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Abstract

Continental margin carbon cycling is complex, highly variable over a range of space and
time scales, and forced by multiple physical and biogeochemical drivers. Predictions of
globally significant air-sea CO; fluxes in these regions have been extrapolated based on
very sparse data sets. We present here a method for predicting coastal surface-water pCO2
from remote-sensing data, based on self organizing maps (SOMs) and a non-linear semi-
empirical model of surface water carbonate chemistry. The model used simple empirical
relationships between carbonate chemistry (total dissolved carbon dioxide (Tco2) and
alkalinity (Tai)) and satellite data (sea surface temperature (SST) and chlorophyll (Chl)).
Surface-water CO; partial pressure (pCO2z) was calculated from the empirically-predicted
Tcoz and Tak. This directly incorporated the inherent nonlinearities of the carbonate
system, in a completely mechanistic manner. The model’s empirical coefficients were
determined for a target study area of the central North American Pacific continental margin
(22-50°N, within 370 km of the coastline), by optimally reproducing a set of historical
observations paired with satellite data. The model-predicted pCO2 agreed with the highly
variable observations with a root mean squared (RMS) deviation of < 20 patm, and with a
correlation coefficient of > 0.8 (r = 0.81; r2 = 0.66). Thislevel of accuracy is a significant
improvement relative to that of simpler models that did not resolve the biogeochemical
sub-regions or that relied on linear dependences on input parameters. Air-sea fluxes based
on these pCO: predictions and satellite-based wind speed measurements suggest that the
region is a ~14 Tg C yr! sink for atmospheric COz over the 1997-2005 period, with an
approximately equivalent uncertainty, compared with a ~0.5 Tg C yr! source predicted by
arecent bin-averaging and interpolation-based estimate for the same area.
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1. Introduction and Background

Coastal waters have been alternately reported as globally important sources or sinks of
atmospheric COz (Bianchi et al. 2005; Borges 2005; Cai et al. 2006; Ducklow and McAllister,
2005; Chen et al. 2004; DeGrandpre et al. 2002; Frankignoulle and Borges, 2001; Hales etal.
2005; Smith and Hollibaugh, 1993; Thomas et al. 2004; Tsunogai et al. 1999, as
summarized by Hales et al,, 2008). The uncertainty stems from several factors. First, the
dynamic range of surface pCOz in coastal waters spans hundreds of patm over a variety of
time and space scales (Friederich et al., 2002; Cai et al. 2003; Cai, 2003; Hales et al., 2005;
Bates et al,, 2005; Chavez et al., 2007). This makes adequate observational constraint
difficult to achieve, and global or regional flux estimations have always been the result of
extrapolating a few spatially and temporally limited observations far beyond their scope
(Hales et al,, 2005; Thomas et al., 2005; Cai et al., 2006; Borges, 2005). However, the vast
majority of flux estimates based on direct observation of pCO: in coastal waters suggest
that coastal waters are net sinks of atmospheric CO2. Complicating matters is the fact that
terrestrial inputs of carbon via rivers supply nearly a petagram per year (Pg Cy1; 1 Pg =
1015 g) of terrestrial carbon to coastal waters, almost none of which can be accounted for in
coastal sediment or water column reservoirs (Degens et al. 1991; Ittekkot and Laane, 1991;
Spitzy and Leenheer, 1991; Hedges et al. 1997; Meybeck and Vorosmarty, 1999;
Aitkenhead and McDowell, 2000; Schlunz and Schneider, 2000 as summarized by Bauer et
al,, 2008). This imbalance suggests a large efflux of CO2, as argued by Smith and Hollibaugh
(1993) that has not been observed in coastal waters. Borges et al. (2005, 2006) offered the
possibility that estuaries may be the location of efflux of terrestrial carbon, while Cai
(2011) suggested that marine-source carbon degradation supported estuarine efflux while
terrestrial material is degraded offshore. Again, sampling coverage is limited.

Chavez et al. (2007) compiled all the North American coastal observations of pCO: in the
Lamont-Doherty Earth Observatory (LDEO) database (now hosted by the Carbon Dioxide
Information Analysis Center (CDIAC) data server), to assess the contribution of coastal
waters to the continental carbon budget. They found that North American coastal waters
contributed a small net source of CO: to the atmosphere (~2 Tg Cyr1; 1 Tg = 0.001 Pg), but
this near-neutral flux was the result of large high-latitude sinks (~35 Tg C yr! into the
Pacific and Atlantic north of 50°N and the Bering and Chukchi seas) that were balanced by
large low-latitude sources (~40 Tg C yr! out of the Pacific and Atlantic south of 25°S and of
the Gulf of Mexico and Caribbean Sea). Although the data set included nearly 1 million
observations, the ship of opportunity-based sampling did not provide uniform spatial or
temporal coverage. In the bin-averaging approach employed by Chavez et al. (2007) it is
clear that the opposing large magnitude high and low latitude sink and source terms were
based on pixels with inadequate observations throughout the calendar year (Hales et al.,
2008).

With these concerns in mind, we have attempted to produce synthetic approaches for
estimating surface-water pCO: distributions in coastal waters. True mechanistic modeling
including accurate physical circulation fields and biogeochemistry, driven by actual
physical forcing is ultimately the ideal approach. However, modeling coastal environments
is challenging even for only the physical circulation, and to date the few truly coupled
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biogeochemical/ physical models that predict surface pCO> distributions are limited to
narrow geographical regimes such as the southern California Current system (e.g. Gruber
et al.,, 2006) or the shelves of the northwest North Atlantic (Fennel et al., 2008; Fennel and
Wilkin, 2009).

We present here a semi-empirical approach to developing algorithms that link surface
water pCO: to remotely sensed data, in addition to position and time. We found that two
factors were critical: 1) an objective means for identifying biogeochemical sub-regions
within coastal waters, since there was very low success for single predictive algorithms
applied across wide geographical areas such as the continental waters of North America;
and 2) a justified application of high-order dependences on input parameters, since simple
linear dependences were incapable of generating the large dynamic ranges seen in the
observed distributions. Given these factors, we present a method that uses (1) self-
organizing maps (SOMs) based on satellite observations for distinguishing distinct
provinces, and (2) a semi-mechanistic representation of the relationships between
seawater carbonate chemistry (total dissolved CO2 (Tcoz) and alkalinity (Tax)) and the
input parameters of sea surface temperature (SST) and chlorophyll (Chl). pCO2 was then
calculated from Tcoz and Tai, thus incorporating the inherent non-linearities of the
seawater carbonate system. We test this approach for the Pacific coastal waters of the
central North American continent, from 22°N to 50°N, within 370 km (~200 nautical miles)
of the shore.

Although this is not the first attempt to link surface-ocean pCO2 to more extensively-
observable parameters, earlier approaches have been substantively different. Most were
in the open ocean where dynamicranges were smaller and pCO2 was not impacted by the
continental margins (Cosca et al,, 2003; Lefevre et al., 2005; Feely et al., 2006; Friedrich and
Oschlies 2009a,b; Park et al., 2010), or in narrowly defined margin settings where
individual drivers such asriver plumes (Lohrenz and Cai, 2006) or thermal forcing
(Wanninkhof et al,, 2006) dominate the pCO2 distributions. Lefevre et al. (2005), Friedrich
and Oschlies (2009a,b), and Telszewski et al., (2009) did use the neuronal network
approach, but applied it only over the parameter space of their observations, as opposed to
the regional province identification that we applied here. None of the previous efforts have
attempted synthesis of a region so dynamic and diverse as the North American Pacific coast,
nor have any included mechanistically-justified nonlinearities as we do here.

2. Materials and Methods

2.1 pCO; Observations

We used the compilation of pCO2 data prepared by Chavez et al.,, (2007), for waters
surrounding the North American continent to train the algorithm. These data were
originally stored in the LDEO pCO; data repository, and are now available from CDIAC
(http://cdiac.esd.ornl.gov/). They consist of nearly 800,000 observations made in the
interval 1978-2005 (heavily weighted for more recent observations), all based on analysis
of equilibrated gas headspace over flowing seawater streams or discrete samples. A
significant portion of these data, particularly those closest to shore were excluded from the
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global analyses of Takahashi et al., (1995; 2002; 2009), and thus these observations from
continental margins have not been included in broader estimates of air-sea CO> fluxes.

We limited our analyses to observations made within 370 km of the nearest major
coastline, roughly consistent with the position of the 200 nautical mile limit of national
Exclusive Economic Zones (EEZ). This limit is functional as well as operational. Essentially
all signals of coastal influences are gone by this distance from shore, although exceptions
do occur (Chavez et al.,, 2007). This extends the spatial limit of the analysis far enough to
meet nearly all of the landward-most boundaries of the global ocean syntheses of
Takahashi et al. (e.g. Takahashi et al. 2009), which were bin-averaged at 4° latitude by 5°
longitude bins. Finally, the EEZ boundary represents the furthest distance where local
governments may restrict access to local waters and the data collected therein. Thus, this
represents a distance from shore within which data may have been excluded from regional
or global compilations. Limiting the observations to those made with coincident SeaWiFS
satellite observations, which started in September 1997, reduced the sample size to about
300,000. The North American data set was then divided into four regions—Atlantic, Gulf of
Mexico/Caribbean, Pacific, and Bering/Chukchi coastal waters. For the high resolution
regional analyses described below, we focused on the North American Pacific coast
between 22°N-50°N, where about 96,000 observations exist within 370 km of the coastline
and with coincident SeaWiFS data (see section 2.2, below).

We did not attempt to correct the surface pCO2 data to a reference year, as done for the
Takahashi global syntheses (e.g. Takahashi, 2009). The dynamics of the coastal ocean are
complicated and unique within regions, with some being dominated by terrestrial inputs,
others by upwelling, others by local heating and cooling. Water residence times within
coastal regions can be short relative to the age of the water masses themselves, and thus it
is questionable whether to treat freshly upwelled waters that might have last been at the
surface some decades ago (Feely et al., 2008) with a modern adjustment to the in-water
pCO:z. Limiting the analysis to the SeaWiFS era suggests a very small correction for the
1995-2005 interval.

For the generation of the predictive algorithms, we used the in situ SST recorded along
with the pCOz and satellite chlorophyll measurements. We viewed this as important for the
closest coupling of the SST and pCO2 data. We examined the results using the satellite-
based SST (not shown) and found comparable results, albeit with slightly inferior model-
data deviation statistics. This is not too surprising, given the reasonably good agreement
between in situ and remotely-sensed SST. Salinity has promise as a predictive input,
especially in coastal areas where many water masses may be present. However, we did not
see significant improvement in our predictive algorithms using reported in situ salinity,
and while remote-sensing salinity products are now available from Aquarius (Lagerloeff et
al,, 2008, and SMOS, Mecklenburg et al., 2008), they will have the spatial, temporal, and
salinity resolution to distinguish only the largest features, such as river plumes.

We used recent data collected on a 2007 cruise off the North American Pacific coast as a
qualitative validation of the predictive algorithm (Feely et al., 2008). The pCO; data
presented here were analyzed using a flow-through membrane contactor interfaced with a
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tangential-flow filter. This system has been described elsewhere (Evans et al.,, 2011), and
is a modification of earlier membrane-contactor based systems (Hales et al., 2004) adapted
to facilitate surface-underway mapping with reduced user maintenance while retaining the
fast response times of the membrane contactor.

2.2 Remote Sensing Products

We used a variety of satellite products. For the SOMs (see below) we used annual
climatologies at 0.25° spatial resolution for MODIS SST and Chl (July 2002 to December
2006), and QuikSCAT wind stress (July 1999 to December 2006). Coincident match-up with
the pCO2 observational data used in the development of the predictive algorithms were
derived by averaging the 9 (3 x 3) nearest 9km pixels from 8-day averaged SeaWiFS Chl
bracketing each observation. For creation of the predicted maps of pCO: distributions and
air-sea COz flux, we used the monthly average SeaWiFS Chl, MODIS SST, and QuikSCAT
wind data at 0.25° spatial resolution. It warrants repeating that the Chl-pCO2 data match-
up is based on remote-sensing data, while the SST-pCO data match-up is based on in situ
observations.

3. Calculations

3.1 Self Organizing Maps

We followed the approach of Saraceno et al (2006). Briefly, this method relies on an
artificial neuronal network to identify biogeochemical regions within the target study area.
The method comprises a probabilistic version of the Kohonen (1990; 1995) self-organizing
map (SOM) and Hierarchical Ascending Clustering (HAC) algorithms; for brevity we will
refer to these as SOM only. The approach is described in detail by Telszewski et al. (2009).
Each input parameter was transformed before being input to the SOM. The Chl-a values
were initially log-transformed and all three parameters (SST, Chl-a, and wind stress) were
mapped to the common range of -1to 1, with the two extrema corresponding to the raw
extrema of each parameter. In the simplest terms, the SOM approach clusters pixels with
similar properties and separates them from dissimilar clusters. The scoring function is
defined by the interclass inertia, which can be thought of as the ratio of the dissimilarity
between clusters to the dissimilarity within clusters. The SOM approach is given a
maximum number of regions as a stopping point, but operationally selects the number of
regions found when the interclass inertia has dropped to <10% of that seen with the fewest
number of regions as the best representation of sub-regional distinctions.

3.2 Predictive models
3.2.1 Multiple linear regression model: We examined two kinds of predictive algorithms.
The first was a multiple linear regression (MLR), i.e.

PCOzmr = Co+ Xit1 Cipy 1
where pCO2mir is the predicted pCO2. Co and C; are the coefficients, and the p; terms are the

independent variables, in the MLR. In our case we considered the deviation in latitude,
longitude from the region’s center (Alat and Alon, respectively), time of year, SST, and
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chlorophyll as independent variables. Time of year was sine-transformed, and allowed for
an optimization of the seasonal phasing, e:

. d
t = sin (M) +e 2
365

where ‘day’ was the decimal day of year.

3.2.2 Mechanistic non-linear model: As shown in section 4.2, below, we quickly found the
MLR approach to be inadequate for the high dynamic range of the observed pCO2, even
after applying the SOM to the study area, and built a new meta-model thatincluded the
inherent non-linearities of the aqueous carbonate system. We expect this model to be
applicable only to the SOM-defined sub-regions, and as a result did not attempt to apply it
uniformly to the entire study area. Knowing that the pCO: is a quantitative nonlinear
function of the alkalinity (TaLk) and total CO2 (Tcoz2), we chose to develop a model that
retained this functionality. Conceptually, we assumed that the parameters Tak and Tcoz
were approximated by some initial values plus perturbation terms:

Tcoz = Tcoz + ATcoz 3
Taie = Tflk + ATpik 4
where the perturbations were simply related to the processes of mixing and biological
productivity. These processes were subsequently linked to observed chlorophyll and

temperature distributions. Specifically, we assumed first-order Taylor-series
approximations:

_ coz Mcoz
ATcoz - AT]mixing + aChl ACHl]biology >

where mixing is reflected in a temperature change term AT, and biological processes in a
chlorophyll change term AChl. These two terms are each defined by:

AT]mixing = Q(T - To) 6
AC/ll]biology = (C/ll - C/llo) 7

where T and Chl® are empirical initial temperature and chlorophyll values associated with
the initial Tcoz defined above, and ¢ is an empirical term that quantifies the proportion of
the temperature change due to mixing as opposed to thermal forcing. The T and Chl
variables are the observed (either in situ or remotely sensed) values of these parameters.

If we assume that the local mixing gradient and stoichiometric relationship between
chlorophyll and Tcoz can be treated as empirical terms as well (yand B, respectively), and
that the initial chlorophyll is zero (reflecting recently upwelled water), the Tco2
approximation becomes:
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TCOZ = TC(')OZ + VQ(T - TO) + ﬁC/ll. 8

The terms Tcoz?, Taw?, T?, v, 0, and B in the above equation are each empirically-determined
coefficients. The term f3 is given additional functionality in that it is set to zero for
temperatures above a certain value. This is shaped by the concept of upwelling, in which
water newly introduced to the surface is cold and nutrient-rich, and changes in chlorophyll
abundance are due primarily to net photosynthetic production. Waters that have been at
the surface for some time are more likely to be in a state of stationary, highly recycled
growth, and the dependence of Tcoz on chlorophyll would be much weaker in those cases.
We chose this ‘cut-off’ temperature based on the predicted values of the T9 parameter
within each region; specifically, chlorophyll dependence was allowed for all temperatures <
TO + 10 °C. This is a somewhat arbitrary choice, but as discussed later, other complications
in understanding the chlorophyll dependences are such that more detail is not warranted.

If we further allow each coefficient Tco2%, Tai?, T, v, ¢, B to.have dependence on space and
time, e.g.,

T(?OZ = CO + ClAlat + CZAZOTI. + C3t 9

where c; are empirical coefficients and Alat, Alon, and t are as defined previously. We
assume that the seasonal phasing in the ¢ term (ein Eq. 2) is fixed for all terms in a given
region. Finally, since alkalinity is affected by change in NOs-, which is, in turn, related to
Tcoz via the Redfield N/C ratio of 16/106 (=0.15), we assume that perturbations to
alkalinity are directly proportional to the changes in Tcoz, i.e.,

ATAlk - _0'15ATC02' 10

We have not included factors that may change the Tcoz2:Ta stoichiometry from that implied
by Redfield C:N stoichiometry. The study site is not an area with large populations of
calcifying organisms (Hauri et al., 2009), and we expect that variations in alkalinity
production with respect to subtleties in the C:N stoichiometry will be small relative to the
other factors. Other factors that will influence the Tco2:TaLk ratio such as terrestrial inputs
and variations in source-water characteristics are only captured empirically in the
formulation of Eq. 9.

The model thus predicts intermediate products for Tax and Tco2, which are then used to
calculate pCO: at the in situ temperature. For calculating pCOz from Taik and Tcoz, we used
an inorganic equilibrium chemistry model for Ta that included carbonic and boric acid but
ignored minor species, with the solubility of CO; in seawater by Weiss (1974), the apparent
dissociation constants by Mehrbach et al. (1973) for carbonic acid as adjusted to the
seawater pH scale by Dickson and Millero (1987) and by Dickson (1990) for boric acid.
Thus, while Taik and Tco2 are predicted by the model, they are not used directly in the
evaluation procedure. The calculated pCO: is the ultimate model output.
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The model has a couple of deficiencies. First is the possibility that there are as many as 25
optimizeable coefficients in the two equations for Tcoz and Tai that derive from Egs. 2-10.
We needed to make some a priori limitation of this number, described in section 4.3, to
limit the maximum possible number of coefficients. The second is that the model contains
products of some of the terms, which implies the possibility of interdependence and a
reduced set of truly optimizeable coefficients. This is addressed in the Appendix.

3.3 Optimization

We chose to use Powell’s method for optimization in multiple dimensions, as described in
Press et al. (1989). This method has the advantage in that it does not depend on the form
of the equation being optimized, which is essential given the potentially variable forms as
empirical terms are included or excluded, and because of the non-linearity of the step in
which pCO: is calculated from the intermediate Alk and Tcoz products. Inevery
optimization exercise, all 25 empirical constants were explicitly included, even if set to zero,
but the optimization approach allowed selection of only reduced sets of coefficients to
optimize. For example, we could specify that the chlorophyll dependence f3 is non-zero but
remains fixed at the nominal value of -7 (e.g. reflecting a 1:1 N:Chl ratio and Redfield C:N
stoichiometry).

Our diagnostic of algorithm performance was the root-mean-squared (RMS) deviation
between the observed and predicted pCOz, over the complete set of the observations within
each region. We examined the sensitivity of the optimized results in two ways. First, we
tried optimizations with varied values of the initial guesses of the optimized parameters.
This included using the optimum set of parameters as initial guesses and restarting the
optimization procedure. This verified the stability of the optimum solution. Second, we
calculated coefficient-specific sensitivity factors (SFi) defined by:

1
o= (77 ﬁRMS)/(g <) ”

which effectively describes the relative change in RMS for a relative change in coefficient c;.
Coefficients with SF < 0.1 - i.e., the optimum RMS value changed by no more than 1% for a
10% change in coefficient—were deemed insignificant.

3.4 Sensitivity Analysis

Training an algorithm to reproduce a set of observations requires additional verification
and analysis of the sensitivity of the model parameters to the dataset. The complexities of
the model obviated some of the more standard tools that could be easily applied to smaller
data sets and linear systems, so we chose to take a more rudimentary approach. After
finding the optimum set of model parameters for a given region, we perform ten additional
simulations to examine the robustness of the result. Each of these simulations consisted of
the same analysis as described above, but with 10% of a region’s data randomly extracted
from the total. The remaining 90% were used as training data to repeat the optimization
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procedure. The optimal model constrained by the training data was then applied to the
extracted 10% that had not been used in constraining the optima.

3.5 Air-sea flux calculations

Once we mapped the best set of predicted pCO: distributions, we calculated air-sea CO;
fluxes. We did this by calculating a gas exchange coefficient based on the quadratic wind-
speed dependence of Ho et al (2006) and the QuikSCAT monthly wind speed-squared data
from the Scatterometer Climatology of Ocean Winds (SCOW) available at
http://cioss.coas.oregonstate.edu/scow/, based on the methods in Risien and Chelton
(2008). We multiplied this coefficient by the model-predicted air-sea pCO: difference and
the gas solubility of Weiss (1974) for satellite SST and a fixed salinity.

4. Results

4.1 Linear models.

We began our analysis with an attempt to fit the pCO; observations in the Chavez et al
(2007) synthesis data set, limited as described above to within 370 km of the coasts and
with coincident SeaWiFS Chl data, with a multiple linear.dependence in the form of Eq. 1.
This was without success (Figure 1), and we recognized the need to distinguish the major
coastal regions (Figure 2). The MLR approach applied to these regions yielded better
results, particularly for the Gulf of Mexico/Caribbean waters (Fig. 2, lower right) where our
regression yielded statistics similar to the prediction presented by Wanninkhof et al (2006).
The pCO:2 distributions in Pacific coastal waters, however, were nearly as poorly
reproduced by this attempt as were those from the entire North American coastline. The
essence of the failure was first that the large dynamic range of the observed pCO2 was not
in any way reproduced by the predictions, and that there seemed to be little meaningful
dependence on any of the independent input variables. This result suggested that the
Pacific coast contained sub-regions that were not well described by a single set of empirical
parameters, and that the inherently linear aspect of a MLR was insufficient for reproducing
pCO:2 distributions with large dynamic ranges. Because the Pacific coastal waters
presented the greatest challenge, the rest of our efforts were directed at developing
predictive algorithms for this region.

Figure 1. Multiple linear regression prediction of pCO: using the Chavez et al compilation for
observations in North American coastal waters.

Figure 2. Multiple linear regression prediction of pCO: for coastal regions of North America.
Figure 3. Climatological maps of MODIS SST, Chl, and QuikSCAT wind stress.

4.2 Determination of regions

Figure 3 shows the climatological distributions of satellite SST, Chl, and wind stress over
Pacific coastal waters as observed by these three sensors. These data were used as
primary inputs to the self-organizing map determination of Saraceno et al. (2006) to define
the regions shown in Figure 4. The approach found 13 sub-regions before no significant
improvement (as defined earlier and in Saraceno et al., 2006) was gained by adding more
regions. These objectively-determined sub-regions confirmed our thinking about the

10
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distinctions of coastal areas of the Pacific coast and precisely define important biophysical
regions within this study area (Table 1). Such an objective sub-division has not been done
before in this region, as far as we know. At the global scale, Longhurst (2006) defined bio-
geographical regions based on in-situ and remote sensing data. In the East Pacific, he
defined only two regions that overlap with our results: the California Current and Central
America Coastal provinces. Spalding et al. (2007) defined marine ecoregions of the world
along coastal and shelf areas. In the area considered in this work they found six regions. In
latitude, their divisions approximately coincide with ours. However they did not find cross-
shore distinction of regions as we found. These divisions separate coastal upwelled waters
from offshore waters remarkably well.

Figure 4. SOM-based sub-regions of central North American Pacific coastal waters.
Table 1. Description of sub-regions

Once the sub-regions were defined and observations assigned to each sub-region (Table 1),
we developed distinct algorithm parameters for each region. Our first attempt was to
simply apply the multiple linear regression of Eq. 1 to the subsets of data; the results are
summarized in Figure 5 and Table 2.

Figure 5. Plots of data/model agreement for linear model.
Table 2. MLR statistics

This result is significantly improved over that applied to the Pacific coastal data as a whole.
On a numerically-averaged basis, the RMS deviation between model and observations
dropped to 57.8 from the initial 67 patm. Weighting by the areas of each region, the RMS
deviation dropped to 24.5 patm. Regions 1, 2, 4 and 13 were particularly well-described
by this approach, with RMS deviations < 15 patm and correlation coefficients of ~0.9.
However improved the results, there were still significant shortcomings. Particularly in
regions with large data densities and large dynamic ranges, such as the costal upwelling
areas from central California northward and the regions immediately offshore of them, the
familiar pattern of the model inadequately reproducing the dynamic range of the data was
evident. This suggests that the large dynamic ranges of the data do not correspond with
large ranges in the input parameters, and argues for the application of a higher-order
model. In addition, the coefficients of the simple linear model demonstrate odd behavior
(Table 2). Region 7, for example, shows a large negative constant term that is compensated
for by an exceedingly high temperature dependence term. Furthermore, chlorophyll
dependences are insignificant in 9 of the 12 cases. In the remaining three (Regions 1, 10,
13), sensitivity to chlorophyll is barely significant by our SF<0.1 criterion (SF<0.15), and
the coefficients show large variability in the sign and magnitude of the dependences.

4.3 Mechanistic Model

The ocean carbonate system has well known nonlinearities, especially with regard to pCOx.
The dependence of pCO; on water temperature is exponential, given established
thermodynamics of gas solubility (Takahashi et al., 1993). In-water processes that impact

11
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Tcoz and Tak impact pCO2 disproportionately; this effect is known as the Revelle Factor
(Revelle and Suess, 1957) and suggests relative changes in pCO2 are ~10t power
dependent on relative Tco2 changes for normal oceanic conditions. We experimented with
functionality that included a Revelle-factor dependence on an empirically determined Tcoz
and incorporated an exponential temperature dependence following Takahashi et al.
(1993). The fundamental nature of these relationships, however, is to predict relative
changes, and thus the empirical coefficients were not well constrained by the optimization
procedure. Empirical nonlinearities are easy to assign—we could simply employ
polynomial dependences on the input parameters of the MLR representation, but doing this
without mechanistic justification is questionable. As a result, we chose not to pursue any of
these approaches and to build the quasi-mechanistic model as described in section 3.3.2,
Equations 3-10.

As stated previously, the model could potentially include a very large number of
optimizable coefficients. We felt that it was reasonable to restrict this number in the
following ways. The ratio of Tcoz to Tai is the leading factor in determining the pCO2
distributions in the aqueous carbonate system. We opted to allow the Tco2° term in Eq. 7 to
retain the full time and space variability as shown in Eq. 8. Assuming this would allow
sufficient variability in the ratio of Tco2%:Tai’, we chose to make Tai? in each region be
determined only by the corresponding constant term in Eq. 8. This may have the effect of
amplifying the suggested spatio-temporal Tcez variability, but Tai is generally the more
conservative parameter and this was viewed as a reasonable trade-off for the reduction in
empirical coefficients. We further opted to allow the terms ¢, vy, B, and T? to have only
temporal variability. As stated earlier, the temporal phasing for all parameters within a
given SOM region was assumed to be the same. The empirical model thus depended on a
maximum of 14 optimizable coefficients.

This is still a large number of coefficients, and there are two different approaches that
could be taken to identify the most important terms. Firstis a stepwise approach in which
terms are sequentially added and model improvement or lack thereof is assessed at each
step. Second is the approach we followed, in which we allowed all 14 coefficients to vary
initially, and thenassessed the sensitivity of the result to each one.

Results are shown in Figure 6 and summarized in Tables 3 and 4. The immediate first
impression is of the improvement in the predictability of the pCO: in the problem regions
identified in the MLR analysis. Region 9, in particular, the persistent upwelling region off
central California that includes the large dataset from the MBARI time-series, has
significantly improved predictability (R increased to 0.75 from 0.15, a 25-fold increase in
the percentage of variance explained) as a result of including the nonlinear mechanistic
representation. Other regions (5, 8, 10, and 11) that include large dynamic-range pCO>
observations are also better predicted (R values 0.82 vs 0.57, 0.80 vs 0.60, 0.92 vs 0.79,
0.61 vs 0.07, respectively). Regions can be broadly categorized into three groups—those
with high (= 0.75) correlation coefficient and low (< 20 patm) RMS (regions 1-4, 8, 10, 13),
those with high correlation coefficient and high RMS (5, 9) and those with high RMS and
low correlation coefficient (7, 11, 12). The second group includes the most intense
temperate coastal upwelling conditions, where the dynamics of source waters and
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terrestrial inputs may not be well characterized by the simple model. The third group
includes two regions (11, 12) that sit immediately of the upwelling regions 5 and 9.
Regions 11 and 12 are primarily offshore but include data-containing pixels that impinge
on the coastline, suggesting that the resolution of the SOM may be a factor. The remaining
region, 7, sits far offshore in the SW portion of the study area, and data there consists of
two clusters that are separated by ~200 patm. Other regions in this area (1-4) do not show
the same character and we are uncertain of the reason for the poor model performance
there.

Figure 6. Mechanistic non-linear algorithm predictions of pCO:.

Sensitivity analysis also shows some interesting results. First, none of the regions required
all 14 coefficients to be optimized. Region 1 showed sensitivity to a maximum of 13
coefficients, and Region 9 showed strong sensitivity to only 9 of the tested coefficients.
Second, the spatial dependence terms were only rarely significant in the optimizations.

Only Region 8 showed significant sensitivity to both latitude and longitude dependence
terms, and Regions 1, 2, and 4 were sensitive only to thelatitude term. The remaining 8
regions showed no significant sensitivity to the spatial dependence terms. This is satisfying,
because one of the objectives of the SOM approach is to cluster data within regions where
biogeochemical and hydrographic relationships are consistent, and thus lessen non-
mechanistic empirical spatial dependences.

Finally, the sensitivities to chlorophyll, while improved over those seen in the MLR
approach, are still puzzling. Regions 8,9, and 12 show no sensitivity to chlorophyll at all
(neither co nor c4 in the 3 term were significant; Table 3), while regions 3-6 and 13 show
sensitivity to only one of the two coefficients. Further, the values of the coefficients
themselves are puzzling. The magnitudes of {3 implied by the optimized coefficients are
often far from the nominal ‘Redfield’ expectation of ~-7. Equally puzzling in the conceptual
context of the model is the variation in the sign of the first-order chlorophyll dependence.
Region 7, for example, has coefficients that suggest that {3 changes from <-500 to >500
(umol kg1)/(ug 1:1) over the course of the season. As discussed later, this dependence is
hard to justify within the context of the model, and probably indicates the need for a better
representation.

We examined two additional subsets of optimizable parameters. The first was the set
identified as having sensitivity by the full analysis. In 9 of 12 cases, the optimization
statistics were essentially equivalent between these reduced sets of coefficients and the
initial full set, with Regions 8, 11, and 12 being the exceptions. The second reduced set of
coefficients was one applied to all regions that included no spatial dependence in the Tco2°
term, and no chlorophyll dependence. We justified this second choice because so few
regions showed spatial dependence, and because the chlorophyll dependences were only
significant in half of the regions. This showed only slightly worse performance than the
sets of coefficients selected specifically for each region, with Regions 4, 5, and 8 showing
significantly worse predictive power with these subsets.
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We chose sets of coefficients for use in subsequent analyses based on a combination of the
statistics of the optimization and the most conservative combinations of coefficients. When
optimization statistics were comparable, for a given region with different sets of
coefficients, we selected the result with the lowest number of optimized coefficients. These
choices are italicized in Table 3, and are the values used in Figure 6 and subsequent pCO>
and air-sea flux reconstructions (Figures 8-10, below).

Table 3. Model output statistics.

Composite statistics for the entire study region are presented in Table 4. While the RMS
deviation statistics are improved over the SOM/MLR case (43 vs 58 patm on a number-
weighted basis and 20 vs 25 patm on an area-weighted basis), the improvement is shown
most strongly for the correlation coefficient statistic (0.76 vs 0.32 and 0.81 vs 0.51 on
number and area-weighted bases, respectively). As R? is often thought of as the fraction of
true variance explained by a predictive relationship, the mechanistic model thus explains
2.5 or 5.6 times more of the natural variability than the MLR, based on areal or number
weighting, respectively. The areally-weighted mechanistic model applied to the SOM
region describes about 66% of the observed variability, and reproduces the observations to
within about 20 patm. The robustness of this result is addressed in the following
discussion.

Table 4. Pacific coast composite model regression statistics.

Although we performed sensitivity analyses for each region, we present only the results of
this exercise for Region 9. Region 9 contained the most observations, and difficulty in
representing that data had presented us with one of the greatest motivations for
developing the detailed model. Results are detailed in Table 5, where we examine the
sensitivities of the model coefficients for ten randomly selected subsets of 90% of the total
observations in this region. Little difference is seen in the values of the model coefficients
either within these ten simulations of between any of them and the result based on the full
data set. This strongly suggests that the model coefficients are not being fortuitously
driven by a few anomalous observations. The greater proof of the model’s robustness
comes in the analysis of the predictive power of a set of coefficients with one set of training
data for the 10% of the observations that were not included in the optimizations. These
resultsare shown in Figure 7, and listed in Table 5. In each case, the model based on the
training data reproduces the verification data about as well as the model based on either
the reduced training subsets, or the data-set as a whole. These results show relatively low
sensitivity to changes in the training and validation data, and suggest that the predictions
based on the full data set (Figure 6; Tables 3 and 4) are broadly applicable.

We offer some further validation of the predictive approach via comparison of the
climatological May surface pCO: predictions with direct observations collected on a cruise
(described in the methods section) in May of 2007. The two representations are shown in
Figure 8. The agreement is not perfect, but the predictive algorithm for the climatological
May captures many of the features of the observed May 2007 data: The bands of low pCO;
near the coasts of Oregon, Washington, and Vancouver Island, and regions of strongly
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elevated pCO; off the northern and central California coast between Cape Blanco and
Monterey are reproduced. Nearshore pCO: off southern California and Baja is lower than
the waters further offshore in both representations. Offshore pCO; in northern regions is
lower than in the south, as seen in the predicted distribution. This comparison, while
admittedly qualitative, represents a completely independent method of evaluating the
empirical approach developed here. It strongly suggests that the features of the
climatologically-defined pCO; maps are persistent. Thus, while the system is highly
variable in space and time, the relationships to remotely observable parameters are
persistent and regional variability is not randomly spatially and temporally ephemeral.

Figure 8. Simulated pCO; distributions for climatological May and comparison to a new set of
observations from May 2007.

Given the apparently robust nature of the predictive algorithm, we feel justified in
producing monthly-resolved climatological maps. Using the italicized sets of coefficients
identified in Table 3, we then generated maps of pCO2 distributions (Figure 9) based on
monthly climatologies of MODIS SST and SeaWiFS Chlorophyll. It is important to note that
while the SOM region locations were seasonally static and defined based on climatological
fields, the values of SST and Chl-a within those regions was time-variant following the
monthly-resolved climatology.

Figure 9. Monthly pCO2 maps.

The monthly distributions of air-sea flux are shown in Figure 10. These distributions
demonstrate the spatial variability expected from recent publications (Hales et al., 2005;
Chavez et al., 2007; lanson et al;, 2010; Evans et al., 2011), but also reveal seasonal
variability that was previously less obvious. Every region, with the possible exception of a
small patch furthest offshore at 40°N, experiences a change in sign over the course of the
year. Even the high source Region 9 becomes a weak sink from October to January, and the
strong-sink region 5 becomes a weak source from November to January. Overall, the
notion that higherlatitude regions are stronger sinks than those to the south holds true for
most of the year, but even this has seasonal dependence; net out-gassing occurs in northern
regions during December-January while southern regions actually take up COz during that
time.

In addition to the features discussed above, the monthly maps point out some deficiencies
in the discrete SOM approach. In particular, sharp N-S gradients seen in June and July at
the boundary of regions 10 and 11, and the E-W banding across regions 8, 4, 2, and 1 in
July-September are probably not accurate representations of the true distributions. The
SOM regions are distinct, and the changes in the model coefficients at the region
boundaries are discontinuous, while the satellite input fields are continuous. We have
applied no smoothing to the region transitions, and such artifactual discontinuities are a
likely result of this approach. While a smoothing of the region boundaries would be
straightforward and result in a more visually pleasing result, we felt that no scientifically-
relevant information was gained by that and opted to show an un-smoothed result that
revealed this issue.
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Figure 10. Flux estimations.

Air sea flux for North American Pacific coastal waters from 22°N to 50°N and within 370
km of shore amounted to an annual-average sink of 1.8 mmol CO2 m2 d-1. The most
comparable flux estimate from the Chavez et al (2007) analysis, based on the three 1°x1°
bins nearest the shore, predicts a source of about 0.07 mmol m-2 d-1. Although not
regionally specific, Borges et al. (2005) and Cai et al. (2006) estimate mid-latitude
upwelling systems to be air-sea sinks of 0.3 and 2.7 mmol COz m-? d-1, respectively. Scaling
our new areal average to the whole study region (less the Sea of Cortez) gives a net annual
air-sea COz uptake of about 14 Tg C y-!, compared with the Chavez et al. net out-gassing of
0.5 Tg CyrL. Our new air-sea transfer estimate is comparable to that estimated by Hales et
al. (2005), but only fortuitously. Hales et al. (2005) limited their extrapolation to a smaller
cross-shelf extent (water depths < 200m) and a shorter seasonal duration, but also
extrapolated a significantly more negative mean air-sea pCO2 difference. Uncertainty in this
estimate is difficult to completely assess, and depends on short-term covariance of wind
fields and surface pCO: distributions that we could never resolve with this climatological
estimate. If we assume that the large-scale wind patterns and surface pCO2 distributions
are adequately represented by this method, and that the smaller-scale variability is
uncorrelated, we can crudely estimate the uncertainty from the areally-weighted RMS
deviation between predicted and observed pCO2 (~20 patm) and the areally-averaged air-
sea pCO: difference (~-20 patm), we must place uncertainty on the air-sea transfer
estimation that is similar in magnitude to the best estimate (i.e. + 14 Tg Cy1).

5. Discussion

The combination of SOM-defined regions and a mechanistic, non-linear predictive
algorithm for pCO2 shows promise for superior spatial and temporal estimation of air-sea
CO: fluxes. However, the results thus far need to be evaluated in comparison with previous
large-scale syntheses, and issues related to the broader applicability need to be elaborated
upon. In the discussion, we first investigate the difference between the flux estimate
presented above and that resulting from the Chavez et al. (2007) analysis. Second, we
attempt to understand the still-unsatisfying predictive capability of chlorophyll. Third, we
address the limitation of the climatologically-defined SOM. Finally, we discuss limitations
on broader application of the approach.

5.1 Comparison to previous regional flux estimations

The net annual flux for the study area is a net annual sink for atmospheric COz of much
larger magnitude than the small source based on the Chavez et al. (2007) synthesis. While
uncertainties are large in both estimates, the difference in best estimates amounts to a
regionally important air-sea transport difference, and should be discussed. There are a
number of reasons for the difference. First is the fact that this analysis was limited to the
years 1997-2005, when satellite chlorophyll products were available, and the ambient
atmospheric pCO2 was higher than over much of the time period of the Chavez et al (2007)
data synthesis, which included observations as far back as the late 1970s. We used an
average atmospheric pCOz of 375 patm in our flux calculations, appropriate for the location
of the study and the midpoint of that time frame. The Chavez et al analysis used
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constructions of the air-sea pCO; difference (ApCOz2) in their synthesis, and this suggests
that atmospheric increases in pCOz were accounted for if the coastal waters were tracking
the atmosphere, as is the case with many open ocean regions (Takahashi et al., 2009). If
the coastal oceans do not, in fact, follow atmospheric COz increases, then this more recent
atmospheric COz value could account for a large part of the estimated flux difference.

Second is the use of satellite scatterometer wind speed estimates in place of NCEP
reanalysis products. The former are more spatially and temporally variable thanthe latter
(Risien and Chelton, 2008), and the use of the 2d-order wind-speed dependence of the gas
exchange coefficient is expected to yield a greater mean gas transfer rate. The wind product
we used was the monthly average of the square of the wind stress, so this potential
enhancement of the gas transfer would be retained. However, the more significant factor is
in the correlation or anti-correlation of the gas transfer velocity with the air-sea pCO:
difference. If our analysis produces regions with undersaturated surface waters coinciding
with times when winds are strong, the ocean sink strength will be correspondingly
amplified. Some hint of this is present in the waters of the Pacific Northwest, which show
strong undersaturation in nearshore waters in early spring when winter storms have not
yet subsided, and in offshore waters, which retain undersaturated conditions into the fall
when winter winds increase. These regions show up as strong sinks and play a role in
setting the net annual flux for the region.

Last is the algorithm itself. The new algorithm includes explicit dependences on
temperature and chlorophyll that were notincluded in the bin-averaging and spatio-
temporal interpolation approach of Chavez et al. (2007). These dependences give the
possibility of hydrographically-driven variability in the surface pCO2 distributions that is
certain to be different than thatin the Chavez et al. (2007) analysis. The reasons for any
systematic bias are not clear, and are almost impossible to isolate given the multitude of
other differences between the two approaches.

5.2 Chlorophyll as a predictor for pCO2

Another key result is the ambiguous nature of the Chl dependences in the algorithm. The
empirical result is greatly improved over the MLR approach, with twice as many regions
requiring Chl dependence in their final representation and 5 of these 6 having coefficients
that are at least within the same order as the canonical Tcoz:Chl ratio of -7. The results are
not as mechanistically satisfying as hoped, however, with half of the regions still requiring
no significant Chl dependence. Some of this may be due to the fact that the Chl data in the
predictive algorithm is a remote-sensing product that includes some spatial and temporal
averaging not incorporated in the in situ pCO2 measurements; however, we believe that
there are important de-couplings in the TCO2-chlorophyll relationship that should be
discussed.

There is some region-specific justification for these results: Regions 2, 3, and 7, which
require no Chl dependence, and Region 4, which requires a surprisingly large-amplitude
seasonal variation around a mean value of zero, are in the southernmost part of the study
area and not in direct contact with the coast. These temperate, low-biomass, low-
productivity regions are likely to have highly recycled phytoplankton production, in which
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only a small fraction of their primary production actually results in net export. The
geochemical result of a this scenario would be a weak linkage between changes in
chlorophyll abundance and changes in TCO; and thus direct connection of pCO2 to Chl
standing stock may be expected to be unclear. This would be particularly acute if
variations in the degree of recycling were decoupled from variations in biomass.

Regions 1, 9, and 10 are likely to be strongly influenced by upwelling and high net
productivity, but still have no requirement for Chl as a predictor. This observation is more
difficult to explain, but we can speculate that coastal diatom populations, which have rapid
population dynamics, often dominate upwelling systems. These populations can draw
large amounts of nitrate down to background levels in a matter of a few days (Dugdale et al,,
1990; 2006). Upon reaching nutrient exhaustion, blooms can terminate with similar
rapidity, either by aggregation (Prieto et al, 2002) or by viral attack (Bratbak et al., 1990),
resulting in massive export events that leave little biomass in surface waters. The impact
on surface water chemistry, however can persist until other, physical factors such as gas
exchange can restore pre-bloom conditions. In the case of CO, gas exchange is a slow
process, taking months to re-equilibrate surface mixed layers; and so the CO2 depletion
resulting from productivity could be retained in surface waters long after biomass had
disappeared.

The conclusion must be that the model applied here is inadequate for capturing the
complexity of the relationship between COz and chl-a as defined by MODIS. This is not
necessarily a surprise, despite our conceptual improvements over simple linear
dependences of pCO2 on chlorophyll standing stock, and we know that there are a number
of better hypothetical approaches. Others have shown that chlorophyll is a poor predictor
for pCOy, particularly in coastal waters (e.g. Borges and Frankignoulle, 2001; Zhai et al.,
2009). One improved approach might be to discern the dominant types of phytoplankton
from ocean color remote sensing data, such as the approach being carried out by d’Ovidio
etal., (2010) using algorithms like PHYSAT. Another might be to incorporate estimates of
net productivity rather than standing stock and some sort of historical evolution of the
chlorophyll abundance within a water mass along its trajectory. However these
suggestions require more sophisticated modeling and data assimilation than currently
exists in order to realize the true capability of remotely-sensed chlorophyll as a predictor
for COz.

5.3 Climatologically-defined SOM regions

The objective of this exercise was not only to devise a means for improved pCO2 prediction,
but also to remove the non-mechanistic proxy dependences on independent space and time
variables. The SOM approach, by objectively defining biogeochemical regions within which
hydrographic relationships were thought to be consistent, was a key step in that process.
This succeeded in that there was essentially no need for spatial dependence within regions
in the final applied pCO2 predictions, as shown by the general lack of sensitivity to latitude
and longitude as independent variables. It failed, however, in that all regions required
empirical time dependence in at least some of their coefficients. While it is easy to explain
how there ought to be seasonal dependence in the biogeochemical functioning of a region,
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that functioning ought to be captured by the hydrographic dependences in the predictive
model.

We believe that some of this could be addressed by defining regions that are based on
seasonally- or monthly-resolved climatologies. We know that certain parts of these coastal
waters are strongly seasonally influenced. For example, the higher latitudes of the study
area shift seasonally from upwelling to downwelling physical forcing, and it is unlikely that
these waters are hydrographically homogeneous over the course of the year. In sucha
temporally-resolved SOM exercise, the boundaries of the regions would not be
geographically fixed, but might move north or south, or shrink or expand over the course of
the year. This is a complicated next step, and is not as straightforward as simply defining
discrete sets of SOM regions for individual temporal intervals. Kavanaugh et al.
(submitted) have examined a temporally continuous approach to this problem, applied in
the open North Pacific. Applying this approach to these coastal waters is a logical next step.

5.4 Application to CO; flux predictions.

Two factors limit extrapolation of these results over wider spatial and temporal extents.
The first is the obvious data limitation in key regions.- The intent of this exercise was to
devise a means for expanding sparse data coverage using a synthetic approach; however,
sufficient data for algorithm training is still essential. In extremely data-poor regions like
those at the northern and southern extents of the North American continental margin,
there is still an insufficient observational basis for application of a method such as this.
Conversely, the SOM analysis may help to ease the overall observational burden, and to
direct observational programs. Once SOM regions are identified for a given area, and the
dynamic ranges of the hydrographic factors within each region defined, a sampling
approach need only provide pCO2 data over a reasonable portion of the hydrographic range
to be sufficient for algorithm training. This could be a substantial improvement over
attempting to exhaustively cover the space and time scales of interest.

The second is that the analysis here was for a monthly-resolved climatology, and as a result
has no ability to account for long-term temporal trends that might be unrelated to
hydrographic relationships. The pertinent example is of rising atmospheric COz levels, the
effects of which we were unable to identify in the surface-water pCO; observations. It is
unlikely that the coastal surface waters are not responding to the atmosphere at some level,
as thiswould imply that the sink would keep indefinitely increasing as atmospheric levels
continued to rise. Itis likely that any trend following the ~2 patm yr-! increase in
atmospheric CO: is just so small relative to the variability in the observations that it is
obscured. It may be possible to use an approach such as this to define a reference pCO>
based on hydrographic relationships, which thus accounts for the biogeochemical forcing.
The deviations between the reference pCO; and the actual observations could then be used
to interpret the long-term temporal trends.

6. Conclusions

We have presented a method for predicting the pCO2 of surface waters in a highly variable
and diverse coastal region, the Pacific coast of central North America. The method requires
objective subcategorization of the study area into biogeochemically consistent sub-regions,
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and a predictive model that allows nonlinear dependence on input parameters. We
accomplished the first by means of a self-organizing map (SOM) that delineated 13 sub-
regions in the study area. We accomplished the second by simple parameterization of
surface water Tcoz and Tai as a function of SST, Chl, and time of year, from which pCO; was
calculated, thus explicitly including the inherent non-linearity of the carbonate chemistry
system. The method was trained using a historical compilation of surface-water pCO;
observations, and yielded predictions with RMS deviations from the observations of less
than 20 patm and correlation coefficients of >0.81. Predictive power was improved by at
least a factor of 2.5, for the entire region, with important individual subregions having their
predictive power improved by over an order of magnitude. The method was validated by
comparison of predicted pCO; with that observed on a recent cruise spanning the study
region. The predicted pCO: distributions coupled with a wind-speed climatology allowed
calculation of a regional uptake of 14 Tg C yr'! of atmospheric CO2, in contrast to the weak
release of CO2 from the same waters predicted by a previous bin-averaging and
interpolation approach. Future application of the method described here should focus on
better incorporation of the mechanistic linkages between chlorophyll standing stocks and
Tcoz, better mechanistic descriptions of the predicted alkalinity, and better temporal
resolution of the SOM analysis. The approach presented here may have application to
assessing long-term trends in settings with highly variable pCO, and may aid in efficient
planning of future observational efforts.

Appendix
If each term in Eq. 8 was simply a space-and time-invariant constant (i.e. if parameters c1-c3
were all fixed at 0), then the model would reduce to:

Tco, = A+ BT + BCAl Al

where
A= T2, — BT®° A2
B = y®@. A3

In this case, the four empirical parameters Tcoz?, T, v, and ¢ could be reduced to two. We
chose to retain the form of Eq. 8, however, because it maintains the conceptual Tcoz
representation, and because once independent time- and space-variability of the
parameters Tco2?, T, v, and ¢ are allowed, the terms then become expanded mixed-
polynomial products of equations with the form of Equation 9. For example,

yo = (cf + clAlat + c)Alon + c¥t)(c§ + cfAlat + c§Alon + c5t) A4
where the superscripts refer to the term to which each coefficient ¢; applies. The number of
coefficients is thus no longer reduced significantly. The form of Eq. 8 with terms that vary

spatially and temporally as in Eq. 9 is a more intuitive representation of the model, and we
maintained that representation throughout the exercise.
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Figure 1. Multiple Linear Regression representation of all of the pCO2 observations in the

Chavez et al (2007) North American Continental Margins dataset. Solid diagonal line
represents the perfect-agreement 1:1 relationship.
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Figure 2. Comparison of Multiple Linear Regression prediction of sea-surface pCOz: in the
four major coastal sub-regions of North America: a) Bering Sea and Arctic coastal waters;
b) the Atlantic coast; c) the Pacific coast; d) Gulf of Mexico and Caribbean coastal waters.
Solid diagonal lines represent the perfect-agreement 1:1 relationship.
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Figure 4. Self-organizing map of biogeochemical regions in the study area.
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6. Results are summarized in Table 2. Solid diagonal lines represent the perfect-agreement 1:1 relationship.
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Results are summarized in Table 3. Solid diagonal lines represent the perfect-agreement 1:1 relationsh
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Table 3 and monthly climatologies of SeaWiFS Chl and SST.



w B U

o O O

o O O
(uyer) zond

May,
Climatology

(]
=
£
w35
—

30

25 —

I I I B
-120 -110 -120 -110

Longitude
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Figure 10. Monthly climatologies of air-sea CO: flux (mmol m-? d-1; negative numbers are
into the ocean) generated form the pCO2 maps of Figure 9 and the monthly climatologies of
wind-speed squared taken from the Risien and Chelton database
(http://cioss.coas.oregonstate.edu/scow/; compiled following Risien and Chelton 2008).




Table 1.

Region Area Number of pCO; Description
(km?) observations
1 43924 684 Upwelling-influenced southern Baja and Sea of Cortez
2 261489 1093 3rd offshore from Baja
3 94406 959 Southern extreme
4 212661 2764 2nd offshore from Baja
5 46037 2139 Cascadia coastal waters; seasonal upwelling
6 106421 0 Sea of Cortez, non upwelling-influenced
7 182506 105 Baja, most offshore
8 113618 3106 Northern Baja coastal, upwelling
9 55240 48514 California coastal, persistent upwelling
10 75105 861 Northern California offshore
11 169190 3632 Cascadia offshore
12 175591 22542 Central California, 1st offshore
13 224407 9801 Central California, 2nd offshore




Table 2. Results of multiple-linear re

ression? approach applied to data in each SOM region.

Region Co C1 Cz C3 C4 Cs RMS R
1 350.5 -14.73 2.80 -75.7 2.92 16.5 0.11 6.1 0.94
2 309.9 3.32 2.97 -30.1 3.38 0.8 1.26 14.0 0.87
3 332.8 14.14 8.88 -24.7 2.95 19.2 1.60 19.8 0.79
4 360.9 -4.71 -0.90 -22.6 0.48 0.6 1.05 8.2 0.93
5 386.5 -25.19 -28.24 -68.3 1.29 -4.8 -0.73 63.4 0.57
6 NSD
7 -200.2 -4.53 16.05 -90.8 26.85 -53.8 -2.40 25.9 0.58
8 324.4 1.55 14.33 8.6 2.30 -11.2 -0.05 22.3 0.60
9 511.5 -14.7 5.48 379 -7.24 04 -0.52 88.6 0.15
10 395.0 13.87 13.45 -24.1 -2.13 82.9 2.64 31.8 0.79
11 367.0 -9.47 -16.20 27.2 -5.72 -0.9 3.18 44.8 0.07
12 560.9 8.49 12.77 29.9 -8.79 -14.8 3.74 31.9 0.24
13 377.4 -3.82 -7.96 31.7 -3.64 -66.2 3.65 10.5 0.88
Number-weighted composite statistics: 57.8 0.32
Area-weighted composite statistics: 24.5 0.51

a) Predictive function followed the form of Eq. 1, specifically, pCO, , = C, + C, Alat + C, Alon+ C,t + C,T + C;Chl where tis as defined in Eq. 2,

and Alat and Alon are the deviations of the latitude and longitude from each respective mid-point of the region. Coefficients to which the prediction was
significantly sensitive (SF > 0.1) are highlighted in red text.



Table 3. Results of the mechanistic optimization applied to the Regions identified by the self-organizing map. Coefficients
highlighted in red text are those with SF>0.1. Italicized rows show the combinations of coefficients applied to the regions to
generate the pCO2 and air-sea CO; flux maps in Figures

AlkO Tco2? To 0 Y B
Region Co Co c1 c2 Cs Co Cs Co Cs Co C4 Co Cs e RMS R
1. Full 2309 2202 -5.44 3.37 -43.1 9.86 -1.52 0.82 -0.03 -28.9 -2.2 62.3 -83.3 -0.05 6.3 0.93
Spec. 2270 2164 -6.79 0 44.3 8.75 0.14 0.59 -0.29 -31.5 -294 62.9 71.5 0.29 5.8 0.94
Min. 2332 2188 0 0 26.9 10.02 1.01 085 -0.10 -34.5 -3.8 0 0 0.99 6.6 0.93
2. Full 2306 2286 -3.17 0.84 57.4 2.12 -6.08 0.70 0.05 -32.7 -9.1 -66.2 242 0.38 12.4 0.90
Spec. 2190 2181 -4.35 0 69.6 2.04 -6.25 0.62 0.06 -24.2 -8.1 -55.3 183 0.52 11.3 0.92
Min. 2298 2191 0 0 -889 4.35 12.34 0.64 -0.02 -16.1 0.1 0 0 0.95 12.9 0.90
3. Full 2190 2184 4.53 6.63 -15.5 3.73 -5.13 0.67 0.09 -28.1 -1.5 26.7 -127 0.32 14.6 0.88
Spec. 2340 2238 0 0 -119 7.90 -1.30 0.72 0.23 -26.8 -0.9 0 -0.9 0.99 15.3 0.86
Min. 2228 2148 0 0 -92.5 6.41 -2.88 0.72 017 -24.8 1.9 0 0 0.76 15.3 0.86
4. Full 2266 2204 -230 -0.22 7.4 1.90 -2.99 0.65 -0.03 -204 2.0 -8.6 89.4 0.40 6.8 0.95
Spec. 2291 2224 -248 -0.39 -17.2 144 -2.92 0.74 005 -272 -0.2 0 167 0.65 7.1 0.94
Min. 2363 2227 0 0 -8.1 7.80 -0.74 0.79 -0.21 -28.0 1.2 0 0 1.03 9.9 0.88
5. Full 2270 2203 -296 -1.93 10.0 8.39 -1.23 032 -0.16 -39.8 -8.5 -4.7 2.9 0.23 47.6 0.82
Spec. 2265 2202 0 0 0 8.06 -0.81 0.05 0 -298 -11.2 -4.7 0 0.31 49.3 0.81
Min. 2274 2191 0 0 8.5 8.23 -0.82 0.23 -0.19 -33.6 -7.4 0 0 0.20 55.5 0.74
7. Full 2383 2187 1.84 0.54 419 12.8 -3.56 0.63 -0.20 -109 -195 -11.0 532 1.27 25.9 0.63
Spec. 2381 2202 0 0 35.3 9.87 -5.64 0.85 0 -27.7 -30.3 0 393 1.25 26.0 0.62
Min. 2439 2248 0 0 -52.7 6.57 22.0 090 -0.16 -31.7 28.0 0 0 1.49 26.3 0.61
8. Full 2312 2188 -3.57 -1.07 -353 835 -4.40 071  -002 -23.1 20.6 -6.8 14.6 0.88 16.8 0.80
Spec. 2313 2191 -1.86 0.52 -36.8 6.27 2.85 0.60 0 -13.7 2.9 0 0 1.75 20.4 0.68
Min. 2313 2192 0 0 -386 6.08 -3.87 0.77 -0.01 -28.5 25.7 0 0 0.90 22.7 0.58




Table 3, continued.

9. Full 2231 2214 -2091 5.66 71.7 7.50 -1.28 047 -0.08 -379 -11.9 -0.8 1.1 -0.15 62.9 0.75
Spec. 2215 2206 0 0 -121 6.89 1.73 0.04 0 -19.2 13.3 0 0 2.73 65.0 0.73
Min. 2173 2174 0 0 -125 6.57 1.79 022 -001 -234 16.5 0 0 2.75 65.0 0.73
10.Full 2246 2192 5.94 1.98 1.7 9.56 2.29 047 -0.13 -38.7 -69 -132 -144 0.22 20.3 0.92
Spec. 2179 2209 0 0 0 6.30 2.93 045 -0.23 -43.3 -26  -926 -92.0 0.31 224 0.90
Min. 2287 2197 0 0 -134 749  -0.69 0.60 -020 -21.3 -0.7 0 0 0.75 252 0.87
11.Full 2315 2214 -281 -6.61 -17.2 6.83 -0.14 0.59 -020 -356 13.1 7.9 17.8 0.41 334 0.61
Spec. 2287 2229 0 0 0 4.73 0 0.62 -0.18 -40.2 8.6 6.4 20.3 0.3 35.2 0.56
Min. 2347 2189 0 0 44.8 9.43 -0.95 0.67 -0.11 -30.5 -12.1 0 0  -0.60 35.8 0.53
12.Full 2305 2176 2.80 4.79 36.7 11.55 -3.80 068 -020 -41.1 18.2 -3.5 3.8 0.48 24.1 0.67
Min. 2283 2181 0 0 -0.22 8.33 0.52 0.67 -0.09 -31.2 -0.17 0 0 0.68 26.3 0.59
13.Full 2365 2211 -095 -1.32 -14.3 7.50 3.42 0.78 -0.03 -19.3 -2.6  -15.5 14.9 0.92 7.8 0.94
Spec. 2369 2206 0 0 5.6 815 2.39 088 -0.04 -26.7 -9.7 -13.3 0 1.57 82 0.93
Min. 2362 2198 0 0 4.9 7.53 2.42 0.87 -0.05 -25.8 -7.5 0 0 1.16 8.8 0.91

Table 4. Composite statistics for the cases described in Table 3.

Optimized Coefficient | Number-weighted

Area-Weighted

Set RMS R RMS R

Full 41.7 0.76 19.0 0.82
Region-specific 43.6 0.72 20.1 0.79
Minimum 53.7 0.59 21.8 0.75
applied 43.0 0.75 19.8 0.81




Table 5. Sensitivity analysis for Region 9

Results With Training Data

Verification Data

Alko Tcoz? TO o e
n Co Co C4 Co C4 Co C4 Co C4 RMS R n RMS R

43599 21744 21741 -123.5 6.570 1.782 0.228 -0.008 -23.45 16.31 2.731 65.09 0.727 4915 64.64 0.727
43655 2173.7 21741 -123.8 6.571 1.799 0.226 -0.010 -23.49 16.37 2.735 65.10 0.727 4879 64.56 0.731
43616 2173.8 21742 -123.7 6.568 1.775 0.225 -0.009 -23.46 16.37 2.733 6496 0.728 4898 65.83 0.719
43691 21744 21741 -123.3 6.567 1.788 0.225 -0.010 -23.48 16.27 2.732 65.04 0.729 4823 65.11 0.717
43794  2173.7 21741 -123.7 6.563 1.778 0.226 -0.008 -23.45 16.32 2.738 65.18 0.728 4720 63.77 0.723
43711 2173.8 21742 -123.3 6.570 1.797 0.226 -0.010 -23.52 16.29 2.732 65.00 0.729 4803 65.45 0.715
43689 2173.5 21741 -123.9 6.568 1.813 0.227 -0.009 -23.52 16.24 2.743 65.01 0.727 4825 65.38 0.725
43503 21739 21741 -124.1 6.569 1.780 0.225 -0.007 -23.35 16.28 2.730 65.08< 0.728 5011 64.74 0.715
43648 2173.7 21741 -1229 6.570 1.798 0.224 -0.010 -23.48 16.15 2.741 65.07 0.727 4866 64.89 0.727
43785 2173.5 21741 -123.8 6.576 1.789 0.226 -0.010 -23.47 16.43 2.736 65.03 0.728 4729 65.14 0.724




Research Highlights

1. In this study we assess multiple linear regression predictions of coastal-ocean pCOz,
and find them inadequate.

2. We apply a satellite-based self-organizing map to the Pacific coastal waters of
Central North America and define 13 biogeochemically distinct regions between
Baja, Mexico and Vancouver Island, Canada.

3. We develop a semi-mechanistic model of alkalinity and total COz based on
dependences on remotely-sensible parameters that captures the inherent non-
linearity of the carbonate system in seawater, and this representation yields good
predictive capability for coastal water pCOx.

4. These predictions were combined with satellite wind products to calculate a net
annual air-sea COz exchange, and this predicts a larger magnitude sink for CO2 than
a previous synthesis.





