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ABSTRACT. We use the notion of A-compact sets (determined by an operator ideal A),
introduced by Carl and Stephani (1984), to show that many known results of certain ap-
proximation properties and several ideals of compact operators can be systematically studied
under this framework. For Banach operator ideals A, we introduce a way to measure the
size of A-compact sets and use it to give a norm on K 4, the ideal of A-compact operators.
Then, we study two types of approximation properties determined by A-compact sets. We
focus our attention on an approximation property which makes use of the norm defined on
KC 4. This notion fits the definition of the .A-approximation property, recently introduced
by Oja (2012), with K 4 instead of A. We exemplify the power of the Carl-Stephani theory
and the geometric structure introduced here by appealing to some recent developments on

p-compactness.

INTRODUCTION

Recall that a Banach space has the approximation property if the identity map can be
uniformly approximated by finite rank operators on compact sets. This property, due to
Grothendieck, has several reformulations, see Grothendieck’s Memoir [15]. Reinforced by
the fact that there are Banach spaces which lack the approximation property (the first
example given by Enflo [13]), important variants of this property have emerged and were
intensively studied, see [4, 11, 18, 21] and references therein. In particular, there is a recent
inclination to study approximation properties related to (Banach) operator ideals, as it can
be seen for instance in [1, 5, 7, 9, 14, 16, 17, 19, 22, 23, 29, 30].

The main purpose of this article is to undertake the study of a general method to un-
derstand a wide class of approximation properties and different ideals of compact operators
which can be equally modeled once the system of compact sets has been chosen. To this end,
we use notion of A-compactness, introduced by Carl and Stephani [3], which is determined
by an operator ideal 4 and can be seen as a refinement of the concept of compactness.

The system of A-compact sets induces in a natural way the class of A-compact operators,
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consisting of all continuous linear operators mapping bounded sets into A-compact sets.
This ideal, which we denote by K4, was also introduced an studied in [3]. However, the
authors do not emphasize their study from an isometric point of view. In Section 1, we
add a geometric structure to the Carl-Stephani theory by introducing a way to measure
the size of A-compact sets, denoted by my4. Our prototype is the definition given for the
size of p-compact sets in [16] and studied later in [14]. We examine the class of .A-compact
sets in a Banach space F and show that the definition can be reformulated considering only
operators in A(¢1; E'). The class of p-compact sets fits in this framework for the ideal N7 of
right p-nuclear operators. This fact and the notion of A-null sequences [3] allow us to give
another proof of a question posed in [8] and solved by Oja in her recent work [24].

In Section 2 we use my to endow K4 with a norm || - |x,, under which it is a Banach
operator ideal. Then, we show that the main factorization result of [3] concerning K 4 is, in
fact, an isometric identity. We use our characterization of A-compact sets via ¢;, to prove
that K4 is regular. As a consequence, we show that a subset is A-compact with equal size
regardless it is considered as a set of a Banach space E or as a set of its bidual E”.

The system of A-compact sets leads naturally to two types of approximation properties
which are considered in Section 3. The first one is rather standard and is defined by requiring
the identity map to be uniformly approximable by finite rank operators on A-compact sets.
We prove that a Banach space E enjoys this property if and only if, for any Banach space F',
the set of finite rank operators from F' to F is norm dense in K 4(F; EY). We call the latter
property the K 4-uniform approximation property. For the second one, the norm || - ||, is
considered instead of the supremum norm. In this case, we show that our definition coincides
with that of IC 4-approximation property of Oja [23]. With the particular case of N7, on the
one hand, we cover the notion of p-approximation property introduced by Sinha and Karn
[29] and studied by many authors in the last years, see for instance [1, 5, 7, 16]. On the other
hand, we cover the k,-approximation property defined by Delgado, Pifieiro and Serrano [9]
and studied later in [14, 16, 23]. Also, we address the K 4-uniform approximation property
in terms of a modified e-product of Schwartz.

Throughout this paper F and F' denote Banach spaces, £’ and B denote the topological
dual and the closed unit ball of F, respectively. A Banach operator ideal is denoted by
(A, ||-]]4). When the norm || - || 4 is understood or when we work with an operator ideal, we
simply write A. We denote by £, F,F and K the linear operator ideals of bounded, finite
rank, approximable and compact operators, respectively; all considered with the supremum
norm. For 2’ € E' and y € F, the 1-rank operator from E to F, z — a'(x)y is denoted by
¥ Ruy.

To illustrate our results, we appeal to the ideals N7 of right p-nuclear operators and K, of

p-compact operators. To give a brief description of these spaces, we need some definitions.
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As usual, fixed 1 < p < oo, £,(E) and £;'(E) denote the spaces of p-summable and weakly p-
summable sequences in F, respectively. For p = oo, we use the spaces c¢o(F) and ¢ (E) of null
and weakly null sequences of F, respectively. All these are Banach spaces endowed with their
natural norms. A mapping 7' belongs to N?(E; F') if there exist sequences (7,), € £y (E")

n

and (y,)n € €,(F), %+I% =1y = ¢ if p=1), such that T = > 2/ ® y, and

n=1Tn
o (T) = inf{{[(x],)nll o, () || (Yn)n e,y s T =D pq @0 @ Yn } is the right p-nuclear norm of T'.
Following [29], a subsz;:t K of FE is relatively p-compact, 1 < p < oo, if there exists a sequence
(Za)n C £p(E) so that K C p-co{z,}, where p-co{z,} = {d 77, antn: (an)n € By, } is called
the p-convex hull of (z,), and % + z% =1 (ly =¢if p=1). With p = oo, we have the
relatively compact sets and the absolutely convex hull of (x,,),, denoted here by co{z,}. A
mapping 7" is in IC,(E; F') if it maps bounded sets into relatively p-compact sets and the
p-compact norm of T is k,(T) = inf{||(yn)nll,: T(Bg) C p-co{y,}}, see [10, 29].

The definitions and notation used regarding operator ideals can be found in the mono-
graph by Defant and Floret [6]. For operator ideals we also refer the reader to the books
of Pietsch [25], of Diestel, Jarchow and Tonge [12] and of Ryan [27]. For approximation
properties, we refer the reader to the books of Lindenstrauss and Tzafriri [18] and of Diestel,
Fourie and Swart [11]. See also [6, 27], the surveys [4] and [21] and references therein.

1. ON COMPACT SETS AND OPERATOR IDEALS

Fix an operator ideal A. Following [3], a subset K of E is said to be relatively .A-compact
if there exist a Banach space X, an operator T' € A(X; FE) and a compact set M C X such
that K € T(M). A sequence (x,), C E is A-convergent to zero if there exist a Banach
space X and T' € A(X; F) with the following property: given € > 0 there exists n. € N such
that x,, € eT'(Bx) for all n > n.. Carl and Stephani gave a handy characterization of .A-null
sequences [3, Lemma 1.2].

Lemma 1.1. (Carl-Stephani) Let E be a Banach space and A an operator ideal. A sequence
(Xn)n C E is A-null if and only if there exist a Banach space X, an operator T € A(X; E)
and a null sequence (y,)n C X such that x, = T(y,) for all n.

Now, we present a characterization of A-compactness which is a combination of [3, Lemma 1.1]
and [3, Theorem 1.1].

Theorem 1.2. (Carl-Stephani) Let E be a Banach space, K a subset of E and A an operator
tdeal. The following are equivalent.
(i) K is relatively A-compact.
(ii) There exist a Banach space X and an operator T € A(X;FE) such that for every
e > 0 there are finitely many elements z; € E, 1 < i < k. realizing a covering of K:

K c U= {2 +eT(Bx)}.
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(iii) There ezists an A-null sequence (x,), C E such that K C co{x,}.

The following remark is the key to see that the theory of p-compactness perfectly embodies
into the Carl-Stephani theory.

Remark 1.3. Let 1 < p < oo. The proof of [14, Proposition 2.9] shows that given a
sequence (), € £,(E), there is an operator T' € NP({y; E) such that p-co{z,} = T(M)
with M C By, relatively compact. Moreover, for fixed € > 0, T' may be chosen to satisfy

[(@n)nllp < [ Tlae < [[(@0)nllp + €.
Note that if p = oo and (2,), € co(E), the obtained operator is in F(¢; F).

Notice that compact sets are F-sets or K-sets and p-compact sets are NP-compact sets.
Also, by [3, p. 79], p-compact sets are K,-compact sets. In [8], Delgado and Pifieiro define
p-null sequences, p > 1, as follows. A sequence (x,), in a Banach space F is p-null if, given
€ > 0, there exist ng € N and (2;)r € By, (g such that z, € p-co{z,} for all n > ny. In [8,
Theorem 2.5 |, p-compact sets are characterized as those which are contained in the absolutely
convex hull of a p-null sequence. Then, the authors prove, under certain hypothesis on the
Banach space F, that a sequence is p-null if and only if it is norm convergent to zero and
relatively p-compact [8, Proposition 2.6]. Also, they wonder if the result remains true for
arbitrary Banach spaces. An affirmative answer was recently given by Oja [24, Theorem 4.3].
In [24] the author describes the space of p-null sequences as a tensor product via the Chevet-
Saphar tensor norm and, as an application, the result is obtained. Here, we show that the

Delgado-Pineiro-Oja result is an immediate consequence of the next two propositions.

Proposition 1.4. Let A be an operator ideal and E a Banach space. A sequence (xy,), C E
is A-null if and only if (z,), is relatively A-compact and norm convergent to zero.

Proof. Thanks to Theorem 1.2, only the “if” part requires a proof. Take a Banach space X,
T € A(X; E) and a compact set M C X such that {z,}, C T(M). Consider the quotient
map ¢: X — X/ker (T) and the injective operator T such that T = T o g. Then, (z,),
is a norm null sequence in T(g(M)) with g(M) compact. By standard arguments, there
is a norm null sequence (y,), in X such that x,, = T(y,). An application of Lemma 1.1
completes the proof. 0

Notice that a sequence (zx)x as in the definition of a p-null sequence might be chosen
independently of € as the following result shows.

Proposition 1.5. Let E be a Banach space, (z,), a sequence in E and p > 1. Then, (z,)n
is p-null if and only if there exists a sequence (2;), € By, g) such that for any e > 0 there
exists ng with x, € ep-co{zx} for alln > ng. As a consequence, NP-null and p-null sequences
coincide.
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Proof. We only show the “only if” part. Suppose that (z,,), is p-null and find (z;)x as in the
statement. By [8, Definition 2.1], we may find a strictly increasing sequence n;, j = 1,2, ...,
and sequences (zi)k € By, (g such that z, € K; = ﬁp—co{zé} for all n > n;. Proceeding as
in [1, Theorem 1], we may find a p-compact set K such that 2/ K; C K for all j. Therefore,
there exists (zx)r € By,(p) such that K C p-co{z} and z, € %p—co{zk} for all n > n;.
Then, the result follows. O

Corollary 1.6. (Delgado-Pineiro-Oja) Let E be a Banach space and p > 1. A sequence

(Xn)n C E is p-null if and only if (x,,), is relatively p-compact and norm convergent to zero.

Now, we introduce a way to measure the size of relatively A-compact sets. Our definition
is inspired by the one given for p-compact sets in [16] and studied later in [14]. Fix an
operator ideal A and a norm « on A. For a relatively A-compact set K C F, we define

mpo(K; E) =inf{a(T): K CT(M), T € A(X;E)and M C Bx},

where the infimum is taken considering all Banach spaces X, all operators T' € A(X; E) and
all compact sets M C By for which the inclusion K C T'(M) holds.

If K C E is not A-compact, mao(K; E) = co. As it happens with the size of p-compact
sets, see [14, Section 2], there are some properties which derive directly from the definition
of ma . For instance, mao(K; E) = mgo(co{K}; E).

For simplicity, if (A, |.]|.4) is a Banach operator ideal, we write my instead of maq ..
Since ||T]| < ||T||a; sup,ek ||z < ma(K; E). Moreover, if B is a Banach operator ideal
such that A C B, a set K C FE is B-compact whenever it is A-compact and we have
mp(K; E) < my(K; E).

Remark 1.7. Let 1 < p < oco. By Remark 1.3, if K C E is p-compact then
mpp (K E) = inf{||(z,)]|,: K C p-co{z,}}.
Analogously, if K C F is compact then my(K; E) = sup{||z|: x € K}.

Note that ma» covers exactly the size of p-compact sets (see [16] or [14, Definition 2.1]).
Also, note that if F' is a Banach space containing E as a closed subspace, a set K C F is
A-compact as a subset of F' whenever it is A-compact as a subset of E, and mq(K; F) <
ma(K; E). However, my may depend on the space the sets are considered, as it is shown
in [14, Corollary 3.5]. The particular case when F' = E”| for which the size is preserved, is
considered in Corollary 2.3.

The next result shows that the definition of .A-compact sets (and therefore the size my)

can be reformulated considering only operators in A(¢y; E).

Proposition 1.8. Let E be a Banach space, K a subset of E and A a Banach operator

tdeal. The following are equivalent.
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(i) K is relatively A-compact.
(ii) There exist a Banach space X, operators T € A(X;E) and S € F(¢1;X) and a rela-
tively compact set M C By, such that K C T o S(M). Moreover,

maA(K; E) = inf{||T||4||S||: K C T o S(M) and M C By},

where the infimum s taken over all Banach spaces X, operators T and S and sets M
as above.

(i) There exist an operator T € A(ly; E) and a relatively compact set M C By, such that
K CcT(M). Also,

ma(K; E) = inf{||T||a: K € T(M), T € A(t;;E) and M C By},

where the infimum is taken over all operators T € A(¢1; E) and all relatively compact
sets M C By, such that K C T'(M).

Proof. Suppose K C FE is relatively A-compact. Given £ > 0, take a Banach space X, a
compact set L C By and T € A(X; E) such that K C T(L) and ||T||4 < ma(K; E) + €.
Since L C By is compact, we may find an approximable operator S: ¢; — X and a compact
set M C By, such that L C S(M). Moreover, S may be chosen to satisfy ||S|| < 14¢. Then,
K cT(L)CToS(M)and

ma(KG E) < [Tl ST < (TNa(1 +¢) < (ma(K; E) +2)(1 + ).

Then (ii) follows from (i). It is clear that (ii) implies (iii) which implies (i), and the proof is
complete. 0

Corollary 1.9. Let E be a Banach space, K a subset of E and A a Banach operator

ideal. Then, K is relatively A-compact if and only if K is relatively A o F-compact and
ma(K; E) = my 7 (I E).

Proof. Every relatively AoF-compact set is relatively A-compact and ma(K; E) < m, =(K; E).
The other implication is given by item (ii) of the above proposition, which combined with
item (iii) gives ma(K; E) = m 7(K; E). O

2. THE IDEAL OF A-COMPACT OPERATORS

Hereinafter we use the procedures: A — A", A — A™9 and A — A%, which are given
for Banach operator ideals as follows. The surjective hull A%“" of A is the class of T €
L(E; F) such that T o gg belongs to A where gg: ¢1(Bg) — E is the canonical surjection
and ||T'|| aser = ||T" © gg||a. The regular hull A" of A is the class of T" € L(E; F') such that
JpoT € A(E; F") and ||T'|| ares = ||Jr 0 T'|| 4, where Jp: ' — F" is the canonical inclusion.

It is said that A is surjective or regular if, respectively, A = A**" or A = A" isometrically.
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Also, denoting by T” the adjoint of an operator T, the dual ideal A? of A is the class of
operators T € L such that 77 € A and ||T']| 4¢ = ||T"]| 4-

Associated to the concept of A-compact sets, Carl and Stephani [3] define and study
the notion of A-compact operators, which generalizes compact operators. An operator T €
L(E; F) is said to be A-compact if T(Bg) is a relatively A-compact set in F' [3, Definition 2].
We denote by K 4 the space of all A-compact operators. When A is a Banach operator ideal,
KC 4 becomes a Banach operator ideal if for any 7" € K 4(E; F') one defines

1T lxa = ma(T(Bg); F).

Carl and Stephani describe the operator ideal K4 in terms of A" via the identities:
Ka= (Ao K)™ = A% o IC [3, Theorem 2.1]. From this, the authors get that K4 = K,
and the process only may produce a new operator ideal the first time it is applied. The
geometric structure introduced via || - ||x, fits in the Carl-Stephani theory turning both
identities into isometries. Also, with Corollary 1.9 we obtain a slight modification as follows.

Proposition 2.1. Let A be a Banach operator ideal. Then, the isometric identity holds
Kt = K g7 = (Ao F)™.

Since my (T(Bg); F') = k,(T), the ideal IC,, of p-compact operators coincides isometrically
with Ka» and Ky, .

Theorem 2.2. Let A be a Banach operator ideal. Then, the isometric identity holds
Ka=K}".

Proof. Suppose we have proved that A and A" produce the same system of compact sets
and therefore, K4 = K 4res. By the above, the isometric identity 4 = A**" o K holds. An
application of [20, Corollary 2.1] then shows that ' = IC 4res, which would complete the
proof.

Since A C A", it only remains to show that A"9-compact sets are A-compact. Let
E be a Banach space and K an A"9-compact set of E. Given € > 0, by Proposition 1.8,
we may find T € A™9({1; E) and M a compact set in C By, such that K C T(M) with
| T || ares < (1 4 €)mares (K; E). By [27, Lemma 4.11], there are a compact set L C By, a
Banach space F' and an injective compact operator S € L(F’;¢;) such that M C L = S(Bp)
and ST!(M) is compact. In addition, we may choose L = {x € {;: ||z — m,(2)|| < Yp,n >
1}, where (7v,)n belongs to B, and m,: {; — {; is the canonical projection to the first n
coordinates. Now, we use the principle of local reflexivity for the finite dimensional subspaces
W, = JgoT om, oS(F) and find a sequence of operators R, € L(W,;E) such that
|R.]| <1+ecand R,0oJgoT om, 08 =Tom,oS for all n. Since W,, C W, for all

m > n, straightforward calculations show that (Tom,05), is a Cauchy sequence in 4. Also,
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(T om, 08), is convergent to 7" o S in L. Then, T o S belongs to .A. Since S is injective,
K CToS(S™Y(M)) which shows that K is A-compact.
The isometry follows from the inequality

ma(K; E) < ||T | ares < (14 €)mares (K E). O

As an immediate consequence, we have the following results.

Corollary 2.3. Let E be a Banach space, K a subset of E and A a Banach operator ideal.

Then, K is relatively A-compact if and only if K C E" is relatively A-compact. Moreover,
ma(K; E) = ma(K; E”).

Corollary 2.4. Let A be a Banach operator ideal. Then, the isometric identity holds
Ka= K%,

For p-compactness, the above identity was obtained in [10, Corollary 3.6], see [14, Corol-
lary 2.6] and [26, Proposition 8] for the isometry. Also, Theorem 2.2 corresponds with [14,
Theorem 2.5] and [26, Theorem 5]. Finally, Corollary 2.3 was shown in [10, Corollary 3.6],
and the equality of the sizes appears in [14, Theorem 2.4].

We finish this section with a characterization of an A-compact operator in terms of the
continuity and compactness of its adjoint. The next result is well known for compact op-
erators and was studied in the polynomial and holomorphic setting in [2]. We denote by
E', the dual space of E considered with the topology of uniform convergence on A-compact
sets. As usual, £/ denotes the dual space of E with the topology of uniform convergence on
compact sets and K° denotes the polar set of a set K.

Proposition 2.5. Let E and F be Banach spaces, T € L(E;F) and A an operator ideal.
The following statements are equivalent.

(i) T € KA(E; F).

(ii

(iii) 77: F!y — E. is compact.

T'": F'y — E' is continuous.

)
)
(iv) T': F'y — Ej is compact for any Banach operator ideal B.
(v) There exists a Banach operator ideal B such that T": Fy — E} is compact.
(vi) T": F'y — E! . is compact.

Proof. Suppose (i) holds, then T'(Bg) = K is A-compact and K° is a neighborhood in FY.
Thus, for ' € K° we have that |[T"(y')|| = sup,ep, |1"(y')(x)| < 1, proving (ii).

Now, suppose (ii) holds. Then, there exists a relatively A-compact set K C F such that
T'(K°) is equicontinuous in E’ which, by the Ascoli theorem, is relatively compact in E’,
obtaining (iii). Since Id: E. — E} is continuous for any Banach operator ideal B, (iii)

implies (iv). That (iv) implies (v) and (v) implies (vi) are clear. It remains to show that
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(vi) implies (i). Let L be a w*-compact set of E’ (hence ||.||-bounded) and K an absolutely
convex and A-compact set of F' such that 7"(K°) C L. As T'(K°) is ||.||-bounded, there
exists ¢ > 0 such that |T"(y')(x)| < ¢ for every v/ € K° and © € Bg. Therefore, T(Bg) C cK
which ends the proof. ([l

3. APPROXIMATION PROPERTIES GIVEN BY OPERATOR IDEALS

The approximation property of a Banach space E means that Id € WT, where 7
is the topology of uniform convergence on compact sets. A standard extension is obtained
by considering the topology of uniform convergence on A-compact sets 74 and requiring the
identity map to satisfy Id € WA. However, for a Banach operator ideal A it seems
to be more appropriate to consider the size of A-compact sets and look at the convergence
on A-compact sets under my. In order to formalize the latter idea, we introduce on L(E; F)
the topology 7,4 of strong uniform convergence on A-compact sets, which is given by the
seminorms

ax(T') = ma(T(K); I),
where K ranges over all A-compact sets of E.
It is easy to check that 74 and 7,4 are locally convex topologies. Regarding 7,4, we propose

T~ 1 N\ TsA

to study the approximation property for which I'd € F(E; E)

Recall that a Banach space E has the approximation property if and only if for any
Banach space F, F(F; E) is || - ||-dense in IC(F; E) (see, e.g. [27, Proposition 4.12]). For the
Carl-Stephani theory, this result can be extended as follows.

Proposition 3.1. Let E be a Banach space and A a Banach operator ideal. The following
are equivalent.

(i) Id e F(B;B) ™.

(i) For any Banach space F', F o KK A(F; E) is ||.||x  -dense in K4(F; E).

(iii) For any Banach space F, F(F; E) is ||.||x,-dense in KA(F; E).

Proposition 3.2. Let E be a Banach space and A an operator ideal. The following are
equivalent.

() Ide FE )™,

(ii) For any Banach space F', F o K4(F; E) is ||.||-dense in K(F; E).

(iii) For any Banach space F, F(F; E) is ||.|-dense in KA(F; E).

Proofs of Propositions 3.1 and 3.2 essentially follow their classical prototype [27, Propo-
sition 4.12], basing on the following result, which holds by the proof of [27, Lemma 4.11].

Let E be a Banach space and A a Banach operator ideal. Suppose K is a convex, balanced



10 SILVIA LASSALLE* AND PABLO TURCO

and A-compact set of E. Then, there exist a Banach space F' and an injective operator
T € K4(F; E) such that K C T(Br) and T7'(K) C F is compact.

In [23], Oja introduces the concept of A-approximation property as the property enjoyed
by Banach spaces F such that F(F'; E) is || - || a-dense in A(F, E'), for every Banach space F.
Thus, a space satisfying any of the equivalences of Proposition 3.1 is said to have the K 4-
approximation property. On the other hand, if A is an operator ideal and « is a norm on A,
in [16], the authors say that E has the (A, a)-approximation property if F(F’; E) is a-dense
in A(F, E) for all Banach spaces F'. When « is the operator norm in £, we say that E has the
A-uniform approximation property instead of saying that F has the (A, || - ||)-approximation
property. Thus, a space satisfying any of the equivalences of Proposition 3.2 is said to
have the K 4-uniform approximation property. Notice that N covers the p-approximation
property [29, Definition 6.1] and the x,-approximation property [9, Definition 1.1].

For any operator ideal A, the approximation property implies the K 4-uniform approxi-
mation property and the converse is not true, as it can be deduced from [29, Theorem 6.4].
The K 4-approximation property is strictly stronger than the X 4-uniform approximation
property (to see this, combine [29, Theorem 6.4] and [9, Theorem 2.4]). Also, if A and B
are two Banach operator ideals and A C B, the Kz-uniform approximation property implies
the K 4-uniform approximation property. Nonetheless, a Banach space may have the Kz-
approximation property and fail to have the IC 4-approximation property (to see this combine
9, Corollary 3.6] and [9, Theorem 2.4]).

We do not know if the approximation property implies or not the X 4-approximation
property. However, the bounded approximation property yields a positive result. Recall that

a Banach space E has the bounded approximation property if Id € F(E;E) N ABgg; E)I,
for some A > 1.

Proposition 3.3. Let E be a Banach space with the A-bounded approximation property, and
let A be a Banach operator ideal. Then E has the K 4-approximation property.

Proof. Let K be an A-compact set of E. By Proposition 1.8, take T" € A({;; FE) and a
compact set M C By, such that K C T(M). As in Proposition 2.2, we may find a Banach
space F, an injective compact operator S € L(F; (1) and a compact set L = {x € {;: ||z —
Tn(2)|] < Yn,n > 1} with (v,), in B, such that M C L = S(Bp) and S™!(M) is compact.
Consider the finite dimensional subspaces W,, = T' o7, o S(F). By [6, Proposition 16.9], for
each n, there exists R, € F(E; F) such that |R,|| <2\ and R,oTom,0S =Tom,0S.

Then we have
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(R — 1d)(K); E) (B — Idg) 0 T 0 S|4
< ||R,oToS—R,oTom,oS||a+||Tom,0S—ToS|a
< (Bl + DT allS = 70 0 S
< @A+ DT[] alml
Since (7,)n belongs to cg, the result follows. O

Recall that the minimal kernel of A is the composition ideal A™" = F o Ao F. Now we
restrict to the class of right-accessible Banach operator ideals (those satisfying A™" = Ao F)
and show that the classic approximation property implies the K 4-approximation property.
We need the following result.

Proposition 3.4. Let E be a Banach space and A a right-accessible Banach operator ideal.
Then, E has the K a-approzimation property if and only if KA(F; E) = K" (F; E) for all
Banach spaces F.

Proof. Since A is right-accessible, combining [6, Ex. 21.1] and [6, Proposition 21.4] we
get that || - [, and [| - [[cin coincide over F(F; E). Thus, the result follows by a direct
application of Proposition 3.1. ([l

The above proposition covers the characterization of the r,-approximation property in
terms of the ideals K, and K", see the comments after [14, Proposition 3.9]. Also, the

next result generalizes [14, Proposition 3.10].

Proposition 3.5. Let E be a Banach space and A be a right-accessible Banach operator
ideal. If E has the approximation property, then E has the K 4-approximation property.

Proof. If E has the approximation property, by [6, Proposition 25.11],
(K™ (F: B) = (7)™ (Fs E) = K™ (F ),

for every Banach operator ideal A and for every Banach space F. Now we show that if
A is right-accessible, K4 = (A™™)5" = (K73)**" isometrically. Indeed, the first isometry
follows from Proposition 2.1. For the second one, apply [6, Ex. 21.1] to show that K4 is
right-accessible. The claim follows from the fact that X4 = Kx , isometrically.

Finally, since K4(F; E) = K'4'"(F; E) for every Banach space F, an application of Propo-
sition 3.4 completes the proof. 0

It is well known (see, e.g. [27, Proposition 4.12]) that the dual E’ of a Banach space E
has the approximation property if and only if for any Banach space F'; F(E; F') is || - ||-dense
in KC(E; F). Note that K¢ = K. We characterize the K 4-uniform and the K 4-approximation
properties on E’ via the ideal K¢, which is not surprising at the light of the results obtained
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by Delgado, Oja, Pineiro and Serrano in the p-compact setting [7, Theorem 2.8] and 9,
Theorem 2.3]. We need the following lemma.

Lemma 3.6. Let E and F' be Banach spaces and A a Banach operator ideal, then the set
E® F is s 4-dense in F(E'; F).

Proof. Since my(z" @ y(K); F) = supycg |2"(@)|||ly|| for any bounded set K C E’, any
2" € E" and any y € F, the result follows by a direct application of the Alaoglu theorem. [

Proposition 3.7. Let E be a Banach space and A a Banach operator ideal. The following
are equivalent.

(i) E' has the K 4-approximation property.

(ii) For any Banach space F, F(E;F) is || - ”’Cfﬁ_ dense in K4(E; F).

Proof. If (i) holds, fix ¢ > 0 and take T" € K4 (E;F). Since T" € K4(F'; E') and E’
has the K 4-approximation property, by Lemma 3.6, there exists S € F(F;F) such that
T = Slis = 15" = T"[|x, <€ which gives (ii).

For the converse, take T' € K 4(F; E'). By Corollary 2.4, T' o Jp € K% (E; F'). Fix £ > 0,
by hypothesis, there exists 5 € F(£; F”) such that || —T" o Jg|[xq <. Then,

150 Jp = Tllica < 18" = (T" 0 Jp)llcy = IS = T" 0 Jpllka <,
and the result follows by Proposition 3.1. O

Analogously, E’ has K 4-uniform approximation property if and only if F(E; F) is || - ||-
dense in K% (E; F), for any Banach space F'.

A Banach space E has the approximation property if and only if £’ has the approximation
property [28, Exposé 14]. Aron, Maestre and Rueda show the analogous result for the p-
approximation property [1, Theorem 4.6]. Here, we present a generalization of these results.

Proposition 3.8. Let E be a Banach space and A an operator ideal. Then, E has the
IC 4-uniform approxzimation property if and only if E'y has the approximation property.

Proof. The locally convex space E’y has the approximation property if and only if for any
e > 0, any A-compact set K C E and any relatively compact set M C E;, there exists
S € F(FE; E) such that

(1) |(S" = Id)(2)(z)| <e forallz’ € M, z € K.

The continuity of the identity map E. — E/; — (E’,w*) says that relatively compact
sets in E’; coincide with ||.||-bounded sets. Then, £, has the approximation property if and
only if in (1) M is replaced by Bp which is equivalent to say that E has the K 4-uniform

approximation property. 0
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Finally we give a reformulation of the K 4-uniform approximation property in terms of
the e-product of Schwartz. A Banach space E has the approximation property if and only
if £® F is dense in L(E.; F') for every locally convex space F' [28, Exposé 14]. We denote
by L(E'y; F') the space of all linear continuous maps from E’; to a locally convex space F,
endowed with the topology of uniform convergence on all equicontinuous sets of E’. The

proof of the next proposition is standard and we omit it.

Proposition 3.9. Let E be a Banach space and A an operator ideal. The following state-
ments are equivalent.

(i) E has the K 4-uniform approximation property.
(ii) E® F is dense in L(E'y; F) for any locally convexr space F.
(i) E® E' is dense in L (E'y; Ey).
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