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in the so-called constructive quantum field theory approach, whose main results have been

obtained by a clever use of Euclidean functional methods. Although in the construction

of a single model there are several technical steps, some of them involving long proofs, the

constructive quantum field theory approach contains conceptual insights about relativistic

quantum field theory that deserved to be known and which are accessible without entering

in technical details. The purpose of this note is to illustrate such insights by providing an

oversimplified schematic exposition of the simple case of λΦ4 (with m > 0) in D = 1 + 1.

Because of the absence of ultraviolet divergences in its perturbative version, this simple

example — although does not capture all the difficulties in the constructive quantum field

theory approach — allows to stress those difficulties inherent to the non-perturbative defi-

nition. We have made an effort in order to avoid several of the long technical intermediate

steps without missing the main ideas and making contact with the usual language of the

perturbative approach.
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Introduction

Sometimes we talk about features of theories whose existence has not been proven yet.

Such is the case of some statements about non-perturbative phenomena or the strong

coupling regime of a relativistic QFT which is known at the present only in a perturbative

way. These statements refer to what is expected if we could go beyond perturbation theory.

One non-proved assumption behind such statements is the existence of the non-perturbative

model from which the perturbative series is derived. Then, it would be desirable to have
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at hand a concrete simple example of such features in a relativistic quantum field theory

defined in non-perturbative way. Such example could be useful as a toy model illustrating

expected non-perturbative phenomena of realistic theories which are known at the present

only in a perturbative way.

Actually, there are several examples of interacting relativistic QFT defined in a non-

perturbative way. These models, which were obtained during the ’70, include a family of

scalar field polynomial interactions, interactions of Yukawa type and also an example of a

non-polynomial interaction, both in D = 1 + 1 and D = 2 + 1. The approach used for the

obtention of these models is known as constructive quantum field theory (CQFT). See [1]

for a recent historical account.

In order to see the role of the CQFT approach and its relation with the perturbative

approach, let us consider the following diagram:

(1) Non-perturbative

meaningless formal expressions

Taylor expansion−−−−−−−−−−→ (2) Meaningless formal

perturbative series




y

Regularization





y

Regularization

(1’) Non-perturbative

meaningful expressions

sum of the series (?)←−−−−−−−−−−−− (2’)Meaningful formal series

Taylor expansion (?)−−−−−−−−−−−−→

1) In the upper left corner of this diagram, we have the formal expressions for the

non-perturbative n-point functions, like those involving functional integrals or the Dyson

evolution operator. These expressions are meaningless for several well known reasons that

will be recalled later in this note. However, in the standard exposition these expressions

are formally manipulated in order to derive the Taylor series (in power of the coupling

constant) in the right upper corner of the diagram.

Then, we should not say that the perturbative series have been deduced from a more

fundamental definition. That misleading conclusion could arise if we take seriously the

standard procedure for derivation of the series, ignoring that the original expression from

which the series come (path integral or the Dyson evolution operator) has only a formal

meaning. The role of the formal expressions and their manipulations consist in motivating

the definition of the perturbative series.

2) In this second step of the diagram, the terms of the series are still meaningless

because of the standard ultraviolet divergences. So, the definition of the QFT should begin

in a further step. Naively, we can think that it begin after the regularization procedure in

the lower right hand side of the diagram, because there we have a well defined series for

the n-point functions of the QFT.

2’) However, the QFT is not still defined in this third step, because in order to define

the set of n-point functions (which in the end are just numbers) what is needed is a procedure

for extracting a number from the series. But it turns out that most of these perturbative

series are divergent according with the standard convergence criterium. This fact has been

addressed from early years of perturbative QFT (see [2] for examples of λΦ4 in D = 2).
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Without having a criterium for getting a number from the series, we have not yet defined

the QFT.1

We want to remark that the issue of the non-convergence of the series is more relevant

in the QFT case than in other cases (like non-relativistic quantum mechanics) in which we

have a quantity defined by a complicated expression and an asymptotic series is derived

in order to make practical computations. In the QFT case, the series are not the Taylor

expansion of a non-perturbative well defined n-point function. The perturbative series is

all what we have. If we want to avoid the use of euphemisms, we should say that the

perturbative approach does not define a QFT even at weak regime, because the radius of

convergence of these series is not small but zero.2

1’) Now, we can appreciate the achievement of CQFT approach: that corresponds to

the process of regularization in the left side of the diagram. We can consider it as a ‘non-

perturbative regularization’. As we will see in this note, most of the models of CQFT have

been obtained by making sense of the formal functional integral expression for the n-point

functions. The previous considerations show that the achievement of CQFT is not merely

a description in strong regime of existent models described in a weak regime.

Once we defined a non-perturbative expression for the n-point functions, we can make

a Taylor expansion and obtain a perturbative series. It could be divergent, but now we

should not be so worry, because that series is not supposed to define the theory.

I turns out that in some cases, like λΦ4 in D = 1 + 1, the Taylor expansion of any n-

point function coincides with the ordinary perturbative series. In those cases, we can draw

the lower arrow from the left to the right, considering that non-perturbative expression

arises from a suitable criterium for the resummation of the perturbative series.

Although the models obtained by this procedure are far of being realistic (because

they are defined in D = 1 + 1 and D = 2 + 1), these constitute the first examples of

the marriage of special relativity and quantum theory in the interacting case (see the

introductory comments in [5]). Besides the importance of knowing their existence, we

think that certain steps in the construction of these models deserve to be known. That

is because in the construction of these models we find certain difficulties which are not

present in perturbation theory. These difficulties themselves manifest deep aspects of a

relativistic QFT and have a conceptual value. Moreover, by looking at non-perturbative

phenomena in a concrete model we could gain intuition about possible non-perturbative

effects in QFT models which at the present are known only in a perturbative way.

However, in order to understand the construction of a single model like λΦ4 inD = 1+1

(whose construction was initiated in [3]) we should face the technical difficulties of several

proofs and definitions, which could discourage someone who only want to have a feeling

1For particular n-point functions in special theories, we will find in the bibliography efforts to find such

criterium, like the Borel convergence. However, such criterium does not hold for the complete set of n-point

functions, which should be defined in order to define a QFT model.
2It is true that most of these series are asymptotically convergent as the coupling constant λ goes to

zero. The asymptotic convergence ensures that there exist a function of λ such that the difference between

this function and the truncated series at order N is of order λN+1. However, there is not a unique function

having this series as its asymptotic expansion. So, the asymptotic convergence is not enough for defining

the n-point functions. We will came back to this point later in this note.
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about CQFT. The purpose of this note is to help in this sense, by providing a friendly

introduction to the single example of λΦ4 in D = 1 + 1, reducing the amount of techni-

calities. Concerning the amount of details, this exposition is sited between introductions

like [5] and more detailed rigourous exposition, full of definitions and theorems, like the self

contained book [4]. We have written this note in such a way that even an graduate student

could have a picture about CQFT. Although there exist good and friendly introductions

like [5], which give a general idea without entering in the many definitions and proofs, we

think that this note presents new features from the pedagogical point of view. In the next

section, we will describe these features. That section could be skipped, going directly to

section 1.

The novelty of this exposition

The audience to whom this notes are written

The community to whom this note is addressed — the one to which the authors belong —

is more comfortable with the use of heuristic arguments, formal manipulation, plausibility

considerations. Such is the kind of language in which we want to communicate the ideas of

CQFT. In doing that, we also try to overcome the common prejudice consisting in associat-

ing the mathematical style of an exposition of a subject with the lack of a relevant physical

contribution, considering that such exposition contains only a formalization of previous

known physical concepts, which could be appreciate in a more fresh and heuristic way.

As we will see, that is not the case of the CQFT approach. In fact, the value of

the ideas in the CQFT approach could be appreciated even in a schematic and friendly

exposition like this, which contains the following features:

• plausibility and heuristic arguments instead of rigourous arguments.

• examples instead of definitions

• sketches of the proofs instead of proofs

• inclusion of pictorial descriptions and drawing of parallel with simple examples of the

standard approach

• Restriction to simples cases instead of an exhausted exposition.

We are aware that the previous features are scattered in several expositions like the

book [4], the early book [8], the textbook [7] or even inside some research papers. How-

ever, we can access to these only after avoiding several technical details. This note tries

to facilitate the task by collecting this scattered pedagogical tools in a single and short

exposition.

We are aware that it is a difficult task to give an accurate exposition of CQFT using

exclusively heuristic considerations, avoiding several definitions and proofs. In fact, the

achievement of CQFT was precisely that of showing that interacting QFT models exist as

mathematically well defined objects. It is natural to ask what is left — besides an historical
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exposition — if we omit that aspect of the construction. It is not easy the decision about

which part of the rigorous procedure could be cut without turning the exposition a mere

vulgarization of the subject.

However, we hope that this oversimplified exposition — which keeps selected interme-

diate inequalities — could still give a feeling about which are the specific difficulties towards

the non-perturbative definition which we never confront in the perturbative approach

One last comment on the purposes of this note: it does not intend to be a histori-

cal account of CQFT. For that purpose, a good and recent reference is [1]. In fact, our

pedagogical aims conduct to restrict the consideration on the single example of ΛΦ4. Ac-

cordingly, we have quoted a very short list of references. Even though the example of this

note does not capture all the difficulties involved in CQFT, it is enough rich for a first

approach.

Organization of the material

We have organized the article in several parts.

In part I, we briefly describe what a relativistic quantum field theory, the constructive

approach is attempting to construct, is. In particular, in section 3, we make a brief summary

of the difficulties for the definition of λΦ4 model in D = 1 + 1. Those difficulties will be

considered in more detail along the note.

Part II introduces the statistical description of quantum mechanics in terms of Gaus-

sian processes, starting from the simple case of the anharmonic oscillator and going to free

QFT in D = 1 + 1

Part III is the main part of the note. There, in sections 6, 7 and 8, it is described

schematically how we can deal with three different kind of possible divergences in order

to properly define the Euclidean n-point functions. It concludes with the description of

the steps for the proof that these well defined n-point functions fulfill the desired physical

requirements.

Part IV is devoted to link the exposition of the previous part (which is done in the

Euclidean functional approach) with the non-perturbative Hamiltonian approach and also

with the usual perturbative approach. This last part is important in order to see that

the models of CQFT are not merely an abstract construction but the materialization of

ordinary notions.

We end with some remarks and a guide to a further reading.
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Part I

Definition of a relativistic QFT and the

constructive strategy

1 General properties defining a relativistic QFT

Before considering any strategy, we should know what a relativistic QFT we want to con-

struct is. If the standard quantization procedure — which is the one used for the free QFT

— were not plagued of difficulties and ambiguities when we add interactions, the question

about the definition of a relativistic QFT could be considered an unnecessary worry. We

could simple state: “a relativistic QFT is a quantum theory obtained by the canonical quan-

tization procedure applied to a relativistic classical field theory” However, as we will see,

such canonical procedure is difficult to implement for an interacting classical field theory.

Difficulties for the definition of the interacting term. The difficulties arise from

the very beginning: the definition of the quantum interacting term. In quantum mechanics,

there is not such a problem in this step. In the Heisenberg representation, x̂(.) is an operator

valued function of the time: it takes a real number t and gives an operator as an output.

So, there is not a big problem in defining an interaction term as a suitable function of the

position operator. That fact makes possible the existence of quantum mechanics systems

with a non-free Hamiltonian.3

In the QFT case, Φ̂(.) is an operator valued functional, which takes a function of the

spacetime and gives an operator as an output. The notation Φ̂(x), which suggests that

Φ̂ is an operator valued function, comes from an abuse of language. It comes from the

existence of special types of linear distributions H (let us call them regular distributions)

such that their action on a function f (the test function) can be written as an integral:

H(f) =
∫

h(x)f(x)dx, being h a function called the kernel of H. A non dangerous abuse

of language, which simplifies the notation, consists in denoting the kernel with the same

letter than the one used for the distribution. It allows to write: H(f) =
∫

H(x)f(x)dx. H

stands for a distribution in the l.h.s. and for a function in the r.h.s.

However, a second abuse of language, a bit more dangerous than the previous one,

consists in extending the previous integral expression to distributions which does not admit

a kernel. Such is the case of Φ̂(.) which is not a regular distribution. When the expression

Φ̂(x) is written, Φ̂ is implicitly considered as a regular distribution admitting an integral

representation, in which Φ̂(x) is smeared with the test function f :

Φ̂(f) =

∫

Φ̂(x)f(x)dx (1.1)

3We are aware of the following fact: because the position operator is an unbounded operator, the domain

of the power of the position operator could not coincide with the one of x̂(.). So, is not straightforward

a proper definition of the interacting term. However, an appropriated restriction of the domain allows to

define rigorously the interacting term as a function of the position operator. In the QFT case, we will find

more difficulties.
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A similar abuse of language with the distribution δx0 defined by δx0(f) ≡ f(x0). The

abuse of language consists in writing the action of this functional as: δx0(f) =
∫

f(x)δ(x−
x0)dx. Here, δ(x − x0) is considered formally as a function, which is supposed to be the

kernel of δx0 . However, such a kernel does not exist.

The absence of a kernel for the distribution Φ̂ — hidden in the previous abuse of

language — is the root of the difficulties for the definition of the interacting term in the

equation of motion of the field. Let us remark that e.o.m for the free scalar field, when is

written properly in a distributional way, is:

Φ̂(�f +m2f) = 0 (1.2)

By writing the formal expression Φ̂(f) =
∫

Φ̂(x)f(x)dx and doing an integration by

parts, we arrive at the usual form of the e.o.m: (�+m2)Φ̂(x) = 0. Accordingly, the wished

interacting e.o.m should be something like:

Φ̂(�f +m2f) + R̂(f) = 0 (1.3)

where R̂ is a linear distribution, constructed in terms of the original Φ̂.

However, it turns out that for the quantum field distribution such a term is difficult to

construct. When a distribution H admits a kernel h, we can perform operations on H by

an analogous manipulation of its kernel. For instance, we can define H4 as a distribution

whose kernel is h4 (of course, after taking into account suitable restrictions on the space

of the test functions). Because Φ̂ is not a regular distribution admitting a kernel, it does

not make sense to define Φ̂4(.) as the distribution given by: Φ̂4(f) =
∫

Φ̂4(x)f(x)dx. That

is the beginning of all the difficulties which will be considered in this note.

It is important to remark that the previous difficult is not related to the fact that Φ̂(f)

is an unbounded operator. The unboundedness of Φ̂(f) leads us to make appropriated

restriction on the domain in order to make sense of composition of operators like: (Φ̂(f))
4
.

However, the last expression is different from the one needed for the definition of the

interaction term R because (Φ̂(.))
4
is not a a linear functional. When in standard textbooks

is written the interacting e.o.m containing the additional term : Φ̂3(x) :, it is implicit that

we should read this equation in a functional sense, considering that : Φ̂3(x) : is the formal

kernel of a linear distribution. We made this remark in order to stress that the difficulties

behind the definition of the interaction term are not of the same nature than the ones

which we find in ordinary quantum mechanics.

Garding-Wightman axioms: minimal features of a free field that should be valid

in any relativistic QFT. The previous observations lead us to define an interacting

QFT not as the output of a procedure difficult to be implemented in general but by requiring

those minimal features of a free theory that we want to keep even in presence of interaction.

These features are:

• Poincare covariance of the field operators

• Existence and uniqueness of the vacuum (an state invariant under the Poincare ac-

tion)
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• The inclusion of spectrum of the momentum operator in the forward light cone.

• Commutation of the fields [Φ̂(x), Φ̂(x′)] = 0 for points x, x′ spacelike separated4

This minimal selection of properties of the free field was expressed in a precise and

organized way by Arthur Wightman in the middle of ’50, soon after all the ingredients of

perturbation theory were introduced. These properties are known as Garding-Wightman

(GW) axioms [9].

Due to common prejudices, the term axioms, when used in an exposition of a physic

theory, is associated to requirements motivated by aesthetical or mathematical reason

which go beyond physical considerations. We want to emphasize that GW axioms intend

to capture physical features of the free field which any QFT theorist would hardly abandon.

For that reason, we prefer to talk about general properties of a relativistic QFT instead of

GW axioms.

Going back to the original question, we can say that a relativistic QFT consists of

a Hilbert space and a family of operators fulfilling certain physical requirements encoded

in the GW axioms. Although it is easy to understand the statement of each of GW ax-

ioms, the task of providing examples fulfilling these axioms is very difficult. The first

non trivial example was obtained during the end of ’60, as result of a remarkable work of

Arthur Jaffe and James Glimm in a sequence of papers starting in [3]. That was done by

using an approach close to the canonical quantization, consisting in defining the interact-

ing Hamiltonian in order to define the interacting field operator. Although this approach

has the advantage of admitting a more clear physical interpretation, we will consider an-

other equivalent approach that was developed later, which was more suitable for practical

purposes.

Reconstruction of QFT from the set of Poincare invariant n-point functions.

An important step towards a useful definition of a general relativistic QFT was the in-

vestigation of the properties of the vacuum correlation functions Wn(x1, x2, . . . , xn) ≡
(Ωint,Φ(x1)Φ(x1) . . .Φ(xn)Ω

int), being Ωint the vacuum of the interacting theory. These

are the so-called n-point functions. From the GW axioms it is possible to derive properties

of these vacuum correlation functions in a general QFT. It is natural to ask about the

inverse problem: if we have an infinite set of n-point functions, how can we know if these

are the vacuum correlation of a QFT fulfilling the GW axioms?

The answer is given by Wightman reconstruction theorem [9]. That theorem is a

consequence of the identification of those properties of a set of all n-point functions

Wn(x1, x2, . . . xn) (for any n) which are enough to guarantee that these are the vacuum

correlation functions of a relativistic QFT. Omitting the technical details and restricting

to the case of scalar field, these properties are:

4Anti-conmutation relation for fields of half-integer spin. The equality [Φ̂(x), Φ̂(x′)] = 0 is a short version

of the proper statement: [Φ̂(f), Φ̂(g)] = 0 is the support of f and g are spacelike separated. We can read

this from the previous formal statement by smearing both sides of the formal equality with f(x)g(x′) and

integrating over x and x′. This is the type of abuse of language that we have mentioned before, which

does not conduct to any wrong statement if it used within certain limit. We will make use of this practical

language several times along this note.
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• Poincare invariance.

• Symmetry under permutation of two spacelike separated arguments.

• Spectral properties (coming from the inclusion of spectrum of the momentum oper-

ator in the forward light cone)

• Positivity condition: a set of inequalities expressing that the n-point functions come

from an inner product in the Hilbert space.

• Cluster property: factorization of the n-point functions when the spacelike separation

of two arguments becomes large. This is related to the uniqueness of the vacuum

These requirements, together with technical requirements on the smoothness of these

functions, are known as Wightman axioms for the n-point functions. The proof of the

reconstruction theorem is by providing the procedure for the reconstruction of the Hilbert

space and the field operators fulfilling the GW axioms.

We have referred to Wn as functions. This is again an abuse of language, that

considers Wn as a kernel of the distribution W̃n. Formally, we can write W̃n(f) =
∫

Wn(x1, . . . xDn)f(x1, . . . xDn)(d
Dx)n. We should not read this expression literally, be-

cause the distribution W̃n does not admit a function Wn such that the previous expression

makes sense. This abuse of language is similar to the one made in eq. (1.1). Just for

practical purposes, we will still talk about the n-point “functions” (and we will also drop

the tilde for the distribution).

Reconstruction of QFT from a set of Euclidean invariant n-point functions. Yet

in the early years of pertubative QFT, J. Schwinger had emphasized the practical value

of using an imaginary time version of the vacuum correlation functions. It was shown by

A.Wightman that time ordered n-point functions fulfilling GW axioms can be analytically

continued to imaginary time. Formally, that extension corresponds to the change t → it:

the so-called Wick rotation. The development during the ’60 of the Euclidean version of the

vacuum correlation functions lead to a formulation of an Euclidean version of the Wightman

reconstruction theorem. That was done by Osterwalder and Schrader in 1973 [10].

What they found was another set of requirements — called the Osterwalder-Schrader

(OS) axioms — to be obeyed by the analytic continuation of the n-point functions. In

order to recover the Wightman functions, essentially what we have to do is a Wick rotation

(t → it). Due to the early role of Schwinger in this issue, the n-point functions fulfilling

the (OS) axioms are known as Schwinger functions.

Omitting technical requirements and restricting to the case of interest for a scalar

QFT, the requirements of the OS axioms for the Schwinger functions are the following:

• Euclidean invariance

• Symmetry under any permutation of its arguments (the Euclidean translation of the

second property of the Wightman functions)

– 9 –



J
H
E
P
0
8
(
2
0
1
3
)
0
5
2

• Reflection positivity: a set of inequalities analogous to the positivity condition, in-

volving reflection of the time in some arguments

• Cluster property: factorization of the n-point functions when two arguments becomes

large (in the Euclidean sense) separated.

In the OS axioms, there is not a requirement analogous to the spectral condition. In

this sense, the OS axioms seem to be more economical. There are several subtleties that

we are omitting in this schematic presentation. One of these is related to the equivalence

of the OS and W axioms. In the original paper where these axioms were formulated [10]

we can find comments about modifications of these axioms which result to be more useful

for the construction of models although stronger than the W axioms.

2 A non-perturbative quantization procedure

After having settled the problem — what a generic relativistic QFT is — we can now

consider the strategy for its construction. The question is: how would we get a guess for

the Schwinger or Wightman n-point functions?. It could be desirable to have an ansatz

for the Schwinger function, having a chance of being successful. Even more, it would be

nice to have a quantization procedure. That could be the case if the chosen ansatz were

dictated by a classical field theory. That ansatz exists and comes from a combination

of Feymann-Kac and Gell-Mann-Low formulas. The first one establishes a link between

Gaussian processes and quantum mechanics.

2.1 Free QFT in terms of Gaussian process and well defined path integral

There exists a close connection between expectation values in certain quantum mechanics

system (i.e., a non relativistic particle under certain class of potential) and statistical

expectations of Gaussian processes. That relation is encoded in the so-called Feynman-

Kac formula, which allows to express < x′ | e−tH | x > (with t > 0, and H being the

Hamiltonian) as the expectation of a Gaussian process. Let us notice the difference in the

meaning of the word “expectation” in each side of the relation: in the first case, it refers

to an inner product of two states. In the second one, it is the mean of products of random

variables having a Gaussian probability distribution. Because of that, the previous formula

makes the connection between quantum and statistic mechanics possible.

It turns out that the expectation value of the Gaussian process admits a functional

integration description, as an integral over a set of path starting at x and finishing at x′

weighted with certain measure. We want to emphasize that what admits a path integral

representation is not < x′ | eitH | x > but its analytic continuation, which roughly speaking

consists on replacing t by it.

This relation holds also in the free quantum field theory case: the n-point function,

after the Wick rotation, can be written as a path integral of products of Gaussian processes.

The correspondent measure is Euclidean invariant. We see here the existence of a close

relation among several different things: relativistic QFT, statistical mechanics, Euclidean

invariance and functional integration.

– 10 –
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2.2 The heuristic role of the Gell-Mann-Low formula

A more useful formula arise when we combine Feynman-Kac formula with the so-called

Gell-Mann-Low formula, which can be proven in certain quantum mechanics systems.

In the case of an anharmonic quantum mechanics system, Gell-Mann-Low formula ex-

presses interacting correlation functions of the interacting position operators in terms of

free vacuum correlation functions of position operator of the harmonic case. The terms

‘interacting’( ‘non-interacting’) refers to the anharmonic (harmonic) case. This formula

arises after expressing the free vacuum state in terms of the interacting vacuum. By com-

bining Gell-Mann-Low with Feynman-Kac formula, we can express the analytic extension

of the interacting vacuum correlation function in terms of expectation values of Gaussian

processes. We will still call Gell-Mann-Low to such combined formula.

By formal manipulations, this version of Gell-Mann-Low formula formula can be ex-

tended to the case of an interacting scalar QFT. That is:

(Ωint, Φ̂int
it1(x1) . . . Φ̂

int
itn(xn)Ω

int) = lim
T→∞

E(Φt1(x1) . . .Φtn(xn)e
−

∫ T
−T V (Φt)dt)

E(e−
∫ T
−T V (Φt)dt)

(2.1)

The meaning of the left hand side is clear: it is the (imaginary time version of) the vac-

uum expectation value of n products of field operators at different instant (chronologically

ordered), being Ωint the vacuum of the interacting theory; the xi’s stand for the spacial

coordinates.

The r.h.s. has a completely different meaning: it is the mean (expectation), denoted

by E, of a product of Gaussian processes — denoted by Φt without the hat — weighted

by the exponential factor. The exponent contains the interacting potential V (Φt), which

is a spatial integral of a density. This expectation can be formally written as a functional

integral with respect to a Gaussian measure dµ. The exponential factor is the one which

perturbs the Gaussian measure.

Has we have said, in certain quantum mechanics system — in which we have no spatial

coordinates as arguments — it is a rigourous equality and the expectation of the r.h.s. can

be expressed as a functional integral, which is rigourously defined. In the interesting

case of an interacting QFT, the Gell-Mann-Low formula should be considered as an ansatz

for Schwinger n-point functions. In case that we could prove that the n-point functions

obtained in this way fulfill the OS axioms, we can obtain (via the reconstruction theorem)

the interacting correlation function fulfilling the Wightman axioms.

As we will see, this ansatz has a high chance to fulfill the OS axioms. By using this

ansatz it has been obtained several models fulfilling the Wightman axioms in the ’70.

The previous strategy is summarized in the following diagram:

Classical field theory

with an interacting

term Sint

−−−−→ Gell-Mann-Low

ansatz
Proof of−−−−−−−→

OS axioms
Schwinger functions

Quantum





y
version? Wick rotation





y

Quantum field eq. ←−−−− Relativistic QFT ←−−−−−−−−−
Reconstruction

Wightman functions
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So, by using a Gell-Mann-Low formula, one follows a quantization procedure, which

takes a classical theory (given by the interacting term which perturbs the free Gaussian

measure) and end up with a quantum theory. We want to emphasize that there is not

guaranteed that the resulting quantum theory will exhibit a close relation to the classical

theory used as a seed. For instance, it is not guaranteed that the interacting field will fulfill

the operator version of the classical equations of motion.

3 The λΦ4 in brief

Let us anticipate the steps that we should follow in order to construct the QFT correspond-

ing to λΦ4. Those are summarized in the following table and can be organized in two parts:

I. Dealing with divergences in order to define the candidates to be the Schwinger functions.

II. Verifying that these functions fulfill all the physical requirements (OS axioms).

3.1 I. Dealing with three types of divergences

In this first part we should prove that the r.h.s. of the Gell-Mann-Low formula is well

defined. It is not trivial because there are three different divergences that could arise:

1. Definition of the interaction term

As we have mentioned, in spite of the so-called operator fields are operator valued

distributions (not just operator valued functions) which do not admit kernel, the

expression Φ̂4(x) does not make sense. However, we can consider a family of functions

h
(x)
κ , labeled by an integer number κ, localized (in a precise sense to be specified later)

around x, such that as κ → ∞, h
(x)
κ approaches — in a sense of distributions — to

the δx. Then, we can consider an operator valued distribution : Φ̂4
κ :, indexed by

κ, whose kernel is defined by : Φ̂4
κ : (x) ≡ : (Φ̂(h

(x)
κ ))

4
:. Here ”: :” stands for the

Wick order. It is important to remark that : Φ̂4
κ : (x) is supposed to be the kernel of

the distribution : Φ̂4
κ :. It means that the action of it on a function f is defined by

: Φ̂4
κ : (f) =

∫

: Φ̂4
κ : (x)f(x)d2x.

In the Gaussian process description, the Wick order has a counter part which will

be also denoted as “: :”. As we will see, the result of applying : : to the n-power

of a Gaussian process is defined as a polynomial of the same degree n but with the

addition of lower powers. The usual Wick order of a product of field operator can be

written in the same way; it is a more convenient reformulation of the usual operation

consisting in moving the annihilation operator to the left. As we will see, this κ

dependent Gaussian process : Φ4
κ : can be expressed as:

: Φ4
κ : (x) ≡ (Φκ(x))

4 − 6cκ(Φκ(x))
2 + 3(cκ)

2 (3.1)

where the coefficient cκ is the expectation value: cκ ≡ E(Φκ(x)
2).

The distribution needed for the definition of the interacting term is defined as the

limit κ → ∞ of the previous expression. In this limit the coefficients cκ diverges;

also, both (Φκ(x))
4 and (Φκ(x))

2 diverges in a sense of distribution. However, the
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limit of the total sum in the r.h.s. exists in D = 1 + 1. The limiting distribution is

we we call : Φ4 :.5 This limit will be described in more detail in section 6.

In order to define the interacting term appearing in the exponential of the r.h.s. of the

Gell-Mann-Low formula, we should evaluate the distribution : Φ4 : in a suitable func-

tion f of R2. Let us consider a function f with compact support in a bounded region

of the spacetime Λ having the value λ in this region. So, we can write the interacting

term A
Λ ≡ : Φ4 : (f) as: λ

∫

Λ : Φ4 : (x)d2x. This is the cut-off interacting term.

2. The quantum boundedness of the interacting term

Having defined the cut-off interacting term, it should be proved that the r.h.s. side

of the Gell-Mann-Low formula is well defined. It requires:
∫

e−AΛ
dµgaussian <∞ (3.2)

Of course, it is also needed the convergence of the
∫

(. . .)e−AΛ
dµgaussian, where

the dots refer to any products of Gaussian fields. Although we have started with

a polynomial bounded from below, the convergence of the above integral is not

guaranteed because the Wick product has destroyed that boundedness. However, it

will be shown in section 7 that this integral converges.

3. The removal of the cutoff: the infinite volume limit

The removal of the cut-off requires that the limit Λ ր R2 exists. For general

interactions, more complicated than this example, the so-called cluster expansion

is used in order to prove that the infinite volume limits for the Schwinger functions

exists. In particular,

lim
ΛրR2

Schwinger FunctionsΛ <∞ (3.3)

More details in section 8

3.2 II. Verifying that this n-point functions comes from a RQFT

The steps of part I are required in order to show that the n-point functions exist. However,

after accomplishing these steps, it remains to be proved that these n-point functions fulfill

the general properties encoded in the OS axioms. The nice feature of the Gell-Mann-Low

ansatz is that most of the properties axioms are fulfilled in the cut-off n-point functions,

and these properties are preserved under the infinite volume limit. We can decompose the

OS axioms in two groups:

1. Euclidean invariance, reflection positivity,symmetry

2. Cluster property and regularity

5We want to call the attention to the notation that we are following: we write : Φ4 : (x) instead of

the usual : Φ4(x) :. This notation emphasizes that : Φ4 : is a distribution being : Φ4 : (x) its (formal)

kernel. Accordingly, when we evaluate this distribution on a function f , we can write the formal expression:

: Φ4 : (f) =
∫
: Φ4 : (x)f(x)d2x.

– 13 –



J
H
E
P
0
8
(
2
0
1
3
)
0
5
2

I Dealing with divergences

Definition of the interacting density Existence of the limit

λ : Φ4 : (x) limκ→∞Φκ(x)
4 − 6cκ(Φκ(x))

2 + 3cκ
2

The quantum boundedness

of the cut-off interacting term
∫

e−AΛ
dµGaussian <∞

A
Λ ≡

∫

Λ : Φ4 : (x)d2x

The removal of the Λ cutoff

limΛրR2 Schwinger FunctionsΛ <∞

II Verifying Axioms

Euclidean Invariance

Symmetry Almost trivial.

Reflection Positivity Manifested in the ansatz

Clustering Hardest part of the proof.

Mass Gap: This proof is related

allows particle interpretation to the one of clustering

Table 1. λΦ4 in brief.

In the first group we have the Euclidean invariance (which formally can be checked

when the infinite volume is taken), the symmetry, which is the counterpart of the locality

in the Minkowski case and is manifest in the ansatz and reflection positive, which expresses

that the n-point functions come from an inner product. The last one is not difficult to be

checked in the cut-off version.

The more difficult part is the proof of the cluster property, which is not manifested in

the ansatz. The regularity conditions refer to smoothness properties of the n-point function

and they will not be considered in this introductory note.

As we have anticipated, we will not provide the technical detail of all the steps but a

oversimplified version. The omission of the intermediate steps will be more important in

the most difficult part: the infinite volume limit and the proof of the cluster property.

We can see in the table an additional requirement, the mass gap, which is not included

in the OS axioms. This is a sufficient criterium for the existence of a particle interpretation.
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Part II

The link between quantum mechanics and

probability: the Wick rotation

4 Interacting QFT in D=1 revisited

In this section we will reconsider the quantum mechanics of harmonic and anharmonic

oscillators (a QFT in D = 1) using a Gaussian process description which will be useful for

the case D = 1 + 1. The reader could take a look at [7] for a friendly and more detailed

exposition.

4.1 Gaussian processes and path integral

4.1.1 Generalities on Gaussian variables

Instead of providing a general definition of a random variable, we will start with the case

of a Gaussian variable, which is the only relevant for our purpose. In order to define it,

what we need is just a space M , certain subset of it, representing the possible outcomes,

and a measure µ which assigns probability to the different outcomes. A random variable

is real valued function Φ on M . We can compute the probability that Φ takes its values in

some interval B as follows:

Prob(Φ ∈ B) = µ(Φ−1(B)) (4.1)

This definition makes sense if the pre-imagine of B by Φ−1 is one of the subset of M

to which we can assign probability. We define the expectation or mean, denoted by E, of

any function6 F (Φ) ≡ F ◦ Φ (being F a real valued function F : R→ R) as

E(F (Φ)) ≡
∫

M
F (Φ)dµ (4.2)

In particular, a Gaussian variable Φ of mean a and covariance C is a random variable

such that for any function F the expectation value is:

E(F (Φ)) =
1

(2πC)
1
2

∫

F (x)e−
(x−a)2

2C dx (4.3)

We see here how we can express the expectation value as an ordinary integral of the

real function F weighted by an exponential.

From the definition, it is clear that the numbers a and C are the following expectation

values:

a = E(Φ) C = E((Φ− a)(Φ− a)) (4.4)

The important property of the Gaussian variables is that these two expectation values

determine all the remaining expectation values. We will restrict to the case a = 0.

6Indeed, not any function. The function should be such that F (Φ) wil be again a random variable. We

will not enter in the statement of this condition.
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In order to make contact with quantum mechanics and QFT we need more than a

single Gaussian variable. Let us first consider the case of a finite number of Gaussian

variables. It is said that the set of variables Φi (with i = 1, . . . n) are jointly Gaussian

if there exist a positive-definite matrix C, the covariance matrix, such that for any set of

functions Fi, the expectation value of
∏i=n

i=1 Fi(Φi) is:

E

(

n
∏

i=1

Fi(Φi)

)

=

∫ n
∏

i=1

Fi(xi)dµn (4.5)

being dµn the following measure:

dµn =
1

(2π)
n
2 (DetC)

1
2

e−
1
2
xTC−1x

n
∏

i=1

dxi (4.6)

As in the case of a single Gaussian variable, the coefficients of the matrix Cij are the

expectations:

Cij = E(ΦiΦj) (4.7)

Now, let us consider an infinite set I of indexes and an infinite dimensional matrix C

with the property that each finite dimensional n× n block arising from restricting the set

indexes to finite subsets of I {t1, t2, . . . tn} is positive-definite.
A theorem due to Kolmogorov (see [7], Theo 11.11) assures that under the previous

conditions there exist a collection of (infinities) random variables indexed by I called Gaus-

sian process such that for each finite choice of the indexes {t1, . . . tn} the corresponding

random variables are jointly Gaussian variables having as covariance the n× n matrix C.7

For the quantum mechanics case, it will be relevant the case in which the set of indexes

I is a real interval. We can consider that Φt describes a random walk of a particle, being

one of the random value of Φt the position of the particle at the instant t.

4.2 Path integral representation

Until now we have shown how to compute the expectation of functions of a special type:

those whose (random) values are determined by a finite set of values {Φt1 . . .Φtn}. Con-

sidering Φt as describing a random walk, it could seem that we are able to compute only

the probability of the event defined by a finite number of outcomes; i.e., the probability

of finding the particle in certain range of values at a finite set of instants {t1, t2, . . . , tn}.
However, the existence of the Gaussian process that follows from the Kolmogorov theo-

rem means that it should make sense to assign probability to other outcomes, like the

outcome:the trajectory is contained in certain range of paths. In the particular case of a

Gaussian process, that in turn allows us to compute the expectation of expressions of the

type F [{Φt}] ≡
∫ b
a Φtdt. This expression depend on the whole history of the Gaussian

process along the interval [a, b], and not only on its values at a finite number of instants.

7The theorem says something more general. However, we are interested here in this particular conse-

quence.
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Then, for such generalized functions, we can still write:

E(F [{Φt}]) =
∫

F [{Φt}]dµ (4.8)

It is important to emphasize that the previous expression, although well defined, does

not admit a simple integral representation like the one in eq. (4.5) because it does not make

sense the limit n → ∞ for dµn in eq. (4.6). Such would lead to the following meaningless

expression (which has only an heuristic value):

E(F [{Φt}]) = N

∫

F [x(t)]ex[t]C
−1x[t]Dx[t] (4.9)

In this formal statement, N is an infinite normalization constant and the integral is

over all the paths x[t]. Because such expression has only a formal meaning, it can not be

used for the derivation of furthers theorems and properties. Sometimes in the literature

we see how such meaningless expressions are manipulated in order to get results in a direct

way. An example of that is the obtention of the Feynman rules in the functional approach.

Although the results are legitimated by other rigorous means, the formal manipulation of

the path integral has an heuristic value which justifies its use.

4.3 Oscillator process and quantum harmonic oscillator

In certain quantum systems, like the harmonic oscillator and relativistic free fields, we can

find a natural positive- definite matrix which guaranties the reconstruction of a Gaussian

process. As we will see, this matrix will be related to a vacuum correlation function.

4.3.1 Schwinger two-point functions of the harmonic oscillator

Let us consider a quantum 1-dimensional harmonic oscillator of unit mass and frequency

m > 0 and let us denote by Φt the position operator at time t in the Heisenberg repre-

sentation. The last one can be expressed as: Φ̂t = eiH0tΦ̂0e
−iH0t, being Φ̂0 the position

operator at t = 0. We have redefined H0 in such a way that H0Ω = 0, being Ω the vacuum.

This operator fulfills an equation of Klein-Gordon type in D = 1:

(∂2
t +m2)Φ̂t = 0 (4.10)

We can consider this as the D = 1 version of the Klein-Gordon field operator.

Let us consider the vacuum correlation function of the products of the field at two

different instants W2(t1, t2) ≡ (Ω, Φ̂t1Φ̂t2Ω), being Ω the vacuum. This vacuum correlation

(which is function of the 2-instants) gives the transition amplitude between an eigenvector

of the Hamiltonian and itself after time evolution. Then, this quantity will be just a phase.

This correlation function can be written as:

W2(t2, t1) = (Ω, Φ̂0e
iH(t2−t1)Φ̂0Ω) =

eim(t2−t1)

2m
(4.11)

What has a chance of being a covariance of a Gaussian process is not this quantity but

its imaginary time extension S(t1, t2) ≡W2(it1, it2) for t1 ≤ t2. Using the following useful

relation
∫

eips

p2 +m2
dp = π

e−m|s|

m
(m > 0). (4.12)
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we can attempt to define a covariance matrix S2(t1; t2) for t1 ≤ t2 by:

S2(t1; t2) =
1

2π

∫

eip(t2−t1)

p2 +m2
dp =

e−m(t2−t1)

2m
(4.13)

The restriction t1 ≤ t2 has been done in order to make contact with the two point

function. However, we will define S2(t1; t2) as
e−m(t2−t1)

2m for any t1 and t2. (The S stands

for Schwinger).

4.3.2 Gaussian process description and Feynman-Kac formula

The oscillator process or Ornstein-Uhlembeck process is defined as a Gaussian process,

indexed by tǫR, with mean and covariance given by:

E(Φt) = 0 (4.14)

E(Φt1Φt2) ≡ S2(t1; t2) (4.15)

In order to prove that this process exist, we should verify that each n × n matrix M

of coefficients Mij ≡ S2(ti; tj) (for an arbitrary choice of ti, i = 1, . . . n, with ti 6= tj) is

positive-definite. That could seem a difficult exercise if we use the expression 1
me−(t2−t1).

However, using the integral representation
∫

eip(t2−t1)

p2+m2 dp it becomes clear that is a positive-

definite matrix.

By combining the imaginary time extension of the two-point function with the Gaussian

process description, we get the following formula:

(Ω, Φ̂0e
−H0(t2−t1)Φ̂0Ω) = E(Φt1Φt2) (4.16)

which is a particular and trivial case of the so-called Feynman-Kac formula. In the approach

we have followed that formula is trivial because we have constructed the Gaussian process

by imposing that the l.h.s. gives its covariance matrix. This formula can be generalized as

follows:

Feynman-Kac formula

(Ω, Φ̂0e
−H0(t2−t1) . . . Φ̂0e

−H0(tn−tn−1)Φ̂0Ω) = E(Φt1Φt2 . . .Φtn) (4.17)

with ti ≤ ti+1.

It can be obtained a further generalized expression, by replacing in this formula each

insertion of Φ̂0 in the position i by any polynomial Fi.

4.3.3 Feynman-Kac formula in the non-trivial case: path integral representa-

tion for an interaction

As we have said, the expectations of products of Gaussian processes admit a functional

integral representation. This corresponds to an integral over the field (depending on time)

configuration. However, that functional representation is unnecessary when it is computed

the expectation of functions depending on Gaussian variables correspondent to a finite set

of instants. Such is the case of the r.h.s. of eq. (4.17). For this simple case, the integral is
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reduced to a multidimensional ordinary integral of a Gaussian type, having the measure of

eq. (4.6).

The functional integral representation is more useful when we consider vacuum cor-

relation functions of the type (Ω, Φ̂0e
−HtΦ̂0Ω), with H = H0 + V , being V an operator

describing a potential added to the harmonic oscillator, which is function (denoted also

as V ) of the position operator (with suitable conditions which we will not consider in this

note).

In that case, it holds a non-trivial version of the Feynman-Kac formula, which takes

the following form:

(Ω, Φ̂0e
−H(t2−t1)Φ̂0Ω) = E(Φt1Φt2e

−
∫ t2
t1

V (Φ(s))ds) (4.18)

for t1 ≤ t2.

In the r.h.s. we see the expectation of factors including the function e−
∫ t2
t1

V (Φs)ds

depending on a infinite set of Gaussian variables Φs for any real value s in the interval

[t1, t2]. An expectation of such type of function (non-cylindric according with the usual

terminology) can not be written as a finite dimensional integral. If we insist in writing the

r.h.s. as an integral, we are forced to use a true functional integral over all the paths in the

range [t1, t2].

The previous formula can be generalized to the n-point functions as follows:

Non-trivial Feynman-Kac formula

(Ω, Φ̂0e
−H(t2−t1) . . . Φ̂0e

−H(tn−tn−1)Φ̂0Ω) = E(Φt1 . . .Φtne
−

∫ tn
t1

V (Φt)) (4.19)

This formula admits a further generalization: we can replace each insertion of Φ̂0 in

the position i by any polynomial Fi (in particular the constant function).

Remark on the link with the Schrodinger representation of path integral. In

eq. (4.19) the functional integration is taking over the set of all paths without any restric-

tion. We are more familiar with a slightly different version of the previous path integral.

It arises when it is computed the formal expression < q′′ | e−(t2−t1)H | q′ >, being q >

the eigenstates of the position operator with eigenvalues q′ and q′′. In that case, the in-

ner product can be written as path integral over the set of paths starting at q′ at t1 and

finishing at q′′ in t2:

< q′′ | e−(t2−t1)H | q′ >=

∫

e
∫ t2
t1

V (q(s))DW (q′,t1;q′′;t2) (4.20)

Here DW (q′,t1,q′′;t2) is the conditional measure associated to the oscillator process,

arising by the restriction to those paths starting at q′ in t1 and finishing at q′′ at the instant
t2. If we want to use this measure for the vacuum correlation function, we will get a more

complicated expression, because the vacuum itself is (in the Schroedinger representation)

the function R given by: R(x) = −1
4e

−x2

2 and the operator Φ0 is the multiplication by x.
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Taking this into account, we can get the path integral representation:

(Ω, Φ̂0e
−H(t2−t1)Φ̂0Ω) = (4.21)

π− 1
4

∫ ∫

e−
q′2+q′′2

2 q′q′′
∫

e−
∫ t2
t1

V (q(s))dsDW (q′,t1:q′′,t2)dq′dq′′

This expression is not useful for our purpose because in the QFT case, we will not use

the coordinate representation (or Schrodinger representation) but the Fock representation.

4.4 The Gell-Mann-Low formula: the link between free and interacting vac-

uum correlation function

This is the most important formula because, according with the strategy mentioned in the

introduction, it will be used for the definition of n-point functions in the interacting QFT

case. In this formula, the vacuum and the Heisenberg position operators are those of the

interacting theory. We will assume that the Hamiltonian H is bounded from below and

that it has a unique eigenvector Ωint — the interacting vacuum — corresponding to the

lowest eigenvalue E of H.

4.4.1 Interacting vacuum in terms of free vacuum

Under the previous assumptions (with further technical requirements) it can be derived

the following relation:

Ωint = lim
T→∞

e−THΩ
√

(e−THΩ, e−THΩ)
(4.22)

Such relation follows by expanding the free vacuum in terms of the eigenvalues of the

interacting Hamiltonian. For later purposes we also include this useful formula, derived

along the same line:

E = − lim
T→∞

log(Ω, e−THΩ)

T
= (4.23)

− lim
T→∞

log(E(e−
∫ T
0 V (Φs)ds))

T

which expresses the shift in the vacuum energy due to the interacting term as an expectation

value in the free theory.

4.4.2 Feynman-Kac plus Gell-Mann-Low

As we have said, the central objects for the construction of the interacting quantum field

theory are the interacting vacuum (Ωint) correlation functions of the interacting field Φ̂int
t :

(Ωint, Φ̂int
t1 . . . Φ̂int

tn Ω
int)

Actually, the useful quantity for the Gaussian process interpretation is the imaginary

time extension of this quantity for ti+1 ≥ ti, by formally changing tj by itj .
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Using the previous relation between free and interacting vacuum (without being wor-

ried about commutation of the limits), we can get the following formula:

(Ωint, Φ̂int
it1 . . . Φ̂

int
itnΩ

int) = (4.24)

lim
T→∞

(Ω, e−H(T+t1)Φ̂0e
−H(t2−t1) . . . e−H(tn−tn−1)Φ̂0e

−H(T−tn)Ω)

(e−THΩ, e−THΩ)

We have expressed the vacuum correlation function of the interacting quantum field

in terms of a free correlation function of time zero field combined with exponential of the

full Hamiltonian, which is of the form of the l.h.s. of eq. (4.17).

By using a generalized form of eq. (4.19) we get the following formula:

Euclidean Gell-Mann-Low formula

(Ωint, Φ̂int
it1 . . . Φ̂

int
itnΩ

int) = lim
T→∞

E(Φt1 . . .Φtne
−

∫ T
−T V (Φs)ds)

E(e−
∫ T
−T V (Φs)ds)

(4.25)

for tj+1 ≥ tj .

5 Difficulties arising in D = 1 + 1

The addition of one dimension force us to treat the field operator as a distribution. That

is the source of difficulties for one of the steps of the construction of the interacting QFT

model. There is not a problem in the Gaussian process description; in fact, this is an

straightforward generalization of the harmonic oscillator case, by a suitable replacement of

the covariance. However, as we have anticipated, the distributional character of the field

is the source of the difficulties for the definition of the interaction term like λ : Φ4 :

Let us go with the first part of the construction: the Gaussian process description of

the free field.

5.1 Covariance and the two point function of a free scalar field

The required Gaussian processes are now indexed by a function. More precisely, the index

will change from the real value t to the pair t, h, being h a function of the spatial coordinate.

The covariance of the associated Gaussian process will be defined in terms of the 2-point

function of the field.

Let be f and g functions of the spatial coordinate belonging to the Schwartz space

S(R). We will not explain the motivation for this technical condition. The only important

thing for us is that the functions f and g should vanish at infinity. Then, these functions

are not allowed to be constants. We define the following vacuum correlation:

W2(t1, h1; t2, h2) ≡ <0 p Φ̂t1(h1)Φ̂t2(h2) p 0 > (5.1)

As we have said in the introduction, W2 is a distribution that can not be written as an

integral of the form:
∫ ∫

W2(t1, x1; t2, x2)h1(x1)h2(x2)dx1dx2. However, it is useful such
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formal expression. Having this abuse of language in mind, we consider W2 as a function of

the spacetime points. It is known that this 2-points function can be written as:

W2(t1, x1; t2, x2) =

∫

e−ik(x2−x1)+i
√
k2+m2(t2−t1)

√
k2 +m2

dk (5.2)

Although the r.h.s. is not well defined everywhere, the previous equation is a distribu-

tional statement which has a precise meaning.

Using the relation 1
2π

∫

eip(t2−t1)

p2+m2 dp = e−m(t2−t1)

2m , we can show that the analytic contin-

uation W2(it1, x1; it2, x2) to imaginary time for t2 > t1 is:

W2(it1, x1; it2, x2) =

∫

eik.(x2−x1)+ip(t2−t1)

k2 + p2 +m2
dkdp (5.3)

The left hand side can be extended to any pair t1 and t2 and it will define the 2-points

Schwinger function:

Schwinger 2-points function of D=2 scalar field

S2(t1, x1; t2, x2) ≡
∫

eik(x2−x1)+ip(t2−t1)

k2 + p2 +m2
dkdp (5.4)

As in the previous case, if we want to avoid abuse of language, we should consider S2

a distribution which need two spatial functions as entries:

S2(t1, h1; t2, h2) ≡
∫

ĥ1(k)e
ip(t2−t1)h2(k)

k2 + p2 +m2
dkdp (5.5)

The r.h.s. of the previous equation is well defined for any pair t1, t2, without the

restriction t2 ≥ t1. Notice that this quantity is symmetric in its argument, which is

consistent with its interpretation as the expectation of commutating fields.

Because S2(., .; ., .) is a positive-definite matrix in R × S(R), we know by the Kolo-

mogorov theorem that it will exist a Gaussian process Φt,h, indexed by the pair t, h (being

h a function belonging to the Schwartz space), having zero mean and covariance given by

S2(. . . ; . . .). Moreover, it can be shown that Φt,. is a linear functional on on S(R). Then,

the Gaussian process inherit the distributional character of the operator value distribution

which was used for the definition of the covariance.

5.2 The free Feynman-Kac formula

The previous formulas for the case of the harmonic oscillator have an straightforward

generalization by replacing the index t by a t, h. The free Feynman-Kac generalized formula

reads:

(Ω, Φ̂0(h1)e
−H0(t2−t1)) . . . Φ̂0(hn)e

−H0(tn−tn−1)Ω) = E(Φt1(h1)Φt2(h2) . . .Φtn(hn)) (5.6)

with the condition tn ≥ tn−1.
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5.3 A digression: Gaussian processes indexed by a spacetime function

For further purpose it could be convenient to threat on equal foot space and time by

considering a Gaussian process Φ(f) indexed by a function f of the spacetime, such that

its covariance takes this form:

E(Φ(f1)Φ(f2)) =

∫

f̂1(k, p)f2(k, p)

k2 + p2 +m2
dkdp (5.7)

The relation between both descriptions is given by:

Φ(f) =

∫

Φt(ft)dt (5.8)

being ft the function of a single variable x such that ft(x) = f(t, x). We can be convinced

of it formally by written each side as an integral of Φ(x, t) and Φt(x) smeared with f(x, t)

and ft(x) respectively.

5.4 Wick products as polynomials

In order to define interactions, we will need also the so-called Wick products among Gaus-

sian variables. For monomial expressions of degree n, these are defined as polynomials of

degree n, including lower powers terms:

: Φ(h1)Φ(h2) . . .Φ(hn) :≡ Φ(h1)Φ(h2) . . .Φ(hn) + lower order terms. (5.9)

The coefficients of the lower order terms are fixed by the following conditions which

define the Wick products:

• : Φ(h) := Φ(h)

• E(: Φ(h1)Φ(h2) . . .Φ(hn) :) = 0

• E(: Φ(h1)Φ(h2) . . .Φ(hn) :: Φ(h1)Φ(h2) . . .Φ(hm) :) = 0 for n 6= m

For instance,

: Φ(h1)Φ(h2) := Φ(h1)Φ(h2)− E(Φ(h1)Φ(h2)) (5.10)

In the general case, the coefficients of the polynomials will be combinations of the two

point functions E(Φ(hi)Φ(hj)).

An important case for us is the definition of : (Φ(h))4 ::

: (Φ(h))4 := (Φ(h))4 − 6.(S2(h, h))(Φ(h))
2 + 3(S2(h, h))

2 (5.11)

As we have said, if we replace the Gaussian process by the operator Φ̂(h) (and the

Schwinger function S2 replaced by the time ordered 2-point functions W2) we will get the

usual Wick ordered expression, arising after moving the creator operator to the left. The

definition as a polynomial will be useful for the control of divergences when we define the

interacting term.
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5.5 Reflection Positivity (RP)

The Schwinger functions inherit two types of positivity conditions: one coming from its

interpretation as expectation of Gaussian processes, which can be always written as a

positive defined inner product. The other positivity condition comes from their definition

as the imaginary time extension of the n-point functions, which are also coming from an

inner product in the Hilbert space. The last positivity condition is translated in a set of

inequalities involving Schwinger functions. This set of conditions is known as reflection

positivity(RP). As we have mentioned, it is one of the OS axioms [10].

We will not reproduce the proof of RP starting from W axioms but we will simply

show how RP is derived in the simple case of an scalar free field. Let us consider the

vector: e−HtΦ̂0(h)Ω, for t ≥ 0. By taking the norm of it and rewriting the norm in terms

of Schwinger functions, we will find the simplest case of the inequalities, which involves

only Schwinger 2-points functions:

‖ e−HtΦ̂0(h)Ω ‖2= (Ω, Φ̂0(h)e
−Hte−HtΦ̂0(h)Ω) = S(−t, h; t, h) ≥ 0 (5.12)

That is the simplest case of the set of inequalities encoded in RP. A more complicated

inequality arise if we define the following vector:

v ≡ e−Ht1Φ̂0(h1)Ω + e−Ht2Φ̂0(h2)Ω + e−Ht1Φ̂0(h1)e
−H(t2−t1)Φ̂0(h2)Ω (5.13)

for t2 ≧ t2 and we take the norm:

0 ≦‖ v ‖2 = S(t1, h1;−t1, h1) + S(−t2, h2;−t2, h2) + (5.14)

S(−t2, h2; t1, h1) + S(−t1, h1; t2, h2) + S(−t1, h1; t1, h1; t2, h2)
+S(−t2, h2; t1, h1; t2, h2) + S(−t2, h2;−t1, h1; t1, h1; t2, h2)

As we can see, the inequalities will involve more an more terms, with an increasing

number of Schwinger functions, some of them containing the change in the sign of the time

index.

General statement of RP. RP can be rewritten in a form adapted to the general case

in which we can not assume the existence of fixed time field. In that case we will need a

spacetime test function. The restriction to positive instant ti in the fixed time free field

will be translated in the restriction of the support of the test function to the upper plane

R × [0,+∞). The change in the sign of ti occurring in the previous inequalities will be

translated in the the application of an operation Θ acting on a spacetime functions as:

Θ(f)(x, t) = f(x,−t).
In order to give a more precise statement of RP, let us introduce a family of functions

{fj}, having supports included in R × [0,+∞] and “chronologically ordered”, i.e., the

instants in which fi is not vanishing should be less or equal than the instants in which fi+1

is not vanishing. Let us introduce also the following notation: A
(n)
f for a sum of product

of the field on the form: Φ(f1) + Φ(f2) + . . .Φ(f1)Φ(f2) . . .Φ(fn) (arising from making all
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the combination of products of Φ(fi) for i = 1 . . . n up to n factors. RP can be written as

the following statement:

E(θ(A
(n)
f ), A

(n)
f )) ≥ 0 (5.15)

This form of RP is more useful for the case of interacting case arising by a perturbation

of a Gaussian measure. We will use such expression later.

Part III

Constructing λΦ4 in D = 1 + 1

6 Facing the first divergence: defining the cut-off interacting term

6.1 The difficulties for defining powers of a Gaussian field

In order to define an interaction term, we would like to define a power of the Gaussian

variable as a new random variable, which should be a linear functional. We are not referring

to expressions like (Φ(.))4 which takes a function h and gives as an output (Φ(h))4. That

is not what we are looking for because it is not a linear functional.

As we have mentioned at the beginning, we can consider a family of functions h
(x)
κ ,

labeled by an integer number κ, localized around x, such that as κ→∞, h
(x)
κ approach to

the δx in a distributional sense (for instance, we can consider a family of functions of the

form h
(y)
κ (y) = sin(κ(x−y))

x−y ).

Then, we can consider an operator valued regular distribution Φn
κ, indexed by κ, whose

kernel is defined by Φn
κ(x) ≡ (Φ(h

(x)
κ ))

n
. We should take into account that here Φn

κ(x) is

defined as the kernel of distribution Φn
κ that we want to define. That means that its action

on a function f is defined by:

Φn
κ(f) =

∫

Φ4
κ(x)f(x)dx. (6.1)

However, the existence of the limit κ → ∞ for the functional Φκ
n is not guarantied.

This is a particular case of the usual problems in defining a product of distributions. In

the QFT context that is usually rephrased as the divergence problem appearing in the

coinciding point limit of products of fields in different spacetime points.

This divergence could be avoided if we take the limit κ→∞ in the Wick power of the

field. That is:

: Φn : (x) ≡ lim
κ→∞

: Φ(h(x)κ )
4
: (6.2)

Due to the some features of the Wick product ::, there is more chance for the existence

of the limit. As usual, here we are making the abuse of language in writing : Φn : (x)

instead of the more appropriated : Φn : (h).
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The existence of that limit depends crucially on the power n and also on the dimension

of the spacetime. For instance, for n = 2 this limit exists in any dimension.8 However,

for a bigger power, there is not guaranty of its existence. Let us consider the relevant

case n = 4.

6.2 In D = 2 it can be defined a cut-off interacting term

In order to define : Φ4 : (x), we need that the following limit exists:

: Φ4 : (x) ≡ lim
κ→∞

(Φκ(x))
4 − 6cκ(Φκ(x))

2 + 3c2κ (6.3)

where cκ is the covariance S2(h
(x)
κ , h

(x)
κ ). We have omitted the dependence on x in the

coefficient cκ because we can see it becomes independent of x if we make an appropriate

choice of the functions h
(x)
κ (like the one mentioned before).

Let us notice that in the limit κ → ∞ the coefficient cκ diverges as log(κ) in D = 2.

This behaviour follows by observing that in this limit the function h
(x)
κ , which is the argu-

ment of the covariance, become a function sharply concentrated at x and so cκ approaches

to the formal integral:
∫

1
k2+m2 d

2k. The fact that this has a logarithmic divergence could

be checked by using known results about the singularity of the two point function in

D = 1 + 1 for the coinciding points limit. And due to its particular type of divergence,

it can be proven that the previous limit exists. That is the kind of proof that we have

decided to omit.

Having defined the distribution : Φ4 :, we can define the interacting term by applying

it to an space-time function f vanishing at infinity. In particular, we can take this function

as λχΛ, being χΛ the characteristic function on a bounded spacetime region Λ. So, the

interaction term need for the perturbation of the Gaussian measure is:

A
Λ ≡ : Φ4 : (λχΛ) =

∫

Λ
: Φ4 : (x)d2x (6.4)

6.2.1 The justification of formal manipulation

From the definition of : Φ4 : and the properties of the Wick products, we can show that

the following useful formula holds:

E(: Φ(h1)Φ(h2)Φ(h3)Φ(h4) :: Φ
4 : (g)) = 4!

∫





4
∏

j=1

(h(xj)S2(xj , y)



 g(y)dxdy (6.5)

This formula can also be derived by a formal manipulation, considering the expression

: Φ4 : (x) as an ordinary Wick product of the form : Φ(x1)Φ(x2)Φ(x3)Φ(x4) : in the limit

when all the xi’s approaches x and using the usual Wick contraction theorem. So, even

8In fact, as we have said before, the previous procedure for the definition of the expression : Φn : (x)

has its counterpart in the operator approach as the normal order procedure. And we know that we can

always define (rigorously) the number operator as the normal ordered of square of the field. In a similar

way, we can define the free Hamiltonian as the normal ordered version of quadratic combinations of the

field operator. We will go back to this point later.
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Figure 1. Due to the Wick product, the κ dependent interacting term becomes a polynomial Pκ

which takes negative values. Its lower value is −cκ, which becomes arbitrarily negative as κ→∞.

though : Φ4 : has not a simple expression in terms of the original Gaussian variables, it

can be manipulated very easily. Part of the technicalities of CQFT are related with the

derivation of useful bounds for expectations involving this object which appears in the

interacting term.

7 Dealing with a second divergence: the quantum boundedness from

below

Before taking the infinite volume limit, we should verify that the exponential of the cut-

off interaction is integrable. That is necessary condition for the finiteness of the n-point

function. As we have mentioned, although the polynomial F given by F (x) = λx4 is

bounded from below as a real function, the interacting term is defined as λ
∫

Λ : Φ4 : (x).

The Wick product : : destroys the positivity of the operator, as we can see from the

definition:

: Φ4 : (x) = lim
κ→∞

Pκ(Φκ(x))

being Pκ a polynomial of 4-degree of the form: Pκ(z) = z4 − 6cκz
2 + 3(cκ)

2. This

lowest value of Pκ is −6cκ2. Taking into account the behavior of cκ for large value of κ,

we see that the deep of this minimum goes as −(log(κ))2 (see figure 1).

The relevant information for the convergence of the integral
∫

e−AΛ
dµ is the size of the

region in the field configuration space in which : Φ4 : (x) takes this negatives values. As

we will see, this size is small enough for the convergence of the integral.

7.1 A preliminary observation: power of the interaction are integrable

Before considering the proof of the integrability of the exponential term, we should explain

why the following naive argument does not work: if we make a formal Taylor expansion of

the exponential (as function of λ around λ = 0) inside the integral
∫

e−AΛ
dµ and distribute

the integral, we will get a series whose generic term is an integral of powers of AΛ. It
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can be shown that
∫

(AΛ)
n
dµ < ∞. Proving the integrability of each term of the Taylor

expansion seem to be enough for the proof of the integrability of the exponential.

Here is where the issue of the non-convergence of the series enters. If the formal Taylor

series were (fast enough) convergent to the exponential, we could use the previous result in

order to prove easily the integrability of the exponential. However, the divergent character

of the series does not allow this kind of proof. This subtle is not very surprising because

even though we denote these expressions by the name ‘exponential’ and ‘power’, the nature

of the space in which this expression are integrated makes the issue more complicated than

in the case of an ordinary single variable.

7.2 The proof of stability

We have to proof that E(e−AΛ
) =

∫

e−AΛ
dµ <∞. It could seem a difficult task because this

is a functional integral. However, we could rewrite this integral as an ordinary Lebesgue

integral:
∫

e−AΛ
dµ =

∫ +∞

0
h(t)dt (7.1)

being h(t) = µ{Φ : e−AΛ
> t}. So, what we need to prove is that the function h decrease

fast enough to make the integral convergent. Because we are afraid of a divergence when

κ→∞, it is enough to see the behavior of the function h for large t.

Here we should appeal to a technical result on some Gaussian integrals which appear

in most of the standard exposition ([4]). There are two key inequalities:

A
Λ
κ > −N(log κ)2 (7.2)

∫

(AΛ − A
Λ
κ )

2 ≤ αe−βκ1/4
(7.3)

for N,α, β are positive constants independent of κ. The first inequality follows from the

lower bound we have mentioned; the second characterize the precise speed of the conver-

gence of the approximate interacting term Aκ to the A.

Let us choose a large value of t in the way: tκ = eN(log κ)2−1 in eq. (7.1). As far as κ

goes to ∞ this tκ covers all the real values of t from certain positive value on. From the

previous inequalities it follows a bound for large value of t in the function h:

h(t = eN(log κ)2−1) = µ{Φ : AΛ < −N(log κ)2 + 1} ≤ µ{Φ : AΛ − A
Λ
κ < −1} (7.4)

where in the last step we have used (7.2). Using now (7.3) , we get that for large value of t:

h(t) < µ{Φ : |δAΛ| > 1} ≤
∫

(δAΛ
κ )

2 ≤ αe−exp(1/4
√

log(t)+1
N

) (7.5)

So, h is a positive function bounded by a integrable function. Then, we have proved

the convergence of the wished integral.
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8 Dealing with the last risk of divergence: the infinite volume limit

We are now in the more difficult part. We still have to prove that the previous cut-off

Schwinger functions converge when Λ → ∞. In this step, we will be still more schematic

than we were before.

We start mentioning that the reason why the limit Λ→∞ could give rise to a diver-

gence is related with the low decay of the covariance — i.e., the two point function S2 —

used for the definition of the Gaussian processes that we have considered. In order to see

this relation in a heuristic way, it could be useful to consider modified Schwinger functions

arising after replacing the standard Gaussian processes with new ones defined by a modified

covariance fulfilling a wide class of Dirichlet conditions. This Dirichlet conditions eliminate

the low decay behaviour of the covariance. After observing in the next subsection that the

issue of the convergence of the Schwinger functions becomes trivial in these cases, we will

see how the so-called cluster expansion makes a clever use of this trivial fact in order to

prove that the infinite volume limit exists in the case in which the standard covariance S2

is used.

8.1 Imposing Dirichlet conditions makes trivial the problem of convergence

8.1.1 Dirichlet conditions on the covariance

Without entering in precise definitions, we want to mention that it is possible to define

univocally a family of modified covariances CΓ(x, y), fulfilling the condition CΓ(x, y) = 0

for x or y belonging to a certain path Γ in the R2. Any member of this family is defined

by the inverse of the operator −∆Γ +m2, being ∆Γ the Laplacian operator acting on the

subset of functions of L2 vanishing in Γ. The usual covariance S2 we have used until now

can be obtained by the inverse of −∆+m2, where ∆ is the standard Laplacian acting in

the whole space of functions of L2, free of any Dirichlet condition. Because of that, we will

call it free covariance

In particular, it will be relevant the case in which Γ is any finite union of the unit

segments which are the boundary of the lattice unit squares of R2 (the dotted lines in

figure 2). This family of covariances includes two extremal cases:

• Γ = ∅. It corresponds to the free covariance.

• Γ = B, being B the entire grid displayed in figure 2. It corresponds to the completely

decoupled covariance.

In the second case CB(x, y) = 0 for x and y belonging to different unit squares. That

justifies the name “decoupled”. What we want to emphasize is that any member of this

family of covariances is suitable for the definition of Gaussian processes because it defines

a positive-definite inner product. Even more, this family of covariances fulfills reflection

positivity. That is a property that we want to keep.

For the next considerations, we will need a bigger family of covariances interpolating

between different members of the previous discrete family. Let us consider for instance a
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Figure 2. Imposing Dirichlet conditions on the dotted lines makes trivial the problem convergence

of the Schwinger functions. The black region denote the support of the functions which are argu-

ments of the Schwinger functions. The region Λ0 is the smallest set of unit squares containing the

support region. Such region is independent of the cut-off region Λ.

unit segment Γ0. We want to find a continuous family of covariances Cs (with s in [0, 1])

which interpolates between CB−Γ0 and CB. One possibility could be:

Cs ≡ (1− s)CB + sCB−Γ0 (8.1)

The role of the parameter s is to assign a weight to the Dirichlet condition on the

segment Γ0. That means that for yǫΓ0 and a generic value of s, Cs(x, y) will be different

from zero; for s = 1, we will have non Dirichlet condition on Γ0 and s = 0 correspond to

the case in which we have the full Dirichlet condition on Γ0.

The previous linear combination can be generalized. In order to do that, we need

to introduce an infinite components vector s = (s1, s2, . . .) whose entrances introduce a

weight for the unit segment bi in the entire grid B. In the main reference [6] we can find

the following definition for the interpolating covariance:

Cs =
∑

Γ

∏

j/bjǫΓ

sj
∏

i/biǫB−Γ

(1− si)CB−Γ (8.2)

where the sum over Γ includes the vacuum set ∅.
The previous expression is not important for the next discussion. What we want

to remark is just the existence of a vector allowing a continuous transition between the

members of the family {CΓ}. In particular:

• s = (1, 1, 1, . . .) correspond to the free covariance C∅

• s = (0, 0, 0, . . .) correspond to the full decoupled covariance CB.

8.1.2 The infinite volume limit in the case of fully decoupled measure

Let us consider now the Schwinger function S
(Λ)
B (x1, x2, . . . , xn) defined as the expectation

value
∫

Φ(x1)...Φ(xn)e−A
Λ
dµB

∫

e−AΛ
dµB

, in which the free Gaussian measure has been replaced by
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the completely decoupled measure dµB. For convenience, the coefficient cκ used for the

definition of the Wick product in A
Λ is still defined in terms of the free covariance as

S2(h
(x)
κ , h

(x)
κ ). That is the reason why this condition on the Schwinger functions is referred

as half Dirichlet BC (see [8]).

Let us consider the limit Λ → ∞ of the Schwinger function S
(Λ)
B (x1, x2, . . . , xn), for

points x1, x2, . . . , xn living in a bounded region Λ0 ⊂ Λ, consisting in the union of those

unit squares containing at least one of the points x1 . . . xn (see figure 3). It is immediate

to see that this Schwinger function converges in the limit Λ→∞:

S
(Λ)
B (x1, x2, . . . , xn) =

∫

Φ(x1) . . .Φ(xn)e
−AΛ

dµB

∫

e−AΛdµB
= (8.3)

∫

Φ(x1) . . .Φ(xn)e
−AΛ0dµB

∫

e−AΛ0dµB

Because the r.h.s. of the last equation does not depend on Λ but on Λ0, it is clear that

the limit Λ→∞S
(Λ)
B (x1, x2, . . . , xn) exists.

8.2 A schematic oversimplified exposition of the cluster expansion

Although this is an schematic exposition, we want to say more than: “after some hard

computation it was showed that the infinite volume limit exists”. We wish to give a feeling

about this procedure because one of the non trivial steps of CQFT is the control of this

divergence. In fact, only by taking a look at this step we can understand the increasing

difficulties when we go to the case D = 2 + 1 and D = 3 + 1.

What makes the account of this step more complicated is the fact that there is not a

single procedure for the proof of the existence of the infinite volume limit. We will consider

here only one method: the so-called cluster expansion. It was applied in [14] to a general

class of models describing interactions given by polynomials bounded from below. The

family of these models, which include the one of this note, is called P (Φ)2. There are other

tools (see [8]) which work for the restricted family of polynomial of even degree plus a

linear term, which also include our case λΦ4. The cluster expansion and the proof of the

convergence in the infinite volume limit involve several intermediate inequalities and a lot

of definitions referring to different types of graphs. For a nice and precise account of this

we recommend the reading of [15] or Chapter 18 of the book [4].

Besides the technical details, the ideas behind the cluster expansion are simple. One of

these is the previous observation that convergence becomes trivial when a Dirichlet condi-

tion is imposed on the boundary of Λ. The cluster expansion make use of such observation

by expressing the Schwinger functions with free BC as a series in which each term has a

Dirichlet conditions in the entire lattice boundary lines B with the exception of a finite

length path Γ (a finite union of unit lattice segment), which labels the terms of the ex-

pansion. The goal is to have control of the infinite volume limit by expressing the free

(=fully coupled) Schwinger functions in terms of almost decoupled quantities, which are

under control.

The steps involved in the cluster expansion and its use for proof of the convergence in

the infinite volume limit are the following:
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1. The weak influence of far away boundary conditions.

First, it is proven that the Schwinger functions fulfill a property called regularity at

infinity. Let us explain what states this property in the simple case of the cut-off

Schwinger n-point functions SΛ
Free. As we have mentioned, we can change the free

measure in several ways by using a Gaussian measure associated to a covariance CΓ.

Let considered the case in which Γ = B − Γ0, being Γ0 a finite union of lattice

unit segments. The Schwinger function Sλ
B−Γ0

with this modified measure will be a

function of Γ0.

In this case, regularity at infinity states that the following equality holds:

SΛ
Free = lim

Γ0րB
SΛ
B−Γ0

(8.4)

where we have omitted the index n.

As the path Γ0 increase, the Dirichlet conditions used for the definition of SΛ
B−Γ0

are confined in distant lattices segments in B − Γ0. Hence, what states regularity

at infinity is that these boundary conditions have a weak influence on the n-point

functions SΛ
Γ0
(x1, x2, . . . , xn) if B −Γ0 is located in a far region. This weak influence

vanishes in the limit Γ0 ր B in which we get the free boundary condition.

The previous property makes precise the notion of the weak influence of boundary

conditions located far away. Although plausible, it should be proved. That is the

less complicated part of the proof. That property is essential for the following steps,

because allows to use Dirichlet covariances as a good approximation to the free co-

variances.

2. Expressing free measure in terms of Dirichlet measure.

That is the second part of the cluster expansion, which is not very complicated.

However, it involves an expansion which is not frequently used in physics. In order

to introduce the idea behind this expansion, let us consider the following simple

examples: if we take a function f of a single variable, we can express the value f(1)

as follows: f(1) = f(0) +
∫ 1
0 f ′(x)dx. For a function of two variables, we can write:

f(1, 1) = f(0, 0)+

∫ 1

0
∂xf(x, 0)dx+

∫ 1

0
∂yf(0, y)dy+

∫ 1

0

∫ 1

0
∂x∂yf(x, y)dxdy (8.5)

By a repeated use of the identity
∫ b
a f ′(x)dx = f(b) − f(a), the previous expansion

can be applied to a function of an arbitrary number of variables. The idea is to write

f(1, 1, . . . 1) as a sum of expressions containing f and its partial derivatives evaluated

in points with a decreasing numbers of 0 in some of the coordinates. Of course, there

is nothing special in the use of the point (1, 1, . . .) in the l.h.s; we can replace it for

any other value, changing also the upper limit in the integral of the r.h.s.

Why this trivial identity could be useful for us? Let us recall that a Schwinger function

corresponding to a generic covariance (belonging to the family we have mentioned) is
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a function of the infinities variables si, one of each giving a measure of the coupling

across a particular unit segment. The point s = (1, 1, . . . 1) corresponds to the free

boundary case, and the 0’s in some entrances of s says that there are Dirichlet

conditions on the corresponding unit lattice segments. The goal is to express the

Schwinger functions corresponding to s = (1, 1, . . . 1) as a sum of quantities (derived

from the Schwinger functions) corresponding to other values of s with many 0 in their

entrances.

In this step we see the importance of having a continuous range of values for each si:

that allows to compute derivatives of the Schwinger functions with respect to these

parameters and applied the previous expansion.

A minor remark: what it will be expanded is not the Schwinger function but the

product: ZΛSΛ, being ZΛ ≡
∫

e−AΛ
dµ the partition function. The technical reason

behind this choice is the following: the cluster expansion is an expansion of the free

Gaussian measure dµ in terms of the others almost decoupled measures. Because the

combination ZΛSΛ, rather than SΛ, is an expression of the type
∫

. . . dµ, it is more

natural to apply the previous expansion to ZΛSΛ rather than SΛ.

We can illustrate this expansion by considering an already almost decoupled quantity.

Let us consider, for instance, the Schwinger function correspondent to Dirichlet con-

ditions in all the lattice grid B, with the exception of a unit square �. If we denote

this Schwinger function as S(B−�) (omitting the spacetime n-point), the previous

expansion takes the following form:

(8.6)

In the r.h.s. we find terms labeled by paths arising after removing certain segments

in the square. For instance, the label in the second square of the r.h.s. indicates that

in this term the Gaussian measure has Dirichlet boundary condition in all the lattice

grid with the exception of a single lattice segment | (in bold), in which a value of s

between 0 and 1 is allowed.

As in the case of the function of two variables, each term is defined in terms of

the Schwinger functions (depending on s) and integrals of certain partial derivatives

with respect to the si. Their precise definition is not relevant for our schematic

presentation.

At least formally, we can extend this expansion for the Schwinger function with

free boundary condition. For such fully coupled function, the expansion contains

an infinite number of terms, labeled by all the possible subset of paths Γ (of finite

length) in B:

SΛ
Free BC =

∑

Γ

Terms with Dirichlet BC in B − Γ (8.7)
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Figure 3. The covariance has Dirichlet BC in the set of all lattice lines (indicated by dotted

lines) with the exception of Γ. Then, the only unit squares which are coupled are those which

are connected through Γ. In the cluster expansion of the Schwinger functions, terms labeled by

Γ describe an almost decoupled quantity, in which the clusters of mutually decoupled regions are

these shadow squares and the remaining unit lattice squares.

The issue of the convergence of this series will be considered later. The term labeled

by B − Γ corresponds to the case in which unit squares are decoupled from each other

with the exception of those having contact with Γ. See Fig 3. As far as the size of

Γ increase, the Gaussian measure used in the terms labelled by B − Γ approaches to

the free measure.

3. Factorization of each term of the series and resummation.

Each term in this expansion is almost decoupled, because there is only a finite number

of segments in which Dirichlet conditions have not been imposed. For a given Γ, the

term in the r.h.s. of eq. (8.7) is constructed by the use of a Gaussian measure in which

certain union of unit squares are coupled as it is showed in figure 3. The coupled

squares are those which share a unit segment belonging to the path Γ. Let us call

them clusters.

So, each choice of Γ determines a decomposition of R2 into several clusters Xi, such

that CB−Γ(x, y) = 0 for x and y belonging to different Xi’s. Therefore, each of these

terms will inherit the factorization property we have mentioned.

After this observation, the next step consists in a convenient reorganization of the

series by the use of the the factorization and a resummation. In order to explain

that, let us consider for simplicity the particular case in which the arguments of the

Schwinger function x1, x2, . . . , xn are contained in a single unit lattice square. The

idea is to reorganize the sum in eq. (8.7) by considering a fixed cluster X containing

x1, x2, . . . , xn and collecting all the terms labelled by the collections of paths Γa
X
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inducing a cluster decomposition containing the given X. There are several of such

Γa
X . That is why we have introduced the label a.

In each term labeled by X, we can perform a factorization, being TX the factor asso-

ciated to the cluster X. This factor will be the only one containing the information

about the points x1, . . . xn. After doing that, we can make the sum of these terms

(running over all the Γa
X ’s) by using eq. (8.7) in the opposite sense. After doing that,

we find the following expression:

S
(Λ)
Free BC =

∑

X

TX

∫

e−AΛ−X
dµB−X

∫

e−AΛdµFree
(8.8)

As we can see, the second factor (corresponding to the cluster R2−X) is rather simple:

it is
∫

e−A
Λ−X

dµB−X

∫

e−AΛ
dµFree

, the ratio of (cut-off) partition functions. One corresponds to the

free BC and the other corresponds to the Dirichlet condition on B −X.

Despite the simplicity of the second factor, it seems that we have not gain so much,

because there we have still the free boundary condition in the r.h.s. in the denominator

of the second factor. However, we should take into account that it appears in the

ratio
∫

e−A
Λ−X

dµB−X

∫

e−AΛ
dµFree

. When Λր R2, the numerator approaches to the denominator,

which left us with a limit of the type ∞
∞ .

After doing this factorization and resummation, we have the cluster expansion. It

is a sum of s-derivatives of the Schwinger function with a Gaussian measure which

establish a coupling among those unit squares contained in the cluster X meeting the

points x1, x2, . . . xn. In each term, the size of X is finite.

4. Convergence uniform with the size of Λ.

It can be shown that this cluster expansion converges for any Λ of finite size. However,

we are interested in the limit Λր R2. The terms of the series which are relevant for

the infinite volume limit are the ones in which the size of the relevant clusters X is

large.

In this stage, it is more difficult to provide heuristic arguments. Such would require

from us a deeper understanding of the nature of this proof. We will only say that

after establishing several inequalities for both factors in the cluster expansion (TX and
∫

e−A
Λ−X

dµB−X

∫

e−AΛ
dµFree

) it has been derived the following inequality for λ/m2 small enough:

∑

|lattice region X|>D

Terms with coupling in the lattice region X < e−cD (8.9)

being c a constant which does not depend on D and Λ.

That bound expresses that the previous series converge uniformly with the size of Λ.

That implies that this series converge in the infinite volume limit.
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Due to the omission of the technical details of the previous proof, it is difficult to

explain here why it is required that λ/m2 should be small enough. However, we

want to point out that this is a different condition than the one appearing in the

perturbative approach. We should take into account that the cluster expansion is

not a sort of Taylor expansion in powers of the coupling constant. Roughly speaking,

it is rather an expansion in the size | X | of the clusters containing the n-point of the

Schwinger functions.

The convergence of the cluster expansion holds for any value of λ/m2 < ǫ, being ǫ

certain positive number. The convergence is not asymptotic in λ/m2 as it occurs

in the perturbatives series. It means that for each small enough value of λ/m2 the

cluster expansion defines the exact Schwinger functions.

9 Verifying that the resulting n-point functions come from correlation

functions of a QFT

It could seem that this procedure is never ending, because we still have to prove that

the limiting Schwinger functions fulfill certain requirements: the OS axioms. However,

what makes the Euclidean Gell-Mann-Low ansatz a convenient recipe is the fact that part

of the OS axioms are fulfilled in the cut-off version (in a manifested way) and then these

axioms are automatically verified in the infinite volume limit. The remaining one — cluster

property — requires a more difficult proof.

Properties manifested in the Gell-Mann-Low ansatz. Belonging to the first case,

we have the following OS axioms:

• Symmetry

• Euclidean invariance

• Reflection positivity

Symmetry : the more evident property is the symmetry of the Schwinger functions

under permutation of the argument of the Gaussian fields appearing in the product. This

property is naturally preserved under the infinite volume limit.

Euclidean invariance: this property is of a different nature, because it is not present

in the cut-off version but only after the infinite volume limit is taken. It is enough for our

purpose to see the plausibility of such property: because the finite size of the region is the

responsible of the breaking of the Euclidean invariance, it is natural to expect that this

symmetry is restore once the cut-off region is extended to infinity.

RP : that is trivially accomplished (in the cut-off theory) if the chosen cut-off region

Λ is invariant under time reflection. Decomposing Λ as Λ+ + Λ− (being Λ+ and Λ− the

positive and negative time hyperplane respectively), that means that Θ(Λ±) = (Λ∓). RP
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can be seen if we rewrite the perturbed measure as:

dµnon-Gaussian ≡ e−AΛ
dµ

ZΛ
= (9.1)

θ(e−A
Λ+

)e−A
Λ+

dµ

ZΛ

Using this expression for the perturbed measure, RP in the form of eq. (5.15) follows

by writing:
∫

θ(A(n))A(n)dµnon-Gaussian =

∫

θ(e−A
Λ+

A(n))e−A
Λ+

A(n)dµ ≥ 0 (9.2)

Because we are interested in the limit Λ ր R2, we can take this limit by increasing

the size of Λ, keeping its invariance under time reflection.

Clustering in the infinite volume limit. Proving clustering property in the infinite

volume limit presents a difficulty comparable to the case of cut-off version. That is because

in the intermediate steps of the cluster expansion appear bounds for the Schwinger functios

which are uniform with the cut-off volume. Such are used for the clustering property. We

recommend the reading of [15], which contains an account of this step. That reference is

more pedagogical than the original research paper [14].

It is reasonable to expect a close relation between the clustering property and the

finiteness of the Schwinger function. We have seen that if we use the completely decoupled

measure, then it follows both the finiteness of the infinite volume and the clustering. We

have already explain (intuitively) this link in section 8. That intuition is proved to be right

in the case several case, including λΦ4.

Remarks on the small size of λ/m2. We need to say something about the requirement

on the constant λ
m2 : when it is said that it should be weak, that means that it belong to

certain interval [0, ǫ]. For each finite value in that interval, we have a non-perturbative

description of the theory and not a mere asymptotic expansion in the coupling λ
m2 . That

statement is different from the one of perturbative theory because the last one involves

asymptotic series which does not converge for any small finite value of the coupling constant.

Besides that, we want to point out that the smallness of the coupling constant is not

a general condition used in the CQFT approach. As we have mentioned, there are other

methods for controlling the infinite volume limit apart of the cluster expansion. One of

these methods has been applied to polynomials of even degree plus a non-zero linear term

(hence, excluding λΦ4), showing that these models fulfill the OS axioms for any value of the

coupling constant [8]. When this method is applied to λΦ4, it can be proven the existence

of the infinite volume limit fulfilling all the OS with the exception of the cluster property.

That means that this method was not successful in proving the uniqueness of the vacuum.

For λ
m2 >> 1 (strong coupling) it can be shown by others means that there exist a

decent quantum field theory. The description of this regime is beyond the scope of this note.

We just mention this phenomena in order to exemplify the existence of a difference between

weak and strong regimes of a given theory. Here the expressions weak and strong have a

literal meaning, being both applied to an existent QFT described in a non-perturbative way.
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10 Particle interpretation and new information beyond perturbative

level

The previous steps show that there exist a QFT fulfilling all the physical requirement

encoded in the Wightman axioms. We called λΦ4 to that theory, because the polynomial

F (x) = λx4 was the term used for the perturbation of the Gaussian measure. It is natural

to ask whether this theory will describe a quantum theory of interacting particles of spin

zero with a λΦ4 interacting term.

A particle interpretation is guarantied if the theory fulfills additional requirements,

which were stated in an important theorem due to the successive work of Haag and Ru-

elle [16]. Although the proof of that theorem is complicated (that is beyond the scope of

thus note), the hypothesis in which the theorem is based on can be expressed in a very

simple way: the mass operator M̂ should have an spectrum with a gap between 0 and a

positive value M .

That hypothesis is sufficient for the construction of certain states having the same

behavior as the ones of the free theory. These states are constructed by the application of

the field operator Φ̂(hM ) to the vacuum, using an special set of test function hM . Such

function are chosen in such a way that the spectrum M̂ on these states is the same that

the one in a QFT of a free scalar field of mass M .

The proof of the existence of this gap in the mass spectrum can be obtained from an

stronger version of clustering property than the one necessary for the existence of the QFT.

The mass gap. If we read the complete proof of the cluster property in the case of the

λΦ4, we will see that it contains at the same time the proof that — for a weak value of the

constant λ
m2 — the mass operator has no other eigenvalue in the interval (0,M + ǫ) than 0

and M . So, according with the Haag-Ruelle theory, we will have a particle interpretation

for the asymptotic states, correspondent to scalar field of mass M .

In [17] it was also found a close expression for the physical mass M of the asymptotic

states, as a function of the parameters λ and m arising in the interacting term.

Bound states. Having a non-perturbative definition of QFT with a particle interpreta-

tion, we are left with the difficult task of extracting practical physical information about

the models. That is a better situation than the one of the perturbative description, because

at the end is a computation issue.

One of the relevant issues is the existence of bound states in the model. That existence

is also related to the properties of the spectrum of the mass operator. The existence of a

two particle bound state amounts to the existence of an eigenvalue in the interval (M, 2M).

That is the definition of what is a bound state, because the eigenvalue 2M correspond to

a two-particle asymptotic state. That definition captures the classical feature of a bound

state: the lower energy of this state in comparison with the one of a the one composed by

2 free particles.

In the case of the theory of this note, it was proved that there are not 2-particle bound

state. We have included this very incomplete description of this aspect of the model in

order to emphasize that the achievement of CQFT goes beyond the proof of the existence
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of models. Because the strategy were based on intuitive ideas, the CQFT approach is also

able to extract physical relevant information.

Part IV

Link with Hamiltonian approach and

perturbation theory

11 Hamiltonian point of view: Schwinger n-point functions as vacuum

expectation value of interacting fields

In the previous part of this note, we have followed the functional point of view, in which it

was not required an explicit construction of the Hamiltonian operator and the interacting

field. These objects are implicity defined by the reconstruction theorem we have mentioned

at the beginning. The link between the two descriptions can be formally written as:

(Ωint, Φ̂int
it1(x1) . . . Φ̂

int
itn(xn)Ω

int) = lim
T→∞

E(Φt1(x1) . . .Φtn(xn)e
−

∫ T
−T V (Φt)dt)

E(e−
∫ T
−T V (Φt)dt)

(11.1)

where V (Φt) is the spatial integral of the term : Φ4 : (x, t). In this context we will make

an explicit distinction between space and time; now, x stands for the spatial coordinate.

This is the D = 1 + 1 version of the eq. (4.25). Until now, we have described the different

steps towards the definition of the r.h.s. The reconstruction theorem guaranties that each

ingredient in the l.h.s. exists.

In the following sections, we want to say something about the definition of Φ̂int and

Ωint. As we will see, the difficulties for making sense out of the Euclidean path integral

has a counterpart in the difficulties for defining the interacting field in a Poincare invariant

way. The Haag theorem (see [13] for a nice account), formulated in the middle of ’55, shows

that this difficulty is something general and not tied with a particular interaction term.

12 Dealing with the three divergences in the Hamiltonian approach

12.1 Dealing with the first divergence: the definition of the interacting term

We will consider the first divergence from the Hamiltonian point of view. But first, we

need some preliminary notions arising in the Hamiltonian formalism.

12.1.1 Operator, bilinear forms and fixed time operators

Creation ‘operators’ as bilinear forms. It is important to recall an elementary fact

about operators and bilinear forms in a Hilbert space: an operator always defines a bilinear

form but there are bilinear forms which do not come from an operator. Let us consider this

statement with more detail. If we have an operator Â, we can define an associated bilinear

form A by:

A(v, w) ≡ <v, Âw > (12.1)

– 39 –



J
H
E
P
0
8
(
2
0
1
3
)
0
5
2

being v, w any vector of the Hilbert space. However, if we have a bilinear form B, there

is not guaranty that there exists an operator B̂ such that: B(v, w) = (v, B̂w). A relevant

example of the last case is the so-called creation operator a†k associated to a defined spatial

momentum k. See pages 218,219 of [11] for a more extended explanation of the following.

We have already mentioned that the expression Φ(x) should be considered as a formal

expression and not as an operator. Then, it seems that the same applies to its decompo-

sitions of its formal Fourier transforms: the a†k and ak. However, it turns out that ak has

a better behavior than its partner a†k: it can be considered as an operator, defined by the

usual action on the Fock space. That follows by looking at the action of the annihilation

operator, which does not introduce singular expressions like δ(k) when is acting in the Fock

space.

The status of ak as an operator makes possible a natural interpretation of a†k as a

bilinear form Ak defined by:

Ak(v, w) ≡< akv, w > (12.2)

This definition is motivated by the formal manipulation of a†k as it were an adjoint

operator of ak: < a†kv, w >=< v, akw >.

The same definition can be applied to expressions like (a†k′)
n
(ak)

m. It can be inter-

preted as a bilinear form Ak′,k defined by:

Ak,k′(v, w) ≡ <ak′
nv, ak

mw > (12.3)

: Φ̂(x, t)
n

: as a bilinear forms. We have said that Φ̂(x, t) is just a formal expression,

which is motivated by the consideration of Φ̂(.) as regular operator valued distribution

admitting a kernel: Φ̂(f) =
∫

Φ̂(x, t)f(x, t)dxdt. However, the previous observation con-

cerning the status of a†k as bilinear form shows that Φ̂(x, t) can be also interpreted as a

bilinear form.

If we still denote by Φ̂(f) the bilinear form associated to the operator Φ̂(f), we can

get that the equation Φ̂(f) =
∫

Φ̂(x, t)f(x, t)dxdt is not merely a formal relation between

operator but a meaningful equality between bilinear forms.

Moreover, : (Φ̂(x, t))n : can also be interpreted as bilinear forms. By expressing Φ̂(x, t)

in terms of the a†k and ak, and using the definition of the normal order :: , we can see that

: (Φ̂(x, t))n : is a sum of terms of the form:

: (Φ̂(x, t))n :=
n
∑

a=0

∫

Fa(k1, . . . kn)a
†
k1
. . . a†kaaka+1 . . . akndk1dk2 . . . dkn (12.4)

It can be checked the functions Fa depend on the k’s in such a way that : (Φ̂(x, t))n :

is a well defined bilinear form in the Hilbert space.

We want to emphasize that the status : (Φ̂(x, t))n : as bilinear form (which holds

for any spacetime dimension) does not imply that : (Φ̂(x, t))n : comes from an operator.

However, in the particular case of D = 1+1 the previous bilinear comes from an operator,

which was called in this note : Φ̂n :. This fact can be expressed in the following relation:

: Φ̂n : (x, t) = : (Φ̂(x, t))n : (12.5)
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Again, the statement should be read as an equality between bilinear forms. As we

have said, there is a minor difference in the notation: in the l.h.s, we want to stress that

there exists an operator valued distribution : Φ̂n :, whose associated bilinear form is the

one given by the r.h.s.

Fixed time Wick powers. Let us recall that one of the properties of the free field is the

existence of fixed time Φ̂t. That means that in D = 1+1, Φ̂t is a distribution on the space

of functions of a single variable. So, it makes sense expressions like
∫

Φt(x)g(x), being g a

function in S(R). The relation between the operator value distribution in S(R2) and the

fixed time version is the following:

Φ(f) =

∫

Φt(ft)dt (12.6)

being f a function of the space time and ft the function of a single variable given by:

ft(x) = f(x, t).

We can ask if there exist a fixed time version of a Wick power. Such will be the first

step for the definition of an interacting Hamiltonian density. A consideration made in [6]

shows that this is the case for the operator valued distribution Φ̂n. So, it makes sense the

expression : Φ̂n
t : as a distribution acting on functions of a single variable.

The existence of the fixed time operator valued distribution : Φ̂4 : is necessary for the

definition of the interacting term.

The particular case of the free Hamiltonian. The Hamiltonian H0 of the free field

is defined as the infinitesimal generator of the translation. Its action on the Fock space

can be easily written. For the the case of a 1-particle state, given by the function Ψ of the

spatial momentum, the action of the H0 is:

(H0Ψ)(k) = iω(k)Ψ(k) (12.7)

being ω(k) =
√
k2 +m2. There is an analogous expression for the action of H0 in a general

n-particle state.

As we see, the definition of the Hamiltonian does not require to write any expression

involving the free field. However, we are familiar with the following expression for the

Hamiltonian:

Hfree =
1

2

∫

: (Π̂0(x))
2
+ (∂xΦ̂0(x))

2
+m2(Φ̂0(x))

2
: dx (12.8)

being Π̂0(x) the temporal derivative of Φ̂0(x).

This equality makes sense as a statement about bilinear forms. The l.h.s. should be

understood as the bilinear form associated to the free Hamiltonian. The r.h.s. is already a

bilinear form.

Let us remark that in the r.h.s. can be considering as the result of smearing the

expression : (Π̂0(x))
2
+ (∂xΦ̂0(x))

2
+m2(Φ̂0(x))

2
: with the the constant function equal to

1. The fact that the final result comes from an operator is an special case. In other cases,

like : Φ̂4
0 :, we can not expect that

∫

: Φ̂4
0(x) : dx makes sense.
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12.1.2 The canonical quantization with the cut-off interacting term

According with the last remark, the expression :Φ4
0 : (g) makes sense if we choose g as a

function in the space S(R), which can not be a constant. We can take g as the characteristic

function with value λ in the interval of size L.9 This choice of g leads to spatial cut-off

Hamiltonian interacting term, which formally could be expressed as
∫ L
0 : Φ̂4

0 : (x)dx. We

will denote it as VL, in order to stress that the interaction is turned on only on the region

of size L for any time.

The interacting cut-off field, in the Heisenberg representation, is defined by:

Φ̂L(t, x) = ei(H0+VL)tΦ̂0(x)e
−i(H0+VL)t (12.9)

Motivated by the particular case of the free Hamiltonian (which can be expressed as

an integral without cut-off in eq. (12.8)) we can take the limit in which the characteristic

function approaches the constant function with value λ. The existence of that limit would

correspond to the definition of a Hamiltonian without cut-off acting in the Fock space. As

we will see, that is not a trivial issue.

12.2 Dealing with the second divergence: the stability proof

Now, we want to see at a heuristic level the relation between the integrability condition

E(eA
Λ
) and the boundedness from below of the cut-off Hamiltonian HL ≡ H0 + VL. Let

us start considering the Hamiltonian Hκ
L = H0 + V κ

L , being the interacting term defined

by: V κ
L =

∫

L : Φ̂4
0,κ : (x) and let us assume that the interacting term fulfills the suitable

conditions in order that the following Feynman-Kac formula hold:

(Ω, e−TV
(κ)
L Ω) = E(e−

∫ T
0 V

(κ)
L (Φt)dt) (12.10)

This relation shows that free vacuum expectation of e−TV
(κ)
L is related to the Gaussian

expectation E(e−
∫ T
0 V

(κ)
L (Φt)dt). The last quantity is in fact the integral

∫

e−AΛ
κdµ if we

choose the spacetime region Λ as a rectangle of sizes T and L.

Because Ω is the vacuum of the free theory, this formula is not useful for our purpose.

What we need is an equality or inequality having in the l.h.s. the interacting vacuum. There

exists such inequality, whose derivation goes beyond the scope of this note. By taking the

limit κ→∞ in such inequality, it can be derived the bound:

− EL ≤ 1

α(T )
logE(e−

∫ T
0 VL(Φt)dt) (12.11)

where EL is the negative lowest eigenvalue of the Hamiltonian HL and α(T ) is a function

of T whose detailed expression is not relevant.

The inequality of eq. (12.11) shows that the finite integral − logE(e−
∫ T
0 VL(Φt)dt) is

a lower bound of the interacting Hamiltonian. This does not pretend to be a proof that

the integrability condition of the exponential implies that the interacting Hamiltonian is

bounded from below. See pages 158-161 of [8] for more details.

9The characteristic function is not differentiable every where. So, it is not a allowed as test function in

S(R). More properly, we should consider an smooth function in S(R) with support on the region of size L.

That remark is not relevant for the following discussion.
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12.3 Dealing with the third divergence: the removal of the spatial cut-off

Let us consider again the case in which the region Λ used in the Euclidean approach is

is a rectangle of size T and L. We want to see from the Hamiltonian point of view the

different meaning of the limits L→∞ and T →∞, which were treated in an equal foot in

the Euclidean approach.

As we have mentioned, the existence of the limit L → ∞ for the exponential term

amounts to the possibility of extending the scope of the test function to an infinite large

spatial interval for : Φ̂4
0 :. That will be considered soon.

The limit T → ∞, instead, is of a different nature. From the Hamiltonian point of

view, we are not doing anything!. Let us recall the Gell-Mann-Low formula for quantum

mechanics case:

(Ωint, Φ̂int
it1 . . . Φ̂

int
itnΩ

int) = lim
T→∞

E(Φt1 . . .Φtne
−

∫ T
−T V (Φt))

E(e−
∫ T
−T V (Φt))

(12.12)

The limit T →∞ does not tell anything about the quantum mechanics system of the

l.h.s. T is just a parameter which is necessary in order to relate the interacting vacuum with

the free vacuum. This relation in fact leads to the Gell-Mann-Low formula. In D = 1+ 1,

the Gell-Mann-Low formula take a similar form::

(Ωint, Φ̂int
it1(h1) . . . Φ̂

int
itn(hn)Ω

int) = lim
T→∞

E(Φt1(h1) . . .Φtn(hn)e
−

∫ T
−T VL(Φt)dt)

E(e−
∫ T
−T VL(Φt)dt)

(12.13)

So, if we look the r.h.s, we see that the contact between the Schwinger function with the

spatial cut-off QFT vacuum correlation functions is established once ‘half’ of the infinite

volume limit is taken. Let us recall that what we have called infinite volume limit in the

Euclidean approach was Λր R2 and not merely | Λ |→ ∞.

12.3.1 The van-Hove phenomena and the Haag theorem

The existence of the limit L → ∞ has another meaning. A non trivial part of the con-

struction of the model in the Hamiltonian approach is that of showing that the unitary

evolution given by HL makes sense in the limit L→∞. That was shown in [5]. But there

is an important remark concerning the meaning of the existence of the limit. Let see the

behaviour of the vacuum state ΩL and its eigenvalue EL of the cut-off Hamiltomnian in

the limit →∞.

It can be shown that limL→∞EL = −∞. Apart of this divergence, something strange

happens with the overlap between the interacting vacuum ΩL and the free vacuum Ω. It

can be proved that (ΩL,Ω) ≤ e−cL, being c a positive constant. From this, it follows that:

lim
L→∞

(ΩL,Ω) = 0 (12.14)

Such is an example of the so-called van Hove phenomena (see [8], pag. 185). The name

comes from an early observation by van Hove about this phenomena in certain QFT [12].

That means that in the infinite volume limit, the limiting interacting vacuum state

can not belong to the Hilbert space of the cut-off theory. That is: Ωint 6= limL→∞ΩL.
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What can be proven is that the true vacuum lives in a non unitarily representation of the

free theory. That makes the difference with the cut-off theory, in which it the interacting

picture was used according with eq. (12.9).

The previous phenomena is a very pedagogical illustration of the Haag theorem, for-

mulated in the middle of ’50, which states that it is not possible to have a representation

of canonical commutation relation (CCR) of an interacting theory which results to be uni-

tarily equivalent to the CCR representation of the free field theory [13]. Such was possible

for the cut-off version, because one key assumption of the Haag theorem was avoided: the

translation invariance.

Haag theorem has a conceptual value for the understanding of the obstacles for the

definition of a interacting QFT, clarifying the role of the cut-off. Most of the standard

textbook does not take into account this obstruction when the Dyson operator is written,

assuming the existence of the interacting picture. Of course, this does not conduct to any

wrong statement because this step pretend to be only an heuristic guide for the derivation

of the perturbative series. The Haag theorem recall us that the perturbative series has

not been deduced from the meaningless non-perturbative expression but that the series

constitutes the (perturbative) definition of the QFT.

This subtle is not manifest in the Euclidean approach as far as we focus in the cor-

relation functions themselves and not in the reconstruction of the QFT from which these

come from.

13 Perturbative series and the exact n-point functions

The natural question after this long construction is: how is the model of this note related

to the perturbative λΦ4
2?

Before answering such question, we want to remark that the absence of a relation be-

tween both would not invalidate the previous construction. The model we have considered

fulfills all the physical requirements of a relativistic quantum field theory. The agreement

with the perturbative treatment is not required by the GW axioms. However, such a

link would be desirable, because at the end we want to find a non-perturbative version of

realistic QFT — checked in the laboratory — which are formulated perturbatively.

13.1 From the exact n-point functions to its Taylor series

It is natural to expect that the series arising by making a Taylor expansion of the n-

point functions agree with the usual one. That is because the standard derivation of the

perturbative series starts from the formal non-perturbative expression which was shown in

the CQFT to be well defined.

Let us go to the issue of the the convergence of this series. We know from [2] that the

series of λΦ4 are not convergent in the standard sense. However, in [18] was proven that

for the general case of all polynomial bounded from below P (Φ)2 the perturbative series

– 44 –



J
H
E
P
0
8
(
2
0
1
3
)
0
5
2

of the Schwinger functions are asymptotic to the non-perturbative expression. Moreover,

this result was extended in [19] to the case of the perturbative series of the S matrix.10

In addition to the asymptotic convergence, it was proven in [20] that the asymptotic

series converge in a Borel sense to the exact Schwinger functions corresponding to a poly-

nomial of order 4 interactions.

13.2 The proper use of the asymptotic convergence of the perturbative series

Now, we have the full n-point functions (fulfilling the general requirement of a relativistic

quantum field theory) having the perturbatives series as their asymptotic expansion. The

asymptotic convergence has a practical value: this ensures that the difference between the

truncated series-at order N -and the value of the n-point functions will be of order λN+1.

The agreement with the full n-point functions will be better as far as λ goes to zero. That

is why these series are reliable at weak coupling.

We want to stress that the practical value of the series is based on the existence of

the full n-point functions to which these approach. Of course, that existence is the implicit

assumption which justify that physicists confront the truncated series with the experience.

However, the asymptotic convergence can not help to define the n-point function. That

is because there is not a unique function having a given series as its asymptotic expansion.

We want to emphasized that this is true for any finite range of the coupling constant, no

matter how small is. That is because the radius of convergence of the series is not small

but zero.

We have followed the common distinction between perturbative and non-perturbative

approach although we do not consider that very appropriated: that terminology has an

attenuating effect, suggesting that the difference merely regards the regime in which the

theory is described. However, when it is said that the perturbative approach describe the

theory at weak coupling, we should have the previous observation in mind. That lead us

to appreciate that the role of the construction of the non-perturbative n-point function of

λΦ4 is not that of extending the regime of the perturbative theory.

14 The three main risks of divergences in the perturbative approach:

where are they?

If we compare the CQFT and the perturbative approach (both the Hamiltonian and the

functional approaches) to λΦ4 we will find important differences. The main one is the

absence of the risk of divergence in step II and III. The reason for that difference is trivial:

the difficulties in the step II and III are associated with the introduction of an exponential

of the interaction. So, these difficulties are reduced (some of them are eliminated) when

the exponential is expanded as a formal Taylor series.

10Let us recall that the S-matrix is defined in terms of time ordered n-point functions. This difference

introduce further complications.
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14.1 Dealing with the first divergence: the trivial renormalization and the

ultraviolet divergences

Most of the expositions of the perturbative approach start with the infinite volume in-

teracting term. However, in order to see the analogous of the first risk of divergence, we

should consider a cut-off perturbation theory.

This first step is the only one appearing explicitly in the perturbative approach. It

appears in the regularization procedure. In the particular case of λΦ4 we have not ultra-

violet divergence. However, there are diverges that are eliminated by the introduction of

the Wick order of the fourth power of the field. Usually, this trivial step is not considered

as part of the regularization. The Wick order in fact eliminates divergences contained in

the so-called tadpole diagrams.

Let us point out a minor difference between the way in which this step is presented in

each approach. For simplicity, let us consider both the non-perturbative and perturbative

Hamiltonian approaches. In the first case, this step is done in order to make the interacting

term a well defined operator. In the perturbative approach, the regularization consists in

making well defined the expectation values involving the interacting term. In other words,

in the CQF approach the regularization is done in the beginning, guarantying that any

expectation value involving the interacting term makes sense.

In the particular case of λΦ4 in D = 1+1 in turns out that the normal order is enough

for making the interacting term a well defined operator. However, this is not mentioned

explicitly in the perturbative approach.

14.2 The boundedness from below of the Hamiltonian: why we do not see

this issue in the perturbative approach?

The series in the functional perturbative approach are defined by a Taylor expansion of a

formal exponential expression. Without exponential there is not any risk of this type of

divergence. The task of regularization consists merely in making finite each term of the

expansion. Of course, from the finiteness of the each term of the Taylor expansion we could

not conclude the finiteness of the integral of the exponential (at the end, this is related to

the divergent character of the series).

We have mentioned that the integrability of the exponential in the Euclidean amounts

to the boundedness from below of the Hamiltonian. In the Hamiltonian perturbative

approach we do not see such a problem because the series are not used for the computation

of the full interacting Hamiltonian. Such is only a formal expression which is written in

the Dyson operator at the beginning of the procedure.

14.3 The infinite volume and the cancellation of infinities in the perturbative

approach

Again, because the perturbative approach is not worried about the exact n-point functions,

it is never considered the most complicated part of the non-perturbative approach: the

proof of the convergence of the Schwinger functions in the infinite volume limit.
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However, we can see a signal of this divergence in a detail of the procedure used for

the definition of perturbative series. Let consider the Taylor expansion of the Schwinger

functions with a cut-off in a region Λ. We will find different Wick contractions in each

term. Among them, we will find:

1. E(Φ(x1)Φ(x2)A
Λ
A
Λ)

2. E(AΛ
A
Λ)

The first terms are finite even in the infinite volume limit. These terms correspond to

integrals which have not ultraviolet divergence in D = 1 + 1.

The second terms correspond to the so-called ‘bubble diagrams’. These are finite when

there is a cut-off interacting term. We have mentioned that expectation of Wick power of

the field are under control. In the infinite volume limit, we can see that bubble diagrams

like this E(AΛ
A
Λ) diverge.

In the standard perturbative approach, the starting point is the infinite volume limit of

such expression. The reason why this divergence is declared harmless is because that arise

both in the numerator and the denominator of the series for the n-point functions. This

claim is improved when it is said that the n-point functions are defined by the truncated

expansion, in which this diagrams are omitted.

Again, here enters the issue of the non-convergence of the series: if the perturbative

series were convergent, the proof of the finiteness of the n-point functions, for Λ → ∞,

would be more easy, being reduced to checking the cancellation of bubble diagrams in the

truncated series.

This is one example of what we have addressed since the beginning: some of the non-

trivial obstacles toward a non-perturbative definition of a relativistic invariant QFT are

not manifested in the perturbative approach. Here, we see how the most hard obstacle

(the existence of the infinite volume limit) is reduced to a mere cancelations of divergent

factors.

A minor comment on the abuse of language used within some expositions of

the perturbative approach. We want to make a minor comment on the way in which

the cancellation of the infinite volume divergences is expressed in some expositions of the

perturbative approach.

Let consider Aκ, Bκ functions of a variable κ diverging for κ→∞ in such a way that

the limit limκ→∞
Ak
Bk

exists. We are aware that it does not make sense the limit: limκ→∞ Ak
limκ→∞ Ak

.

That lead to a meaningless expression of the type ∞
∞ .

In the non-perturbative approach, we find such limit in the statement:

lim
Λ→∞

∫

Φ(x1) . . .Φ(xn)e
−AΛ

dµ
∫

e−AΛdµ
<∞ (14.1)

We do not need to talk about ‘cancelation of infinities’ but the limit of a quotient

whose numerator and denominator diverge when Λ→∞.

Because in most of the standard exposition of QFT the n-point functions are not being

considered as a result of a limit of a spacial cut-off version, a similar well defined limit can
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not be written. Instead, it is simply declared that the series for the the n-point functions are

defined by the truncated expansion, in which the ill defined bubble diagrams are omitted.

This ad-hoc definition could be avoided by simply defining the infinite volume formal series

as a limit of cut-off perturbation series.

15 Concluding remarks

The role of the rigour in the CQFT approach. A frequent prejudice is that the

merit of a rigourous mathematical approach to a physical theory is merely the justification

of statements which were derived by heuristic arguments. Such a prejudice does not apply

in the case of the CQFT approach.

We have seen that due the rigour of the approach meaningless expressions have acquired

a precise meaning. Such is the case of Euclidean path integral in the infinite volume

limit. These expressions appear in the standard approach and are usually manipulated in

a formal way. In those cases, the role of CQFT is not merely to justify statements involving

this quantities; before having a meaning, these are not statements at all, but sequence of

symbols waiting for a semantic meaning.

A similar idea was expressed by the mathematicians Kurt Friedrichs in his book Math-

ematical Aspects of the Quantum Theory of Field, in the years after the development of

the perturbative approach:

“It is difficult for a mathematician to gather such information by reading papers

and books addressed to physicists. It is not at all lack of rigor in the mathemat-

ical deductions which creates the difficulty; it is rather that the mathematical

terms employed are not always defined precisely and that often their physical

significance is not explicitly explained”

Important issues missing in the perturbative approach. After looking at this

simple model, we understand why it is more easy to define a theory by its perturbative

series. If we do not make the Taylor expansion, we are forced to make a more careful study

of the interacting term. In fact, the main difficulties of the model we have considered were

those related with the divergences involved in the step II and III. Such are related to the

fact that we have an exponential and not a power of the interacting term. The perturbative

approach avoids the confrontation with this problem paying a high price: the well defined

series result to be divergent and as a consequence these can not define the wished n-point

functions.

The increasing difficulties in higher dimension. Because this is not a review on the

status of CQFT, we have not considered more complicated models like λΦ4 in D = 2 + 1.

However, we want to make a brief mention of new aspects arising in D > 2. In D = 2 + 1

the ultraviolet divergences in the perturbative approach have also a counterpart in the step

I towards the definition of the Schwinger function: the normal order is not enough to define

the interacting term. We should write a modified polynomial, involving no-linear terms

in the coupling constant. Due to this apparent minor change, all the subsequent steps
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become more complicated. The correspondent increment in the difficulties is manifested

in the reduced amount of successful models in comparison with D = 2.

λΦ4 in D = 3+ 1 is a more complicated case, which has not been yet quantized along

this lines. Moreover, there is evidence that it is not possible to have an interacting theory

correspondent to λΦ4 along the lines we have mentioned (see [21]). At the present we have

not a single example of a non-perturbative interacting relativistic QFT in D = 3+1. Such

is an open problem, deserved to be solved.

The need of a simpler procedure. Although we have emphasized that the ideas

behind each step have a clear interpretation, it is also true that some steps (like the proof

of existence of the infinite volume limit) become very complicated from the technical point

of view. Such difficulties are peculiar to each model and there is not a general way to deal

with these. In the opinion of the authors, due to the small size of the CQFT community

little progress on the simplification of some of the steps has been done. Concerning the

paper [22] in which was developed λΦ4 model in D = 2 + 1, it was said: “Written almost

thirty five years ago, that paper has not yet fully digested and should be investigated from

a more modern perspective” [5]. That statement can be applied to any other model. In

this direction there are some progress in [23], in which is considered how to avoid “painful”

steps of the CQFT approach.

A guide for further readings. As we have emphasized along the note, this is a over-

simplified exposition of λΦ4 in D = 1+ 1. This simplification could give rise to misunder-

standings. We are not worry about the omission of several proofs but the lack of precise

definitions for most of the objects and limits appearing in this note. For instance, when we

have introduced the Schwinger functions, we have omitted a list of requirements concerning

the decay and the singularities of these objects. Concerning the existence of the interacting

term as a limit, we have not provided a precise indication of the way in which the limit

should be taken. The amount of omissions of this type is more important in the issue of

the infinite volume limit.

However, we expect that this note provides the skeleton of the construction of more

complicated models and act as a guide for the reading of a rigorous exposition. In the

opinion of the authors, a nice way to get deeper into the subject could start by reading

the modern textbook [7], in particular chapters 11-13. In this reference it is introduced

the Gaussian processes description of QFT and the steps I and II towards the definition of

the cut-off Schwinger functions. That is done in a more detailed way. A complementary

reading could be the chapter I-V of the book [8]. Each of these references would facilitate

the reading of the book [4], where it is also considered in more detail the infinite volume limit

of a family of scalar field polynomial interaction, and there are also addressed advanced

topics including the treatment of gauge theories.
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