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Abstract
Non-nucleoside inhibitors of HIV-1 reverse transcriptase (HIV-RT) are reported that feature
extension into the entrance channel near Glu138. Complexes of the parent anilinylpyrimidine 1
and the morpholinoethoxy analog 2j with HIV-RT have received crystallographic characterization
confirming the designs. Measurement of aqueous solubilities of 2j, 2k, the parent triazene 2a, and
other NNRTIs demonstrate profound benefits for addition of the morpholinyl substituent.

Non-nucleoside inhibitors of HIV-1 reverse transcriptase (NNRTIs) are a central component
of anti-HIV therapy.1 There are five FDA-approved drugs in the class: nevirapine,
delavirdine, efavirenz, etravirine, and rilpivirine. In view of the rapid mutation of the virus,
NNRTIs are given in combination therapies. Though the class has demonstrated important
utility, further improvements are possible to address issues of safety, administration, and
virologic failure.2–4 There is also need to be positioned to respond to the emergence of pan-
resistant viral variants and unknown effects of long-term treatment.5

Our efforts at Yale to discover new series of NNRTIs have combined computer-aided
design, synthesis, and biological assaying.6,7 For two picomolar inhibitors, which feature a
catechol diether substructure,8 we also recently reported X-ray crystal structures for their
complexes with wild-type (WT) HIV-RT.9 One of the earliest series that we had
investigated was anilinylazines containing a dimethylallyloxy substituent. This work
culminated in the pyrimidine 1 and the corresponding 1,3,5-triazine (2a), which yield EC50
values of 2 and 11 nM in a standard assay using MT-2 cells infected with WT HIV-1.10

Though results of molecular modeling, starting from the 1S9E crystal structure of an
anilinyltriazene,11 were reported for complexes of the inhibitors with HIV-RT, the binding
mode for 1 was confirmed by an X-ray crystal structure. This structure, which was obtained
by the Rutgers group, is reported here and illustrated in Figures 1 and 2.12

Consistent with the 1S9E structure and the modeling, 1 resides in the NNRTI binding site
with the hydrophobic dimethylallyl group positioned in the π-box formed by Tyr181,
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Tyr188, Phe227, and Trp229 (Figure 1). There are also hydrogen bonds between the
backbone O and N of Lys101 and the amidine moiety of 1, which are clearer from the
orthogonal view in Figure 2. This Figure also highlights a salt bridge between the side
chains of Glu138 and Lys101, a feature that is not always found in NNRTI complexes, e.g.,
the 1S9E structure.11 The X-ray results provide important validation of the structure-activity
patterns that were obtained for 1 and its analogs.10 This includes rationalization of the poor
activity of these compounds towards viral variants containing the clinically important
Tyr181Cys mutation owing to the substantial contact of Tyr181 with the dimethylallyl group
of 1.10,14

Subsequent efforts included the probing of relatively unexplored regions including the
‘eastern channel’ or ‘groove’15 extending back and down from the cyano group of 1 in
Figure 1 and the ‘entrance channel’ extending into the solvent-exposed region to the left of
Lys101 in Figure 2.16 The intentions were to seek extensions that might (1) improve potency
towards both WT HIV-1 and variants containing common NNRTI-induced point mutations,
and/or (2) improve physical properties of the NNRTIs. Extension into the entrance channel
for 1 and 2 would require attachment of a substituent at C6 of the azine rings (Figure 1). It
was not clear that this would be successful owing to possible unfavorable contacts,
especially with Glu138 (Figure 2). However, the idea was pursued and it was found that
substantial substituents could be attached at this position, though with some loss of
potency.16 For example, as summarized in Table 1, the methoxyethoxy and
methoxytriethoxy containing 2c and 2e yield EC50 values of 97 and 380 nM in the MT-2
cell assay, while the parent 2a and dimethoxy analog 2b are 11- and 22-nM inhibitors. It
was even found that large, dimeric NNRTIs could be accommodated, e.g., 3 gives an EC50
of 170 nM.16

The present report extends the investigations of the entrance channel. Additional compounds
were synthesized and assayed, specifically, the amino-terminating 2f and 2g and the
morpholinoethoxy and -propoxy analogs 2j – 2m. The latter compounds were prepared as
before via SNAr reactions of alkoxides with the intermediate 4;16 however, an alternative
route was necessary for the amines (Scheme 1). The SNAr reaction was performed earlier in
the sequence to install the side chain on dichloromethoxytriazene, and the amino group was
unmasked in the last step.

In the same manner as in previous reports,6–10,14–16 activities against the IIIB strain of
HIV-1 were measured using MT-2 human T-cells; EC50 values are obtained as the dose
required to achieve 50% protection of the infected cells by the MTT colorimetric method.
Simultaneously, CC50 values for inhibition of MT-2 cell growth by 50% are obtained. The
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identity of all assayed compounds was confirmed by 1H and 13C NMR and high-resolution
mass spectrometry; purity was >95% as judged by high-performance liquid chromatography.

The amines 2f and 2g were of interest to test the effects of a positive charge at the end of the
side chains and increases in length beyond 2e. The results for 2f and 2g in Table 1 show that
these modifications are not beneficial for activity. The interest in the morpholine containing
compounds was particularly high since this modification would likely improve the solubility
of the compounds. Poor solubility has often been an issue in NNRTI development,
stemming from the hydrophobic character of the NNRTI binding site.1,16–19 Thus, it was
pleasing to find good activity for 2j (92 nM) and 2k (95 nM). This represents significant
improvement over the methylpiperazinyl and THP analogs 2h and 2i.

Furthermore, we quantified the aqueous solubilities of 2a, 2j, 2k, dapivirine (TMC120), and
efavirenz using a shake-flask method with UV detection (Agilent 8453).21 The results in
Table 2, which also includes previous reports for rilpivirine, are striking. Addition of the
morpholinoalkoxy substituent to 2a to yield 2j or 2k delivers a 400 to 500-fold improvement
in solubility. The results for 2j and 2k are similar to that for evafirenz and place them within
the normal range observed for oral drugs.22 In contrast, the sub-μg/mL solubilities for
dapivirine and rilpivirine are well outside the normal range. Though rilpivirine is an FDA-
approved oral drug, it likely has an unusual absorption mechanism involving aggregates,23

while dapivirine is being pursued as a vaginal microbicide.24 Thus, compounds 2j and 2k
have good aqueous solubility and potencies similar to that of nevirapine. Though their
activities in the WT cell assay are 100-fold less than for rilpivirine or dapivirine, their
solubilities are 175 to 350-fold greater.

Finally, to confirm the expectation of the placement of the morpholinoethoxy side chain in
the entrance channel and to elucidate its contacts, a co-crystal structure of 2j and WT HIV-
RT was pursued by the investigators at Yale using similar methods as previously reported.9

Crystals with the recombinant RT52A enzyme were obtained that diffracted to 2.9-Å
resolution, data were collected at the Brookhaven NSLS on beam line X25, and the structure
was solved by molecular replacement using the 2ZD1 structure of rilpivirine with HIV-RT25

as the search model. The electron density for the non-nucleoside binding region is ordered
and provides clear characterization of the interactions with the inhibitor (Figure 3). An
alternative rendering of the structure is provided in Figure 4.
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The positioning of 2j in the NNRTI binding site is the same as for 1 including the hydrogen
bonds with Lys101 and the placement of the dimethylallyl group in the π-box; however, the
salt bridge between Glu138 and Lys101 is no longer present (Figure 4). Overall, the co-
crystal structures reported here for 1 and 2j have an rmsd of only 1.4 Å for an all-atom
alignment. Since the contact between Tyr181 and the dimethylallyl group is retained, 2j
does not show activity towards the Y181C-containing viral variant. Most notably, the
structure for 2j confirms the anticipated extension of the morpholinoethoxy side chain into
the entrance channel towards Glu28. The carboxylate group of Glu138 contacts the carbon
atoms of the ethoxy subunit with O-C separations of 2.8 – 3.6 Å. The carboxylate oxygens
are also 3.8 and 4.4 Å from the morpholine nitrogen, which is presumably protonated. In
addition, the morpholine oxygen is proximal to the carboxylate carbon (4.1 Å) and oxygens
(3.4 and 4.3 Å) of Glu28.

Though it might seem that replacement of the oxygen of the morpholine with a positively
charged group would enhance binding, beneficial effects were not apparent for the 4-
methylpiperazinyl analog 2h (Table 1). In this case, only one of the tertiary nitrogens would
be protonated near pH 7, since the pKa values for 1,4-dimethylpiperazine are 8.4 and 3.8.26

Thus, a favorable electrostatic interaction with either Glu138 or Glu28 has to be sacrificed.

In summary, with compounds 2j and 2k it has been demonstrated that it is possible to extend
anilinylazine NNRTIs into the entrance channel of the NNRTI binding site to achieve
profound improvements in aqueous solubility. 2j and 2k are similar in anti-HIV activity to
the drug nevirapine, but they have 200 to 500-fold greater solubility than the parent
compound 2a and the diarylpyrimidines dapivirine and rilpivirine. Analogous application of
the present approach to the latter series of compounds may be expected to yield similar
benefits for solubility, while hopefully retaining their excellent activity towards viral
variants.
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Figure 1.
Rendering of the 1.95-Å crystal structure of 1 with WT HIV-RT. Carbon atoms of 1 are in
yellow. Some residues are omitted for clarity.
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Figure 2.
View from the right in Figure 1 of the crystal structure of 1 bound to WT HIV-RT. Some
residues are omitted for clarity. Coordinates have been deposited in the PDB as structure
4KO0.
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Figure 3.
Omit Fo−Fc electron density map at a contour level of 3.0 σ showing 2j in the NNRTI
binding site of HIV-1 RT with extension towards Glu28 in the entrance channel.
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Figure 4.
Illustration of the crystal structure of 2j with HIV-1 RT; the morpholinoethoxy side chain
projects towards Glu28B. Coordinates have been deposited in the PDB as structure 4KKO.
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Scheme 1.
Synthesis of 2f and 2g.
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Table 1

Anti-HIV-1 Activity (EC50) and cytotoxicity (CC50), μMa

Compound R R′ EC50 CC50

2ab OCH3 H 0.011 42

2bb OCH3 OCH3 0.022 >100

2cc OCH3 OCH2CH2OCH3 0.097 8.6

2dc CH2CH3 OCH2CH2OCH3 0.057 2.1

2ec OCH3 (OCH2CH2)3OCH3 0.380 4.2

2f OCH3 (OCH2CH2)4NH2 2.2 23

2g OCH3 (OCH2CH2)6NH2 5.0 18

2hc OCH3 OCH2CH2-4-MePiz 0.320 7.0

2ic OCH3 OCH2CH2-2-THP 1.2 4.2

2j OCH3 OCH2CH2-Morph 0.092 2.5

2k OCH3 OCH2CH2CH2-Morph 0.095 3.6

2l CH2CH3 OCH2CH2-Morph 0.150 0.8

2m c-C3H5 OCH2CH2-Morph 0.100 0.9

2n OCH3 OCH2CH2CH2-4-Pip 1.500 5.6

nevirapine 0.110 >100

efavirenz 0.002 15

rilpivirine 0.001 8

a
4-MePiz = N-methylpiperazinyl; 2-THP = 2-tetrahydropyranyl (racemic); Morph = N-morpholinyl; Pip = piperidinyl.

b
Ref. 10.

c
Ref. 16.
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Table 2

Aqueous Solubility at pH 6.5 (S)

Compound S, μg/mL Compound S, μg/mL

2a 0.1 efavirenz 68.0

2j 42.2 dapivirine 0.15

2k 52.3 rilpivirine 0.24a, 0.02b

a
Ref. 18, pH 7.4.

b
Ref. 20, pH 7.
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