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EXAMPLES OF HOMOGENEOUS MANIFOLDS WITH

UNIFORMLY BOUNDED METRIC PROJECTION

EDUARDO CHIUMIENTO∗

Abstract. Let M be a finite von Neumann algebra with a faithful normal trace τ . Denote by
Lp(M)sh the skew-Hermitian part of the non-commutative Lp space associated with (M, τ). Let
1 < p < ∞, z ∈ Lp(M)sh and S be a real closed subspace of Lp(M)sh. The metric projection
Q : Lp(M)sh −→ S is defined for every z ∈ Lp(M)sh as the unique operator Q(z) ∈ S such that
‖z −Q(z)‖p = miny∈S ‖z − y‖p.

We show the relation between metric projection and metric geometry of homogeneous spaces
of the unitary group UM of M, endowed with a Finsler quotient metric induced by the p-norms
of τ , ‖x‖p = τ(|x|p)1/p, p an even integer. The problem of finding minimal curves in such
homogeneous spaces leads to the notion of uniformly bounded metric projection. Then we show
examples of metric projections of this type.

1. Introduction

The aim of this work is to make further comments and give complete proofs
of the statements established in [1] on uniformly bounded metric projections and
minimal curves in homogeneous spaces.

Let M be a finite von Neumann algebra on a Hilbert space H with a faithful
normal trace τ . Denote by M̃ the set of densely-defined closed operators affili-
ated with M, which becomes a Hausdorff topological ∗-algebra equipped with the
measure topology (see [8], [9]). For any positive Hermitian operator x ∈ M̃, we
put

τ(x) = sup
n≥1

τ
(

∫ n

0

λdeλ
)

,

where x =
∫∞

0 λdeλ is the spectral representation of x. For 1 ≤ p < ∞ the
non-commutative Lp space associated with (M, τ) is defined by

Lp(M) = { x ∈ M̃ : τ(|x|p) < ∞},
and the p-norm is given by

‖x‖p = τ(|x|p)1/p, x ∈ Lp(M).
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14 Eduardo Chiumiento

It turns out that Lp(M) is a Banach space with the p-norm satisfying the expected
properties such as Hölder inequality and duality. Moreover, the completion of M
with the p-norm naturally identifies with Lp(M). In the case p = 2, we have that
L2(M) is a Hilbert space with the inner product 〈x, y〉 = τ(xy∗). We will use the
notation Lp(M)h (resp. Lp(M)sh) to indicate the real Banach space of Hermitian
(resp. skew-Hermitian) operators of Lp(M).

Let S be a real closed subspace of Lp(M)sh. It can be derived from Clarkson’s
inequalities for Lp(M)sh that this space is uniformly convex for 1 < p < ∞ (see
[5]). Then for each x ∈ Lp(M)sh, the distance of x to S is attained in an unique
operator Qp,S(x) ∈ S, that is

‖x−Qp,S(x)‖p = inf
y∈S

‖x− y‖p .

The map Qp,S : Lp(M)sh −→ S, where Qp,S(x) is the best approximation of x in
S, is usually known as the metric projection. In the sequel, once the p and the
subspace are clear, we will write only Q.

Let Mh (resp. Msh) denote the Hermitian (resp. skew-Hermitian) part of M.
Fix S a real subspace of Msh closed in the uniform topology. Let Q be the metric
projection of Lp(M)sh onto Sp

. Notice that the best approximation of a bounded
operator might be an unbounded operator of Lp(M)sh. We say that Q preserves
bounded operators if Q(Msh) ⊆ S.

Let ‖ . ‖ denote the uniform norm of M. If the metric projection preserves
bounded operators, we can go further and ask if Q is uniformly bounded. This
means that there exists a constant Kp,S > 0 such that

‖Q(x)‖ ≤ Kp,S‖x‖, x ∈ Msh.

We will show that uniformly bounded metric projections appear in the metric
theory of homogeneous spaces of the unitary group of M.

Let us describe the contents of the article. In Section 2 we exhibit the relevance
of uniformly bounded metric projections in the setting of homogeneous spaces of the
unitary group of M. It turns out that the definition of uniformly bounded metric
projections arises as a sufficient condition to state partial results on minimal curves
in these homogeneous spaces. In Section 3 we give examples of uniformly bounded
metric projections defined by homogeneous spaces.

2. Metric projection and homogeneous spaces

Let M be a finite von Neumann algebra with a faithful normal trace τ . It is
a well known fact that the unitary group UM of M is a Banach-Lie group with
the topology given by the uniform norm. The Lie algebra can be identified with
the real Banach space Msh of skew-Hermitian operators of M. By a homogeneous
space of the group UM we mean a set O where the unitary group acts transitively.
Furthermore, we assume that for each x ∈ O, the isotropy group

Gx = { u ∈ UM : u · x = x }
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Examples of homogeneous manifolds with uniformly bounded metric projection 15

is a Banach-Lie subgroup of UM. Therefore O ∼= UM/Gx has a unique Banach
manifold structure such that the maps

πx : UM −→ O, πx(u) = u · x
are analytic submersions. A good reference for these facts and others on homoge-
neous spaces is [11]. We denote the differential at the identity of the analytic map
πx by

(πx)∗1 : Msh −→ (TO)x,

which is a surjective map, whose split kernel equals the Lie algebra Gx of the
isotropy group at x. Examples of homogeneous spaces are unitary orbits of: nor-
mal operators, states, conditional expectations, ∗-homomorphisms and spectral
measures. A detailed treatment of these examples can be found in [4, p. 98] and
the references therein.

In the article [1], E. Andruchow, G. Larotonda and the author studied metric
geometry of homogeneous spaces endowed with a Finsler quotient metric induced
by the p-norms of τ . To be precise, for each x ∈ O, the norm of a tangent vector
X ∈ (TO)x is given by

‖X‖x,p = inf{ ‖z − y‖p : y ∈ Gx },
where z ∈ Msh satisfies (πx)∗1(z) = X . In other words, the norm of a tangent

vector X is the Banach quotient norm of one lifting z in Lp(M)sh/Gx
p
.

We can measure the length of a smooth curve γ in O by

LO,p(γ) =

∫ 1

0

‖γ̇‖γ,p dt.

Then there is a rectifiable distance in O, namely

dO,p(x, y) = inf{LO,p(γ) : γ ⊆ O, γ(0) = x, γ(1) = y },
where the curves considered are piecewise smooth. It can be shown that (O, dO,p)
is a complete metric space when the isotropy group Gx is closed in the p-norm.
Moreover, dO,p defines the quotient topology in O.

On the other hand, if Γ is a piecewise smooth curve in UM we can measure its
length by

Lp(Γ) =

∫ 1

0

‖Γ̇‖p dt.

In the usual fashion we have another rectifiable distance dp associated with this
length functional. Let p be an even integer, u0, u1, u2 ∈ UM and ∆ a geodesic in
UM joining u1 and u2. It is proved in [2] that the function

f(t) = dp(u0,∆(t)), t ∈ [0, 1],

is strictly convex if ‖ui− uj‖ < 1
2

√

2−
√
2. Recall that the geodesics are curves of

the form ∆(t) = u2e
tz, z ∈ Mah, and have minimal length provided that ‖z‖ ≤ π.

In the theory of finite dimensional Riemannian manifolds the completeness with
the rectifiable distance implies the existence of curves of minimal length joining
any pair of points. This is no longer true in Hilbert-Riemann manifolds (see [3],
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16 Eduardo Chiumiento

[7]), essentially due to the absence of local compactness. In our case, the key
argument to find minimal curves is to lift curves to the unitary group UM and use
the convexity result.

The problem of finding minimal curves is closely related to the metric projection.
Intuitively, it is natural to seek for the direction with minimal norm to find a
minimal curve. For p an even integer denote by Q the metric projection onto Gx

p
.

Let X ∈ (TO)x and z be a lifting of X . Then, we have that

‖X‖x,p = ‖z −Q(z)‖p .
So z − Q(z) is the direction with minimal norm that we are looking for, and the
curve in O given by

δ(t) = et(z−Q(z)) · x, t ∈ [0, 1],

is our prime candidate for minimal curve.
Recall that since Gx is a Banach-Lie subgroup of UM for each x ∈ O, then there

exists a closed linear supplement Fx ⊆ Msh such that Msh = Gx ⊕Fx. Moreover,
the exponential map at x ∈ O, defined by Fx −→ O, z 7→ ez · x, is a local
diffeomorphism at the origin. Then, when r is small enough and Q is uniformly
bounded, the following set

U r
O = {ez−Q(z) · x : z ∈ Fx, ‖z‖ < r}

has as exponents operators with small uniform norm and minimal p-norm. Hence
any curve in U r

O lifts to a curve in UM with uniform norm small enough to guarantee
that the convexity result holds. Now we state the main theorem of [1] about
minimality of curves.

Theorem 2.1. Let p be an even integer. Assume that there exists a constant

K > 0 satisfying ‖Q(z)‖ ≤ K‖z‖ for all z ∈ Msh. Then for any y ∈ U r
O there

exists z ∈ Msh such that ez · x = y and

δ(t) = etz · x, t ∈ [0, 1],

is shorter than any other piecewise smooth curve γ ⊂ O joining x to y, provided
that γ ⊂ U r

O. Moreover, the curve δ is unique in the sense that if γ ⊂ U r
O is another

piecewise smooth curve joining x to y of length ‖z‖p then γ(t) = etz · x.
We point out that the set U r

O might not be open in the quotient topology of O.
Also notice that the curve δ is minimal among non-wandering curves, i.e. curves
such that do not leave the set U r

O.

3. Examples

In this section we will show examples of uniformly bounded metric projections.
In view of Theorem 2.1, we will restrict to the case p an even integer.

We start recalling some general facts on metric projections. Let Q denote the
metric projection from Lp(M)sh onto a closed subspace S. The name of metric
projection comes from the many properties that Q shares with an orthogonal pro-
jection. For example, it is easily shown that Q(λx) = λ(x), for all x ∈ Lp(M)sh
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Examples of homogeneous manifolds with uniformly bounded metric projection 17

and λ ∈ R, S = Q(Lp(M)sh) = (I −Q)−1(0) and

Q2 = Q , (I −Q)2 = I −Q , (I −Q) ◦Q = Q ◦ (I −Q) = 0.

Moreover, any x ∈ Lp(M)sh admits a unique decomposition as

x = (I −Q)(x) +Q(x),

where (I − Q)(x) ∈ Q−1(0) and x ∈ S. It is worth noting that Q is not linear in
general for p 6= 2 (it is the linear orthogonal projection for p = 2). However, it
does hold the following

Q(x+ y) = Q(x) + y, x ∈ Lp(M)sh, y ∈ S.

Another interesting property is thatQ is continuous with the p-norm since Lp(M)sh
is uniformly smooth (see [6]).

The following remark shows an example of a metric projection that is not uni-
formly bounded. Furthermore, this projection does not preserve bounded opera-
tors.

Remark 3.1. Our finite von Neumann algebra is L∞([0, 1]) with the Lebesgue
measure. Pick a function f ∈ L2([0, 1]) such that ‖f‖2 = 1 and f /∈ L∞([0, 1]).
Consider the following commutative Lie algebra:

S = {h ∈ L∞([0, 1]) : 〈h, f〉 = 0} = { f }⊥ ∩ L∞([0, 1]).

Then the metric projection in the 2-norm, which is the orthogonal projection onto

S2
, can be computed:

Q : L2([0, 1]) −→ S2
, Q(h) = h− 〈h, f〉 f.

Since f is an unbounded function it is clear that any bounded function h is mapped
to an unbounded function Q(h).

3.1. Subalgebra of the center. The first example is about a von Neumann sub-
algebra N ⊆ Z(M), where Z(M) is the center of M. We will see that the metric
projection Q : Lp(M)sh −→ Lp(N )sh is uniformly bounded for all p even.

Lemma 3.2. Let p ≥ 2 an even number. Let x, y ∈ Lp(M) satisfying x ≥ 0,
y = y∗ and xy = yx. Then

‖x− y+‖p ≤ ‖x− y‖p ,

where y = y+ − y− is the Jordan decomposition.

Proof. Let e denote the spectral projection of y corresponding to the interval [ 0,∞].
First note the following fact,

(x− y+)p(1 − e) =

p
∑

k=0

(

p
k

)

xk(−y+)p−k(1− e) = xp(1− e).
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18 Eduardo Chiumiento

Analogously we can prove that (x − y)pe = (x − y+)pe and (x − y)p(1 − e) =
(x + y−)p(1− e). Therefore we have

‖x− y+‖pp = τ((x − y+)pe) + τ((x − y+)p(1− e))

= τ((x − y+)pe) + τ(xp(1− e))

≤ τ((x − y+)pe) + τ((x + y−)p(1− e)) (1)

= τ((x − y+)pe) + τ((x − y)p(1− e)) = ‖x− y‖pp .
In the inequality (1) we use that (x + y−)p is essentially the sum of polynomials
of the form xp−k(y−)k. Since the operators involved commute, it follows that each
polynomial is a positive operator of Lp(M), so τ(xp−k(y−)k) ≥ 0, which proves
the inequality. �

Remark 3.3. The previous lemma still holds for p = 2 without the requirement
that the operators x, y commute. Indeed, note that

‖x− y+‖22 ≤ ‖x− y+‖22 + 2τ(xy−) + τ((y−)2) = ‖x− y‖22,
and our claim is proved.

Remark 3.4. The above inequality is not true in our setting for p > 2, if we
remove the hypothesis that x and y commute. For instance let p = 4 and consider
the following matrices

x =

(

2 1
1 3

)

, y =

(

100 0
0 −1

)

.

The eigenvalues of x − y+ are λ1 = 3.00990002 and λ2 = −98.00990002. Thus,
we have ‖x − y+‖44 = 92274175. On the other hand, x − y has as eigenvalues
µ1 = 4.009802979 and µ2 = −98.00980298. Then, ‖x− y‖44 = 92273986.

Proposition 3.5. Let p an even integer and N a von Neumann subalgebra of

Z(M). Then the metric projection Q : Lp(M)sh −→ Lp(N )sh satisfies

‖Q(z)‖ ≤ 3‖z‖, z ∈ Msh.

Proof. We need to consider the metric projection Q0 of Lp(M) onto Lp(N ), that
is the unique continuous map Q0 : Lp(M) −→ Lp(N ) satisfying

‖z −Q0(z)‖p ≤ ‖z − y‖p,
for all y ∈ Lp(N ). We claim that Q0 is uniformly bounded in Mh.

By Lemma 3.2 we have that Q0 maps positive elements of Lp(M) on positive
elements of Lp(N ). In fact, note that for a positive element z ∈ M, we have
Q(z) ∈ Lp(N ). Since N ⊆ Z(M), the lemma implies that

‖z −Q0(z)
+‖p ≤ ‖z −Q0(z)‖p .

Hence by the uniqueness of Q0(z) it follows that Q0(z) = Q0(z)
+.

Now we prove that Q0 preserve bounded operators of Mh. Let z ∈ M be a
positive element. Note that ‖z‖−Q0(z) = Q0(‖z‖−z) ≥ 0, then 0 ≤ Q0(z) ≤ ‖z‖.
Hence Q0(z) is bounded. Let z ∈ Mh, then z + ‖z‖ is a positive operator and
Q0(z) + c = Q0(z + ‖z‖) is bounded, so it follows that Q0(x) is bounded.
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Examples of homogeneous manifolds with uniformly bounded metric projection 19

In order to prove our claim, let z ∈ Mh, then

‖Q0(z)‖ = ‖Q0(z + ‖z‖ − ‖z‖)‖ = ‖Q0(z + ‖z‖)− ‖z‖‖
≤ ‖Q0(z + ‖z‖)‖+ ‖z‖
≤ ‖z + ‖z‖ ‖+ ‖z‖ ≤ 3‖z‖.

Finally notice that Q0(z
∗) = Q0(z)

∗. In particular, we have that the restriction
of Q0 to Msh coincides with Q. Since Q0 is uniformly bounded on Mh, and
iMh = Msh, we obtain that Q is uniformly bounded with the constant 3. �

Remark 3.6. An example of homogeneous space of UM whose Lie algebra equals to
the skew-Hermitian part of the center ofM is the unitary orbit of an inner automor-
phism. We denote an inner automorphism byAd(u) : M −→ M, Ad(u)(x) = uxu∗,
for x ∈ M and u ∈ UM. Fix v ∈ UM, we consider the unitary orbit given by

O = {Ad(u) ◦Ad(v) : u ∈ UM }.
The isotropy group at Ad(v) is

G = { u ∈ UM : Ad(u) ◦Ad(v) = Ad(v) }.
The Lie algebra of G can be computed

G = {z ∈ Msh : zvxv∗ = vxv∗z, ∀x ∈ M} = Z(M)sh.

In order to show that O is a homogeneous space we need to check that G is com-
plemented in Msh. To this end, note that the modular group of the trace is equal
to UM, then there exists a conditional expectation onto any ultraweakly closed
subalgebra of M by a theorem of M. Takesaki (see [10]). The restriction to Msh

of a conditional expectation onto Z(M) is a projection onto Z(M)sh.
On the other hand, note that by Proposition 3.5 the metric projection of Lp(M)sh

onto Gp
is uniformly bounded. Hence Theorem 2.1 can be applied, and the curves

δ(t) = Ad(et(z−Q(z))) ◦Ad(u) are locally minimal with the quotient Finsler metric
for all p even.

3.2. Diagonal algebra in M ⊗ M2. Let M2 denote the 2 × 2 matrix algebra.
There is a natural finite trace τ̂ on M⊗M2 defined by

τ̂
(

(

x11 x12

x21 x22

)

)

=
1

2
τ(x11 + x22),

(

x11 x12

x21 x22

)

∈ M2 ⊗M.

It is straightforward to show that Lp(M ⊗M2, τ̂) = Lp(M) ⊗M2. We will need
the following lemma. Its proof can be found in [1, Lemma 2.5].

Lemma 3.7. Let p > 1, z ∈ Lp(M)sh and Q be metric projection of Lp(M)sh
onto a closed subspace S. Then y = Q(z) if and only if τ(yp−1x) = 0 for all

x ∈ Lp(M)sh.

We take the subalgebra N consisting of diagonal operator matrices, i.e.

N = {
(

x11 0
0 x22

)

: x11, x22 ∈ M}.
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In this example we can explicitly compute the projection Q. Actually, this is a
consequence of the following inequality.

Lemma 3.8. Let p ≥ 2 a positive even number and b ∈ M. Then,
∥

∥

∥

∥

(

0 b
−b∗ 0

)∥

∥

∥

∥

p

≤
∥

∥

∥

∥

(

a b
−b∗ d

)∥

∥

∥

∥

p

,

for all a, d ∈ Msh.

Proof. Let p = 2k, k ≥ 1. By Lemma 3.7, to prove the stated inequality is
equivalent to show the orthogonality condition

τ̂(

(

0 b
−b∗ 0

)2k−1(
a 0
0 d

)

) = 0,

for all a, d ∈ Msh. Note that it is easy to compute any power of a co-diagonal
matrix. Indeed, for k ≥ 1 we have

(

0 b
b∗ 0

)2k

= (−1)k
(

(bb∗)k 0
0 (b∗b)k

)

,

and
(

0 b
b∗ 0

)2k+1

= (−1)k
(

0 (bb∗)kb
−(b∗b)kb∗ 0

)

.

Then, we obtain

τ̂ (

(

0 b
b∗ 0

)2k−1(
a 0
0 d

)

) = τ̂ (

(

0 (bb∗)2(k−1)b

(b∗b)2(k−1)b∗ 0

)(

a 0
0 d

)

) = 0.

Hence our lemma is proved. �

Now it is plain that Q : (Lp(M)⊗M2)sh −→ Lp(N )sh is the linear map given by

Q(

(

x11 x12

−x∗
12 x22

)

) =

(

x11 0
0 x22

)

.

Then Q is the extension to the non-commutative Lp space of the unique trace-
invariant conditional expectation from M⊗ M2 onto N . In particular, Q is uni-
formly bounded with constant 1.

Example 3.9. Consider the projection in M⊗M2 given by e =

(

1 0
0 0

)

. Let

O denote the unitary orbit, i.e.

O = { ueu∗ : u ∈ UM⊗M2
}.

The isotropy group at e of the natural action of UM⊗M2
is given by

G = {u ∈ UM⊗M2
: ue = eu }

The Lie algebra of this group is

G = {x ∈ (M⊗M2)sh : xe = ex } = {
(

a 0
0 d

)

: a, d ∈ Msh }.
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Therefore by our preceding discussion the projection Q onto the Lie algebra is
uniformly bounded, so our result about minimality of curves holds.

3.3. Special diagonal algebra in M ⊗ M2. Consider the following subalgebra
of M⊗M2 given by

N = {
(

x 0
0 x

)

: x ∈ M}.

Let E denote the unique trace-invariant (with respect to the trace τ̂ ) conditional
expectation onto N , i.e.

E : M⊗M2 −→ N , E(

(

x11 x12

x21 x22

)

) =
1

2

(

x11 + x22 0
0 x11 + x22

)

.

We denote by Ep the extension of the above expectation to the corresponding
non-commutative Lp spaces.

Lemma 3.10. Consider

X = {
(

a b
b −a

)

: a, b ∈ M}.

If A,B ∈ X , then AB2 ∈ X .

Proof. Let

A =

(

a b
b −a

)

, B =

(

d e
e −d

)

Then

B2 =

(

d e
e −d

)(

d e
e −d

)

=

(

d2 + e2 de− ed
ed− de d2 + e2

)

Since

AB2 =

(

a b
b −a

)(

d2 + e2 de− ed
ed− de d2 + e2

)

=

(

ad2 + ae2 + bed− bde ade − aed+ be2 + bd2

bd2 + be2 − aed+ ade bde− bed− ad2 − ae2

)

,

then AB2 ∈ X . �

Lemma 3.11. Let 2 ≤ p < ∞, p even. Then:
∥

∥

∥

∥

(

(a− c)/2 b
b (c− a)/2

)∥

∥

∥

∥

p

≤
∥

∥

∥

∥

(

a b
b c

)

+

(

d 0
0 d

)∥

∥

∥

∥

p

for any d ∈ M.

Proof. Note that
(

(a− c)/2 b
b (c− a)/2

)

=

(

a b
b c

)

+

(

(−a− c)/2 0
0 (−a− c)/2

)

.

Then, the inequality of the lemma is equivalent to

τ̂ (

(

(a− c)/2 b
b (c− a)/2

)p−1(
d 0
0 d

)

) = 0,
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for any d ∈ M. We show that it holds for d ≥ 0 then it extends by a straightforward
argument. The inequality holds for p = 2, since

τ̂ (

(

(a− c)/2 b
b (c− a)/2

)(

d 0
0 d

)

)

= τ̂(

(

d1/2 0

0 d1/2

)(

(a− c)/2 b
b (c− a)/2

)(

d1/2 0

0 d1/2

)

)

=
1

4
(τ(d1/2(a− c)d1/2) + τ(d1/2(c− a)d1/2)) = 0.

On the other hand,

X =

(

(a− c)/2 b
b (c− a)/2

)

∈ X .

Hence, by Lemma 3.10, X3 = XX2 ∈ X , and the p-orthogonality condition holds
for p = 2 since

τ̂ (X3

(

d 0
0 d

)

) =
1

2

(

τ(d1/2(X3)11d
1/2) + τ(d1/2(X3)22d

1/2)
)

= 0

and X3 ∈ X implies (X3)11 = −(X3)22. All the other powers can be handled in a
similar fashion, for instance X5 = X3X2 ∈ X . �

Let L stand for the real subspace of Msh ⊗M2 given by

L = {
(

a b
b c

)

: a, b, c ∈ Msh }

and Lp be the completion with the p-norm. Then, it is easy to check, using the
previous lemma, that E : L −→ N and Ep : Lp −→ Lp(N ) for p even, are
contractive maps.

Analogous statements hold for the subspace

D = {
(

0 b
−b∗ 0

)

: b ∈ M},

invoking Lemma 3.8. If p is even or p = ∞, then QN ,p = Ep, namely the best
approximant can be obtained via the conditional expectation in L. In particular Q
is uniformly bounded L. A similar argument shows that Q is uniformly bounded
in D. We do not know if Q is uniformly bounded in M⊗M2.

Acknowledgement. The author wishes to thank Esteban Andruchow and Gabriel
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