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Reconsolidation or Extinction: Transcription Factor Switch
in the Determination of Memory Course after Retrieval
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In fear conditioning, aversive stimuli are readily associated with contextual features. A briefreexposure to the training context causes fear
memory reconsolidation, whereas a prolonged reexposure induces memory extinction. The regulation of hippocampal gene expression
plays akey role in contextual memory consolidation and reconsolidation. However, the mechanisms that determine whether memory will
reconsolidate or extinguish are not known. Here, we demonstrate opposing roles for two evolutionarily related transcription factors in
the mouse hippocampus. We found that nuclear factor-«B (NF-«B) is required for fear memory reconsolidation. Conversely, calcineurin
phosphatase inhibited NF-«B and induced nuclear factor of activated T-cells (NFAT) nuclear translocation in the transition between
reconsolidation and extinction. Accordingly, the hippocampal inhibition of both calcineurin and NFAT independently impaired memory
extinction, whereas inhibition of NF-kB enhanced memory extinction. These findings represent the first insight into the molecular
mechanisms that determine memory reprocessing after retrieval, supporting a transcriptional switch that directs memory toward
reconsolidation or extinction. The precise molecular characterization of postretrieval processes has potential importance to the devel-

opment of therapeutic strategies for fear memory disorders.

Introduction

In contextual associative memories, retrieval induced by reexpo-
sure to the training context without reinforcement may generate
one of two apparently competing processes, reconsolidation or
extinction. Once reactivated by a brief reexposure, memory be-
comes labile and requires reconsolidation, a process mechanisti-
cally similar to consolidation, to restabilize it in a long-term form
(Dudai and Eisenberg, 2004; Nader et al., 2000). The activation of
transcription factors, such as cAMP response element-binding
protein (CREB), activator protein 1 (AP-1), zinc fingers inducing
factor 268 (Zif268), and nuclear factor-«B (NF-«B), and the re-
sulting changes in gene expression during discrete time periods
after learning are key processes in consolidation (Alberini, 2009).
It was found that reconsolidation also requires regulation of the
gene expression (Merlo et al., 2005; Boccia et al., 2007; Lubin and
Sweatt, 2007; Mamiya et al., 2009). In contrast to reconsolidation,
prolonged reexposure to the training context induces extinction.
A body of evidence supports that the original memory is not
canceled by extinction, but its expression is temporarily inhib-
ited, returning spontaneously after a period of time (Rescorla,
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2004). The fact that extinction memory requires protein synthe-
sis during a defined time window during and/or after induction
led to the assumption that it is a new memory that consolidates as
the original one. Some experimental data suggest that extinction
consolidation requires transcription as well (Lin et al., 2003b;
Vianna et al., 2003; Mamiya et al., 2009). However, the temporary
nature of the behavioral expression of extinction points to mech-
anistic differences with the original memory consolidation. In
fact, recent studies support distinct molecular requirements,
such as the participation of protein phosphatases (Genoux et al.,
2002) and endocannabinoids (Marsicano et al., 2002; Suzuki et
al., 2004) in the consolidation of extinction, but not in the con-
solidation of the original memory. The transcription factor
NE-kB plays a key role in long-term memory consolidation
(Freudenthal and Romano, 2000; Meffert et al., 2003; Romano et
al., 2006) and reconsolidation (Merlo et al., 2005; Boccia et al.,
2007), whereas it is inhibited during extinction induction in crabs
(Merlo and Romano, 2008). In contrast, little is known about the
role of the transcription factor of activated T-cells [nuclear factor
of activated T-cells (NFAT)] in the brain, albeit the way of NFAT
activation by calcineurin has been deeply studied in other systems
(i.e., immunology). It has been shown previously that NFAT
downstream regulation is controlled in cortical or hippocampal
neurons by the L-type voltage-gated calcium channels, basal
NMDA-type glutamate receptor (NMDAR) activity, and BDNF
(Graefetal., 1999; Groth and Mermelstein, 2003), and that it also
acts as a mediator of antiapoptotic transcription in NMDA
receptor-stimulated cortical neurons (Vashishta et al., 2009). No
studies have been made on its role in learning and memory, al-
though its presence in neurons and its activation by Ca**/CaM
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(calmodulin) signal through NMDAR suggest a possible role in
neural plasticity and memory.

In contextual fear memory, there is evidence supporting gene
transcription during long-term memory extinction in amygdala
and prefrontal cortex, but not in the hippocampus, suggesting
that gene expression in the latter structure may not be involved
(Mamiya et al., 2009). Thus, the participation of transcription
factors in the consolidation of extinction is controversial and the
role of hippocampus in extinction is not well understood (Lattal
et al., 2006). Furthermore, the mechanisms that determine
whether a reactivated memory will reconsolidate or extinguish
are unknown. The study of the molecular mechanisms involved
in the point of decision between these two competing processes is
crucial, so as to understand the dynamic of memory after
reactivation.

In the present paper, we study the role of two related tran-
scription factors, NF-kB and NFAT, as well as the Ca®*/
calmodulin-dependent phosphatase 2B [calcineurin (CaN)], in
hippocampus during mouse fear memory reconsolidation and
extinction. These findings support a transcriptional switch that
directs memory reprocessing, either toward reconsolidation or
extinction.

Materials and Methods

Animals. C57BL/6 male mice, 60—70 d of age, weighting 25-30 g, were
used (La Plata University Animal Facilities, La Plata, Argentina). The
animals were individually caged and singly housed throughout the ex-
perimental procedures, with water and food ad libitum, under a 12 h
light/dark cycle (lights on at 8:00 A.M.) at a temperature of 21-22°C.
Experiments were performed in accordance with local regulations and
the National Institutes of Health (NIH) Guide for the Care and Use of
Laboratory Animals (NIH publication 80-23/96). All efforts were made to
minimize animal suffering and to reduce the number of animals used.

Surgery and injections. Mice were implanted under deep anesthesia
(ketamine and xylazine) with 23 gauge guide cannulae 1 mm dorsally to
the dorsal hippocampus, at coordinates of anterior, —1.9; lateral, *1.2;
and ventral, 1.2, in accordance with the atlas of Franklin and Paxinos
(2001). Guide cannulae were fixed to the skull with dental acrylic. Exper-
iments were performed after animal recovery and injections were admin-
istered immediately before or after context reexposure (see Results)
without anesthesia. The injection device consisted of a 30 gauge cannula
connected to a 5 ul Hamilton syringe with tubing. Initially, the infusion
device was filled with distilled water and a small air bubble was sucked
into the injection cannula, followed by the injection solution. The air
bubble allowed for visual inspection of the injection progress. The injec-
tion cannula was inserted into the guide cannula with its tip extending
beyond the guide by 1 mm to reach the dorsal hippocampus. The injec-
tions were administered during 30 s and operated by hand. The injection
cannula was removed after 60 s to avoid reflux and to allow the diffusion
of drugs. The volume of each intrahippocampal infusion was 0.5 u/side.
Different injection devices were used for drug and vehicle. After behav-
ioral procedures, the animals were injected with black ink and were de-
capitated. The brains were placed in 4% paraformaldehyde for 1 d
followed by 30% sucrose for an additional 24 h. To verify cannulae place-
ment, frozen brains were sliced using a cryostat and analyzed with a
magnifying glass. The deepest position of the needle was superimposed
on serial coronal maps. Only data from animals with cannulae located in
the intended sites were included in the analysis.

Drugs. NF-kB Decoy (double-stranded DNA oligonucleotide 5'-
GAGGGGACTTTCCCA-3'; consensus sequence in bold) and mDecoy (5'-
GAGGCGACTTTCCCA-3'; base changed underlined) (Albensi and
Mattson, 2000) were dissolved in STE solution. Decoy or mDecoy were used
at a concentration of 0.47 ug/ul and delivered 0.26 pmol per side
(Freudenthal et al.,, 2005; Boccia et al.,, 2007). 3S-[3R*[E(1S*,
35%,48%)],48*,5R*,85*,9E,12 R*,14 R*,1558%,16 R*,185*,195%,26aR*-5,6,
8,11,12,13,14,15,16,17,18,19,24,25,26,26a-Hexadecahydro-5,19-dihy-
droxy-3-[2-(4-hydroxy-3-methoxycyclohexyl)-1-methylethenyl]-14,
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16-dimethoxy-4,10,12,18-tetramethyl-8-(2-propenyl)-15,19-epoxy-3H-
pyrido[2,1-c][1,4]oxaazacyclotricosine-1,7,20,21(4 H,23H )-tetrone, mo-
nohydrate [FK-506 (FK)] (Sigma-Aldrich), was administered at a
concentration of 10 ug/ul, diluted in DMSO to deliver 6.22 nmol per
side. 11R-VIVIT cell-permeable peptide (NFAT inhibitor; Calbiochem)
was used at a concentration of 0.9 ug/ul diluted in DMSO to deliver
0.125 nmol per side. All drugs were administered bilaterally in the hip-
pocampus at 0.5 pl per side.

Apparatus and behavioral procedures. The conditioning chamber (con-
text A) was made of transparent acrylic (24.5 X 24.5 X 42 c¢m) in a
wooden box with a clear front lid. The floor of the chamber consisted of
parallel stainless-steel grid bars, each measuring 0.3 mm in diameter and
spaced 0.8 mm apart. The grid was connected to a device to deliver the
footshocks and tone presentations. Before training, the animals were
handled once a day for 2 d. Training consisted of placing the mouse in the
chamber (context A) and allowing a 2 min acclimatization period. After
this period, the mice received three trials (with an intertrial interval of 1
min) of a tone presentation (10 s, 80 dB), which coterminated with a
footshock (0.6 mA, 1 s). The mice remained in the chamber for an addi-
tional minute and were returned to their home cages. Contextual fear
conditioning during the test session was evaluated 2, 8, and 15 d after
training by placing the mice in the training environment for 5 min in the
absence of the footshock and the tone. In all experiments, the animals
were also tested to the tone (cued fear conditioning) 1 d after the first
contextual test, day 4. This test was performed by presenting the same
tone used in training session, but in a modified chamber (context B).
Most of the contextual cues present in the training context were changed
(white floor, semicircular green walls, vanilla odor, different chamber
and room light intensity, and absence of background noise). The tone
was presented for 4 min after a baseline period of 2 min to evaluate
pretone freezing. Each test was videotaped to calculate freezing.

Memory was assessed and expressed as the percentage of time that the
mice spent freezing, which is commonly used as an index of fear in mice.
Freezing was defined as the absence of all movements except those related
to breathing. Freezing was scored according to an instantaneous time-
sampling procedure in which each animal was observed every 5 s in a
300 s testing period in the case of contextual test (60 measures). In the
case of cued test, freezing was evaluated every 5 s in both pretone period
(120 s) and tone period (240 s).

Nuclear and cytosolic extracts. The mice were killed by cervical disloca-
tion at different intervals after context reexposure (see Results). The
brains were rapidly removed, and both hippocampi were dissected ac-
cording to the method of Glowinski and Iversen (1966). To obtain nu-
clear extracts, tissues were homogenized in 250 ul of buffer A (10 mm
HEPES, pH7.9, 10 mm KCl, 1.5 mMm MgCl,, l mm DTT, 1 pug/ml pepstatin
A, 10 ug/mlleupeptin, 0.5 mm PMSF, and 10 ug/ml aprotinin) with eight
strokes in a Dounce homogenizer, type B pestle. The homogenate was
centrifuged for 15 min at 1000 X g. The supernatant (cytosolic extract)
was kept at —80°C until used. The pellet was resuspended in 30 ul of
buffer B (20 mm HEPES, pH 7.9, 800 mm KCI, 1.5 mm MgCL,, 0.4 mm
EDTA, 0.5 mm DTT, 50% glycerol, 1 ug/ml pepstatin A, 10 ug/ml leu-
peptin, 0.5 mm PMSF, and 10 ug/ml aprotinin) and incubated for 20 min
on ice. A centrifugation for 15 min at 12,000 X g was then performed.
The supernatant (nuclear extract) was stored at —80°C until used. The
entire extraction protocol was performed at 4°C.

Determination of DNA-binding activity by gel shift assay. DNA binding
activity of NF-«B in nuclear fractions was assessed using gel shift assays
[electrophoretic mobility shift assay (EMSA)]. An aliquot of 1.75 pmol of
double-stranded DNA oligonucleotide containing the NF-«B binding
site (5'-AGTTGAGGGGACTTTCCCAGGC-3'; binding site in bold)
(Promega) was labeled at 37°C for 10 min in 10 pl of reaction buffer
containing 70 mm Tris-HCI, 10 mm MgCl,, 5 mm DTT, 15 uCi of [y-
*2P]ATP (PerkinElmer Life and Analytical Sciences) and 10 U of T4
polynucleotide kinase (Promega). DNA—protein binding was performed
in 20 pl containing 20 mm HEPES, pH 7.9, 120 mm KCl, 0.4 mm EDTA,
0.5 mm DTT, 25% glycerol, and 10 ug of protein extract. The samples
were incubated for 40 min at 0°C and 1 ng of labeled oligonucleotide
DNA probe was added followed by incubation for another 40 min at 0°C.
The reaction mixture was then electrophoresed on a 6% non-denaturing
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polyacrylamide gel in 0.25% TBE (22.3 mm Tris, 22.3 mM boric acid, 0.5
mM EDTA) for 2 h at 160 V. The gel was vacuum-dried and exposed
overnight to XAR-5 film (Kodak). The relative optical density (ROD) of
the first band corresponding to p65/p50 heterodimer was estimated us-
ing NTH Image]J 1.29 software. All measurements were made with expo-
sures within the linear range of the film. The images were digitized by
means of a transmissive scanner (Umax PowerLook III). Protein con-
tents of the extracts were measured in triplicate by Bradford method and
checked for quality and quantity by comparing pattern intensities in
SDS-PAGE. For supershift assay, p65 antibody was used (Santa Cruz
Biotechnology; sc-372).

Western blots. For Western blot assay, loading buffer was added to the
samples that were incubated at 100°C for 5 min and immediately placed
on ice. Twenty micrograms of each protein sample were run on SDS-
PAGE with 7.5% acrylamide in the resolving phase. The proteins were
then electrotransferred to polyvinylidene difluoride membrane for im-
munoblotting. Western blot assays were performed with anti-CaN (Cell
Signaling; 7-067; at 1:2000 dilution) and anti-NFATc4 (Santa Cruz Bio-
technology; sc-13036; at 1:1000 dilution) antibodies, following the man-
ufacturer’s protocol. The cytosolic housekeeping anti-actin (Santa Cruz
Biotechnology; sc-6627; at 1:1000 dilution) antibody and the nuclear
housekeeping anti-lamin B antibody (Santa Cruz Biotechnology; sc-
6217; at 1:500 dilution) were used. Detection was made with Luminol
chemiluminescence kit (Santa Cruz Biotechnology) as described by the
manufacturer and the signals were digitalized by FUJIFILM-Intelligent
Dark Box II apparatus with image reader LAS-1000 software. The ROD
was estimated using Image] 1.29x software. Protein contents of the ex-
tracts were measured in triplicate by the Bradford method.

Histology. Fluoresceinated Decoy was injected into hippocampus at
the same concentration as in behavioral experiments. Animals were im-
mediately perfused, first with saline, and then with 4% paraformalde-
hyde. Brains were dissected and remained in PFA (4%) for 2-3 more
hours. Twenty-four hour passages to reach a 30% sucrose—PBS concen-
tration were made. Tissues were sectioned at 25 um thickness with a
cryostat, stained with propidium iodide, and analyzed by confocal mi-
croscopy. Slices stained with cresyl violet show the cannula position.

Data analyses. Behavioral data were analyzed by one-way ANOVA,
followed by Newman—Keuls multiple-comparisons post hoc test, com-
paring the values of the percentages of freezing. When cued fear memory
or intrasession extinction was assessed, behavioral data were analyzed
by two-way ANOVA, followed by Bonferroni’s post hoc test. Gel shift
and Western blot data were analyzed by unpaired two-tailed Student’s
t test between experimental and naive groups, except those experi-
ments in which three groups were used. In this case, one-way ANOVA
was performed.

Results
NF-kB inhibition in the hippocampus impairs fear
memory reconsolidation
Once new associative learning is consolidated, a reminder can
induce memory reactivation and reconsolidation (Pedreira and
Maldonado, 2003; Suzuki et al., 2004). The process of reconsoli-
dation is required for restabilization of the original memory
trace. Some experimental evidence suggests that the activation of
transcription factors is necessary for reconsolidation (Miller and
Marshall, 2005; Milekic et al., 2007), particularly in the hip-
pocampus, for contextual memories (Kida et al., 2002; Lee et al.,
2004). NF-kB transcription factor is involved in consolidation
and reconsolidation in different memory models both in verte-
brates and invertebrates (Romano et al., 2006; Boccia et al., 2007;
Lubin and Sweatt, 2007). Although the role of NF-«B has already
been studied in reconsolidation of memory in mice, it was im-
portant to validate those previous results in our behavioral para-
digm, to gain additional insight into the molecular mechanisms
involved differentially in both extinction and reconsolidation.
In the first experiment, we tested whether, in fear condition-
ing, the inhibition of NF-kB in hippocampus impairs long-term
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memory reconsolidation. Double-stranded DNA oligonucleo-
tide containing the consensus sequence of NF-«B (Decoy) was
used as a specific inhibitor (Albensi and Mattson, 2000). This
oligonucleotide enters the cells (Fig. 1a) and induces NF-«B in-
hibition 15 min after intrahippocampal injection (Freudenthal et
al., 2005; Boccia et al., 2007). A mutated Decoy oligonucleotide
(mDecoy) was used as a control for the nonspecific actions of
DNA administration in the hippocampus. mDecoy is a stringent
control because the entire overall composition of bases is con-
served, except for one base in the consensus sequence that is
mutated, impeding NF-«B binding (Boccia et al., 2007). The ex-
perimental design is presented in Figure 1b. On the first day, three
groups of animals were placed in the training chamber (context
A), and, after 2 min of adaptation, three trials of tone/footshock
were presented. On the second day, mice from two of the three
groups were reexposed to the training chamber for 5 min without
tone or shock stimulation, and were removed and injected either
with Decoy (R-Decoy group) or mDecoy (R-mDecoy group).
During reexposure, the percentage of freezing was determined.
The third group was not reexposed but was injected with Decoy
(NoR-Decoy group). On the third day, all groups were tested for
contextual fear memory. The contextual test always consisted of
mouse reexposure to the training context for 5 min during which
the percentage of freezing was measured. On the fourth day, all
groups were tested for cued fear memory. Each mouse was placed
in a modified chamber (context B), and after 2 min of baseline the
same tone used in training was presented for 4 min. Both pretone
and during-tone freezing were assessed. Additional contextual
tests were performed 1 and 2 weeks after injection. During reex-
posure (Fig. 1¢, day 2), R-Decoy and R-mDecoy groups showed
normal freezing responses. In the first contextual test (Fig. 1¢, day
3), similar levels of freezing were observed between NoR-Decoy
and R-mDecoy groups. However, a significantly lower level of
freezing was observed in the R-Decoy group (ANOVA: F(, ,,) =
3.550, p < 0.05; Newman—Keuls post hoc test, NoR-Decoy vs
R-Decoy, p < 0.05, and R-mDecoy vs R-Decoy, p < 0.05), indi-
cating that only when animals were reexposed to the training
context, Decoy, but not mDecoy, induced memory impairment.
Similar results were found in the subsequent contextual tests 1
week (Fig. 1c) (ANOVA: F(,,5) = 3.497, p < 0.05; Newman—
Keuls post hoc test: NoR-Decoy vs R-Decoy, p < 0.05, and
R-mDecoy vs R-Decoy, p < 0.05) and 2 weeks after injection (Fig.
lc) (ANOVA: F, ,5) = 3.446, p < 0.05; Newman-Keuls post hoc
test: R-mDecoy vs R-Decoy, p < 0.05). A test for cued condition-
ing was performed using the same animals at day 4. Mice were
placed in the context B and freezing was measured. Pretone freez-
ing was low for the three groups, and after tone presentation,
freezing was similarly higher for all groups (Fig. 1d), indicating
that freezing to tone was not affected by hippocampal Decoy
injection (repeated-measures two-way ANOVA: main effect of
time: F(; »5) = 83.09, p < 0.0001; main effect of group: F, »5) =
0.9893, p = 0.3885; interaction: F, ,5) = 1.714, p = 0.2043; Bon-
ferroni’s post hoc test between pretone and tone: NoR-Decoy, p <
0.01; R-mDecoy, p < 0.001; R-Decoy, p < 0.001). This result is
expected considering that cued fear conditioning is independent
of the hippocampus (Phillips and LeDoux, 1992) and thus is a
control test for specific NF-«B inhibition in that brain area. An-
other experiment was performed in which short-term reactivated
memory (STRM) was tested 4 h after reexposure (Fig. le). As
expected (Nader et al., 2000), the R-Decoy group showed normal
levels of freezing at the 4 h test but low levels of freezing at the 24 h
test (Fig. 1c,f), indicating that STRM was not affected by treat-
ment with the Decoy. To test whether Decoy administration pro-
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that the impairment is persistent, consid-
ering that no spontaneous recovery of
memory impairment occurs for at least
14 d. In a previous report, the amnesic
effect of another direct inhibitor of NF-kB,
SN50, was determined in rat fear condi-
tioning reconsolidation. At variance with
the present report, the authors used intra-
cerebroventricular administration, and
thus, the effect of NF- B inhibition locally
in the hippocampus was not evaluated.
Jem The persistence of the impairment effect 1
or 2 weeks after reconsolidation was also
not evaluated (Lubin and Sweatt, 2007).

Tcue

day2 day2+4hs

Decoy

NF-kB is activated by

reconsolidation induction

The former experiment suggests that
NF-kB is required in the hippocampus for
reconsolidation of contextual fear condi-
tioning. To gain additional insight, we
performed a time course analysis of
NEF-kB activity in hippocampus during
reconsolidation. Immediately after a 5
min reexposure, the mice were killed by
cervical dislocation (0 time point) or indi-

Terx

day1 day3 week1 week2 day1
TR T Terx Terx Terx TR

5 min re exposure
day2

Figure 1.

of cued memory, two-way ANOVA followed by Bonferroni's post hoc test was performed.

duces changes in freezing response even when animals are not
reexposed to the training context, we performed two other exper-
iments comparing the freezing levels of non-reexposed animals
injected with Decoy (NoR-Decoy) and non-reexposed animals
injected with mDecoy (NoR-mDecoy). In the first experiment,
mice were trained, 24 h later were injected, and tested 1 d after
injection. No significant differences were found between groups
(mean = SEM of freezing response for NoR-mDecoy: 36.30 =
6.73,n = 9; for NoR-Decoy: 37.12 = 1.92, n = 11; t test: t = 0.13,
p = 0.90). In the second experiment, mice were trained, 24 h later
were injected, and tested 4 h later. No significant differences were
found between groups (mean = SEM of freezing response for
NoR-mDecoy: 39.17 * 3.23, n = 8; for NoR-Decoy: 44.66 =
9.53, n = 8; t test: t = 0.53, p = 0.65). Together, the last two
experiments indicate that Decoy treatment had effect only when
memory was reactivated after context reexposure and that mem-
ory reactivation session itself does not impact on freezing levels.

The results of this section indicate that NF-«B inhibition in
the hippocampus impairs contextual fear reconsolidation and

Il NoR-Decoy [ R-mDecoy [_] R-Decoy

NF-«B inhibition in the hippocampus impairs contextual fear memory reconsolidation. Data are expressed as
mean = SEM of freezing response. a, Confocal micrographs show distribution of fluoresceinated Decoy (green) 5 min after
hippocampal injection, contrasted with propidium iodide. Concentration was the same of the nonfluoresceinated Decoy used in
pharmacological experiments. Animage showing an example of cannula position is also shown (cresyl violet stained). b, Design of
the experiment shown in ¢. All groups were trained at day 1; at day 2, animals were either reexposed for 5 min to the training
context and injected with mDecoy (R-mDecoy) (n = 9) or with Decoy (R-Decoy) (n = 8), or were non-reexposed and injected with
Decoy (NoR-Decoy) (n = 8). TR, Training session; Tctx, contextual test; Tcue, cued test. ¢, Effect of hippocampal NF-«B inhibition
in contextual memory reconsolidation. d, Effect of hippocampal NF-kB inhibition in cued memory. Groups and animals are asin b.
e, Design of the experiment shown in £. Animals were trained, reexposed or non-reexposed, and injected either with mDecoy or
Decoy as in b, but the contextual test was performed 4 h after reexposure (24 h plus 4 h from TR in the case of the non-reexposed
group). f, Effect of NF-«B inhibition in contextual STRM; NoR-Decoy, n = 6; R-mDecoy, n = 8; R-Decoy, n = 7. *p < 0.05,
one-way ANOVA comparing mean values of freezing of the three groups each day, followed by Newman—Keuls post hoc test; in case

vidually placed in their home cages for 15
or 45 min before being killed (Fig. 2a,
S-R). In addition, a group of animals
not shocked during training and killed
15 min after context reexposure (US-R)
and a group of animals trained but not
reexposed and killed 24 h after training
(S-NoR) were added. The hippocampus
was dissected and nuclear extracts were
obtained. We performed a gel shift assay
using an NF-kB probe. This method es-
timates nuclear translocation of NF-kB
and specific DNA binding activity. We
obtained three specific retarded bands
with this probe (Fig. 2b), as previously
described (Freudenthal et al., 2005).
The higher band, corresponding to the
p65/p50 heterodimer, was quantified
and compared with basal activity of a nonstimulated group of
animals (naive group) that were run simultaneously. In the
trained and reexposed groups (S-R), we found a significant
inhibition of NF-kB at 0 time point (¢ test: t = 2.47, p < 0.05)
and a significant increase of NF-kB activity 15 min after train-
ing (t test: t = 4.8, p < 0.001), which returned to basal levels
after 45 min (Fig. 2¢,d). Conversely, US-R and S-NoR groups
showed similar levels of activity to the naive group (Fig. 2¢,d).

These results, together with those of the first experiment, sup-
port that, after an initial inhibition, NF-«B is specifically acti-
vated in the hippocampus by memory reactivation and that such
activation is required for memory reconsolidation.

day2 day2+4hs
Terx Terx

NF-«B inhibition in the hippocampus enhances fear

memory extinction

In the first experiment, we found that NF-«kB inhibition, after a
brief reexposure to the training context, impairs memory. In the
following experiment, we tested the effect of NF-«kB inhibition on
memory shortly after prolonged reexposure. As in the previous
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experiment, three groups of mice were a
trained for cue and contextual fear condi- R 0 min

tioning, injected with Decoy or mDecoy SR

24 h later, and either reexposed for 30 min S e
(extinction  session)  (E-Decoy  and TR
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Decoy group) (Fig. 3a). A high level of freez- dayl  day2
ing was initially found in the extinction

session (day 2) and a similar decrease in US-R

freezing behavior for both extinguished dayt  day2

groups was observed during the 30 min of
reexposure [first 5 min: E-Decoy (39.54 =
3.93) vs E-mDecoy (41.82 * 4.07);last5 Db
min: E-Decoy (8.94 * 1.94) vs E-mDecoy
(11.06 = 2.57); repeated-measures two-

cold probe - "?

way ANOVA: main effect of time: F, 5, =
= 188.9, p < 0.0001; main effect of group: -
F, 50y = 0.2979, p = 0.5912; interaction: .

F;50) = 0.001, p = 0.9730; Bonferroni’s
post hoc test between first 5 min reexpo-
sure and last 5 min reexposure:
E-mDecoy, p < 0.001; E-Decoy, p <
0.001]. After the extinction session on the
following day (day 3), all groups were
tested for contextual conditioning, and on

unbound . “
.. diacti
day 4 they were tested for cued condition- oo

ing. One and 2 weeks after the extinction
session, mice were retested for contextual
conditioning. As shown in Figure 3, re-
exposed groups (E-Decoy and mDecoy)
showed a significantly lower level of freez-
ing than the non-reexposed group (NoE-
Decoy) as a consequence of extinction
induction (ANOVA: F, 5 = 21.67, p <
0.0001; Newman—Keuls post hoc test:
NoE-Decoy vs E-mDecoy, p < 0.001, and
NoE-Decoy vs E-Decoy, p < 0.001). This
result suggests that NF-«B inhibition does
not impair extinction, and thus, in con-
trast to the previous experiment with 5 min
reexposure, mDecoy- and Decoy-injected groups showed similar
values of freezing. The cued conditioning test on day 4 showed
high levels of freezing for the three groups, indicating that cued
conditioning was not affected by contextual extinction treatment
and by Decoy administration in the hippocampus (repeated-
measures two-way ANOVA: main effect of time: F, ,4) = 147.9,
p < 0.0001; main effect of group: F(, ,5, = 0.7891, p = 0.4641;
interaction: F, 54y = 0.2198, p = 0.8041; Bonferroni’s post hoc
test between pretone and tone: NoE-Decoy, p < 0.001;
E-mDecoy, p < 0.001; E-Decoy, p < 0.001). As expected, in the
second contextual test 1 week after the extinction session, the
group of animals that were injected with mDecoy and received
the treatment for extinction (E-mDecoy) showed a similar high
level of freezing compared with the nonextinguished group
(NoE-Decoy), indicating a spontaneous recovery of the condi-
tioned response. Remarkably, the group of animals that were
injected with Decoy and that received the treatment for extinc-
tion (E-Decoy) showed significantly lower levels of freezing than
the other two groups (ANOVA: F, ,5) = 5.873, p < 0.001; New-
man—Keuls post hoc test: NoE-Decoy vs E-Decoy, p < 0.01, and
E-mDecoy vs E-Decoy, p < 0.05).

Two explanations for the differences between E-mDecoy and
E-Decoy groups can be offered as follows: (1) the original mem-

Figure 2.

Student’s t test.
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Temporal course of NF-«B activity after 5 min reconsolidation session, estimated by EMSA. Data are expressed as
mean ROD values = SEM. a, Design of the experiment. Trained animals were killed immediately (0 min time point), 15 or 45 min
after 5 min reconsolidation session (S-R). Three control groups were performed: naive group, S-NoR group (trained animals but not
reexposed to the context on day 2), and US-R group (animals were placed in the training chamber on day 1, received the tones but
not the shocks, and were reexposed 5 min on day 2). b, Left, Representative EMSA. Three bands can be observed; competitions with
50 0r 100X cold probe determine specific bands. Specific (gray arrowhead) and unspecific bands (white arrowhead) are shown.
Right, Supershift with p65 antibody, which reduced the intensity of the higher band (black arrowhead, the one quantified in the
experiments), corresponding to p65/p50 complex. ¢, Schematic graph with NF-B activity from all groups together is shown, n =
9-10in each group. NF-xB activity was estimated by densitometric analysis (ROD) of the p65/p50 band, obtained with hippocam-
pal nuclear extracts from animals of the different groups by gel shift. Each time point was compared with its respective naive. d,
Graphs comparing NF-«B activity from each S-R, S-NoR, and US-R groups with their respective naive are shown. With these values,
the schematic graph seen in ¢ was performed. Representative p65/p50 EMSA bands are shown. *p << 0.05; ***p < 0.001;

ory was impaired because of labilization after retrieval, and (2)
extinction was enhanced and spontaneous recovery was delayed
or impaired. The third testing, 2 weeks after the extinction session,
clarified the interpretation of the results. In this test, all groups
showed similar high levels of freezing, indicating that the condi-
tioned response of the E-Decoy group underwent spontaneous re-
covery, and confirming that the original memory was not affected by
Decoy treatment.

The overall conclusion of the present experiment is that
NEF-«B inhibition during and/or shortly after prolonged presen-
tation of the conditioned stimulus (CS) produces an extinction
enhancement that causes delay of spontaneous recovery, al-
though as time passes, the conditioned response is recovered.

NF-kB is not activated by extinction induction

Next, we determined whether prolonged reexposure that induces
extinction causes a different NF-«B activity profile than that ob-
served after reconsolidation. A group of animals were trained and
24 h later were reexposed for 30 min to the training context (S-E).
We assessed freezing during this session and observed a similar
decrease in the response for both extinguished groups (data not
shown). At 0, 15, or 45 min after reexposure, the animals were
killed and hippocampal nuclear extracts were obtained (Fig. 4a).
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Figure 3.  NF-«B inhibition in the hippocampus enhances contextual fear memory ex-

tinction. Data are expressed as mean = SEM of freezing response. a, Design of the exper-
iment. All groups were trained at day 1; at day 2, animals were either reexposed for 30 min
to the training context and injected with m-Decoy (E-mDecoy) (n = 11) or with Decoy
(E-Decoy) (n = 9), or were non-reexposed and injected with Decoy (NoE-Decoy) (n = 8).
TR, Training session; Tctx, contextual test; Tcue, cued test. b, Effect of NF-xB inhibition in
contextual memory extinction. *p << 0.05; **p << 0.01; ***p << 0.001; one-way ANOVA
comparing mean values of freezing of the three groups each day, followed by Newman-—
Keuls post hoc test.
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A naive group was formed simultaneously to determine basal
activity. As shown in Figure 4, b and ¢, no significant changes in
NE-kB activity were found, although a tendency for inhibition
can be observed at 15 and 45 min after reexposure (¢ test: naive vs
0 min, t = 0.23; p = 0.82; t test: naive vs 15 min, t = 1.35; p = 0.20;
ttest: naive vs 45 min, f = 1.18; p = 0.26). NF-«kB activity was also
measured immediately after a 20 min reexposure (— 10 min time
point) (¢ test: naive vs 0 min, ¢ = 0.77; p = 0.45). Considering the
beginning of the reexposure, the —10 time point coincides with
the time point in which a peak of NF-«B activity was found in
reconsolidation (Fig. 2b). In contrast to reconsolidation, no sig-
nificant increase in NF-«B activity was observed in the present
experiment (Fig. 4b,c¢).

On the basis of these last findings, we hypothesized that
NEF-kB activation is blocked when context reexposure is pro-
longed. We further postulate that CaN phosphatase induces such
an inhibition by means of direct dephosphorylation of NF-«B or
dephosphorylation of its inhibitor, I«B. Thus, the following ex-
periments were performed to test this hypothesis.

CaN inhibition in the hippocampus impairs extinction but
not reconsolidation
Previous reports support that the phosphatase CaN is involved in
extinction (Lin et al., 2003a; Baumgirtel et al., 2008; Havekes et
al., 2008). However, these studies were performed either in amygdala
or in the whole forebrain. In the following experiment, we ana-
lyzed the effect of CaN inhibition in the hippocampus by local
administration of FK, a specific CaN inhibitor. Three groups of
mice were trained for fear conditioning, injected 24 h later in the
hippocampus with FK or vehicle (DMSO), and either reexposed for
30 min (extinction session) (E-FK and E-DMSO groups) or not
reexposed (NoE-FK group). High levels of freezing were initially
found. A similar decrease in freezing behav-
I Naive
sEe posure for extinguished groups [first 5 min:
E-FK (61.48 = 6.7) vs E-DMSO (52.41 *
8.24); last 5 min: E-Decoy (12.5 = 4.84) vs
E-mDecoy (19.67 £ 5.51); repeated-mea-
sures two-way ANOVA: main effect of time:
F6) = 29.76, p < 0.001; main effect of
group: F(; 1) = 0.9642, p = 0.002; interac-
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tion: F; 1) = 1.017, p = 0.3350; Bonferro-
ni’s post hoc test between first 5 min
reexposure and last 5 min reexposure: E-
DMSO, p < 0.05; E-FK, p < 0.001]. One day
after the extinction session (day 3), all
groups were tested for contextual condi-
tioning (Fig. 5a). As shown in Figure 5b, the
reexposed group injected with vehicle (E-
DMSO) showed significantly lower levels of
freezing than the non-reexposed group
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Temporal course of NF-kB activity in extinction, estimated by EMSA. Data are expressed as mean ROD values == SEM.
a, Design of the experiment. Animals were killed immediately (0 min time point), 15 or 45 min after 30 min extinction session (S-E).
A point of —10 min was also performed, in which animals were killed immediately after 20 min extinction session. Naive group
was used for basal activity estimation. b, Schematic graph with NF-«B activity from all groups together is shown. n = 9-101in
each group. NF-«B activity was estimated by densitometric analysis (ROD) of the p65/p50 band, obtained with hippocampal
nuclear extracts from animals of the different groups by gel shift. ¢, Graphs comparing NF-«B activity from each S-E group with
their respective naive are shown. With these values, the schematic graph seen in b was performed. Representative p65/p50 EMSA

(NoE-FK), as a consequence of extinction
(ANOVA: F(, 4 = 8.775, p < 0.01; New-
man—Keuls post hoc test: NoE-FK vs E-
DMSO, p < 0.01, and E-DMSO vs E-FK,
p < 0.01). However, the reexposed group
injected with CaN inhibitor showed higher
levels of freezing. Cued fear conditioning
test showed normal freezing to tone (repeat-
ed-measures two-way ANOVA: main effect
of time, F, 54y = 46.00, p < 0.0001; main
effect of group, F,,,) = 0.1480, p =
0.8632; interaction, F, ,,) = 0.4082, p =

45min |—|
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0.01). Similar high levels of freezing
were observed for all groups 1 week after FK FK
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These results indicate that the inhibi-
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paired fear conditioning extinction. gy IBNOETH O i
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with FK (NoR-FK) and non-reexposed
animals injected with DMSO (NoR-
DMSO). Mice were trained and 24 h later
were injected and tested 1 d after injec-
tion. No significant differences were
found between groups (mean = SEM of
freezing response for NoR-DMSO,
32.92 * 3.60; for NoR-FK, 42.38 + 7.67;
test: t = 2.04, p = 0.06). The last experi-
ment indicates that FK treatment had only
effect when memory was reactivated after

context reexposure. Figure 5.

day1 day2
NF-kB ACTIVITY

200

I DMSO
CFK

Relative activity of NF-<B
(ROD)
-
o
o

s -

(aN inhibition in the hippocampus impairs extinction but not reconsolidation. a—d, Data are expressed as

mean = SEM of freezing response. a, Design of the extinction experiment shown in b. All groups were trained at day 1; at

CaN inhibition during extinction
enhances NF-kB activity

The previous experiments suggested that
CaN is involved in the hippocampus for
extinction formation but not for recon-
solidation. Conversely, NF-kB is necessary
for reconsolidation but not for extinction,
and, in fact, NF-«B is activated in recon-
solidation but not in extinction. We eval-
uated whether CaN inhibition during
extinction formation allows for hip-
pocampal NF-kB activation. Two groups of mice were used
(E-FK and E-DMSOQ), and animals were killed 15 min after the
reexposure session of 30 min (Fig. 5e, top diagram). A gel shift
assay was performed, showing significantly higher levels of
NE-kB activity for the group injected with CaN inhibitor (E-FK)
than the group injected with vehicle (E-DMSO) (¢ test: t = 3.36,
p <0.01) (Fig. 5¢). A comparison between non-reexposed groups
NoE-DMSO and NoE-FK was included to control an effect of FK
on NF-kB activity even when animals were not reexposed. No
significant differences were found between these groups, indicat-
ing that when extinction is not induced, FK does not enhance
NF-kB activity [mean = SEM relative activity of NF-«kB (ROD)
for NoR-DMSO: 100.0 = 3.13, n = 10; for NoR-FK: 100.2 = 1.9,
n = 10; t test: t = 0.051, p = 0.96]. These results suggest that
CaN prevents NF-«B activation as part of the mechanisms

Student’s ¢ test.

day 2, animals were either reexposed for 30 min to the training context and injected with DMSO (E-DMSO) (n = 8) or with
FK (E-FK) (n = 8), or were non-reexposed and injected with FK (NoE-FK) (n = 8). TR, Training session; Tctx, contextual test;
Tcue, cued test. b, Effect of CaN inhibition in contextual memory extinction. ¢, Design of the reconsolidation experiment
shown in d. Groups are as in a, but for a 5 min reexposure: non-reexposed animals injected with FK (NoR-FK) (n = 8),
reexposed injected with vehicle (R-DMSO) (n = 12), and reexposed injected with FK (R-FK) (n = 10). d, Effect of CaN
inhibition in contextual memory reconsolidation. a— d, **p << 0.01; one-way ANOVA comparing mean values of freezing of
the three groups each day, followed by Newman—Keuls post hoc test. e, Effect of CaN inhibition on NF- kB activity. Left, On
day 2, trained animals were injected either with FK or with DMSO and reexposed for 30 min to the TR context. Fifteen
minutes after extinction session, animals were killed and NF-«B activity was estimated by densitometric analysis (ROD) of
the p65/p50 band (EMSA). The graph shows mean ROD values = SEM. Representative bands are shown. **p < 0.01,

involved in extinction, and thus the inhibition of CaN during
extinction session releases NF-kB from that restraint.

CaN may act on NF-«B directly by dephosphorylation of p65,
a component of the NF-«B dimer that is phosphorylated in the
process of activation by protein kinase A, or indirectly by dephos-
phorylation of a protein upstream in the NF-«B activation path-
way, like the NF-«B inhibitor, IkB (Pons and Torres-Aleman,
2000; Biswas et al., 2003). Experiments are ongoing to determine
the mechanism of CaN inhibition on the NF-«B pathway.

NFAT inhibition impairs extinction

NFAT is a transcription factor evolutionarily related to the Rel/
NF-kB family (Chytil and Verdine, 1996) that is activated by
Ca** signals by means of CaN activation and dephosphorylation.
Dephosphorylation unmasks several nuclear localization signals
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Figure 6.

and allows for NFAT translocation into the nucleus (Sugiura et
al., 2001). The experiments of the previous section suggest that
CaN is involved in extinction, preventing NF-«B activation in-
duced by retrieval. In the following experiment, we explored
NFAT as a target for CaN regulation of gene expression in extinc-
tion. First, we evaluated the effect of a cell-permeable peptide
(11R-VIVIT), a specific NFAT inhibitor that blocks the NFAT
docking site for CaN (Noguchi et al., 2004), on extinction. Three
groups of mice that were trained for fear conditioning were in-
jected in the hippocampus with the NFAT inhibitor or with ve-
hicle (DMSO) 24 h later and either reexposed for 30 min
(extinction session) (E-NFATinh and E-DMSO groups) or not
reexposed (NoE-NFATinh group). High levels of freezing fol-
lowed by a decrease in freezing behavior were observed for both
extinguished groups during the 30 min of reexposure [first 5 min:
E-NFATinh (29.67 * 4.05) vs E-DMSO (31.82 =+ 5.18); last 5
min: E-NFATinh (14.17 = 3.52) vs E-DMSO (18.79 = 3.45);
repeated-measures two-way ANOVA: main effect of time: F; ;) =
20.00, p < 0.001; main effect of group: F(, 14y = 0.4738, p =
0.4996; interaction: F(, ;5 = 0.1497, p = 0.7031; Bonferroni’s
post hoc test between first 5 min reexposure and last 5 min reex-
posure: E-DMSQO, p < 0.05; E-NFATinh, p < 0.05]. On day 3, all
groups were tested for contextual conditioning (Fig. 6a). The
reexposed group injected with vehicle (E-DMSO) showed signif-
icantly lower levels of freezing than the non-reexposed group
(NoE-NFATinh) as a consequence of extinction (ANOVA: F, ,
= 4.953; p < 0.05; Newman—Keuls post hoc test: NoOE-NFATinh
vs E-DMSO, p < 0.05) (Fig. 6b). However, the reexposed group
injected with the NFAT inhibitor showed higher levels of freezing
(Newman—Keuls post hoc test: E-DMSO vs E-NFATinh, p <
0.05). On day 4, cued fear conditioning test showed normal freez-

5 min re exposure
day2 day2

NFATinhibition in the hippocampus impairs extinction but not reconsolidation. a— d, Data are expressed as mean =+
SEM of freezing response. a, Design of the extinction experiment shown in b. All groups were trained at day 1; at day 2, animals
were either reexposed for 30 min to the training context and injected with DMSO (E-DMSO) (n = 8) or with NFAT inhibitor
(E-NFATinh) (n = 8), or were non-reexposed and injected with NFAT inhibitor (NoE-NFATinh) (n = 9). TR, Training session; Tctx,
contextual test; Tcue, cued test. b, Effect of NFAT inhibition in contextual memory extinction. ¢, Design of the reconsolidation
experiment shown in d. Groups are as in a, but for a 5 min reexposure: non-reexposed animals injected with NFAT inhibitor
(NoR-NFATinh) (n = 8), reexposed injected with vehicle (R-DMS0) (n = 9) and reexposed injected with NFAT inhibitor (R-
NFATinh) (n = 9). d, Effect of NFAT inhibition in contextual memory reconsolidation. **p << 0.05; one-way ANOVA comparing
mean values of freezing of the three groups each day, followed by Newman—Keuls post hoc test.

6d).

To test whether NFAT inhibitor ad-
ministration produces changes in freezing
response even when animals are not reex-
posed to the training context, we per-
formed another experiment comparing
the freezing levels of non-reexposed ani-
mals injected with NFAT inhibitor (NoR-
NFATinh) and non-reexposed animals
injected with DMSO (NoR-DMSQO). Mice
were trained, 24 h later were injected, and
tested 1 d after injection. No significant
differences were found between groups
(mean * SEM of freezing response for NoR-DMSO: 26.52 +
4.19; for NoR-NFATinh: 34.59 * 6.55; t test: t = 1.09, p = 0.29).
The last experiment indicates that NFATinh treatment had effect
only when memory was reactivated after context reexposure.

Both CaN and NFATc4 translocate into the nucleus 45 min
after extinction induction

In previous experiments, we found that memory extinction was
impaired by means of CaN and NFAT inhibition in hippocam-
pus. These results indicate that both proteins are involved in the
formation of the extinction memory. Thus, we hypothesized that
CaN and NFAT translocate into the nucleus to regulate gene
expression (Sugiura et al., 2001). We performed the following
experiment to test whether a translocation occurs after extinction
induction. One day after training, mice were reexposed to the
training context for 30 min, and 0, 15, or 45 min later they were
killed (Fig. 7a, S-E). We also performed a group of animals killed
immediately after 20 min of reexposure (—10 time point). The
hippocampus was dissected and nuclear and cytosolic extracts
were obtained. Western blots were performed with CaN and
NFATc4 antibodies. We studied NFATc4 because it is an impor-
tant isoform present in hippocampal neurons related to neural
plasticity (Groth and Mermelstein, 2003). The band obtained
with each antibody was quantified relative to the value of a house-
keeping protein (actin for cytosolic extracts and lamin B for nu-
clear extracts). Ratios between nuclear and cytosolic signals
(translocation index) were determined at different times and
were compared with the basal activity of a nonstimulated group
of animals (naive group) performed simultaneously. A signifi-
cant increment in CaN and NFATc4 translocation was found 45
min after extinction induction (CaN: f test, t = 2.283, p < 0.05;
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NFATc4: ttest, t = 2.158, p < 0.05) (Fig.
7b,c). No differences were observed be-
tween controls (US-E and S-NoE) and na-
ive (Fig. 7d). Accordingly, the CaN
inhibitor FK impaired CaN and NFATc4
nuclear translocation 45 min after extinc-
tion session (CaN: t test: t = 3.243, p <
0.01; NFATc4: t test: t = 3.358, p < 0.01)
(Fig. 7e), suggesting that CaN translocates
into the nucleus and, at the same time,
promotes the translocation of NFATc4.

Discussion
In associative learning, retrieval and
memory reactivation by conditioned
stimulus presentation can induce two ap-
parently opposing processes, reconsolida-
tion and extinction. In the present report,
we describe two transcriptional mecha-
nisms that are differentially induced in ei-
ther reconsolidation or extinction. To our
knowledge, these findings provide the
first insight into the molecular mecha-
nisms that determine the direction of
memory reprocessing after retrieval. We
found that NF-«B is activated in the hip-
pocampus and that such activation is nec-
essary for memory reconsolidation. The
hippocampal inhibition of NF-«B in re-
consolidation caused retention deficit for
at least 2 weeks, suggesting permanent
memory impairment. In contrast, we
found that hippocampal CaN activity is
necessary for extinction. CaN plays a dual
role; it blocks NF-kB activation and it in-
duces NFAT activation and translocation.
In fact, CaN inhibition in the hippocam-
pus impaired extinction, blocking both its
own translocation and that of NFATc4,
and allowing for NF-«B activation. Our
observations suggest that, under CaN in-
hibition, reconsolidation was induced de-
spite prolonged reexposure, a treatment
that normally induces extinction.
Alternative interpretations of the present
results can be offered. Some authors sug-
gested that reconsolidation impairments are
not permanent and retrieval disruption
recovers over time (Lattal and Abel, 2004).
Although we cannot rule out such interpre-
tation, in the reconsolidation experiment
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Figure 7.  CaNand NFATc4 nuclear translocation after extinction induction. Data are expressed as mean == SEM nuclear trans-

location index. a, Design of the experiment. Animals were killed immediately (0 min time point), 15 or 45 min after 30 min
extinction session (S-E). A point of — 10 min was also performed, in which animals were killedimmediately after 20 min extinction
session. Three control groups were performed: naive group; trained animals, but not reexposed to the context on day 2 (S-NoE).
Animals were placed in the training chamber on day 1, received the tones but not the shocks, and were reexposed 30 min on day
(US-E). b, Schematic graph comparing CaN and NFATc4 mean == SEM nuclear translocation index after extinction session in trained
animals (S-E) compared with naive. Nuclear translocation indexes were estimated by densitometric analysis (ROD) of CaN and
NFATc4 specific bands obtained by Western blots. Each time point was compared with its respective naive. ¢, Left, CaN mean =
SEM nuclear translocation index of killed animals after extinction session, compared with their respective naive groups; n = 12-17
in each group. Below graphs, The respective representative bands obtained by Western blots. Right, The same as in left but for
NFATc4. d, Graphs showing no differences between control groups (S-NoE and US-E) on CaN or NFATc4 nuclear translocation. Below
graphs, The respective representative bands obtained by Western blots. e, Effect of FK injection before extinction session, on CaN
and NFATc4 nuclear translocation. Left, On day 2, trained animals were injected with FK or with DMSO, and reexposed for 30 min
to the TR context. Forty-five minutes after extinction session, animals were killed, and CaN and NFAT nuclear translocation was
assessed by Western blot. Right, The same as in left but for NFATc4. Below graphs, The respective representative bands obtained
with Western blot. *p << 0.05; **p << 0.01; Student’s £ test.

covery of the freezing response 1 week after training for control

(Fig. 1) we found memory impairment at such long-term periods as
2 weeks, suggesting that memory interference is not short-lasting. In
addition, the authors suggested that impairment effects found with
pharmacological manipulations in reconsolidation are attribut-
able to extinction enhancement that produces a delay in sponta-
neous recovery. Another alternative interpretation is that extinction
is not a boundary condition on reconsolidation (Duvarci et al.,
2006), and thus, in the experiment of extinction, Decoy treatment
could potentially interfere not only with extinction consolidation
but also with the original memory reconsolidation. Nevertheless, the
results obtained in the extinction experiment (Fig. 3) make those
interpretations hardly tenable. In fact, we observed spontaneous re-

extinguished group (E-mDecoy) and 2 weeks after training for ex-
tinguished animals treated with Decoy (E-Decoy). Thus, the lack of
freezing recovery on Decoy-treated animals (R-Decoy) in the recon-
solidation experiment indeed supports a real impairment of the
original memory, whereas the delay in spontaneous recovery pro-
voked by the same treatment in the extinction experiment supports
extinction enhancement. The finding of a delay in spontaneous re-
covery would be of importance for the potential development of
fear-related disorders treatments. In relation to this, other studies
has also found extinction enhancement using the drug p-cycloserine
(DCS). In a first study, Ledgerwood et al. (2004) found that the
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original memory in drug-administered animals could not be rein-
stated. However, in a second paper, although the extinction was
more pronounced in animals injected with DCS than in controls, the
spontaneous recovery was similar in both groups (Ledgerwood et al.,
2005). Thus, the extinction enhancement induced by DCS seems to
have different characteristics to those found in the present study
using the NF-«B inhibitor.

The inhibition of both CaN and NFAT in the hippocampus
impaired extinction but did not affect reconsolidation, indicating
that these proteins are part of the molecular mechanisms of ex-
tinction that play no role in reconsolidation. In contrast, NF-«B
inhibition impairs memory reconsolidation and, remarkably, en-
hances memory extinction. Our finding suggests that a restric-
tion of this transcription factor is part of the mechanism involved
in extinction, and thus the inhibition of NF-«kB by Decoy rein-
forces the process that normally occurs in the hippocampus,
strengthening the action of CaN toward negative modulation of
neural plasticity on the original memory trace.

To our knowledge, our study is the first to show a role of
NFAT in memory processes. The role of NFAT in the nervous
system has been studied only recently, particularly, the discovery
of NFATc4 (also named NFAT3) in the hippocampus (Graef et
al., 1999). The canonical way of NFAT activation by CaN is well
known in other systems (Sugiura et al., 2001), and our report also
supports this mechanism of activation. Considering such canon-
ical pathway, the signaling cascade is likely that NFAT activation
is dependent of CaN action. Our finding that FK not only inhib-
ited CaN translocation but also inhibited NFAT translocation,
supports this canonical pathway and not an action of NFAT on
CaN. In fact, the NFAT inhibitor used in the present study acts by
interfering specifically with the activation site of CaN.

One key downstream target for NFAT in the nucleus is the
BDNF promoter (Groth et al., 2007; Vashishta et al., 2009). In
addition, it has been shown that NFAT is able to bind NF-kB
consensus sequences (Casolaro et al., 1995). In such case, a com-
petition between these two transcription factors could take place
in the regulatory region of memory-related genes. Additional
investigation is needed to explore with more detail the role of
NFAT in neural plasticity and memory.

On the basis of the present findings, we propose a working
model for the role of transcriptional regulation in memory repro-
cessing after retrieval (Fig. 8). The initial process of transcrip-
tional activation induced by retrieval would be mediated by
protein kinases. In particular, the activation of IKK (IkB protein

MEMORY PROCESS

—> RECONSOLIDATION

@ = EXTINCTION

Transcription factor switch between reconsolidation and extinction. Under a brief reexposure to the training context,
transcription factor NF-«B is activated and induces its target genes expression. This brief stimulus leads to reconsolidation. In
contrast, if the stimulus is prolonged, phosphatase CaN gets activated and blocks NF-«B activation. CaN also activates NFAT
transcription factor by direct dephosphorylation. This, in turn, would activate its target genes expression. CaN and NFAT translocate
to the nucleus as a complex, thus impeding the NFAT rephosphorylation. In this case, extinction of memory takes place.
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kinase) induces NF-kB translocation to
the nucleus and its activation. However,
prolonged reexposure to the training con-
text induces activation of the protein
phosphatase CaN that blocks NF-kB acti-
vation, as occurs in other systems (Pons
and Torres-Aleman, 2000), and induces
NFAT translocation and activation. This
creates a determinative switch in tran-
scriptional regulation that changes gene
expression from that required for mem-
ory restabilization to that required for
memory extinction. Ca*"-dependent ki-
nases and phosphatases actively control
neuronal processing by a tightly regulated
balance in which they oppose each other.
In this balance, the primary function of
CaN is to negatively modulate neural plas-
ticity (Mansuy, 2003), as in long-term de-
pression (Lisman, 2001). During extinction, the activation of
CaN and NFAT by prolonged exposure to the training context
might be attributable to Ca*" signals that would promote the
temporary waning of the original memory trace in the hippocam-
pus. In most cases, extinction is less persistent than the original
memory, a fact that allows for spontaneous recovery of the orig-
inal memory trace. Because gene expression, regulated by tran-
scription factors such as NF-kB, is necessary for long-lasting
neural plasticity, inhibition of these transcription factors and ac-
tivation of others, such as NFAT during extinction, could explain,
in part, the less persistent nature of extinction memory.

The role of the hippocampus in fear memory extinction is not
as well understood as the role of other neural structures such as
amygdala and prefrontal cortex (Maren and Quirk, 2004). For
example, contradictory results were reported using hippocampal
injections of protein synthesis inhibitors (Vianna et al., 2003;
Fischer et al., 2004). Here, the inhibition of molecular processes
that regulate gene expression in the hippocampus either im-
proved or impaired extinction, supporting the fact that gene ex-
pression in this neural structure is also involved in extinction.
Such involvement would be restricted to contextual stimuli be-
cause we found no effect of NF-«kB, CaN, or NFAT hippocampal
inhibition on cued fear memory. Recent studies also support a
critical role of the hippocampus in extinction of contextual fear
conditioning, involving other mechanisms such as actin rear-
rangement (Fischer et al., 2004), action of endocannabinoids
through CB, receptors (de Oliveira Alvares et al., 2008), protein
degradation by the proteasome system (Lee et al., 2008), cdk5
signaling (Sananbenesi et al., 2007), and Fyn tyrosine kinase (Iso-
saka et al., 2009) activation.

The competing nature of reconsolidation and extinction had
been previously investigated by means of protein synthesis inhib-
itors. In contextual memories, the inhibition of protein synthesis
shortly before or after a brief reexposure to the context disrupts
reactivated memory. Conversely, administration of translation
inhibitors in prolonged reexposure impairs extinction, leaving
the original memory unaffected (Pedreira and Maldonado, 2003;
Suzuki et al.,, 2004). A model that could enable the understanding
of the dichotomous nature of reconsolidation and extinction has
been proposed. This model suggests CS offset as a critical signal
that determines both the unreinforced presentation and the du-
ration of the CS, which will define the memory course (Pedreira
and Maldonado, 2003; Pedreira et al., 2004). The results obtained
in the present study agree with that model on the point that the
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activation and translocation of NF-kB in reconsolidation was
observed 15 min after CS offset and CaN and NFAT translocation
in extinction was found 45 min after CS offset. In agreement with
the CS offset model is also our finding that no changes in NF-«B
activity were found during the 30 min of extinction (Fig. 4b).
Thus, the mechanism of NF-«B activation in reconsolidation, or
CaN activation in extinction and the consequent NF-kB block
and NFAT nuclear translocation, could be initiated after animal
remotion from the training context, when the unreinforced pre-
sentation and duration of the CS is verified. Nevertheless, it is
important to consider the role of ongoing mechanisms that are
induced during CS exposure before CS offset, as described in
previous reports (Lin et al., 2003b; Fischer et al., 2004; Merlo and
Romano, 2008).

Taken as a whole, the experimental data presented here provide
new insights into the transcriptional mechanisms underlying mem-
ory reconsolidation and extinction. The precise molecular charac-
terization of memory reprocessing after retrieval is relevant for
understanding memory dynamics, and to identify novel molecular
targets for more effective pharmacological treatments of maladap-
tive fear memory disorders.
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