Revista Mexicana de Astronomía y Astrofísica, 46, 339-348 (2010)

ATOMIC SPECIES IN THE SPECTRUM OF THE HG-MN STAR HD 53244

N. L. Maza,^{1,2} H. Levato,^{1,3} and Z. López-García^{1,3}

Received 2009 December 29; accepted 2010 July 15

RESUMEN

Presentamos la identificación de líneas del espectro de la estrella Bp de Hg-Mn HD 53244 (γ CMa) en el intervalo espectral $\lambda\lambda$ 3700 – 6700 Å. Este objeto es miembro del cúmulo abierto austral Cr 121. La comparación de su espectro con otros de estrellas de Hg-Mn de campo muestra que comparte muchas de las anomalías espectrales pero también presenta algunas diferencias.

ABSTRACT

Line identifications are presented for the Hg-Mn Bp star HD 53244 (γ CMa), in the spectral region $\lambda\lambda$ 3750 - 6700 Å. This object is a member of the southern open cluster Cr 121. Comparison of the spectrum of HD 53244 with other field Hg-Mn stars shows that it shares many of their spectral anomalies but that also some differences exist.

Key Words: stars: chemically peculiar — stars: line identification — stars: individual (HD 53244)

1. INTRODUCTION

The identification of lines in stellar spectra is one of the basic operations in stellar spectroscopy. The main purpose of this task is to determine the element responsible for each observed spectral line. Today, complete identification studies in which one attempts to identify every absorption feature are rarely done but they are badly needed. This research is part of our current program for producing line identification lists and elemental abundances among southern chemically peculiar (CP) stars. For this paper we selected the Hg-Mn star HD 53244. It is a member of the open cluster Collinder 121 (Feinstein 1967). It was observed by Hipparcos (HIP 34045).

This peculiar star was classified as B8 II (Houk & Cowley 1975) and B8 III in several papers in the literature. In fact, HD 53244 is a Hg-Mn peculiar star or CP3 in the classification scheme of Preston (1974). It was first classified as a manganese star of the α And class by Morgan (1933). Some years later (Bidelman 1962a,b) identified the nature of the line λ 3984 Å as produced by Hg II and HD 53244 became a Hg-Mn star. It is included as such in the cata-

logues of Renson, Gerbaldi, & Catalano (1991) and Schneider (1981). UBV photoelectric fotometry was published by several authors; there are more than a dozen measurements in the literature. Also, ubvyphotoelectric photometry has been provided by more than half a dozen sources. The most recent values for the UBV photometry are those provided by Fernie (1983), (B - V = -0.13 mag, U - B = -0.45 mag). The $ubvy - \beta$ photometry was taken from Hauck & Mermilliod (1998).

The radial velocity published by Wielen et al. (1999) is 32 km s⁻¹ and the rotational velocity, 30 km s⁻¹, was derived by Abt, Levato, & Grosso (2002). Very recently Briquet et al. (2010) found variable line profiles of Hg line and they derived a rotation period of 6.16 days for HD 53244.

2. OBSERVATIONAL MATERIAL

The spectra of HD 53244 were obtained by NM with the Jorge Sahade 2.15 m telescope at Complejo Astrónomico El Leoncito (CASLEO) and the EBASIM bench echelle spectrograph with a Roper Scientific 1340 × 1310 CCD back illuminated detector with a pixel size of 20μ . Two spectra of the star were obtained covering the visual range $\lambda\lambda 3700 - 5500$ Å and another two covering the red portion $\lambda\lambda 4600-6700$ Å. The EBASIM spectrograph uses gratings as cross dispersers. We have used one grating with 226 lines mm⁻¹. The S/N ratio of

 $^{^1 {\}rm Instituto}$ de Ciencias Astronómicas, de la Tierra y del Espacio, San Juan, Argentina.

 $^{^2 \}mathrm{Visiting}$ astronomer Complejo Astronómico El Leoncito, Argentina.

 $^{^3\}mathrm{Consejo}$ Nacional de Investigaciones Científicas y Técnicas, Argentina.

the spectra was around 300 and they were taken in March, 2008. The resolving power was 40000 at 5000 Å. There was no more than a 20% difference among the equivalent width measurements of the same lines in different orders of the echelle spectra. The spectra were reduced using IRAF⁴ standard procedures for echelle spectra, and were normalized order by order with the CONTINUUM task of the same package. The resolution of the spectra was 0.04 Å/px. Extensive description of EBASIM spectrograph has been published by Simmons & Levato (1996) and by Pintado & Adelman (2003).

3. LINE IDENTIFICATIONS

The line identification techniques have been extensively reviewed by Cowley & Adelman (1990) and by Gulliver & Stadel (1990). Also the subject was addressed by Cowley (1995). Cowley & Adelman (1990) in particular compared the results of the classical technique for line identification with the WCS (wavelength coincidence statistics). As HD 53244 is an early type Bp star, we have used the classical technique for line identification based on the following precautions: (a) we use the highest resolution spectra on hand (EBASIM, 40000 resolving power), (b) we try to identify all the possible lines in the wavelength range, (c) we require that the strongest laboratory lines of each atomic species be present. The stellar lines were identified using the general compilation by Moore (1945) as well as the more specialized references: for Si II Shenstone (1961), for P II we used the NIST tables⁵, for Ti II Huldt et al. (1982), for Mn II Iglesias & Velasco (1964), for Fe II Johansson (1978), Nave et al. (1994) and some few lines from $Kurucz^6$, while for the rare earths we have used the DREAM⁷ database. We used a $\Delta \lambda$ interval of 0.15 Å to search for the possible contributors to each spectral feature. HD 53244 is not a very low rotator. The $v \sin i$ value derived from our EBASIM spectra is around 30 km s^{-1} and agrees with the Abt et al. (2002) determination. So we chose the interval ± 0.15 Å because the total width due to rotation for lines at 4000 Å is around 0.4 Å. Empirically, it is demonstrated that on our spectra one may note the presence of a companion line with less than half of that value. We have not used the synthetic computation of the spectra for line identification because that technique involves theory and several assumptions and simplifications of the real physical situation in Bp-Ap stars. The technique we have applied has been extensively justified in Cowley (1995).

Table 1 lists the line identifications. The first column shows the mean wavelength λ in Å as measured on HD 53244 and corrected by Doppler shift to the laboratory frame. The second column lists the equivalent width in Å measured in our spectra. The values are averages of two spectra. Column 3 lists the identification of the ion producing the line (the symbol? means that the identification is doubtful). Column 4 provides the multiplet number or the source of the identification. The rest wavelengths are indicated in Column 5, while Column 6 provides the relative intensity of the line. The intensities are a measure of the depth of the line with respect to the continuum and they were estimated with a very rough scale in which lines (at the wavelength given) with a depth smaller than 4% correspond to intensity I = 1, those between 4% and 6% correspond to I = 2; 6% to 10%, to I = 3; 10% to 15%, to I = 4; 15% to 20%, to I = 5; 20% to 30%, to I = 6; 30% to 40%, to I = 7; 40% to 60%, to I = 8; 60% to 80%, to I = 9; and 80% to 100%, to I = 10.

In the vicinity of the Balmer lines, the intensities for the metal lines are measured with respect to the hydrogen line wings. The intensities for the Balmer lines are measured with respect to a continuum extrapolated across them.

Let us comment, next, the results for some atomic species:

• H I. The first line measured from the short wavelewngths region is $\lambda 3759$.

• He I. There are several lines identified.

• C II. (Moore 1945) lines of multiplets 4 (λ 3918 and λ 3920) and λ 4267 are present; lines of multiplet 2 (λ 6578.05 and λ 6582.88) were also found among the telluric lines present in the 6500 Å region.

• N I is not present.

• O I. We identified three lines of O I in the λ 5300 region. They belong to multiplets 12 and 13 and one line of multiplet 3. We have also identified lines of multiplet 10 (λ 6155.99 blended with λ 6156.78) and also we found λ 6158.19. We have also found the line of multiplet 9 λ 6456.01. So the presence of O I is certain.

• O II. The identification is very doubtful, only one line is probably present.

• Ne I. There are several lines identified, multiplets 1, 3, 5, 6, 9, 11 and 13.

• Na I. There are many telluric lines present in the region, only $\lambda 5889$ was identified.

⁴IRAF is distributed by the National Optical Astronomical Observatories which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation.

⁵http://physics.nist.gov/cgi-bin/AtData/lines.form.

⁶www.kurucz.havarard.edu/atoms/2601/gf2601.lines.

⁷http://www.umh.ac.be/astro/dream.shtml.

		Identification					Identification				
λ [Å]	$W_{\rm eq}$	Element	Mult.	λ_{lab}	Intensity	λ [Å]	$W_{\rm eq}$	Element	Mult.	λ_{lab}	Intensity
3700.00						50.40	0.027	YII	6	50.35	1
59.22	0.081	TiII	13	59.30	3	52.40	0.065	MnII	Ι	52.42	2
		FeII	154	59.46		60.99	0.031	FeII	212	60.90	2
61.48	0.018	TiII	13	61.33	1	68.75		CaII			4
		CrII	11	61.66		70.07		$H\varepsilon$			6
		TiII	107	61.88		75.69	0.034	MnII	Ι	75.74	1
	.	CrII	11	61.85		79.48	0.037	CrII	183	79.51	1
63.79	0.037	MnII	1	63.76	2	83.91	0.009	HgII		83.94	1
65.63	0.014	CrII M-II	20	65.56	1	86.22	0.031	T:11	11	97.61	1
69 79	0.028	Hol	65	69.91	1/2	01.00	0.011	7 nH 2	20	01.14	1
70.69	0.009	пеі Н11	05	00.01	1/2	91.20	0.030	MnII	30 T	91.14	1
78.32	0.054	MnII	т	78.32	2	99.84	0.014	wiiiii	1	30.32	1
79.62	0.019	FeII	23	79.58	1	55.64	0.010				1
83.33	0.100	FeII	14	83.35	3	4000.00					
84.23	0.092	CeIII ?			3	00.02	0.006	MnII	T	00.04	1/2
97.90		H10			7	02.58	0.030	FeII	190	2.54	1
98.28	0.049	FeII	14	98.28	2			CrII	166	2.48	
						03.62	0.013				1
3800.00						04.69	0.021				1
01.38	0.022	MnII	Ι	01.63	1	09.35	0.042	HeI		09.25	1
		CrII	-	01.21	3	12.45	0.019	TiII	11	12.40	1
12.36	0.013	MnII	I	12.24	1			CrII	183	12.50	
		MnII	Ι	12.52		15.50	0.037	NiII	12	15.50	2
14.19	0.025	FeII	153	14.12	1	18.24	0.018	ZrII ?	54	18.38	1
17.30	0.024	MnII	Ι	17.26	1	20.95	0.041				2
19.55	0.087	HeI			3	26.06		HeI			6
20.43	0.042	Fel	20	20.43	2	28.41	0.012	Till	87	28.36	1
24.84	0.059	Fell	29	24.91	2	32.95	0.021	Fell	126	32.95	1
07.00	0.014	MnII	150	25.04	1	34.06	0.016	ZrII (42	34.10	1
21.08	0.014	Fell	105	21.08	1	37.91	0.032	7-11	194	37.98	1
35.39	0.024	H9 MpH	т	20.05	8	40.26	0.018	Zr11 DII	54 20	40.24	1
41 70	0.024	WIIII	1	39.00	1	44.44	0.001	Foll	172	44.49	1
41.79	0.019	ZrH	7	43.03	1	48.81 50.60	0.032	ren	172	40.03	1
43.26	0.010	MnII	í T	43.32	1	53.97	0.027	TiH	87	53 83	1
44.10	0.022	MnII	ī	44.17	1	00101	0.012	CrII	19	54.09	-
45.17	0.072	FeII	127	45.18	2	57.46	0.051	FeII	212	57.46	2
48.24	0.059	MgII	5	48.24	2	61.76	0.020	FeII	189	61.79	1
49.51	0.035	NiII	11	49.58	2	63.85	0.029				
50.95	0.034	OII	NI	51.03	1	64.48	0.028	FeII	29	64.57	1
		SII	50	50.93				TiII	106	64.35	
53.58	0.041	SiII	1	53.66	2	65.40	0.015				1
56.00	0.078	SiII	1	56.02	4	66.94	0.054	NiII	11	67.05	2
60.92	0.014	FeII	0	60.92	1	69.96	0.014	FeII	188	69.88	1
62.55	0.084	SiII	1	62.60	3	72.48	0.027	CrII	26	72.56	1
63.95	0.016	FeII		63.95	1	73.76	0.031				1
65.74	0.021	CrII	167	65.60	1	75.43	0.028	SiII	3.01	75.45	1
0 0	0.000	CrII	130	65.99		78.50	0.013				1
67.56	0.022	Hel	20	67.48	1	80.94	0.080	N . 11	т	02.00	2
71.90	0.025	Hel	20	07.03	1	83.03	0.100	MIII	1	83.00	3
71.62	0.035	Mall	00	70.00	1	4100.00					
88.65	0.007	HeI	2	88.65	1/2	4100.00		нδ			6
89.05	0.001	H8		00.00	6	07.90	0.022	110			1
00.00		110			0	09.30	0.059	MnII ?	T	09.20	2
3900.00						10.72	0.111	MnII	I	10.62	2
00.48	0.028	TiII	34	00.56	1			CrII	18	11.01	
05.94	0.075	FeII	173	06.04	2	20.90	0.028	HeI			1
		CrII	167	05.64		22.69	0.019	FeII	28	22.64	1
11.76	0.018					24.75	0.013	FeII	22	24.79	1
13.48	0.056	TiII	34	13.48	2	28.05	0.132	SiII	3	28.07	4
17.25	0.020	MnII	Ι	17.32	1	30.85	0.092	SiII	3	30.89	4
19.03	0.036	CII	4	18.98	1	36.90	0.020	MnII	Ι	36.90	1
20.66	0.048	CII	4	20.68	2	40.37	0.022	MnII	Ι	40.44	1
26.51	0.052	HeI	68	26.53	2	43.80	0.039	HeI			1
32.09	0.040	TiII	34	32.02	1	45.68	0.013	CrII	162	45.77	1
33.62	0.145	CaII			5	49.33	0.065	ZrII ?	41	49.22	2
35.91	0.032	Hel	57	35.91	1	53.20	0.010	SII	44	53.10	1
38.92	0.037	Fell	190	38.97	1	63.62	0.019	T111 E-11	105	63.63	1
47.38	0.043	01	3	47.29	1	67.24	0.040	Fell	K88	67.30	1

TABLE 1 LINE IDENTIFICATION

TABLE 1 (CONTINUED)

	Identification						Identification					
λ [Å]	$W_{\rm eq}$	Element	Mult.	$\lambda_{\rm lab}$	Intensity	λ [Å]	$W_{\rm eq}$	Element	Mult.	λ_{lab}	Intensity	
		FeIII	118	66.86		65.22	0.030	MnII	Ι	65.22	1	
71.54	0.039	MnII	Ι	71.51	2	67.69	0.011	TiII	105	67.65	1	
73.59	0.090	FeII	27	73.45	2	69.36	0.006	FeII	28	69.40	1/2	
		TiII	21	73.53		73.03	0.018				1	
78.67	0.058	FeII	28	78.86	2	74.59	0.016	TiII	93	74.84	1	
		PII	S	78.46				ScII	14	74.46		
81.75	0.016	CrII	181	81.50	1			YII	13	74.94		
84.54	0.013	MnII	1	84.45	1	79.64	0.014	MnII	1	79.67	1	
91.32	0.030				1	84.56	0.026	MgII	10	84.64	1	
4200.00						85.34	0.034	Fell	27 NI	85.39	1	
4200.00	0.020	Mail	т	00.97	1	07 00	0.008	PII	INI	85.31	2	
00.28	0.029	Foll	1 K88	00.27	1	07.00	0.098	Mall	10	01.93	3 1	
05.08	0.010	MnII	IXOO	05.38	1	93.33	0.013	MnII	10	93.38	1	
06.31	0.056	MnII	T	06.37	2	94.96	0.043	Till	19	95.00	2	
22.26	0.012	CrII	180	22.00	1	95.77	0.008	FeIII	4	95.78	1	
24.62	0.032	CrII	31	24.08	1	99.80	0.026	TiII	51	99.79	1	
		CrII	162	24.89								
33.14	0.057	FeII	27	33.17	2	4400.00						
		CrII	31	33.27		00.74	0.020				1	
35.16	0.012				1	07.74	0.004	TiII	51	07.68	1	
35.62	0.027	YII	5	35.73	1	09.49	0.007	TiII	61	09.51	1	
		FeII	K88	35.39		11.10	0.009	TiII	115	11.10	1	
37.95	0.014	MnII	Ι	37.87	1	11.99	0.003	TiII	61	11.92	1	
38.80	0.022	MnII	I	38.79	1	15.20	0.003	FeI	41	15.12	1	
42.36	0.056	MnII	Ι	42.33	1	16.80	0.035	FeII	27	16.83	1	
		CrII	31	42.38		17.76	0.002	Till	40	17.72	1	
44.23	0.023	Mnll	1	44.25	1	19.41	0.007	Felli	4	19.59	1	
46.55	0.073	ScII ?	7	46.83	2	20.73	0.019	PII	NI	20.71	1	
50.44	0.012	Eall	31 12	46.41	1	27.92	0.017	FoIII	9	28.00	1	
51.73	0.013	MnII	K I	51.74	1	30.93	0.012	Mall	4	33.00	1	
52.97	0.045	MnII	I	52.96	2	34.03	0.015	MnII	J T	34.06	1	
54 47	0.043	CrII	D	54 52	1	37 51	0.017	HeI	1	34.00	1	
59.07	0.029	MnII	T	59.20	1	41.84	0.007	TiII	40	41.73	1	
61.99	0.022	CrII	31	61.92	1	43.76	0.039	TiII	19	43.78	1	
63.89	0.012	FeII	J	63.90	1	50.43	0.015	TiII	19	50.50	1	
67.19	0.061	CII	6	67.02, .27	2	51.53	0.008	FeII		51.55	1	
70.84	0.014				1	55.26	0.009	FeII	J	55.27	1	
73.31	0.019	FeII	27	73.32	1	61.93	0.015				1	
75.59	0.029	CrII	31	75.57	1	63.07	0.017				1	
78.38	0.008	SII	40	78.50	1/2	68.49	0.043	TiII	31	68.52	1	
82.45	0.044	MnII	Ι	82.47	2	71.51	0.182	HeI			5	
83.94	0.039	CrII	31	84.21	1	75.24	0.013	PII	NI	75.26	1	
		MnII	I	83.77		78.64	0.026	MnII	I	78.64	1	
86.24	0.004	FeII	J	86.31	1/2	81.17	0.187	MgII	4	81.13	6	
87.95	0.022	Till	20	87.88	1	00.14	0.000	MgII	4	81.33	-	
00.10	0.040	MnII	1	88.07	0	89.14	0.028	Fell	37	89.18	1	
90.19	0.042	1111 MpH	41 T	90.22	2	01.29	0.020	Eall	J 97	89.11	1	
92.24	0.030	TII	20	92.24	1	91.38	0.029	Till	18	91.40	1	
34.24	0.024	SU	49	94.03	1	35.08	0.011	FeII	222	93.55	1	
96.57	0.026	FeII	28	96.57	1	99.31	0.029	PII	NI	99.24	1	
00.01	0.020	1011		00.01	-	00101	0.020			00.21	-	
4300.00						4500.00						
00.08	0.037	TiII	41	00.06	2	01.31	0.037	TiII	31	01.27	1	
03.10	0.044	FeII	27	00.17	2	08.24	0.038	FeII	38	08.28	2	
07.96	0.047	MnII	Ι	08.16	2	15.29	0.039	FeII	37	15.34	2	
		TiII	41	07.87		18.99	0.012	MnII	Ι	18.96	1	
09.52	0.003	YII	5	09.62	1	20.20	0.030	FeII	37	20.22	1	
12.91	0.013	TiII	41	12.87	1	22.57	0.046	FeII	38	22.63	2	
14.46	0.013	MnII	Ι	14.38	1	24.83	0.018	SII	45	24.95	1	
15.10	0.006	TiII	41	14.97	1	29.55	0.003	TiI	82	29.48	1	
20.69	0.008	ScII	15	20.74	1	33.98	0.030	TiII	50	33.97	1	
25.06	0.007	MnII	Ι	25.04	1	39.54	0.009	CrII	39	39.62	1	
26.63	0.045	MnII	Ι	26.64	3	41.51	0.022	FeII	38	41.53	1	
30.13	0.011	TiII	94	30.23	1	46.66	0.014	CrII	J	46.62	1	
40.47	0.67.	$H\gamma$	-	10.00	6	49.42	0.100	Fell	186	49.21	4	
43.92	0.054	Mn11 Mn11	1	43.98	2			Fell	38	49.47		
48.42	0.030	Mnii	1	48.40	1	F0.40	0.010	T111 C:111	82	49.62	-	
56.69	0.053	rell	27	56.69	2	52.42	0.010	SIII	2	02.02 50.20	1	
00.02 63.00	0.018	MnII	1 T	50.62 63.26	1	55.07	0.015	CrU	48	0⊿.38 55.09	1	
03.22	0.019	111111	1	03.20	ĩ	55.07	0.010	0.11	44	00.04	1	

TABLE 1 ((CONTINUED))
-----------	-------------	---

			Identif	ication					Identification				
λ [Å]	$W_{\rm eq}$	Element	Mult.	λ_{lab}	Intensity	λ [Å]	W_{eq}	Element	Mult.	$\lambda_{\rm lab}$	Intensit		
55.92	0.013	FeII	37	55.89	2	4900.00							
58.56	0.048	CrII	44	58.66	2	01.60	0.013	CrII	190	01.65	1		
63.77	0.024	TiII	50	63.72	1	11.13	0.015	TiII	114	11.18	1		
65.74	0.010	CrII	30	65.77	1	13.29	0.020	FeII	J	13.29	1		
67.87	0.008	SiIII	2	67.83	1/2	21.77	0.133	HeI			3		
71.89	0.034	Till	82	71.96	-/-	23.87	0.063	FeII	42	23.03	2		
71.05	0.004	C:111	02	74.76	1/9	23.07	0.005	1.611	42	20.90	1		
74.80	0.005	DIII	2	74.70	1/2	31.30	0.018	DII	NT	49.59	1		
76.39	0.029	Fell	38	76.33	1	43.51	0.021	PII	INI T	43.53	1		
79.58	0.007	Fell	J	79.52	1	48.80	0.010	Fell	J	48.80	1		
82.87	0.020	FeII	37	82.84	1	51.52	0.014	FeII	J	51.59	1		
83.80	0.074	FeII	38	83.83	2	54.18	0.011	FeII	J	53.98	1		
88.13	0.027	PII	NI	88.04	3	69.63	0.039	PII	NI	69.71	1		
		CrII	44	88.22		76.95	0.019	FeII	J	77.04	1		
89.83	0.031	CrII	44	89.89	1	77.50	0.038	FeII	J	77.03	1		
		PII	NI	89.86				FeII	J	77.93			
92.03	0.023	CrII	44	92.07	1	80.14	0.006				1		
06.02	0.021	Foll	D	06.02	1	84.40	0.010	Fall	т	84 40	1		
90.02	0.021	Fell D.H	010	90.02	1	00.50	0.010	Fell	J 1	00.51	1		
98.39	0.013	Fell	219	98.53	1	90.59	0.012	Fell	J	90.51	1		
						91.66	0.010				1		
600.00						93.36	0.003	FeII	J	93.35	1		
02.04	0.034	ΡII	NI	02.08	1								
00.44	0.029				1	5000.00							
16.60	0.022	CrII	44	16.64	1	01.90	0.034	FeII	J	01.92	2		
18.78	0.023	CrII	44	18.82	1	04.22	0.025	FeII	J	04.20	1		
20.56	0.017	FeII	38	20.52	- 1	07.40	0.030	FeII	ĩ	07.45	1		
20.00	0.017	C:II	7.05	20.02	1	00.54	0.030	SII	7	00.54	1		
21.05	0.025	5111	7.05	21.42	1	15 72	0.012	511	1	15 55	1		
				21.72		15.73	0.056	Fell	J	15.75	2		
25.86	0.002	FeII	186	25.91	1	18.41	0.080	FeII	J	18.45	3		
29.26	0.037	FeII	37	29.34	1	21.60	0.010	FeII	J	21.59	1		
31.99	0.003	FeII	219	31.90	1	22.77	0.018	FeII	J	22.79	1		
34.12	0.020	CrII	44	34.16	1	26.90	0.013	FeII	J	26.80	1		
35.27	0.022	FeII	186	35.32	1	30.67	0.030	FeII	J	30.63	1		
40.91	0.004	FeII	I	40.84	1	32.40	0.017	SII	7	32.41	1		
40.31 EC 00	0.004	E-II	42	56.09	1/9	25.40	0.017	E-II	, T	25 71	1		
50.99	0.007	Fell	45	50.98	1/2	33.08	0.027	Fell	J	33.71	1		
58.36	0.011	PII	NI	58.31	1	40.96	0.086	Sill	5	41.02	3		
66.70	0.008	FeII	37	66.75	1/2	47.66	0.029	FeII	J	47.64	1		
70.13	0.010	FeII	25	70.18	1/2			HeI					
73.16	0.017	SiII	7.15	73.27	1	56.16	0.122	SiII	5	55.98	4		
								SiII	5	56.32			
700.00						61.64	0.018	FeII	J	61.72	1		
08.72	0.043	NeI	11	08.85	2	67.79	0.018	FeII	J	67.89	1		
13.18	0.045	HeI			2	75 74	0.024	FeII	Ĩ	75 76	1		
16.16	0.040	SII	0	16.97	1/2	80.00	0.012	Foll	T	en no	1		
17.20	0.008	511 M 11	9	17.00	1/2	02.22	0.013	Fell	J	02.20	1		
17.30	0.016	MnII	1	17.26	1	89.17	0.012	Fell	J	89.21	1		
27.77	0.036	Mnll	1	27.84	1	93.54	0.023	Fell	J	93.56	1		
30.36	0.022	MnII	Ι	30.40	1	97.24	0.018	FeII	J	97.27	1		
31.52	0.011	FeII	43	31.45	1								
38.20	0.045	MnII	Ι	38.29	2	5100.00							
		MnII	Ι	38.29		00.72	0.056	FeII	J	00.74	2		
55 71	0.054	MnII	Ť	55 73	3	02 47	0.029	MnII	T	02.52	1		
64 74	0.054	MnIT	т	64 72	2	02.11	0.004	SII	7	3 20	1/0		
70.15	0.004	1011111	1	04.73	4	03.30	0.004	511	(T	06 11	1/2		
70.15	0.033				1	06.16	0.021	Fell	J -	06.11	1		
76.47	0.025				1	23.19	0.020	FeII	J	23.19	1		
79.89	0.020	TiII	92	79.98	1	27.50	0.018	FeII	J	27.85	1		
84.56	0.025				1	44.16	0.012	FeII	J	43.88	1		
91.76	0.011	MnII	Ι	91.81	1			FeII	J	44.36			
						45.71	0.010	FeII	J	45.78	1		
800.00						40.24	0.036	FeII	ĩ	48 94	2		
04.00	0.012	T;H	0.0	05.00	1	40.44	0.000	Foll	т	40.46	4		
04.90	0.013	1111	92	05.09	T		0.001	Fell	J	49.40			
		Fell	J	04.73		57.58	0.024	Fell	J	57.51	1		
06.86	0.026	MnII	Ι	06.82	1	60.87	0.016	FeII	J	60.85	1		
11.91	0.023	MnII	Ι	11.62	1	63.22	0.013	FeII	J	63.00	1		
		CrII	30	12.36				FeII	J	63.58			
15.61	0.012	SII	9	15.55	1	66.47	0.020	FeII	.I	66.56	1		
24 08	0.032	CrII	30	24 13	- 2	00.00	0.080	FeII	ĩ	69.03	2		
24.00	0.032	E-II		24.10	2 1	09.00	0.000	E-II	J т	77.00	0		
20.63	0.017	rell	J _	26.68	1	77.46	0.042	rell	J -	17.39	2		
30.17	0.011	MnII	I	30.06	1			MnII	I	77.65			
36.13	0.008	CrII	30	36.22	1	83.51	0.014	MgI	2	83.60	1		
47.67	0.019	MnII	Ι	47.61	1	85.86	0.018	TiII	86	85.90	1		
40.00	0.017	CrII	30	48.24	1	91.48	0.023	PII	NI	91.41	1		
48.28		цe	~~		6	97 56	0.036	FeII		97.58	2		
48.28						211.010	0.000				· · · ·		
48.28 61.33 76.41	0.000	Crit	90	76 41	1	00.10	0.000	Four	т	00.70	-		

TABLE 1 (CONTINUED)

			Identif	ication					Identification			
λ [Å]	$W_{\rm eq}$	Element	Mult.	$\lambda_{\rm lab}$	Intensity	λ [Å]	$W_{\rm eq}$	Element	Mult.	$\lambda_{\rm lab}$	Intensity	
5200.00								FeII	J	93.59		
01.00	0.012	FeII	J	00.81	1	95.92	0.019	FeII	J	95.86	1	
02.40	0.010	SiII	23	02.41	1							
		SiII	23	02.41		5400.00						
03.69	0.018	FeII	J	03.64	1	02.00	0.033	FeII	J	02.06	1	
12.70	0.001	SII	39	12.61	1	05.19	0.012	FeII	J	05.10	1	
13.87	0.015	Fell	J	13.99	1	08.76	0.024	Fell	J	8.81	1	
15.54	0.028	Fell	J T	15.34	1	14 52	0.031	PII Fall	INI	14.05	1	
16 77	0.028	FeII	J	16.85	2	14.55	0.028	FeII	J	14.03 14.84	1	
18.88	0.008	FeII	0	18.84	1	19.19	0.017	XeII	NI	19.15	1	
25.56	0.032	FeII	J	25.25	1	21.92	0.015	MnII	Ι	21.92	1	
		FeII	J	25.36		25.82	0.067	FeII	J	25.82	2	
		FeII	J	25.98				PII	NI	25.88		
27.43	0.037	FeII	J	27.48	2	27.70	0.008	FeII	J	27.82	1	
32.90	0.020	FeII	J	32.78	1	29.90	0.014	FeII	J	29.99	1	
34.53	0.049	Fell	J	34.29	2	32.85	0.019	SII	6	32.82	1	
27.62	0.022	Fell Crit	J 49	34.62	1	42.35	0.005	Fell	т	42.35	1/2	
37.02	0.023	Foll	43 I	37.34	1	44.43	0.012	FeII	J	44.39	1	
39 71	0.013	FeII	J	39.81	1	50.68	0.019	PII	NI	40.01 50.74	1	
41.14	0.015	FeII	J	41.08	1	53.86	0.015	SII	6	53.83	1	
43.03	0.006	FeIII	113	43.3	1	66.40	0.050	SiII	7.03	66.43	2	
45.12	0.015	FeII	J	45.08	1	72.84	0.014	FeII	J	72.86	1	
46.75	0.003	CrII	23	46.75	1/2	75.79	0.009	FeII	J	75.83	1	
47.94	0.021	FeII	J	47.95	1	82.30	0.019	FeII	J	82.31	1	
49.40	0.017	CrII	23	49.40	1	87.66	0.023	FeII	J	87.62	1	
51.32	0.027	FeII	J	51.23	1	92.14	0.018	FeII	J	92.08	1	
53.46	0.068	Fell	J	53.64	2	02.00	0.011	Fell	J	92.40		
54 77	0.010	PII Fall	INI	53.52 54.64	1	93.00	0.011	Fell	J	93.63	1	
57 25	0.010	FeII	J	54.04 57.11	1	98.55	0.013	PII	NI	99.57	1	
60.25	0.041	FeII	J	60.26	2	00111	0.000			00.10	-	
64.34	0.043	FeII	J	64.18	2	5500.00						
		FeII	J	64.80		02.99	0.024	FeII	J	02.68	1	
69.98	0.015	FeII	J	70.03	1			FeII	J	03.22		
72.35	0.018	FeII	J	72.40	1	06.27	0.036	FeII		06.20	2	
75.91	0.060	FeII	J	75.99	2	10.69	0.055	FeII	J	10.67	2	
79.79	0.023	CrII	43	79.88	1	00.02	0.004	Fell	J	10.78		
84.14	0.025	Fell	J	84.11	1	28.93	0.004	Fell	J	29.06	1	
91.91	0.040	Yell	J	91.07	2	29.74	0.005	FeII	J	29.92	1	
94 29	0.034	MnII	T	94.32	1	34.86	0.003	FeII	J	34.83	1	
95.52	0.064	MnII	I	95.40	2	44.66	0.019	FeII	Ĵ	44.76	1	
96.60	0.025				1			FeII	J	44.20		
97.13	0.021	MnII	Ι	97.06	1	48.65	0.015	FeII	J	48.21	1	
99.30	0.061	MnII	Ι	99.39	2	59.06	0.030	SII	61	59.06	1	
								MnII	Ι	59.05		
5300.00			_			61.43	0.010	FeII	J	61.52	1	
02.50	0.053	Fell	J	02.55	2	63.46	0.010	Fell	J	63.40	1	
13 58	0.011	CrII	J ⊿2	13 50	1	07.70 70.58	0.019	ген	J	07.84	1	
16.39	0.122	FeII	сь- I.	16.23	5	78.06	0.032	FeII	I.	77.92	1	
10.00	0.100	FeII	J	16.62	9	.0.00	0.002	MnII	I	78.15	-	
		FeII	J	16.78		88.16	0.018	FeII	J	88.22	1	
25.53	0.018	FeII	J	25.55	1			FeII	J	88.05		
29.51	0.014	OI	12	29.10	1							
		OI	12	29.68		5600.00						
30.72	0.031	OI	12	30.74	1	06.08	0.011	SII	11	06.15	1	
04.05	0.010	Nel	9	30.78		39.96	0.022	SII	14	39.97	1	
34.85	0.013	CrII	43	34.88	1	45.43	0.010	Fell	J 14	45.40	1/2	
39.55	0.032	FeII	.I	39.59	2	48.80	0.008	FeII	14 .T	48.90	1	
44.68	0.035	PII	NI	44.71	1	51.56	0.006	FeII	J	51.50	1	
46.23	0.017				1	55.32	0.005	FeII	J	55.36	1/2	
62.84	0.047	FeII	J	62.87	2	57.86	0.003	FeII	J	57.92	1/2	
66.25	0.014	FeII	J	66.21	1	60.18	0.014	FeII	J	60.15	1	
70.34	0.010	FeII	J	70.30	1	64.70	0.009	SII	11	64.78	1	
72.36	0.022	XeII	NI	72.39	1	68.78	0.003	FeII	J	68.64	1/2	
75.91	0.011	Fell F-H	J	75.84	1	69.58	0.011	Sill	7.33	69.56	1	
80.95	0.006	rell PH	J	01.00	2	80.92	0.013	FeII	47	01 90	1	
93 70	0.013	FeII	INI. .T	93 85	1	91.99	0.011	ren	41	91.90	T	
	0.010			00.00	-							

		Identification						Identification			
λ [Å]	$W_{\rm eq}$	Element	Mult.	$\lambda_{\rm lab}$	Intensity	λ [Å]	W_{eq}	Element	Mult.	$\lambda_{\rm lab}$	Intensity
5700.00			_			79.33	0.035	FeII	J	79.39	1
16.51	0.007	FeII	J	16.58	1/2	6200.00					
48.30	0.006	Nel	13	48.30	1	38.49	0.049	Fell	J	38.39	2
80.18	0.021	Fell	J	80.13	1	39.65	0.029	Fell	J	39.34	1
83.79	0.014	Fell	J	83.63	1	47 49	0.052	Fell	J	39.90	0
F800.00						47.42	0.003	FeII	J	41.31	1/2
26.30	0.020	FoII	т	26.11	1	66.44	0.003	NoI	J 5	66 50	1/2
20.50	0.020	FeII	J	26.51	1	69.28	0.020	FeII	J	69.34	1/2
52.38	0.012	NeI	6	52.48	1	71.27	0.004	FeII	J	71 21	1/2
75.62	0.168	HeI	11	75.62	6	73.63	0.005	FeII	J	73.59	1/2
		HeI	11	75.65		82.64	0.012	MnII	K	82.52	1
78.57	0.013	FeII	J	78.53	1	94.02	0.022	FeII	J	94.14	1
79.84	0.017	FeII	K09	79.79	1						
80.80	0.013	FeII	K09	80.84	1	6300.00					
81.87	0.019	NeI	1	81.89	1	05.32	0.023	FeII	J	05.29	1
82.82	0.022	FeII	K09	82.78	1	31.97	0.011	FeII	J	31.95	1
84.99	0.034	FeII	J	85.02	1	34.42	0.026	NeI	1	34.43	1
89.95	0.013	NaI	1	89.95	1	40.23	0.010	FeII	J	40.24	1
91.36	0.018	FeII	J	91.33	1	47.09	0.151	SiII	2	47.09	6
95.38	0.012	FeII	J	95.35	2	49.55	0.009	FeII	J	49.58	1/2
97.96	0.015	FeII	J	98.03	1	57.22	0.028	FeII	J	57.16	1
98.90	0.044	SiIII	Κ	98.79	2	62.54	0.004	FeII	J	62.48	1/2
						67.34	0.009	FeII	J	67.41	1/2
5900.00						71.36	0.132	SiII	2	71.36	5
01.25	0.010	FeII	J	01.39	2	83.21	0.026	NeI	3	82.99	1
02.60	0.029	FeII	J	02.82	1						
11.86	0.022				1	6400.00					
14.50	0.018	FeII	J	14.53	1	02.25	0.035	NeI	1	02.24	1
21.39	0.025				1	07.14	0.015	FeII	J	01.25	1
27.18	0.016	SII	21	27.15	1	11.07	0.008	MnII	K	11.00	1/2
44.41	0.028	FeII	J	44.38	1	15.57	0.014	FeII	J	15.56	1
44.89	0.026	NeI	1	44.83	1	16.92	0.021	FeII	J	16.92	1
48.42	0.029	FeII	J	48.42	1	25.75	0.014	FeII	J	25.74	1
55.67	0.016	Fell	J	55.70	1	33.43	0.025				1
57.52	0.100	Sill	4	57.56	3	40.44	0.005	Fell	J	40.48	1/2
61.62	0.029	Fell	J	61.71	1	46.52	0.008	Fell	J	46.40	1/2
65.52	0.036	Fell	J	65.63	1	48.32	0.008	Fell	J	48.22	1/2
75.88	0.033	Nel	1	75.53	1	52.92	0.009	MnII	ĸ	52.88	1/2
70.07	0.040	Aell	INI 4	70.40	0	55.94	0.020	OI E.U	9	56.01	1
18.97	0.048	5111 Foll	4	18.91	2	59.38	0.046	Fell	J	59.58	2
83.90	0.015	ren	5	03.00	1	50.02	0.013	DII	K V	50.04	1
6000.00						62.21	0.031	MnII	20	62 21	1
24.16	0.064	DII	NI	24.18	2	63 20	0.020	MnII	20	63 20	1
34.00	0.004	PII	NI	34.04	2	78.12	0.020	FeII	20	78.14	1
43.04	0.074	PII	NI	43.12	3	82.30	0.044	FeII	J	82 20	2
45 50	0.012	FeII	.1	45 46	1	91.61	0.051	Till	91	91.56	1
49.49	0.007	FeII	J	49.45	1/2	51.01	0.001	FeIJ	.J	91.67	Ŧ
60.93	0.021	FeII	Ĵ	60.99	1	93.11	0.009	FeII	Ĵ	93.03	1
69.63	0.006	FeII	J	69.67	1/2	94.46	0.046	MnII	K	94.42	2
71.43	0.009	FeII	J	71.42	1						
74.41	0.012	NeI	3	74.34	1	6500.00					
84.19	0.006	FeII	J	84.11	1/2	03.13	0.045				2
87.76	0.030	PII	NI	87.82	1	06.40	0.025	NeI	3	06.53	1
89.76	0.004	CrII	87	89.69	1	10.76	0.028	FeII	J	10.73	1
96.29	0.017				1	31.12	0.035	FeII	J	31.16	1
						41.27	0.018	FeII	J	41.37	1
6100.00						42.68	0.040	FeII	J	42.63	2
05.33	0.006	MnII	Κ	05.27	1/2	55.67	0.019	MnII	К	55.69	1
22.55	0.032	MnII	Κ	22.45	1	62.82		$H\alpha$			6
28.91	0.023	MnII	Κ	29.04	1	73.54	0.037	FeII	J	73.49	5
43.01	0.021	NeI	1	43.06	1	78.03	0.033	CII	2	78.05	1
47.77	0.016	FeII	J	47.77	1	82.84	0.012	CII	2	82.85	1
49.19	0.018	FeII	J	49.25	1	85.32	0.016	MnII	Κ	85.24	1
56.57	0.040	OI	10	56.78	1	98.24	0.008	FeII	J	98.31	1/2
		OI	10	55.99							
58.18	0.031	OI	10	58.19	1	6600.00					
63.53	0.013	FeII	J	63.60	1	00.81	0.009				1
65.56	0.031	PII	NI	65.59	1	04.30	0.006	FeII	K09	04.30	1/2
68.32	0.013	MnII	Κ	68.35	1	11.32	0.005	FeII	K09	11.40	1
75.24	0.005	FeII	J	75.14	1/2	22.04	0.014	FeII	J	21.98	1
		FeII	J	75.44		47.62	0.005	FeII	J	47.70	1/2

TABLE 1 (CONTINUED)

	COM	I AIUDO		ID 00244		OTHE	IC 110-WI	SIARS
Atomic	HD	HD	HD	HD	112	HR	HR	HR
Species	53244	175640	186122	144206	HerA	7361	7245	7143
					_			
He I	Pres	Pres	Abs	Pres	Pres	Pres		• • •
Be II		Pres			• • •			
BII		Abs			• • •			
CI	Abs	Pres	Abs	Pres	Abs	Abs	Pres	Pres
C II	Pres	Pres	Abs	Pres	Pres	Pres	Pres	Pres
N II	Abs	Abs	Abs					
ΟI	Pres	Pres	Pres	Pres	Pres	Pres		
O II	Doub	Pres	Pres	Pres	Abs	Pres		
Ne I	Pres	Pres	Pres					
Na I	Pres	Pres	Pres					
Mg I	Abs	Pres	Abs	Pres	Abs	Abs	Doub	Pres
Mg II	Pres	Pres	Pres	Pres	Pres	Pres	Pres	Pres
Al I,II		Abs	Pres		Pres	Abs		
Si II	Pres	Pres	Pres	Pres	Pres	Pres	Pres	Pres
Si III	Pres	Pres	Abs	Pres	Pres	Pres		
РП	Pres	Pres	Pres	Pres	Pres	Pres	Pres	Abs
SI	Abs	Pres	Abs	Pres	Pres			
SII	Pres	Pres	Abs	Pres	Pres			
Cal	Abe	Pres		Pres	Pros	Pros		
Call	Drog	Proc		Prog	Drog	Drog		
Sall	Proc	Pres		Pres	Proc	Proc	Doub	Aba
50 11	Pres	Fres	 Data	Fres	r res	Pres	Doub	Abs
	Pres	Pres	Pres	Pres	Pres	Pres	Pres	Pres
CrI	Abs	Pres	Pres	Pres	Abs	Abs	Abs	Pres
CrII	Pres	Pres	Pres	Pres	Pres	Pres	Pres	Pres
Mn I	Abs	Pres	Pres	Pres	Abs	Pres	Pres	Pres
Mn II	Pres	Pres	Pres	Pres	Pres	Pres	Pres	Pres
Fe I	Abs	Pres	Pres	Pres	Pres	Pres	Pres	Pres
Fe II	Pres	Pres	Pres	Pres	Pres	Pres	Pres	Pres
Fe III	Pres			Pres	Pres	Pres	Pres	Pres
Co II		Doub	Pres		Abs	Abs		
Ni II	Pres	Pres	Pres	Pres	Abs	Pres		
Cu I	Abs	Pres						
Cu II	Abs		Pres					
Zn II		Abs	Pres					
Ga I,II	Abs	Pres	Pres^{a}	Pres	Pres	Pres	Pres	Pres
As II		Doub	Pres					
Br II		Pres						
Sr II	Abs	Pres		Pres	Pres	Doub	Pres	Pres
YII	Pres	Pres		Pres	Doub	Pres	Pres	Pres
Zr II	Doub	Pres		Pres	Pres	Abs	Abs	Abs
Bh II		Pres						
PdIII		Pres						
Xe II	Pros	Pres	Pros	Abs	Pros	Pros		
Bo II	1105	Pros	1105	Pros	Abe	Abe		
Coll		Prog		1105	1105	1105		
		Aba					•••	
D		Abs						
Pr II D. III		Abs				Abs		
		Doub				ADS		
Na III		Pres			Abs	Abs	Abs	Abs
<u>ть 11,111</u>	• • •	Pres	• • •					
Os II		Doub				• • •		
Ir 11	•••	Pres	• • •					
Pt II	Abs	Pres			Abs	Abs	Abs	Abs
Au II	Abs	Pres			Abs	Abs	Abs	Abs
Hg I		Pres	Pres	Pres	Abs	Abs		
Hg II	Pres	Pres	Pres	Pres	Pres	Pres	Pres	Pres
$T_{\rm eff}$	13.781	12.050	13.000	12.000	13.450	13.650	12.293	12.050
$v \sin i$	30	20	20	20	20	15	15	20

TABLE 2 $\,$ COMPARISON OF HD 53244 WITH OTHER HG-MN STARS

Notes: Abs = Absent, Pres = Present, Doub = Doubtful. ^aCastelli et al. (2009) did not observe Ga for this star on optical UVES spectra. Smith & Dworetsky (1993) studied the star in the ultraviolet using IUE spectra. Maybe also HD 53244 would show Ga in the ultraviolet.

• Mg II. We have identified lines of multiplets 4, 5, 9 and 10.

- Si II. Several lines were identified from multiplets. 1, 3, 4, 5, 7.03, 7.05, 7.33.
- Si III. Lines of Multiplet 1 are present.
- P II. Several lines were identified. We have used NIST tables.
- S I is not present.
- SII. A lot of lines were identified using Moore's tables (Moore 1945).
- Ca I is not present.
- Ca II λ 3933 and λ 3968 are present.
- Sc II. The most intense lines are identified using Moore Tables (Moore 1945); λ 4246 blended with Cr II, λ 4320.74 and λ 4374.46 blended with Ti II.
- Ti II. We have identified a lot of lines. Very probably this element is overabundant.
- Cr II. A lot of lines were identified using Moore's tables. There are no lines of Cr I.

• Mn II. Using the tables from Iglesias & Velasco (1964) we have identified a lot of lines. Mn is very well represented.

- Fe I. There are no lines. Probably the effective temperature ($T_{\rm eff} = 13781$ K) is too high.
- Fe II. A lot of lines are present. We have used Moore's tables. For $\lambda > 4800$ Å we have used Johansson (1978) and the more recent table by Nave et al. (1994).
- Fe III. We have identified lines of multiplet 4.
- \bullet Ni II. We have identified only two lines, $\lambda4015.50$ and $\lambda4067.05.$
- Cu II is not present.

• Y II. We identified $\lambda 3950.35$ (multiplet 6), $\lambda 4235.73$, $\lambda 4309.62$ (multiplet 5) and $\lambda 4374.94$ (multiplet 13).

- Zr II. The most intense line λ 4149 is ambiguously present although other weaker lines are identified λ 3843.03 (multiplet 7), λ 3991.14 (multiplet 30), λ 4018.38, λ 4040.24 (multiplet 54) and λ 4034.10 (multiplet 42); we think that the presence of this element is doubtful.
- Xe II. The most intense lines are identified using the NIST tables.
- Hg II. The line λ 3983 is definitely present.

We have not identified lines of Ga II and Sr II. We have not identified rare earths nor Au and Pt. The red regions of the spectra of HD 53244 have many telluric lines and it was difficult to identify with certainty some lines.

Thus, H I, He I, C II, O I, Ne I, Na I, Mg II, Si II, P II, S II, Ca II, Sc II, Ti II, Cr II, Mn II, Fe II, Fe III, Ni II, Y II, Xe II, Hg II are definitely present. O II and Zr II are doubtful. There are a number of unidentified lines. These are likely to be lines of atomic species which have been already identified.

4. COMPARISON WITH OTHER FIELD BP-AP STARS AND COMMENTS

Line identification lists have been published for several other HgMn stars. In Table 2 we have indicated the atomic species present in the blue, visual and red regions of HD 53244 The spectrum in the photographic region of HD 53244 is compared in the table with those of other Hg-Mn stars: HD 144206 (Adelman, Gulliver, & Rayle 2001), HD 186122 (Sadakane et al. 2001), HD 175640 (Castelli & Hubrig 2004), and 112HerA, HR 7361, HR 7245 and HR 7143 (Guthrie 1985).

Effective temperatures were obtained from Smith & Dworetsky (1993) for HD 144206, HD 186122, 112 HerA and HR 7361; Heacox (1979) for HR 7245; Cenarro et al. (2007) for HD 175640 and HR 7143. For HD 53244 we used $uvby - \beta$ mean colors from Hauck & Mermilliod (1998) and the TEMPLOGG program Rogers (1995) to obtain this parameter. The $v \sin i$ were taken from Abt et al. (2002).

As is usually the case, Hg-Mn stars seem to differ one from another. The Hg-Mn phenomenon seems to be heterogeneous with star to star diversity. Probably the absence of Ga I, II and Sr II is the distintive feature in HD 53244. It does not appear to be identical to any of the other stars in Table 2 although it shares many of their anomalies. Many of the atomic species which are present are represented by only a few lines. Differences in the magnetic field strength and configuration, apparent rotational velocity, effective temperature, surface gravity, elemental distributions on the stellar surface (see the recent paper by Briquet et al. 2010), and the exact wavelength region studied may well hide some of the underlying similarities.

There is no evidence in the spectra of HD 53244 of doubly ionized rare-earth lines. This lack of identifications may be due to the choice of the region studied (Adelman 1974).

The major similarity occur between HD 53244 and HD144206, which share almost the same anomalies except for the absence of Ga in the former. We conclude that HD 53244 appears to be a Hg-Mn star without Ga or rare earth elements.

The present work was partially supported through a grant from Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET PIP 1113). The authors thank the help provided by CASLEO personnel during the observing runs and an anonymous referee for helping to improve the presentation of this paper.

REFERENCES

- Abt, H. A, Levato, H., & Grosso, M. 2002, ApJ, 537, 359 Adelman, S. J. 1974, ApJS, 28,51
- Adelman, S. J., Gulliver, A. F., & Rayle, K. E. 2001, A&A, 367, 597
- Bidelman, W. P. 1962a, AJ, 67, 111 _____. 1962b, S&T 23, 140
- Briquet, M., Korhonen, H., González, J. F., Hubrig, S., & Hackman, T. 2010, A&A, 511, 71
- Castelli, F., & Hubrig, S. 2004, A&A, 425, 263
- Castelli, F., Kurucz, R., & Hubrig, S. 2009, A&A, 508, 401
- Cenarro, A. J., et al. 2007, MNRAS, 374, 664
- Cowley, C. R. 1995, in ASP Conf. Ser. 81, Workshop on Laboratory and Astronomical High Resolution Spectra, ed. A. J. Sauval, R. Blomme, & N. Grevesse (San Francisco: ASP), 467
- Cowley, C. R., & Adelman, S. J. 1990, PASP, 102, 1077
- Feinstein, A. 1967, ApJ, 149, 107
- Fernie, J. D. 1983, ApJS, 52, 7
- Gulliver, A. F., & Stadel, J. G. 1990, PASP, 102, 587
- Guthrie, B. N. G. 1985, MNRAS, 216, 1
- Hauck, B., & Mermilliod, M. 1998, A&AS, 129, 431

Heacox, W. D. 1979, ApJS, 41, 675

- Houk, N., & Cowley, A. P. 1975, Michigan Catalogue of Two Dimensional Spectral Types for HD Stars, Vol. 1 (Ann Arbor: University of Michigan)
- Huldt, S., Johansson, S., Litzen, U., & Wyart, J. F. 1982, Phys. Scr., 25, 401
- Iglesias, L., & Velasco, R. 1964, Publ. Inst. Opt. Madrid, No. 23
- Johansson, S. 1978, Phys. Scr., 18, 217
- Moore, C. E., 1945, A Multiplet Table of Astrophysical Interest (Princeton: Princeton Univ. Obs.)
- Morgan, W. W. 1933, ApJ, 77, 330
- Nave, G., Johansson, S., Learner, R. C. M., Thorne, A. P., & Brault, J. W. 1994, ApJS, 94, 221
- Pintado, O. I., & Adelman, S. J. 2003, A&A, 406, 987
- Preston, G. W. 1974, ARA&A, 12, 257
- Renson, P., Gerbaldi, M., & Catalano, F. A. 1991, A&AS, 89, 429
- Rogers, N. Y. 1995, Comm. Asteroseismol., 78
- Sadakane, K., et al. 2001, PASJ, 53, 1223
- Shenstone, A. G. 1961, Proc. Roy. Soc. London A, 261, 153
- Schneider, H. 1981, Bull. Inf. CDS, 20, 113
- Simmons, J., & Levato, H. 1996, Bol. Asoc. Argent. Astron., 40, 44
- Smith, K. C., & Dworetsky, M. M. 1993, A&A, 274, 335
- Wielen, R., Schwan, H., Dettbarn, C., Lenhardt, H., Jehreiss, H., & Jahrling, R. 1999, Veröff. Astron. Rechen-Inst. Heidelberg, 35, 1

Natalia L. Maza: Instituto de Ciencias Astronómicas, de la Tierra y del Espacio, Av. España 1512 Sur, J5402DSP, San Juan, Argentina (nmaza@icate-conicet.gob.ar).

Hugo Levato: Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (hlevato@icate-conicet.gob.ar).

Zulema López-García: Visiting Astronomer of Instituto de Ciencias Astronómicas, de la Tierra y del Espacio, Av.España 1512 Sur, J5402DSP, San Juan, Argentina (zlgarcia@icate-conicet.gob.ar).