in an extreme environment like 
Antarctica (as in many other settings and environments) 
reinforces the hypothesis for the origin of some of the 
most “familiar” genes, which could be already present in 
different “gene pools”, waiting to be captured by differ-
ent recombinases and further disseminated by mobile 
elements among “human-associated” microorganisms 
(especially pathogens) in various settings.
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