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ROBUST FUNCTIONAL PRINCIPAL COMPONENTS:
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In many situations, data are recorded over a period of time and may be
regarded as realizations of a stochastic process. In this paper, robust estima-
tors for the principal components are considered by adapting the projection
pursuit approach to the functional data setting. Our approach combines ro-
bust projection-pursuit with different smoothing methods. Consistency of the
estimators are shown under mild assumptions. The performance of the classi-
cal and robust procedures are compared in a simulation study under different
contamination schemes.

1. Introduction. Analogous to classical principal components analysis
(PCA), the projection-pursuit approach to robust PCA is based on finding pro-
jections of the data which have maximal dispersion. Instead of using the variance
as a measure of dispersion, a robust scale estimator sn is used for the maximization
problem. This approach was introduced by Li and Chen (1985), who proposed es-
timators based on maximizing (or minimizing) a robust scale. In this way, given a
sample xi ∈ R

d , 1 ≤ i ≤ n, the first robust principal component vector is defined
as

â = arg max
{a∈Rd : aTa=1}

sn(aTx1, . . . ,aTxn).

The subsequent principal component vectors are obtained by imposing orthogo-
nality conditions. In the multivariate setting, Li and Chen (1985) argue that the
breakdown point for this projection-pursuit based procedure is the same as that
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of the scale estimator sn. Later on, Croux and Ruiz-Gazen (2005) derived the in-
fluence functions of the resulting principal components, while their asymptotic
distribution was studied in Cui, He and Ng (2003). A maximization algorithm for
obtaining â was proposed in Croux and Ruiz-Gazen (1996) and adapted for high-
dimensional data in Croux, Filzmoser and Oliveira (2007).

The aim of this paper is to adapt the projection pursuit approach to the functional
data setting. We focus on functional data that are recorded over a period of time
and regarded as realizations of a stochastic process, often assumed to be in the
L2 space on a real interval. Various choices of robust scales, including the median
of the absolute deviation about the median (MAD) and M-estimates of scale are
considered and compared.

Classical functional PCA uses the eigenvalues and eigenfunctions of the sample
covariance operator. Dauxois, Pousse and Romain (1982) have studied the asymp-
totic properties of these sample functional principal components. Rice and Sil-
verman (1991) proposed to smooth the principal components by imposing an ad-
ditive roughness penalty to the sample variance. The consistency of this method
was subsequently studied by Pezzulli and Silverman (1993). Another approach to
smoothing the principal components, proposed in Silverman (1996) and reviewed
in Ramsay and Silverman (2005), is based on penalizing the norm rather than
the sample variance, while Boente and Fraiman (2000) considered a kernel-based
approach. More recent work on estimation of the principal components and the co-
variance function includes Gervini (2006), Hall and Hosseini-Nasab (2006), Hall,
Müller and Wang (2006) and Yao and Lee (2006).

The literature on robust principal components in the functional data setting,
though, is rather sparse. To our knowledge, the first attempt to provide estimators
of the principal components that are less sensitive to anomalous observations was
due to Locantore et al. (1999), although their approach is multivariate in nature.
Gervini (2008) studied a fully functional approach to robust estimation of the prin-
cipal components by considering a functional version of the spherical principal
components defined in Locantore et al. (1999). Hyndman and Shahid Ullah (2007)
give an application of a robust projection-pursuit approach, applied to smoothed
trajectories, but did not study the properties of their method in detail.

In this paper, we introduce several robust estimators of the principal components
in the functional data setting. Our approach uses a robust projection-pursuit com-
bined with various smoothing methods. A primary focus of this paper is to provide
a rigorous theoretical foundation for this approach to robust functional PCA. In
particular, we establish under very general conditions the strong consistency of the
our proposed estimators.

In Section 3, the robust estimators of the principal components, based on both
the raw and smoothed approaches, are introduced. Consistency results and the
asymptotic robustness of the procedure are established in Section 4, while Fisher-
consistency of the related functionals is studied in Section 5. Section 6 provides
conditions under which one of the crucial assumptions hold. Selection of the
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smoothing parameters for the smooth principal components is discussed in Sec-
tion 7. The results of a Monte Carlo study are reported in Section 8. Finally, Sec-
tion 9 contains some concluding remarks. Most proofs are relegated to the Ap-
pendix and to the technical supplementary material available online; see Bali et al.
(2011a). We begin the next section with notation and a review of some basic con-
cepts which are utilized in later sections.

2. Preliminaries.

2.1. Functional principal components analysis. Principal components analy-
sis, which was originally developed for multivariate data, has been successfully
extended to accommodate functional data, and is usually referred to as functional
PCA. Principal components analysis for general Hilbert spaces can be described
as follows.

Let X ∈ H be a random element of a Hilbert space H defined in (�, A,P ). De-
note by 〈·, ·〉 the inner product in H and by ‖α‖2 = 〈α,α〉. Assume that X has finite
second moment, that is, E(‖X‖2) < ∞. The bilinear operator aX : H × H → R

defined as aX(α,β) = cov(〈α,X〉, 〈β,X〉) leads to a continuous operator. The
Riesz representation theorem then implies that there exists a bounded operator,
�X : H → H, such that aX(α,β) = 〈α,�Xβ〉. The operator �X is called the co-
variance operator of X and is linear, self-adjoint and continuous.

Although the general situation in which X ∈ H is treated in this paper, to
help simplify the basic ideas, we first consider the case X ∈ L2(I) where
I ⊂ R is a finite interval. We take the usual inner product for L2(I), that is,
〈α,β〉 = ∫

I α(t)β(t) dt and denote the covariance function of X by γX(t, s) =
cov(X(t),X(s)). The corresponding covariance operator �X :L2(I) → L2(I) is
such that �X(α)(t) = ∫

I γX(t, s)α(s) ds. It is assumed the covariance function sat-
isfies

∫
I

∫
I γ 2

X(t, s) dt ds < ∞. Consequently, �X is a Hilbert–Schmidt operator.
A Hilbert–Schmidt operator has a countable number of eigenvalues, all of

which are real. F will stand for the Hilbert space of such operators with in-
ner product defined by 〈�1,�2〉F = ∑∞

j=1〈�1uj ,�2uj 〉, where {uj : j ≥ 1} is

any orthonormal basis of L2(I). Furthermore, since the covariance operator �X

is also positive semi-definite, its eigenvalues are nonnegative. As with symmet-
ric matrices in finite-dimensional Euclidean spaces, one can choose the eigen-
functions of a Hilbert–Schmidt operator so that they form an orthonormal basis
for L2(I). Let {φj : j ≥ 1} and {λj : j ≥ 1} be respectively an orthonormal basis
of eigenfunctions and their corresponding eigenvalues for the covariance opera-
tor �X , with λj ≥ λj+1. The spectral value decomposition for �X can then be ex-
pressed as �X = ∑∞

j=1 λjφj ⊗φj , with ⊗ being the tensor product, or equivalently

γX(t, s) = ∑∞
j=1 λjφj (t)φj (s), with

∑∞
j=1 λ2

j = ‖�X‖2
F = ∫

I
∫

I γ 2
X(t, s) dt ds.

The j th principal component variable is then defined as Zj = 〈φj ,X〉, which leads
to the Karhunen–Loève expansion X(t) = μ(t) + ∑∞

j=1 Zjφj (t), with μ(t) =
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E(X(t)) and the Zj ’s being uncorrelated and having variances λj in descending
order.

In general, for Y = 〈α,X〉, which is a linear function of the process {X(s)}, we
have var(Y ) = 〈α,�Xα〉. An important optimality property of the first principal
component variable is that it can be defined as the variable Z1 = 〈α1,X〉 such that

var(Z1) = sup
{α : ‖α‖=1}

var(〈α,X〉) = sup
{α : ‖α‖=1}

〈α,�Xα〉.(2.1)

Any solution to (2.1), that is, any α for which the supremum is obtained, corre-
sponds to an eigenfunction associated with the largest eigenvalue of the covariance
operator �X , that is, α1 = φ1 and var(Z1) = λ1. If λ1 > λ2, then α1 is unique up
to a sign change. As in the multivariate setting, the other principal components
can be obtained successively via (2.1), but under the orthogonality condition that
〈αj ,αk〉 = 0 for j < k.

2.2. Scale functionals and estimates. The basic idea underlying our approach
is to view principal components as in (2.1), but with the variance replaced by a
robust scale functional. We first recall the definition of a scale functional. Denote
by G the set of all univariate distributions. A scale functional σR : G → [0,+∞)

is one which is location invariant and scale equivariant, that is, if Ga,b stands for
the distribution of aY + b when Y ∼ G, then, σR(Ga,b) = |a|σR(G), for all real
numbers a and b. Two well-known examples of scale functionals are the standard
deviation, SD(G) = {E(Y − E(Y ))2}1/2, where Y ∼ G, and the median absolute
deviation about the median, MAD(G) = c median(|Y − median(Y )|). The normal-
ization constant c, used in the MAD, can be chosen so that its empirical or sam-
ple version is consistent for a scale parameter of interest. Typically, one chooses
c = 1/	−1(0.75) so that the MAD equals the standard deviation at a normal distri-
bution.

The breakdown points, a measure of global robustness, for the standard devia-
tion and the MAD are 0 and 1/2, respectively. The MAD, however, has a discon-
tinuous influence function, which reflects some local instability. Furthermore, the
empirical version of the MAD is known to be fairly inefficient at the normal and
other distributions; see Huber (1981). In the finite-dimensional setting, as reported
in Cui, He and Ng (2003) the impact of a discontinuous influence function on
the efficiency of the estimators of the principal directions is even more dramatic
covariance function.

A broader class of robust scale functionals, which includes as special cases both
the SD and the MAD, are the M-scale functionals. An M-scale functional with a
bounded and continuous score function can have both a high breakdown point and
a continuous and bounded influence function. Also, their empirical versions, the
M-estimates of scale, can be tuned to have good efficiency over a broad range of
distributions. Given a location parameter μ, an M-scale functionals σM(G) with a
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continuous score function χ : R → R can be defined to be a solution to the equation

E

[
χ

(
Y − μ

σR(G)

)]
= δ.(2.2)

Given a location statistic μ̂n, the corresponding M-estimate of scale is then a so-
lution σ̂n to the M-estimating equation

1

n

n∑
i=1

χ

(
Yi − μ̂n

σ̂n

)
= δ.(2.3)

If the score function is discontinuous, as is the case with the MAD, then a slight
modification to (2.2) and (2.3) is needed; see Martin and Zamar (1993).

Typically, the score function χ is even with χ(0) = 0, nondecreasing on R+ and
with 0 < supx∈R χ(x) = χ(+∞) = limx→+∞ χ(x). When χ(+∞) = 2δ, the M-
estimate of scale has a 50% breakdown point, and by choosing χ properly one can
also obtain a highly efficient estimate; see Croux (1994). One such popular choice,
and the one we use in our Monte Carlo study, is the score function introduced by
Beaton and Tukey (1974), namely

χc(y) = min
(
3(y/c)2 − 3(y/c)4 + (y/c)6,1

)
(2.4)

with c being a tuning constant chosen so that the corresponding M-estimator of
scale is consistent for a scale parameter of interest. For example, the choice c =
1.56 when δ = 1/2 ensures that the M-scale functional is Fisher-consistent at the
normal distribution and has a 50% breakdown point.

For continuous and nondecreasing score functions χ , the solutions to (2.2) and
(2.3) are unique, and the simple re-weighting algorithm

{
σ̂ (k+1)

n

}2 = 1

nδ

n∑
i=1

w

(
Yi − μ̂

σ̂
(k)
n

)
(Yi − μ̂)2,

where w(y) = χ(y)/y2 for y = 0 and w(0) = χ ′′(0), is known to always converge
to the unique solution of (2.3) regardless of the initial value σ̂

(0)
n . In practice, the

initial value σ̂
(0)
n is usually taken to be the MAD. A discussion on the convergence

of the algorithm can be found in Maronna, Martin and Yohai (2006).
For a bounded score function χ , if the solution σR(G0) of (2.2) is unique, as it is

the case when χ is continuous and nondecreasing, then the functional σR is weakly
continuous at G0. Weakly continuity of σR at G0, that is, continuity with respect
to the weak topology in G which is given by the Prohorov metric, and consistency
in a neighborhood of G0 entails robustness at G0. For details, see Huber (1981)
and Hampel (1971).
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3. The estimators. We consider several robust approaches in this section and
define them on a separable Hilbert space H, keeping in mind that the main appli-
cation will be H = L2(I). From now on and throughout the paper, {Xi : 1 ≤ i ≤ n}
denote realizations of the stochastic process X ∼ P in a separable Hilbert space H.
Thus, Xi ∼ P are independent stochastic processes that follow the same law. This
independence condition could be relaxed, since we only need the strong law of
large numbers to hold in order to guarantee the results in this paper.

3.1. Raw robust projection-pursuit approach. Based on property (2.1) of the
first principal component and given σR(F ) a robust scale functional, the raw
(meaning unsmoothed) robust functional principal component directions are de-
fined as ⎧⎪⎨⎪⎩

φR,1(P ) = arg max
‖α‖=1

σR(P [α]),
φR,m(P ) = arg max

‖α‖=1,α∈Bm

σR(P [α]), 2 ≤ m,
(3.1)

where P [α] stands for the distribution of 〈α,X〉 when X ∼ P and Bm = {α ∈
H : 〈α,φR,j (P )〉 = 0,1 ≤ j ≤ m − 1}. We will denote the mth largest principal
value by

λR,m(P ) = σ 2
R(P [φR,m]) = max‖α‖=1,α∈Bm

σ 2
R(P [α]).(3.2)

Since the unit ball is weakly compact, the maximum above is attained if the scale
functional σR is (weakly) continuous.

Next, denote by s2
n : H → R the function s2

n(α) = σ 2
R(Pn[α]), where σR(Pn[α])

stands for the functional σR computed at the empirical distribution of 〈α,X1〉, . . . ,
〈α,Xn〉. Analogously, the mapping σ : H → R stands for σ(α) = σR(P [α]). The
components in (3.1) will be estimated empirically by⎧⎪⎨⎪⎩

φ̂RAW,1 = arg max
‖α‖=1

sn(α),

φ̂RAW,m = arg max
α∈B̂m

sn(α), 2 ≤ m,
(3.3)

where B̂m = {α ∈ H :‖α‖ = 1, 〈α, φ̂RAW,j 〉 = 0,∀1 ≤ j ≤ m − 1}. The estimators
of the principal values are then computed as

λ̂RAW,m = s2
n(φ̂RAW,m), 1 ≤ m.(3.4)

3.2. Smoothed robust principal components. Sometimes instead of raw func-
tional principal components, smoothed ones are of interest. The advantages of
smoothed functional PCA are well documented; see, for instance, Rice and Silver-
man (1991) and Ramsay and Silverman (2005). One compelling argument is that
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smoothing is a regularization tool that might reveal more interpretable and interest-
ing features of the modes of variation for functional data. As noted in the Introduc-
tion, Rice and Silverman (1991) and Silverman (1996) proposed two smoothing
approaches by penalizing the variance and the norm, respectively.

To be more specific, Rice and Silverman (1991) estimate the first principal com-
ponent by maximizing over ‖α‖ = 1, the objective function v̂ar(〈α,X〉)−ρ�α,α�,
where v̂ar stands for the sample variance and �α,β� = ∫ 1

0 α′′(t)β ′′(t) dt . Consis-
tency for these estimators was established by Pezzulli and Silverman (1993).

Another regularization method proposed by Silverman (1996) is to penalize
the roughness through a norm defined via the penalized inner product, 〈α,β〉τ =
〈α,β〉 + τ�α,β�. The smoothed first direction φ̂1 is then the one that maximizes
v̂ar(〈α,X〉) over ‖α‖τ = 1. Consistency of these estimators is also established
in Silverman (1996) under the assumption that φj has finite roughness, that is,
�φj ,φj� < ∞.

Clearly the smoothing parameters ρ and τ need to converge to 0 in order to get
consistency results.

Let us consider HS, the subset of “smooth elements” of H. In order to obtain
consistency results, we will assume that φR,j (P ) ∈ HS. Let D : HS → H be a
linear operator, which we will refer to as the “differentiator.” Using D, we define
the symmetric positive semidefinite bilinear form �·, ·� : HS × HS → R, where
�α,β� = 〈Dα,Dβ〉. The “penalization operator” is then defined as � : HS → R,
�(α) = �α,α�, and the penalized inner product as 〈α,β〉τ = 〈α,β〉 + τ�α,β�.
Therefore, ‖α‖2

τ = ‖α‖2 + τ�(α). As in Pezzulli and Silverman (1993), we will
assume that the bilinear form is closable.

REMARK 3.1. The most common setting for functional data is to choose
H = L2(I), HS = {α ∈ L2(I), α is twice differentiable, and

∫
I (α′′(t))2 dt < ∞},

Dα = α′′ and �α,β� = ∫
I α′′(t)β ′′(t) dt so that �(α) = ∫

I (α′′(t))2 dt .

Let σR(F ) be a robust scale functional and define sn(α) and σ(α) as in Sec-
tion 3.1. Then we can adapt the classical procedure by defining the smoothed ro-
bust functional principal direction estimators either:

(a) by penalizing the norm as⎧⎪⎪⎪⎨⎪⎪⎪⎩
φ̂PN,1 = arg max

‖α‖τ =1
s2
n(α) = arg max

β =0

s2
n(β)

〈β,β〉 + τ�(β)
,

φ̂PN,m = arg max
α∈B̂m,τ,PN

s2
n(α), 2 ≤ m,

(3.5)

where B̂m,τ,PN = {α ∈ H :‖α‖τ = 1, 〈α, φ̂PN,j 〉τ = 0,∀1 ≤ j ≤ m − 1},
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(b) or by penalizing the scale as⎧⎪⎪⎨⎪⎪⎩
φ̂PS,1 = arg max

‖α‖=1
{s2

n(α) − ρ�(α)},

φ̂PS,m = arg max
α∈B̂m,PS

{s2
n(α) − ρ�(α)}, 2 ≤ m,

(3.6)

where B̂m,PS = {α ∈ H :‖α‖ = 1, 〈α, φ̂PS,j 〉 = 0,∀1 ≤ j ≤ m − 1}.
The corresponding principal value estimators are respectively defined as

λ̂PS,m = s2
n(φ̂PS,m) and λ̂PN,m = s2

n(φ̂PN,m).(3.7)

3.3. Sieve approach for robust functional principal components. Another ap-
proach, motivated by using B-splines as a smoothing tool, is to consider the
method of sieves. The method of sieves involves approximating an infinite-
dimensional parameter space � by a sequence of finite-dimensional parameter
spaces �n, which depend on the sample size n, and then estimate the parameters
on the spaces �n rather than �.

Let {δi}i≥1 be a basis of H and define Hpn as the linear space spanned by
δ1, . . . , δpn and by Spn = {α ∈ Hpn :‖α‖ = 1}, that is,

Hpn =
{
α ∈ H :α =

pn∑
j=1

aj δj

}

and Spn = {α ∈ H :α = ∑pn

j=1 aj δj , such that ‖α‖2 = ∑pn

j=1
∑pn

s=1 ajas〈δj , δs〉 =
1}. Note that Spn approximates the unit sphere S = {α ∈ H :‖α‖ = 1}. When
{δi}i≥1 is an orthonormal basis, ‖α‖2 = ∑pn

j=1 a2
j = aTa where a = (a1, . . . , apn)

T,
hence, the norm of α equals the Euclidean norm of the vector a. Define the robust
sieve estimators of the principal components as⎧⎪⎪⎨⎪⎪⎩

φ̂SI,1 = arg max
α∈Spn

sn(α),

φ̂SI,m = arg max
α∈B̂n,m

sn(α), 2 ≤ m,
(3.8)

where B̂n,m = {α ∈ Spn : 〈α, φ̂SI,j 〉 = 0,∀1 ≤ j ≤ m − 1}, and let the principal
value estimators be

λ̂SI,m = s2
n(φ̂SI,m).(3.9)

Some of the frequently used bases for functional data are the Fourier, polynomial,
spline and wavelet bases; see, for instance, Ramsay and Silverman (2005).

To the best of our knowledge, the above sieve approach is new to functional
principal component analysis, even if one considers the classical sieve estimators,
that is, when σR in (3.8) is the standard deviation.
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3.4. A unified formulation for the robust projection pursuit approaches. To
help formulate a unified approach to the different estimators considered in Sections
3.2, 3.2 and 3.3, let the products ρ�(α) or τ�(α) be defined as 0 when ρ = 0 or
τ = 0, respectively, even when α /∈ HS for which case �(α) = ∞. Moreover, when
pn = ∞, define Hpn = H. All the projection pursuit estimators considered in the
previous subsections then can be viewed as special cases of the following general
class of estimators:⎧⎪⎪⎨⎪⎪⎩

φ̂1 = arg max
α∈Hpn ,‖α‖τ =1

{s2
n(α) − ρ�(α)},

φ̂m = arg max
α∈B̂m,τ

{s2
n(α) − ρ�(α)}, 2 ≤ m,

(3.10)

where B̂m,τ = {α ∈ Hpn :‖α‖τ = 1, 〈α, φ̂j 〉τ = 0,∀1 ≤ j ≤ m − 1}.
With this definition and by taking pn = ∞, the raw estimators are obtained

when ρ = τ = 0, while φ̂PN,m and φ̂PS,m correspond to ρ = 0 and τ = 0, respec-
tively. On the other hand, the sieve estimators correspond a finite choice for pn and
τ = ρ = 0.

4. Consistency results. In this section, we show that under mild conditions
the functionals φR,m(P ) and λR,m(P ) defined through (3.1) and (3.2) are weakly
continuous. Moreover, we state conditions that guarantee the consistency of the es-
timators defined in Section 3. Proofs for this section can be found in the Appendix
and in the supplemental article [Bali et al. (2011a)].

To derive the consistency of the proposed estimators, we need the following
assumptions:

(S0) For some q ≥ 2 and 1 ≤ j ≤ q , φR,j (P ) are unique up to a sign change.
(S1) σ : H → R is a weakly continuous function, that is, continuous with re-

spect to the weak topology in H.
(S2) sup‖α‖=1|s2

n(α) − σ 2(α)| a.s.−→ 0.

Note that condition (S0) holds if and only if λR,1(P ) > · · · > λR,q+1(P ).

Some remarks. (i) (S1) holds when the scale functional σR is a continuous func-
tional (with respect to the weak topology under the Prohorov distance). This is
because αk converges weakly to α, which implies 〈αk,X〉 ω−→ 〈α,X〉 and hence
σR(P [αk]) → σR(P [α]). For the case when the scale functional is the standard de-
viation, and the underlying probability P has a compact covariance operator �X ,
we see from the relationship σ 2(α) = 〈α,�Xα〉 that condition (S1) holds, even
though the standard deviation itself is not a weakly continuous functional.

(ii) Since there exists a metric d generating the weak topology in H and that
the closed ball Vr = {α :‖α‖ ≤ r} is weakly compact, we see that (S1) implies that
σ(α) is uniformly continuous with respect to the metric d and hence, with respect
to the weak topology, over Vr .
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(iii) Assumption (S2) holds for the classical estimators based on the sample
variance since the empirical covariance operator, �̂, is consistent in the unit ball.
Indeed, as shown in Dauxois, Pousse and Romain (1982), ‖�̂ −�X‖ a.s.−→ 0, which
entails that sup‖α‖=1|s2

n(α) − σ 2(α)| ≤ ‖�̂ − �X‖ a.s.−→ 0. However, this assump-
tion may seem harder to verify for other scale functionals since the unit sphere
S = {‖α‖ = 1} is not compact, and s2

n(α) is usually not defined through a covari-
ance operator estimator. To be more precise, even under some conditions to be con-
sidered in Section 5, there exists a compact operator � such that σ(α) = 〈α,�α〉,
s2
n(α) cannot be expressed as 〈α,�nα〉 for some consistent estimator �n of �.

Corollary 6.1 in Section 6 establishes that (S2) holds for any scale functional σR

that is continuous with respect to the weak topology.
The following lemma, whose proof can be found in Section B of the technical

supplemental article given in Bali et al. (2011a), is useful for deriving the consis-
tency and continuity of the principal direction estimators. In this lemma and in the
subsequent theorems, it should be noted that 〈φ̂, φ〉2 → 1 implies, under the same
mode of convergence, that the sign of φ̂ can be chosen so that φ̂ → φ.

For the sake of simplicity, denote by λR,j = λR,j (P ) and φR,j = φR,j (P ).

LEMMA 4.1. Let φ̂m ∈ S be such that 〈φ̂m, φ̂j 〉 a.s.−→ 0 for j = m and assume
that (S0) and (S1) hold. Then:

(a) If σ 2(φ̂1)
a.s.−→ σ 2(φR,1), then 〈φ̂1, φR,1〉2 a.s.−→ 1.

(b) Given 2 ≤ m ≤ q , if σ 2(φ̂m)
a.s.−→ σ 2(φR,m) and φ̂s

a.s.−→ φR,s , for 1 ≤ s ≤
m − 1, then 〈φ̂m,φR,m〉2 a.s.−→ 1.

Let dPR(P,Q) stand for the Prohorov distance between the probability mea-
sures P and Q. Thus, Pn

ω−→ P if and only if dPR(Pn,P ) → 0. Theorem 4.1
below establishes the continuity of the functionals defined in (3.1) and (3.2), and
hence the asymptotic robustness of the estimators derived from them, as defined
in Hampel (1971). This can be seen just by replacing almost sure convergence
by convergence in its statement. As it will be shown in Section 6, the uniform
convergence required in assumption (ii) below is satisfied, for instance, if σR is a
continuous scale functional when Pn

ω−→ P .
To accommodate data driven smoothing parameters a more general framework

is considered in Theorem 4.1, which allows for the smoothing parameters τn and
ρn to be random, such that τn

a.s.−→ 0 and ρn
a.s.−→ 0.

THEOREM 4.1. Let Pn be a sequence of probability measures and τ = τn ≥ 0,
ρ = ρn ≥ 0 be random smoothing parameters. Denote by σ 2

n (α) = σ 2
R(Pn[α]) and
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define λ̂m = σ 2
n (φ̂m) with⎧⎪⎪⎨⎪⎪⎩

φ̂1 = arg max
‖α‖τ =1

{σ 2
n (α) − ρ�(α)},

φ̂m = arg max
α∈B̂m,τ

{σ 2
n (α) − ρ�(α)}, 2 ≤ m,

(4.1)

where B̂m,τ = {α ∈ H :‖α‖τ = 1, 〈α, φ̂j 〉τ = 0,∀1 ≤ j ≤ m− 1}. Let P be a prob-
ability measure satisfying (S0). Assume that:

(i) (S1) holds;
(ii) sup‖α‖=1|σ 2

n (α) − σ 2
R(P [α])| a.s.−→ 0;

(iii) τn
a.s.−→ 0 and ρn

a.s.−→ 0;
(iv) moreover, if τn > 0 or ρn > 0, for all n ≥ n0, assume that φR,j ∈ HS, that

is, �(φR,j ) < ∞, for all 1 ≤ j ≤ q .

Then:

(a) λ̂1
a.s.−→ λR,1 and σ 2(φ̂1)

a.s.−→ σ 2(φR,1). Moreover, ρ�(φ̂1)
a.s.−→ 0 and

τ�φ̂1, φ̂1� a.s.−→ 0, and so ‖φ̂1‖ a.s.−→ 1;

(b) 〈φ̂1, φR,1〉2 a.s.−→ 1;
(c) for any 2 ≤ m ≤ q , if φ̂�

a.s.−→ φR,�, τ�(φ̂�)
a.s.−→ 0 and ρ�(φ̂�)

a.s.−→ 0 for

1 ≤ � ≤ m − 1, then λ̂m
a.s.−→ σ 2(φR,m) and σ 2(φ̂m)

a.s.−→ σ 2(φR,m). Moreover,
ρ�(φ̂m)

a.s.−→ 0, τ�(φ̂m)
a.s.−→ 0 and so, ‖φ̂m‖ a.s.−→ 1;

(d) for 1 ≤ m ≤ q , 〈φ̂m,φR,m〉2 a.s.−→ 1.

Note that assumption (ii) corresponds to (S2) when Pn is the empirical probabil-
ity measure. On the other hand, when σR(·) is a continuous scale functional, Theo-
rem 6.2 implies that (ii) holds whenever dPR(Pn,P )

a.s.−→ 0. Moreover, if σR(·) is a
continuous scale functional and P satisfies (S0), Theorem 4.1 entails the continu-
ity of the functionals φR,j (·) and λR,j (·) at P , for 1 ≤ j ≤ q , and so the proposed
estimators are qualitatively robust and consistent. In particular, the estimators are
robust at any elliptical distribution E (μ,�), as defined in Section 5, such that the
largest q + 1 eigenvalues of the operator � are all distinct.

Theorem 4.1 establishes the consistency of the raw estimators of the principal
components under (S0) to (S2) by taking ρ = τ = 0. It also shows that proposals
(3.5) and (3.6) give consistent estimators if φR,j ∈ HS, 1 ≤ j ≤ q . In Bali et al.
(2010), it is shown that the estimators φ̂PN,m and λ̂PN,m defined in (3.5) and (3.7)
are still consistent if φR,j ∈ HS, 1 ≤ j ≤ q , where HS stands for the closure of HS.
The condition φR,j ∈ HS generalizes the assumption of smoothness, φR,j ∈ HS,
required in Silverman (1996) and holds, for example, when HS is a dense subset
of H.

Theorem 4.2 establishes the consistency of the estimators of the principal direc-
tions defined through the sieve approach given in (3.8). Below we give a separate
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statement for the consistency of the sieve estimators to avoid imposing additional
burdensome assumptions, such as smoothness conditions for the basis elements,
whenever either τ = 0 or ρ = 0 in (3.10). Its proof is relegated to the Section C of
the technical supplement [Bali et al. (2011a)].

THEOREM 4.2. Let φ̂SI,m and λ̂SI,m be the estimators defined in (3.8) and
(3.9), respectively. Under (S0) to (S2), if pn → ∞, then:

(a) λ̂SI,1
a.s.−→ σ 2(φR,1) and σ 2(φ̂SI,1)

a.s.−→ σ 2(φR,1).
(b) Given 2 ≤ m ≤ q , if φ̂SI,�

a.s.−→ φR,�, for 1 ≤ � ≤ m − 1, then λ̂SI,m
a.s.−→

σ 2(φR,m) and σ 2(φ̂SI,m)
a.s.−→ σ 2(φR,m).

(c) For 1 ≤ m ≤ q , 〈φ̂SI,m,φR,m〉2 a.s.−→ 1.

5. Fisher-consistency under elliptical distributions. The results in Sec-
tion 4 ensure that, under mild conditions, the estimates of the principal directions
converge almost surely to φR,m defined in (3.1). An important point to highlight is
what the functions φR,m represent, at least in some particular situations. This sec-
tion focuses on showing that, for the functional elliptical families defined in Bali
and Boente (2009), the functionals φR,m(P ) and λR,m(P ) have a simple interpre-
tation. In particular, our results hold for the functional elliptical family, but are not
restricted to it. We recall here their definition for the sake of completeness.

Let X be a random element in a separable Hilbert space H and μ ∈ H. Let
� : H → H be a self-adjoint, positive semidefinite and compact operator. We
will say that X has an elliptical distribution with parameters (μ,�), denoted as
X ∼ E (μ,�), if for any linear and bounded operator A : H → R

d , AX has a
multivariate elliptical distribution with parameters Aμ and A�A∗, that is, AX ∼
Ed(Aμ,A�A∗), where A∗ : Rp → H stands for the adjoint operator of A. As in
the finite-dimensional setting, if the covariance operator, �X , of X exists, then
�X = a�, for some a ∈ R.

The elliptical distributions in H include the Gaussian distributions. Other el-
liptical distributions can be obtained from the following construction. Let V1 be
a Gaussian element in H with zero mean and covariance operator �V1 , and let
Z be a random variable independent of V1. Given μ ∈ H, define X = μ + ZV1.
Then, X has an elliptical distribution E (μ,�) with the operator � being propor-
tional to �V1 . Note that � exist even if the second moment of X do not exist.
For random elements which admit a finite Karhunen–Loève expansion, that is,
X(t) = μ(t)+∑q

j=1 λ
1/2
j Ujφj (t), the assumption that X has an elliptical distribu-

tion is analogous to assuming that U = (U1, . . . ,Uq)
T has a spherical distribution.

Lemma 5.1 below states the Fisher-consistency of the functionals defined
through (3.1) under the following assumption:

(S3) There exists a constant c > 0 and a self-adjoint, positive semidefinite and
compact operator �0, such that for any α ∈ H, we have σ 2(α) = c〈α,�0α〉.
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Its proof follows immediately and is thus omitted. Note that (S3) entails that the
function σ : H → R defined as σ(α) = σR(P [α]) is weakly continuous, hence (S1)
holds. Besides, as a consequence of Lemma 5.1, (S0) holds under (S3) if the q

largest eigenvalues of �0 are distinct.

LEMMA 5.1. Let φR,m and λR,m be the functionals defined in (3.1) and (3.2),
respectively. Let X ∼ P be a random element such that (S3) holds. Denote by λ1 ≥
λ2 ≥ · · · the eigenvalues of �0 and by φj the eigenfunction of �0 associated to λj .
Assume that for some q ≥ 2, and for all 1 ≤ j ≤ q , λ1 > λ2 > · · · > λq > λq+1.
Then, we have that φR,j (P ) = φj and λR,j (P ) = cλj .

For any distribution possessing finite second moments, if the scale functional is
taken to be the standard deviation, then (S3) holds with �0 = �X . When consider-
ing a robust scale functional, (S3) holds if X has an elliptical distribution E (μ,�)

taking �0 = �, and so Lemma 5.1 entails that the functionals φR,j (P ) defined
through (3.1) are Fisher-consistent. As in the finite-dimensional setting, the scale
functional σR can be calibrated to attain Fisher-consistency of the principal values.

Assumption (S3) ensures that we are estimating the target directions. It may
seem restrictive since it is difficult to verify outside the family of elliptical distri-
butions except when the scale is taken to be the standard deviation. However, even
in the finite-dimensional case, asymptotic properties have been derived only under
similar restrictions when considering projection-pursuit estimators. For instance,
both Li and Chen (1985) and Croux and Ruiz-Gazen (2005) assume an underlying
elliptical distribution in order to obtain consistency results and influence functions,
respectively. Also, in Cui, He and Ng (2003) the influence function of the projected
data is assumed to be of the form h(x,a) = 2σ(F [a]) IF(x, σa;F0), where F [a]
stands for the distribution of aTx when x ∼ F . This condition, though, primarily
holds when the distribution is elliptical.

REMARK 5.1. An alternative to the robust projection pursuit approach for
functional principal components is to consider the spectral value decomposition of
a robust covariance or scatter operator. The spherical principal components, noted
in the Introduction, which were proposed by Locantore et al. (1999) and further
developed by Gervini (2008), apply this approach using the spatial covariance op-
erator. The spatial covariance operator is defined to be

V = E
(
(X − η) ⊗ (X − η)/‖X − η‖2)

with η being the spatial median, that is,

η = arg min
θ∈H

E(‖X − θ‖ − ‖X‖).(5.1)

The spatial median is sometimes referred to as the multivariate L1 median, but this
is a misnomer since the the norm in (5.1) is the L2 norm. Note that when the norm
is replaced by the square of the norm in (5.1), the resulting parameter is the mean.
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Gervini (2008) proved the Fisher-consistency of the eigenfunctions of the spa-
tial covariance operator, but under the additional assumption that X has a finite
Karhunen–Loève expansion so that V has only a finite number of nonzero eigen-
values, which is essentially the multivariate setting. Unlike the projection pursuit
approach, though, under an elliptical model the eigenvalues of V are not propor-
tional to the eigenvalues of the shape parameter �. Consequently, as discussed,
for example, in Marden (1999), Boente and Fraiman (1999) and Visuri, Koivunen
and Oja (2000), this implies that even if the second moments exist, the amount of
variance explained by a principal component variable is not equivalent to the ratio
of the eigenvalue to the sum of all the eigenvalues. That is, λ̃k/

∑∞
j=1 λ̃j is not the

same as the explained proportion λk/
∑∞

j=1 λj , where λ̃k and λk are the kth largest
eigenvalue of V and � respectively.

In the multivariate setting, it is also known that the eigenvectors obtained from
the sample spatial covariance matrix can be extremely inefficient estimates when-
ever the eigenvalues differ greatly; see Croux (1999). Intuitively, the reason for
this inefficiency is that the spatial covariance matrix down-weights observations
according to their Euclidean distance from the center. This seems reasonable when
the distribution is close to being spherical, but less so when there are strong de-
pendencies in the variables. In some sense, this is the antithesis of PCA, since one
is usually interested in principal components when one suspects the latter.

As noted in Maronna, Martin and Yohai (2006), there is a vast literature on
robust estimates for covariance matrices, such as M-estimates, S-estimates and
the MCD, among others. These estimates downweight observations relative to the
shape of the data cloud. It may seem reasonable then to try to extend these esti-
mates to the functional setting. An important feature of these estimates, though,
is that they are affine equivariant, and as shown in Tyler (2010), this implies that,
when the sample size is no greater than the dimension plus one, such estimates are
simply proportional to the sample covariance matrix. In the functional data setting,
the sample size is always less than the dimension, which is infinite. Thus, at this
time, we view the robust projection-pursuit approach as more viable.

6. Some uniform convergence results. In this section, we show that when
the scale functional is continuous with respect to the Prohorov distance, (S2) and
more generally, condition (ii) in Theorem 4.1 hold whenever Pn

ω−→ P . To derive
these results, we will first state some properties regarding the weak convergence of
empirical measures that hold not only in L2(I) but in any complete and separable
metric space. These properties may be useful in other settings. The proofs for the
theorems in this section are relegated to Section D of the supplemental article [Bali
et al. (2011a)].

Let M be a complete and separable metric space (Polish space) and B the Borel
σ -algebra of M. Lemma 6.1, which is a restatement of Theorem 3 in Varadarajan
(1958), ensures that the empirical measures converge weakly almost surely on a
Polish space to the probability measure generating the observations.
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LEMMA 6.1. Let (�, A,P) be a probability space and Xn :� → M, n ∈ N,
be a sequence of independent and identically distributed random elements such
that Xi ∼ P . Assume that M is a Polish space, and denote by Pn the the empirical
probability measure, that is, Pn(A) = (1/n)

∑n
i=1 IA(Xi) with IA(Xi) = 1 if Xi ∈

A and 0 elsewhere. Then, Pn
ω−→ P almost surely, that is, dPR(Pn,P )

a.s.−→ 0.

Let P be a probability measure in M, a separable Banach space, and let M∗
denote the dual space. For a given f ∈ M∗, define P [f ] as the real measure of the
random variable f (X), with X ∼ P .

THEOREM 6.1. Let {Pn}n∈N and P be probability measures defined on M
such that dPR(Pn,P ) → 0. Then, sup‖f ‖∗=1 dPR(Pn[f ],P [f ]) → 0.

When the Banach space M above is a separable Hilbert space H, the Riesz
representation theorem implies that for f ∈ H∗ with ‖f ‖∗ = 1, there exists α ∈ H
such that f (X) = 〈α,X〉. The following result states that when σR is a continuous
scale functional, uniform convergence can be attained and so, assumption (ii) in
Theorem 4.1 is satisfied.

THEOREM 6.2. Let {Pn}n∈N and P be probability measures defined on a sep-
arable Hilbert space H, such that dPR(Pn,P ) → 0. Let σR be a continuous scale
functional. Then, sup‖α‖=1 |σR(Pn[α]) − σR(P [α])| −→ 0.

Using Lemma 6.1 and Theorem 6.2, we get the following result that shows that
(S2) holds if σR is a continuous scale functional.

COROLLARY 6.1. Let P be a probability measure in a separable Hilbert
space H, Pn be the empirical measure of a random sample X1, . . . ,Xn

with Xi ∼ P , and σR be a continuous scale functional. Then we have that
sup‖α‖=1|σR(Pn[α]) − σR(P [α])| a.s.−→ 0.

7. Selection of the smoothing parameters. The selection of the smoothing
parameters is an important practical issue. The most popular general approach to
address such a selection problem is to use the cross-validation methods. In non-
parametric regression, the sensitivity of L2 cross-validation methods to outliers
has been pointed out by Wang and Scott (1994) and by Cantoni and Ronchetti
(2001), among others. The latter also proposed more robust alternatives to L2

cross-validation. The idea of robust cross-validation can be adapted to the present
situation. Assume for the moment that we are interested in a fixed number, �, of
components. We propose to proceed as follows:

(CV1) Center the data. That is, define X̃i = Xi − μ̂ where μ̂ is a robust location
estimator, such as the functional spatial median defined in Gervini (2008).
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(CV2) For the penalized roughness approaches and for each m in the range
1 ≤ m ≤ � and τ > 0, let φ̂

(−j)
m,τ denote the robust estimator of the mth principal

direction computed without the j th observation.
(CV3) Define X⊥

j (τ ) = X̃j − π(X̃j ; L̂(−j)
� ), for 1 ≤ j ≤ n, where π(X; L)

stands for the orthogonal projection of X onto the linear (closed) space L, and
L̂(−j)

� stands for the linear space spanned by φ̂
(−j)
1,τ , . . . , φ̂

(−j)
�,τ .

(CV4) Let RCV�(τ ) = σ 2
n (‖X⊥

1 (τ )‖, . . . ,‖X⊥
n (τ )‖), where σn is a robust mea-

sure of scale about zero. We then choose τn to be the value of τ which minimizes
RCV�(τ ).

By a robust measure of scale about zero, we mean that no location estima-
tor is applied to center the data. For instance, in the classical setting, one takes
σ 2

n (z1, . . . , zn) = (1/n)
∑n

i=1 z2
i , while in the robust situation, one might choose

σn(z1, . . . , zn) = median(|z1|, . . . , |zn|) or to be an M-estimator satisfying equa-
tion (2.3) when setting μ̂n = 0.

For large sample sizes, it is well understood that cross-validation methods can
be computationally prohibitive. In such cases, K-fold cross-validation provides
a useful alternative. In the following, we briefly describe a robust K-fold cross-
validation procedure suitable for our proposed estimates.

(K1) First center the data as above, using X̃i = Xi − μ̂.
(K2) Partition the centered data set {X̃i} randomly into K disjoint subsets of

approximately equal sizes with the j th subset having size nj ≥ 2,
∑K

j=1 nj = n.

Let {X̃(j)
i }1≤i≤nj

be the elements of the j th subset, and {X̃(−j)
i }1≤i≤n−nj

denote

the elements in the complement of the j th subset. The set {X̃(−j)
i }1≤i≤n−nj

will be

the training set and {X̃(j)
i }1≤i≤nj

the validation set.
(K3) Similar to step (CV2) but with leaving the j th validation subset

{X̃(j)
i }1≤i≤nj

out instead of the j th observation.

(K4) Define X
(j)⊥
j (τ ) the same way as in step (CV3), using the validation set.

For instance, X
(j)⊥
i (τ ) = X̃

(j)
i − π(X̃

(j)
i ; L̂(−j)

� ), 1 ≤ i ≤ nj , where L̂(−j)
� stands

for the linear space spanned by φ̂
(−j)
1,τ , . . . , φ̂

(−j)
�,τ .

(K5) Let RCV�,KCV(τ ) = ∑K
j=1 σ 2

n (‖X(j)⊥
1 (τ )‖, . . . ,‖X(j)⊥

nj (τ )‖), and choose
τn to be the value of τ which minimizes RCV�,KCV(τ ).

A similar approach can be developed to choose pn for the sieve estimators.

8. Monte Carlo study. The results of Section 4 established under general
conditions the consistency of the various robust projection pursuit approaches to
functional principal components analysis. The classical approach to functional
principal components analysis also yields consistent estimates, provided second
moment exists. A study of the influence functions and the asymptotic distributions
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of the various procedures would be useful to compare them. We leave these im-
portant and challenging theoretical problems for future research. For now, to help
illuminate possible differences in the various approaches, we present in this section
the results of a Monte Carlo study.

8.1. Algorithms. All the computational methods to be considered here are
modifications of the basic CR algorithm proposed by Croux and Ruiz-Gazen
(1996) for the computation of principal components using projection-pursuit. The
basic algorithm applies to multivariate data, say m-dimensional, and requires a
search over projections in R

m. The GRID algorithm described in Croux, Filzmoser
and Oliveira (2007) can also be considered, in particular, when the number of vari-
ables m is larger than the sample size n. For the sake of completeness, we briefly
recall the CR algorithm.

Let Y = (y1, . . . ,yn) be the sample in R
m, and let μ̂n(Y) be a location estimate

computed from this sample. Let 1 ≤ q ≤ m be the desired number of components
to be computed and denote by ξn the univariate projection index to be maximized.
In the multivariate setting, the index ξn corresponds to a robust univariate scale
statistic.

(CR1) For k = 1, set y(1)
i = yi − μ̂n(Y). Let the set of candidate directions

for the first principal direction be An,1(Y) = {y(1)
i /νi,1 ≤ i ≤ n} where ν2

i =
y(1)
i

T
y(1)
i . We then define v1 = arg maxa∈An,1(Y) ξn(aTy1, . . . ,aTyn).

(CR2) For 2 ≤ k ≤ q , define recursively z
(k−1)
i = vT

k−1yi and y(k)
i = y(k−1)

i −
z
(k−1)
i vk−1 = y(1)

i − πVk−1(y
(1)
i ), where πVk−1(y) stands for the orthogonal projec-

tion of y over the linear space Vk−1 spanned by v1, . . . ,vk−1. Let the set of can-
didate directions for the kth principal direction be An,k(Y) = {y(k)

i /νi,1 ≤ i ≤ n}
where ν2

i = y(1k)
i

T
y(k)
i , and define vk = arg maxa∈An,k(Y) ξn(aTy1, . . . ,aTyn).

The vectors vk then yield approximations to the kth principal direction, for 1 ≤ k ≤
q , and approximate scores for the kth principal variable are given by z

(k)
i = vT

k yi ,
for 1 ≤ i ≤ n. As mentioned in Croux and Ruiz-Gazen (1996), the CR algorithm
makes no smoothness assumptions on the index ξn, is simple and fast, and requires
only O(n) computing space.

To apply the algorithm to functional data when considering either the raw or a
penalized approach, we first discretize the domain of the observed function over
m equally spaced points in I = [−1,1]. The resulting multivariate observations
are then yi = (Xi(t1), . . . ,Xi(tm))T, where t0 = −1 < t1 < · · · < tm < tm+1 = 1.
The index ξn in the algorithm depends on the approach being used. For instance,
for the raw robust estimate and for those penalizing the norm the index is a ro-
bust scale. On the other hand, for the robust penalized scale approach the index is
the square of the robust scale plus the penalization term. Also, for the penalized
norm approach the orthogonal projection πVk−1(y) in step (CR2) is with respect to
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the inner product 〈·, ·〉τ so, the finite-dimensional inner product is modified as in
Silverman (1996). The resulting directions vk then give numerical approximations
for {φ̂k(t1), . . . , φ̂k(tm)}. One can then interpolate or use smoothing methods to
obtain φ̂k(t) for t ∈ I .

For the sieve approach, let δ̃1, . . . , δ̃pn be an orthonormal basis for Hpn , which
can be obtained by using Gramm–Schmidt on the original basis. For α ∈ Hpn ,
we then have 〈α,Xi〉 = aTyi , where α = ∑pn

j=1 aj δ̃j , a = (a1, . . . , apn)
T, yi =

(〈Xi, δ̃1〉, . . . , 〈Xi, δ̃pn〉)T. Consequently, we can take m = pn and apply the CR

algorithm to the inner scores yi . The inner scores are computed numerically by
approximating the integrals over a grid of 50 points. A numerical approximation
for φ̂k(t) is then given by

∑pn

j=1 vk,j δ̃j (t) with vk = (vk,1, . . . , vk,pn)
T.

8.2. The estimators. There are three main characteristics that distinguish the
different estimators: the method of centering in the first step of the CR algorithm,
the scale function being used and the type of smoothing method.

Centering: For classical procedures, that is, those based on the standard devi-
ation, we use the sample mean as the centering point for the trajectories. For the
robust procedures, that is, those based on MAD or M -SCALE, we center the data
by using either (i) the component-wise sample median, that is, the median at each
time point, or (ii) the sample spatial median; see (5.1). It turns out that the two ro-
bust centering methods produced similar results, so only the results for the spatial
median are reported.

Scale function: Three scale estimators are considered here: the classical standard
deviation (SD), the median absolute deviation (MAD) and an M-estimator of scale
(M -SCALE). For the M-estimator, we use the score function (2.4) introduced by
Beaton and Tukey (1974), as discussed in Section 2.2, with c = 1.56, δ = 1/2.

Smoothing parameters τ and ρ: For both the classical and robust procedures de-
fined in Section 3.2, a penalization depending on the L2 norm of the second deriva-
tive, multiplied by a smoothing factor, is included, that is, �(α) = ∫ 1

−1(α
′′(t))2 dt .

Again the integral is computed over the same grid of points t1, . . . , tm, and the sec-
ond derivative of α at ti is approximated by {α(ti+1) − 2α(ti) + α(ti−1)}/(ti+1 −
ti)

2, since we choose an equidistant grid of points. Note that when ρ = τ = 0, the
raw estimators defined in Section 3.1 are obtained.

Sieve: Two different sieve basis are considered: the Fourier basis obtained by
taking δj to be the Fourier basis functions, and the cubic B-spline basis functions.
The Fourier basis used in the sieve method is the same basis used to generate the
data.

In all tables, the estimators corresponding to each scale choice are labeled as SD,
MAD, M -SCALE. For each scale, we consider four estimators, the raw estimators
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where no smoothing is used, the estimators obtained by penalizing the scale func-
tion defined in (3.6), those obtained by penalizing the norm defined in (3.5) and
the sieve estimators defined in (3.8). In all tables, as in Section 3, the j th principal
direction estimators related to each method are labeled as φ̂RAW,j , φ̂PS,j , φ̂PN,j

and φ̂SI,j , respectively.
When using the penalized estimators, several values for the penalizing param-

eters τ and ρ were chosen. Since large values of the smoothing parameters make
the penalizing term the dominant component regardless of the amount of contam-
ination considered, we choose τ and ρ equal to an−α for α = 3 and 4 and a equal
to 0.05, 0.10, 0.25, 0.5, 0.75, 1, 1.5 and 2.

For the sieve estimators based on the Fourier basis, ordered as {1, cos(πx),
sin(πx), . . . , cos(qnπx), sin(qnπx), . . .}, the values pn = 2qn with qn = 5, 10 and
15 are used, while for the sieve estimators based on the B-splines, the dimension of
the linear space considered is selected as pn = 10, 20 and 50. The basis for the B-
splines is generated from the R function cSplineDes, with the knots being equally
spaced in the interval [−1,1] and the number of knots equal to pn +1. To conserve
space, we only report here the results corresponding to pn = 30 and pn = 50 for
the Fourier and B-spline basis, respectively. More extensive simulation results are
listed in the technical report [Bali et al. (2010)].

8.3. Simulation settings. The sample was generated using a finite Karhunen–
Loève expansion with the functions, φi : [−1,1] → R, i = 1,2,3, where φ1(x) =
sin(4πx), φ2(x) = cos(7πx) and φ3(x) = cos(15πx). It is worth noticing that,
when considering the sieve estimators based on the Fourier basis, the third com-
ponent cannot be detected when qn < 15, since in this case φ3(x) is orthogonal
to the estimating space. Likewise, the second component cannot be detected when
qn < 7.

We performed NR = 1,000 replications generating independent samples
{Xi}ni=1 of size n = 100 following the model Xi = Zi1φ1 + Zi2φ2 + Zi3φ3, where
Zi = (Zi1,Zi2,Zi3)

T are independent vectors whose distribution will depend on
the situation to be considered. The central model, denoted C0, corresponds to
Gaussian samples. We also consider four contaminations of the central model, la-
beled C2, C3,a , C3,b and C23 depending on the components to be contaminated.
Contamination models are commonly considered in robust statistics since they
tend be the more difficult models to be robust against and are the basis for the
concept of bias robustness, see Maronna, Martin and Yohai (2006) for further dis-
cussion. In all these situations Zi1,Zi2 and Zi3 are also independent. For each
of the models, we took σ1 = 4, σ2 = 2 and σ3 = 1. The central model and the
contaminations can be described as follows:

C0: Zi1 ∼ N(0, σ 2
1 ), Zi2 ∼ N(0, σ 2

2 ) and Zi3 ∼ N(0, σ 2
3 ).

C2: Zi2 are independent and identically distributed as 0.8N(0, σ 2
2 ) + 0.2N(10,

0.01), while Zi1 ∼ N(0, σ 2
1 ) and Zi3 ∼ N(0, σ 2

3 ). This contamination corresponds
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to a strong contamination on the second component and changes the mean value of
the generated data Zi2 and also the first principal component. Note that var(Zi2) =
19.202.

C3,a : Zi1 ∼ N(0, σ 2
1 ), Zi2 ∼ N(0, σ 2

2 ) and Zi3 ∼ 0.8N(0, σ 2
3 ) + 0.2N(15,

0.01). This contamination corresponds to a strong contamination on the third com-
ponent. Note that var(Zi3) = 36.802.

C3,b: Zi1 ∼ N(0, σ 2
1 ), Zi2 ∼ N(0, σ 2

2 ) and Zi3 ∼ 0.8N(0, σ 2
3 )+0.2N(6,0.01).

This contamination corresponds to a strong contamination on the third component.
Note that var(Zi3) = 6.562.

C23: Zij are independent and such that Zi1 ∼ N(0, σ 2
1 ), Zi2 ∼ 0.9N(0, σ 2

2 ) +
0.1N(15,0.01) and Zi3 ∼ 0.9N(0, σ 2

3 )+0.1N(20,0.01). This contamination cor-
responds to a mild contamination on the last two components. Note that var(Zi2) =
23.851 and var(Zi3) = 36.901.

We also include a long-tailed model, namely a Cauchy model, labeled CCauchy,
which is defined by taking Zi ∼ C3(0,�) with � = diag(σ 2

1 , σ 2
2 , σ 2

3 ), where
Cp(0,�) stands for the p-dimensional elliptical Cauchy distribution centered at
0 with scatter matrix �. For this situation, the covariance operator does not exist,
and thus the classical principal components are not defined.

It is worth noting that the directions φ1, φ2 and φ3 correspond to the classical
principal components for the case C0, but not necessarily for the other cases. For
instance, when σ 2

R = VAR, C3,a interchanges the order between φ1 and φ3, that
is, φ3 = φR,1(C3,a) as defined in (3.1), and so it corresponds to the first principal
component of the covariance operator, while φ1 is the second and φ2 is the third
one.

8.4. Simulation results. For each situation, we compute the estimators of the
first three principal directions and the square distance between the true and the
estimated direction (normalized to have L2 norm 1), that is,

Dj =
∥∥∥∥ φ̂j

‖φ̂j‖ − φj

∥∥∥∥2

.

Note that all the estimators except those penalizing the norm, are such that
‖φ̂j‖ = 1. Tables 4 to 9 of the supplementary material [Bali et al. (2011b)] re-
port the means of Dj over replications, which hereafter is referred to as mean
square error. To help understand the influence of the grid size m on the estimators,
Tables 3, 4 and 5 give the mean squared errors for m = 50,100,150,250 and 250,
under C0 for various values of the penalizing parameters. As can be seen, for the
first two components some slight improvement is observed when using m = 250
as opposed to m = 50 points, but at the expense of increasing the computing time
about 2.6 fold. On the other hand, for the third principal direction, taking m = 100
compared to m = 50 reduces the mean square error by at least a half for the pe-
nalized estimators, while the gain is not so prominent for the raw estimates. The
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size m = 50 is selected for presentation in the remainder of our study since it pro-
vides a reasonable a compromise between the performance of the estimators and
the computational time.

To help understand the effect of penalization, consider Table 6. This table shows
results for the raw and penalized estimators under C0 for different choices of
the penalizing parameters. From this table, we see that a better performance is
achieved in most cases when α = 3 is used. To be more precise, the results in Ta-
ble 6 show that the best choice for φ̂PS,j is ρ = 2n−3 for all j . Note that ρ = 1.5n−3

gives fairly similar results when using the M-scale, reducing the mean squared er-
ror relative to the raw estimate by about a half and a third for j = 2 and 3, respec-
tively.

For the norm penalized estimators, φ̂PN,j , the best choice for the penalizing
parameter seems to depend upon both the component to be estimated and the scale
estimator used. For instance, when using the standard deviation, the best choice is
τ = 0.10n−3, for j = 1 and 2 while for j = 3 a smaller order is needed to obtain
an improvement over the raw estimators, with the value τ = 0.75n−4 leading to
a small gain over the raw estimators. For the robust procedures, larger values are
needed to see an advantage to using the penalized norm approach relative to the
raw estimators. For example, for j = 1, the largest reduction is observed when
τ = 2n−3 while for j = 2, the best choices correspond to τ = 0.5n−3 and τ =
0.25n−3 when using the MAD and M-scale, respectively. When using the M-scale,
a good compromise is to choose τ = 0.75n−3, which gives a reduction of around
30% and 50% for the first and second principal directions, respectively, although
smaller values of τ are again better for estimating the third component.

Based upon the above observations, we report here only the results correspond-
ing to ρ = 1.5n−3 and τ = 0.75n−3 for the penalized estimators φ̂PN,j and φ̂PS,j ,
respectively, under the contamination models and the Cauchy model. Results for
other choices of ρ and τ are given in Bali et al. (2010).

The simulation study confirms the expected inadequate behavior of the classical
estimators in the presence of outliers. Under contamination, the classical estima-
tors of the principal directions do not estimate the target directions very accurately.
This is also the case when considering the Cauchy distribution. Curiously, though,
the principal directions, under the Cauchy model, do not seem to be totally arbi-
trary and they partially recover φ1, φ2 and φ3 when the standard deviation is used,
although not as well as when using a robust scale, even though the covariance op-
erator does not exist, nor do the population principal directions as defined in (2.1).

The robust estimators of the first principal directions are not heavily affected
by any of the contaminations, while the estimates of the second and third prin-
cipal directions appear to be most affected under model C3,a . In particular, for
the third direction, the projection-pursuit estimators based on an the MAD seems
to be most affected by this type of contamination when penalizing the norm, al-
though much less so than the classical methods. With respect to the contamination
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model C3,a , the estimators φ̂PN,j , which are the robust penalized norm estima-
tors, tend to have the best performance among all the robust competitors for the
first two components, and, in particular, when using the M-scale; see Table 8. It
is worth noting that the classical estimators of the first component are not affected
by this contamination when penalizing the norm since the penalization dominates
the contaminated variances. The same phenomena is observed under C3,b when
using the classical estimators for the selected amount of penalization. For the raw
estimators, the sensitivity of the classical estimators under this contamination can
be observed in Table 7. We refer to Bali et al. (2010) for the behavior when other
values of the smoothing parameters are chosen.

As noted in Silverman (1996), for the classical estimators, some degree of
smoothing in the procedure based on penalizing the norm will give a better es-
timation of φj in the L2 sense under mild conditions. In particular, both the pro-
cedure penalizing the norm and the scale provide some improvement with respect
to the raw estimators if �(φj ) < �(φ�), when j < �. This means that the princi-
pal directions are rougher as the eigenvalues decrease [see Pezzulli and Silverman
(1993) and Silverman (1996)], which is also reflected in our simulation study. The
advantages of the smooth projection pursuit procedures are most striking when
estimating φ2 and φ3 with an M-scale and using the penalized scale approach.

As expected, when using the sieve estimators, the Fourier basis gives the best
performance over all the methods under C0, since our data were generated from
this basis; see Table 9. The choice of the B-spline basis give similar results quite to
those obtained with φ̂PS,j when estimating the first direction, except under CCauchy
where the penalized estimators show a better performance. For the second and third
components, the estimators obtained with the B-spline basis show larger the mean
square errors than the raw or penalized estimators.

8.5. K th fold simulation. Table 1 reports the computing times in minutes for
1,000 replications and for a fixed value of τ or ρ, run on a computer Core Quad
I7 930 (2.80 GHz) with 8 Gb of Ram memory. We also report the computing times
when using the sieve approach with the Fourier basis and a fixed value of pn. This

TABLE 1
Computing times in minutes for 1,000 replications and a fixed value

of τ , ρ or pn (when using the Fourier basis)

SD MAD M -SCALE

φ̂RAW 5.62 6.98 17.56

φ̂PS 7.75 9.00 20.18

φ̂PN 31.87 33.21 44.04

φ̂SI 0.5 5.22 16.08
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suggests that the leave-one-out cross-validation may be difficult to perform, and
so a K-fold approach is adopted instead. It is worth noticing that the robust proce-
dures based on the MAD are much faster than those based on the M-scale, so they
may be preferred in terms of computing time. However, as mentioned in Section 2,
the main disadvantage of the MAD is its low efficiency and lack of smoothness,
which is related to the discontinuity of its influence function. This is particularly
important when estimating principal components in the finite-dimensional setting,
since as it was pointed out by Cui, He and Ng (2003) and Croux and Ruiz-Gazen
(2005) the variances of some elements of the estimated principal directions may
blow up when using the MAD leading to highly inefficient estimators. As expected
and mentioned in Section 8.4, Table 6 reveals a high loss of efficiency for the MAD,
in our functional setting, for any choice of the smoothing parameter.

For the procedure which penalizes the scale or the norm, the smoothing param-
eters ρ and τ are selected using the procedure described in Section 7 with K = 4
and � = 1. Due to the extensive computing time, we have only performed 500
replications. The simulation results when penalizing the scale function, that is, for
the estimators defined through (3.6), are reported in Table 2. Under C0, when es-
timating the second and third principal directions, the robust estimators based on
the M-scale combined with a penalization in the scale clearly have smaller mean
square error than the raw estimators, while those penalizing the norm improve the
performance of the raw estimators and also that of φ̂PS,j , on the first and second
directions.

From the results in Table 2 we observe that the classical estimators are sensitive
to the contaminations in the simulation settings, and, except for contaminations in
the third component, the robust counterpart shows a clear advantage. Note that C3,b

affects more the classical estimators when the smoothing parameter is selected by
the robust K-fold cross-validation method than for the fixed values studied in the
previous section. This can be explained by the fact that contamination C3,b is a
mild contamination in the third component which has a large ‖φ′′

3‖2, and so the
classical estimators are more sensitive to it, just as the raw estimators, if smaller
values of the smoothing parameter are chosen. It is worth noticing that the penal-
ized robust estimators based on the M-scale improve the performance of the raw
estimators based on the M-scale, even under contaminations, when the penalizing
parameter is selected using the K-fold approach. This advantage is more striking
when penalizing the norm and when the two first principal components are con-
sidered.

Note that we choose � = 1, and so our focus was on the first principal compo-
nent. To improve the observed performance, a different approach should be con-
sidered, maybe by selecting a different smoothing parameter for each principal
direction.
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TABLE 2
Mean values of ‖φ̂j /‖φ̂j‖ − φj ‖2 when the penalizing parameter is selected using K-fold

cross-validation

̂φPS,j
̂φPN,j

Model Scale estimator j = 1 j = 2 j = 3 j = 1 j = 2 j = 3

C0 SD 0.0073 0.0094 0.0078 0.0075 0.0094 0.0360
MAD 0.0662 0.0993 0.0634 0.0497 0.0660 0.2573

M-scale 0.0225 0.0311 0.0172 0.0208 0.0271 0.0839

C2 SD 1.2840 1.2837 0.0043 1.2076 1.2232 0.0301
MAD 0.3731 0.3915 0.0504 0.3360 0.3770 0.2832

M-scale 0.4261 0.4286 0.0153 0.3679 0.4049 0.1607

C3,a SD 1.7840 1.8901 1.9122 1.7795 1.8861 1.9134
MAD 0.2271 0.5227 0.5450 0.0573 0.2289 0.9540

M-scale 0.2176 0.4873 0.5437 0.0257 0.1187 0.8710

C3,b SD 0.0192 0.8350 0.8525 0.0173 0.5902 0.7502
MAD 0.0986 0.3930 0.3820 0.0553 0.1417 0.5167

M-scale 0.0404 0.2251 0.2285 0.0241 0.1080 0.3174

C23 SD 1.7645 0.5438 1.6380 1.7537 0.6496 1.4305
MAD 0.2407 0.3443 0.2064 0.1414 0.2214 0.6824

M-scale 0.2613 0.3707 0.2174 0.1313 0.1870 0.5901

CCauchy SD 0.3580 0.4835 0.2287 0.2862 0.3525 0.3435
MAD 0.0788 0.1511 0.1082 0.0613 0.0855 0.3147

M-scale 0.0444 0.0707 0.0434 0.0349 0.0463 0.1465

9. Concluding remarks. In this paper, we propose robust principal compo-
nent analysis for functional data based on a projection-pursuit approach. The dif-
ferent procedures correspond to robust versions of the unsmoothed principal com-
ponent estimators, to the estimators obtained penalizing the scale and to those
obtained by penalizing the norm. A sieve approach based on approximating the
elements of the unit ball by elements over finite-dimensional spaces is also consid-
ered. In particular, the procedures based on smoothing and sieves are new. A robust
cross-validation procedure is introduced to select the smoothing parameters. Con-
sistency results are derived for the four type of estimators. Finally, a simulation
study confirms the expected inadequate behavior of the classical estimators in the
presence of outliers, with the robust procedures performing significantly better. In
particular, the procedure based on an M-scale combined with a penalization in
the norm, where the smoothing parameter is selected via a robust K-fold cross-
validation, is recommended.

Among other contributions we highlight the following:

(a) We obtain the continuity of the principal directions and eigenvalue func-
tionals, which implies the asymptotic qualitative robustness of the corresponding
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estimators. This extends the results of Li and Chen (1985) from Euclidean spaces
to infinite-dimensional Hilbert spaces, where the unit ball is not compact. Noncom-
pactness poses technical challenges which we overcome with tools from functional
analysis.

(b) Our results not only include the finite-dimensional case but also improve
upon some of the results obtained in that situation for the projection pursuit es-
timators. For example, the assumptions in Li and Chen (1985) regarding the ro-
bust scale functional are stronger than ours. Also, to derive the consistency of the
raw estimators, we only require uniform convergence over the unit ball of sn(α)

to σ(α), which holds if the scale functional σR is continuous. This improves upon
the consistency results given in Cui, He and Ng (2003), who require a uniform
Bahadur expansion for sn(α) over the unit ball.

(c) A key step in proving the continuity of the projection pursuit functional is to
show that weak convergence of probability measures over a Hilbert space implies
uniform convergence of the laws of the projections of the stochastic processes, that
is, Theorem 6.2. This uniform convergence result can be useful in other statistical
problems where projection methods are considered.

(d) The proofs for the penalized estimators include, as particular cases, the esti-
mators defined by Rice and Silverman (1991) and studied by Pezzulli and Silver-
man (1993), and those considered by Silverman (1996). Extending the results to
scale estimators other than the standard deviation required more challenging argu-
ments since, unlike the classical setting, the projection-pursuit index s2

n(α) cannot
be expressed in the simple form 〈α,�nα〉 for some compact operator �n.

APPENDIX

In this Appendix, we give the proofs of the results stated in Section 4. Some
technicalities are omitted, and we refer to the technical report [Bali et al. (2010)]
for details. Before presenting the proof, some additional notation is needed.

Denote by Lm−1 the linear space spanned by {φR,1, . . . , φR,m−1}, and let L̂m−1
be the linear space spanned by the first m − 1 estimated principal directions,
that is, by {φ̂SI,1, . . . , φ̂SI,m−1} or {φ̂1, . . . , φ̂m−1}, where it will be clear in each
case which linear space we are considering. The latter includes the situation of
the linear spaces spanned by {φ̂RAW,1, . . . , φ̂RAW,m−1}, {φ̂PS,1, . . . , φ̂PS,m−1} and
{φ̂PN,1, . . . , φ̂PN,m−1}. Finally, for any linear space L, πL : H → L stands for the
orthogonal projection onto the linear space L, which exists if L is a closed linear
space. In particular, πLm−1 , πL̂m−1

and πHpn
are well defined.

Moreover, for the sake of simplicity, denote by Tk = L⊥
k the linear space orthog-

onal to φ1, . . . , φk and by πk = πTk
the orthogonal projection with respect to the

inner product defined in H. On the other hand, let π̂τ,k be the projection onto the
linear space orthogonal to φ̂1, . . . , φ̂k in the space HS in the inner product 〈·, ·〉τ ,
that is, for any α ∈ HS, π̂τ,k(α) = α − ∑k

j=1〈α, φ̂j 〉τ φ̂j . Moreover, let T̂τ,k stand
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for the linear space orthogonal to L̂k with the inner product 〈·, ·〉τ . Thus, π̂τ,k is
the orthogonal projection onto T̂τ,k with respect to this inner product.

PROOF OF THEOREM 4.1. First note that the fact that σR is a scale functional
entails that σn(α) = ‖α‖σn(α/‖α‖). Thus from assumption (ii) and the fact that
‖α‖ ≤ ‖α‖τ , we get that

sup
‖α‖≤1

|σ 2
n (α) − σ 2(α)| a.s.−→ 0 and sup

‖α‖τ ≤1
|σ 2

n (α) − σ 2(α)| a.s.−→ 0.(A.1)

(a) To prove that λ̂1
a.s.−→ σ 2(φR,1) it is enough to show that

σ 2(φR,1) ≥ λ̂1 + oa.s.(1),(A.2)

σ 2(φR,1) ≤ λ̂1 + oa.s.(1),(A.3)

where oa.s.(1) stands for a term converging to 0 almost surely.
Note that from (A.1), we get that an,1 = σ 2

n (φ̂1) − σ 2(φ̂1)
a.s.−→ 0 and bn,1 =

σ 2
n (φR,1)−σ 2(φR,1)

a.s.−→ 0. Using that σ is a scale functional and that σ 2(φR,1) =
supα∈S σ 2(α), we obtain easily that

σ 2(φR,1) ≥ σ 2
(

φ̂1

‖φ̂1‖
)

= σ 2(φ̂1)

‖φ̂1‖2
≥ σ 2(φ̂1) = σ 2

n (φ̂1) − an,1 = λ̂1 + oa.s.(1)

concluding the proof of (A.2).
To derive (A.3), note that since φR,1 ∈ HS, ‖φR,1‖τ < ∞ and ‖φR,1‖τ ≥

‖φR,1‖ = 1, then, defining β1 = φR,1/‖φR,1‖τ , we have that ‖β1‖τ = 1, which
implies that λ̂1 = σ 2

n (φ̂1) ≥ σ 2
n (φ̂1) − ρ�(φ̂1) ≥ σ 2

n (β1) − ρ�(β1). Hence, using
that σR is a scale functional and that �(aα) = a2�(α), for any a ∈ R, we get

λ̂1 ≥ σ 2
n (β1) − ρ�(β1) = σ 2

n (φR,1) − ρ�(φR,1)

‖φR,1‖2
τ

= σ 2(φR,1) + bn,1 − ρ�(φR,1)

‖φR,1‖2
τ

.

When ρ = 0, we have defined ρ�(φR,1) = 0 and similarly when τ = 0. So from
now on, we will assume that τn > 0 and ρn > 0. Since bn,1 = oa.s.(1), ρ

a.s.−→ 0 and
τ

a.s.−→ 0, we have that ρ�(φR,1)
a.s.−→ 0 and ‖φR,1‖τ

a.s.−→ ‖φR,1‖ = 1, concluding
the proof of (A.3). Hence, λ̂1

a.s.−→ σ 2(φR,1).
From (A.1) and the fact that ‖φ̂1‖ ≤ 1, we obtain that λ̂1 − σ 2(φ̂1) = σ 2

n (φ̂1) −
σ 2(φ̂1)

a.s.−→ 0. Therefore, using that λ̂1
a.s.−→ σ 2(φR,1), we get that

σ 2(φ̂1)
a.s.−→ σ 2(φR,1).(A.4)

Moreover, the inequalities σ 2(φR,1) ≥ σ 2(φ̂1/‖φ̂1‖) ≥ σ 2(φ̂1) obtained above also
imply that

σ 2(φ̂1/‖φ̂1‖) a.s.−→ σ 2(φR,1).(A.5)
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Using that ‖φ̂1‖τ = 1, we get that τ�(φ̂1) = 1 − ‖φ̂1‖2 = 1 − σ 2(φ̂1)/σ
2(φ̂1/

‖φ̂1‖). Hence, (A.4) and (A.5) entail that τ�(φ̂1)
a.s.−→ 0.

It only remains to show that ρ�(φ̂1)
a.s.−→ 0, which follows easily from the fact

that λ̂1
a.s.−→ σ 2(φR,1), σ 2

n (φR,1)
a.s.−→ σ 2(φR,1), ρ

a.s.−→ 0 and ‖φR,1‖τ
a.s.−→ 1 since

λ̂1 ≥ σ 2
n (φ̂1) − ρ�φ̂1, φ̂1� ≥ (σ 2

n (φR,1) − ρ�φR,1, φR,1�)/‖φR,1‖2
τ .

Note that we have not used the weak continuity of σ as a function of α to
derive (a).

(b) Note that since ‖φ̂1‖τ = 1, we have that ‖φ̂1‖ ≤ 1. Moreover, from (a),
‖φ̂1‖ a.s.−→ 1. Let φ̃1 = φ̂1/‖φ̂1‖, then φ̃1 ∈ S and σ(φ̃1) = σ(φ̂1)/‖φ̂1‖. Using that
σ 2(φ̂1)

a.s.−→ σ 2(φR,1) and ‖φ̂1‖ a.s.−→ 1, we obtain that σ 2(φ̃1)
a.s.−→ σ 2(φR,1), and

thus the proof follows using Lemma 4.1.
(c) Let us show that λ̂m

a.s.−→ σ 2(φR,m). The proof will be done in several steps
by showing

sup
‖α‖τ ≤1

|σ 2(πm−1α) − σ 2
n (π̂τ,m−1α)| a.s.−→ 0,(A.6)

σ 2(φR,m) ≥ λ̂m + oa.s.(1),(A.7)

σ 2(φR,m) ≤ λ̂m + oa.s.(1).(A.8)

Note that (A.6) corresponds to an extension of assumption (ii) while (A.7) and
(A.8) are analogous to (A.2) and (A.3).

We begin by proving (A.6). Note that sup‖α‖τ ≤1|σ 2
n (πm−1α)−σ 2(π̂τ,m−1α)| ≤

sup‖α‖τ ≤1|σ 2(πm−1α)−σ 2(π̂τ,m−1α)|+sup‖α‖τ ≤1|σ 2
n (π̂τ,m−1α)−σ 2(π̂τ,m−1α)|.

Using (A.1) and the fact that if ‖α‖τ ≤ 1, then ‖π̂τ,m−1α‖τ ≤ 1, we get that the
second term on the right-hand side converges to 0 almost surely. To complete the
proof of (A.6), it remains to show that

sup
‖α‖τ ≤1

|σ 2(πm−1α) − σ 2(π̂τ,m−1α)| a.s.−→ 0.(A.9)

Using that φ̂j
a.s.−→ φR,j and that τ�(φ̂j ) = τ�φ̂j , φ̂j� a.s.−→ 0, for 1 ≤ j ≤ m − 1

and arguing as in Silverman (1996) [see Bali et al. (2010) for details], we get that,
for 1 ≤ j ≤ m − 1, sup‖α‖τ ≤1‖〈α,φR,j 〉φR,j − 〈α, φ̂j 〉τ φ̂j‖ a.s.−→ 0, entailing that

sup‖α‖τ ≤1‖π̂τ,m−1α−πm−1α‖ a.s.−→ 0. Therefore, using that σ is weakly uniformly
continuous over the unit ball, we get easily that (A.9) holds, concluding the proof
of (A.6).

As in (a), we will next show that (A.7) holds. Using again that σ is a scale
functional, we get easily that supα∈S∩Tm−1

σ 2(α) = supα∈S σ 2(πm−1α), so using

again that ‖φ̂m‖ ≤ ‖φ̂m‖τ = 1, we obtain that σ 2(φR,m) = supα∈S σ 2(πm−1α) ≥
σ 2(πm−1φ̂m/‖φ̂m‖) ≥ σ 2(πm−1φ̂m). From (A.6) and the fact that ‖φ̂m‖τ = 1, we
get that bm = σ 2(πm−1φ̂m) − σ 2

n (π̂τ,m−1φ̂m)
a.s.−→ 0, and so since π̂τ,m−1φ̂m = φ̂m
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and ‖φ̂m‖ ≤ 1, we get that σ 2(φR,m) ≥ σ 2(πm−1φ̂m) = σ 2
n (π̂τ,m−1φ̂m)+oa.s.(1) =

λ̂m + oa.s.(1), completing the proof of (A.7).
We will show now (A.8). Note that φR,m ∈ HS, so that ‖φR,m‖τ < ∞ and

‖φR,m‖τ → ‖φR,m‖ = 1. Using that σR is a scale functional, the fact that
λ̂m = σ 2

n (φ̂m) ≥ σ 2
n (φ̂m) − ρ�(φ̂m) = sup‖α‖τ =1,α∈T̂τ,m−1

{σ 2
n (α) − ρ�(α)} and

that for any α ∈ HS such that ‖α‖τ = 1 we have that ‖π̂τ,m−1α‖τ ≤ 1, we
get easily that λ̂m ≥ sup‖α‖τ =1{σ 2

n (π̂τ,m−1α) − ρ�(π̂τ,m−1α)}, and so λ̂m ≥
(σ 2

n (π̂τ,m−1φR,m) − ρ�(π̂τ,m−1φR,m))/‖φR,m‖2
τ . From (A.6) we obtain that dm =

σ 2
n (π̂τ,m−1φR,m) − σ 2(πm−1φR,m)

a.s.−→ 0. Moreover, the fact that τ
a.s.−→ 0 en-

tails that ‖φR,m‖τ
a.s.−→ ‖φR,m‖ = 1. On the other hand, using that ρ�(φ̂�)

a.s.−→ 0,
1 ≤ � ≤ m − 1, and the fact that ρ

a.s.−→ 0 implies that ρ�(φR,m) = oa.s.(1), analo-
gous arguments to those considered in Pezzulli and Silverman (1993) allow us to
show that ρ�(π̂m−1φR,m) = ρ�π̂m−1φR,m, π̂m−1φR,m� a.s.−→ 0. Hence, we get that

λ̂m ≥ σ 2(πm−1φR,m) + dm − ρ�(π̂τ,m−1φR,m)

1 + o(1)

≥ σ 2(πm−1φR,m) + dm − oa.s.(1)

1 + o(1)

= σ 2(φR,m) + oa.s.(1),

where the last equality follows from the fact that πm−1φR,m = φR,m.
Therefore, from (A.7) and (A.8), we obtain that λ̂m

a.s.−→ σ 2(φR,m).
On the other hand, (A.6) entails that λ̂m − σ 2(φ̂m) = σ 2

n (φ̂m) − σ 2(φ̂m)
a.s.−→ 0,

which together with λ̂m
a.s.−→ σ 2(φR,m) implies that σ 2(φ̂m)

a.s.−→ σ 2(φR,m).
To complete the proof of (c), it remains to show that τ�(φ̂m)

a.s.−→ 0 and
ρ�(φ̂m)

a.s.−→ 0. As in (a), we have that the following inequalities converge to
equalities:

σ 2(φR,m) ≥ σ 2
(
πm−1

φ̂m

‖φ̂m‖
)

≥ σ 2(πm−1φ̂m) = λ̂m + oa.s.(1).(A.10)

Using that σ is a scale estimator and that ‖φ̂m‖τ = 1, we get that τ�(φ̂m) =
1 − ‖φ̂m‖2 = 1 − σ 2(πm−1φ̂m)/σ 2(πm−1φ̂m/‖φ̂m‖), which together with (A.10)
entails that the second term on the right-hand side is 1 + oa.s.(1) and so,
τ�φ̂m, φ̂m� a.s.−→ 0, entailing that ‖φ̂m‖ a.s.−→ 1.

On the other hand, we also have that

λ̂m = σ 2
n (φ̂m) ≥ σ 2

n (φ̂m) − ρ�(φ̂m) ≥ σ 2(φR,m) + oa.s.(1),(A.11)

so using that λ̂m = σ 2
n (φ̂m)

a.s.−→ σ 2(φR,m), we obtain that ρ�(φ̂m)
a.s.−→ 0, con-

cluding the proof of (c).



2880 BALI, BOENTE, TYLER AND WANG

(d) We have already proved that when m = 1 the result holds. We proceed by
induction and assume that 〈φ̂�, φR,�〉2 → 1, τ�(φ̂�)

a.s.−→ 0 and ρ�(φ̂�)
a.s.−→ 0

for 1 ≤ � ≤ m − 1, to show that 〈φ̂m,φR,m〉2 → 1. Without loss of generality,
we can assume that φ̂�

a.s.−→ φR,�, for 1 ≤ � ≤ m − 1. Denote by φ̃j = φ̂j /‖φ̂j‖.

Then, for 1 ≤ � ≤ m − 1, ‖φ̂�‖ → 1, and so φ̃�
a.s.−→ φR,�. It suffices to show that

〈φR,m, φ̃m〉2 a.s.−→ 1.
Using (c) we have that σ 2(φ̂m)

a.s.−→ σ 2(φR,m) and that ‖φ̂m‖ a.s.−→ 1, and so
σ 2(φ̃m)

a.s.−→ σ 2(φR,m). The proof follows now from Lemma 4.1 if we show that
〈φ̃m, φ̃�〉 a.s.−→ 0, 1 ≤ � ≤ m − 1.

Using that τ�(φ̂�)
a.s.−→ 0, for 1 ≤ � ≤ m − 1, and that from (c) τ�(φ̂m)

a.s.−→
0 we get that τ�φ̂�, φ̂m� a.s.−→ 0 for 1 ≤ � ≤ m − 1. Therefore, the fact that
〈φ̂m, φ̂�〉τ = 0 entails that 〈φ̂m, φ̂�〉 = 〈φ̂m, φ̂�〉τ − τ�φ̂�, φ̂m� a.s.−→ 0, and so
〈φ̃m, φ̃�〉 a.s.−→ 0, concluding the proof. �
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SUPPLEMENTARY MATERIAL

Supplement A: Robust functional principal components (DOI: 10.1214/11-
AOS923SUPPA; .pdf). In this Supplement, we give the proof of some of the results
stated in Sections 4 and 6.

Supplement B: Robust functional principal components (DOI: 10.1214/11-
AOS923SUPPB; .pdf). In this Supplement, we report the results obtained in the
Monte Carlo study for the raw estimators and for the penalized ones when the
smoothing parameters are fixed.
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