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Background-—Mitochondrial dysfunction is a key determinant in chagasic cardiomyopathy development in mice; however, its
relevance in human Chagas disease is not known. We determined if defects in mitochondrial biogenesis and dysregulation of
peroxisome proliferator-activated receptor gamma (PPARc) coactivator-1 (PGC-1)–regulated transcriptional pathways constitute
a mechanism or mechanisms underlying mitochondrial oxidative-phosphorylation (OXPHOS) deficiency in human Chagas
disease.

Methods and Results-—We utilized human cardiomyocytes and left-ventricular tissue from chagasic and other cardiomyopathy
patients and healthy donors (n>6/group). We noted no change in citrate synthase activity, yet mRNA and/or protein levels of
subunits of the respiratory complexes were significantly decreased in Trypanosoma cruzi–infected cardiomyocytes (0 to
24 hours) and chagasic hearts. We observed increased mRNA and decreased nuclear localization of PGC-1-coactivated
transcription factors, yet the expression of genes for PPARc-regulated fatty acid oxidation and nuclear respiratory factor
(NRF1/2)–regulated mtDNA replication and transcription machinery was enhanced in infected cardiomyocytes and chagasic
hearts. The D-loop formation was normal or higher, but mtDNA replication and mtDNA content were decreased by 83% and
40% to 65%, respectively. Subsequently, we noted that reactive oxygen species (ROS), oxidative stress, and mtDNA oxidation
were significantly increased, yet NRF1/2-regulated antioxidant gene expression remained compromised in infected
cardiomyocytes and chagasic hearts.

Conclusions-—The replication of mtDNA was severely compromised, resulting in a significant loss of mtDNA and expression of
OXPHOS genes in T cruzi–infected cardiomyocytes and chagasic hearts. Our data suggest increased ROS generation and selective
functional incapacity of NRF2-mediated antioxidant gene expression played a role in the defects in mtDNA replication and unfitness
of mtDNA for replication and gene expression in Chagas disease. ( J Am Heart Assoc. 2012;1:e003855 doi: 10.1161/
JAHA.112.003855)
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C hagas disease is a major health concern in the South
American continent and an emerging infectious disease

in the United States. Clinical symptoms progress from
hypertrophic remodeling (wall thickening) to dilated cardio-
myopathy that ultimately results in cardiac arrest and death.1

No effective therapies are available for the treatment of the
migrated workforce or the 20 million infected individuals living
in the endemic countries.

Experimental studies suggest mitochondrial function is
impaired in chagasic hearts. Attachment and invasion by
Trypanosoma cruzi alters plasma membrane and induces
intracellular Ca2+ flux.2 It is suggested that these events
contributed to the mitochondrial permeability transition
pore (MPTP) opening, leading to a decline in respiratory
chain activity in cardiomyocytes3 and heart tissue of
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T cruzi–infected mice and rats.4,5 Consequently, an increase
in electron leakage to O2 and O2

●� formation6 associated
with a decline in ATP production7 was observed in
cardiomyocytes and heart tissue of infected rodents.
Furthermore, mtROS signaled the NFjB pathway of cyto-
kine gene expression in infected cardiomyocytes.8,9 These
studies suggested that mitochondrial metabolic abnormali-
ties contribute to energy deficiency, oxidative stress, and
possibly an inflammatory state of the heart and may not
just be secondary events related to the pathology of
cardiac remodeling and heart failure in Chagas disease. The
molecular mechanisms responsible for these pathological
conditions are not understood, however, making it difficult
to develop therapies for control of mitochondrial dysfunc-
tion and the associated adverse effects in chagasic (and
other) heart disease.

Recent studies have suggested a central role of peroxi-
some proliferator-activated receptor gamma (PPARc) coac-
tivator-1a (PGC-1a) in mitochondrial biogenesis and function
(reviewed in reference 10). PGC-1a has been shown to bind
PPARs that are key regulators of genes involved in fatty
acid oxidation.11 Nuclear respiratory factors (NRF1/2) are
also coactivated by PGC-1a, driving the expression of genes
involved in oxidative phosphorylation (OXPHOS), transcrip-
tion, and replication of the mitochondrial genome and
antioxidant gene expression.12 Estrogen-related receptors
(ERRs) serve as an amplifier for PGC-1a activation of PPARs
and NRFs. Several studies indicate that PGC-1 plays a
critical role in normal cardiac development and function in
animal models (reviewed in reference 10). However, the
respective role of PGC-1-driven pathways has not been
characterized in cardiomyopathy of chagasic or other
etiologies in humans.

In this study, we chose to investigate whether dysregu-
lation of PGC-1a transcriptional cascade(s) is the index
event triggering mitochondrial abnormalities in T cruzi–
infected cardiomyocytes and human chagasic hearts. We
aimed to determine if T cruzi–infected cardiomyocytes and
human hearts exhibit defective mitochondrial biogenesis
and whether PGC-1a-mediated transcriptional regulation of
genes associated with mitochondrial replication/transcrip-
tion and OXPHOS and antioxidant status were aborted. Our
results showed that mtDNA content and mtDNA-encoded
transcription of genes of the OXPHOS pathway were
significantly decreased in T cruzi–infected cardiomyocytes
and chagasic hearts. We found that mtDNA was oxidized
and unfit to carry out mtDNA replication in infected
cardiomyocytes, and these defects were not related to
PGC-1a, but were associated with nonresponsiveness of the
NRF1/2 pathway of antioxidant gene expression in Chagas
disease.

Materials and Methods

Antibodies and Reagents
All gene abbreviations are defined in Table 1. Polyclonal
antibodies against PGC-1a (ab72230), PPARc (ab19481),
ERRa (ab76228), ERRc (ab82319), and monoclonal anti-SDHA
antibody (ab14715) were purchased from ABCAM (Cam-
bridge, UK). Polyclonal antibodies against ND1 (sc-20493),
NRF2 (sc-722), CYTB (H-300), TFB2M (sc-160858), SOD1 (FL-
154), and SOD2 (FL-222) were purchased from Santa Cruz
Biotech (Santa Cruz, CA). Antibodies against 4-HNE (ab5605),
3-NT (MAB5404), and 8-OHdG (ab3560) were from Millipore
(Billerica, MA), and anti-b-actin antibody (A5441) was pur-
chased from Sigma-Aldrich (St. Louis, MO). All chemicals were
of molecular grade and were purchased from Sigma-Aldrich.

Parasites and Infection
Trypanosoma cruzi trypomastigotes (SylvioX10/4) were prop-
agated in C2C12 cells in RPMI 1640 medium with 5% FBS.
AC16 (human ventricular cardiomyocyte) cells seeded in 6-
well plates (59104/well) or T75 flasks (39106/flask, 70%
confluence) were infected with T cruzi trypomastigotes (cell:
parasite ratio 1:3) and incubated at 37°C, 5% CO2 for 0, 3, 6,
12, and 24 hours.

Human Samples
All procedures for human sample collection were approved by
the institutional review boards at the University of Texas
Medical Branch (ID: 04-257) and the Universidad Nacional de
Salta (UNSa), Argentina. Seropositivity for T cruzi–specific
antibodies was confirmed by 2 serology tests.7 Clinical data
included medical history, physical examination, subjective
complaint of frequency and severity of exertional dyspnea,
electrocardiography (at rest and with exercise) to reveal
cardiac rhythm and conduction abnormalities, transthoracic
echocardiogram to analyze left ventricular (LV) contractile
function, and chest x-ray to assess cardiomegaly (cardiotho-
racic ratio >0.5). Cardiac biopsies were obtained from
cardiomyopathy patients exhibiting systolic dysfunction (EF
≤40% to 55%) and/or left ventricular end diastolic diameter
≥57 mm, requiring correctional surgical intervention for
clinical purposes at the San Bernardo Hospital, Salta. Normal
cardiac biopsies were obtained from the National Disease
Research Interchange tissue bank (Philadelphia, PA).

Subjects with comorbid diseases, for example, cancer,
autoimmune disorders, neurodegenerative diseases, hepatic,
renal chronic disease, chronic obstructive pulmonary disease,
other parasitic infection (Leishmania), alcoholism, drug abuse
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Table 1. Oligonucleotides Used in This Study

Gene
Name Protein Name

Genbank Accession
# Oligonucleotide Oligonucleotide Sequence 5′–3′

Amplicon Size
(bp)

PGC-1a PPARc coactivator-1a NM_013261.3 PGC1a F GTCACCACCCAAATCCTTAT 131

PGC1a R ATCTACTGCCTGGAGACCTT

PRC PGC-1-related coactivator NM_015062.3 PRC F GCAACGCCAAGCAGAAACAGAAGA 115

PRC R TGGTGGGATGACAAGACAAGGGAT

ERRa Estrogen-related receptor a NM_004451.3 ERRa F GGCAAAGTGCTGGCCCATTTCTAT 80

ERRa R TCGAGCATCTCCAAGAACAGCTTG

PPARc Peroxisome proliferator-activated receptor
c

NM_138711.3 PPARc F GGCTTCATGACAAGGGAGTTTC 74

PPARc R AACTCAAACTTGGGCTCCATAAAG

NRF1 Nuclear respiratory factor 1 NM_001040110.1 NRF1 F GGCACTGTCTCACTTATCCAGGTT 115

NRF1 R CAGCCACGGCAGAATAATTCA

NRF2 Nuclear respiratory factor 2 NM_001197297.1 NRF2 F CAGCCTGAACTGGTTGCACAGAAA 190

NRF2 R TCAACTCCGCTGCACTGTATCCAA

NRF2b Nuclear respiratory factor 2b NM_005254.5 NRF2B F TGAAACGGGTGTATCTGCTG 180

NRF2B R GAACTAACTACTTGCTGAATGGC

POLRMT RNA polymerase, mt NM_005035.3 POLRMT F GACATGTACAACGCCGTGATGCTT 91

POLRMT R AGCCGGCATCCTTCACCATGAATA

TFB1M Transcription factor B1, mt NM_016020.3 TFB1M F GGACACTCGATTTATTCCTGGATT 78

TFB1M R ACATCTCCATGAACAATTCTCAGTTT

TFB2M Transcription factor B2, mt NM_022366.2 TFB2M F TCTGGCAATTAGCTTGTGAGATTAA 101

TFB2M R CCTACGCTTTGGGTTTTCCA

TFAM Transcription factor A, mt NM_003201.1 TFAM F AATGGATAGGCACAGGAAACC 136

TFAM R CAAGTATTATGCTGGCAGAAGTC

MCAD Medium-chain acyl CoA dehydrogenase NM_001127328 MCAD F ATGGGCCAGCGATGTTCAGATACT 101

MCAD R GCAACTTTGAAACCAGCTCCGTCA

CKMT2 Creatine kinase, mt 2 NM_001151.3 CKMT2 F AAGAACGAGGCTGGGAGTTCATGT 132

CKMT2 R AGCTTTGGGATCCTAACGTGGACA

ND1 NADH dehydrogenase complex subunit 1 NM_004541.3 ND1 F CTGGCTACTGCGTACATCCA 142

ND1 R TCTCCAAACCCTTTGACACA

ND4 NADH dehydrogenase complex subunit 4 NM_002495.2 ND4 F AGGACTTCCACATGGAGATTGGCA 162

ND4 R AGACTGCATGTTATTGCGAGCAGG

SDHB Succinate dehydrogenase subunit B NM_003000.2 SDHB F CCACAGCTCCCCGTATCAAG 170

SDHB R TCGGAAGGTCAAAGTAGAGTCAA

CytB Cytochrome B NC_012920.1 CytB F AGTCCCACCCTCACACGATTCTTT 185

CytB R AGTAAGCCGAGGGCGTCTTTGATT

CytC Cytochrome C NM_018947.5 CytC F TGGGCCAAATCTCCATGGTCTCTT 86

CytC R TGCCTTTGTTCTTATTGGCGGCTG

UQCRC2 Ubiquinol-cytoc C reductase protein II NM_003366.2 UQCRC2 F TTCAGCAATTTAGGAACCACCC 119

UQCRC2 R GTCACACTTAATTTGCCACCAAC

COI Cytochrome oxidase complex subunit I NC_012920.1 COI F ACCCTAGACCAAACCTACGCCAAA 90

COI R TAGGCCGAGAAAGTGTTGTGGGAA

COXIV Cytochrome oxidase complex subunit IV NM_001861.3 COXIV F TTTAGCCTAGTTGGCAAGCGA 105

COXIV R CCGATCCATATAAGCTGGGAGC

Continued
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history, or hematological disease and those individuals who
were HIV positive were not included in the study. The
exclusion criteria were employed to rule out the effects of
comorbid diseases on the results obtained from infection by
T cruzi and Chagas disease.

Homogenates and Fractionation
Cardiomyocytes (69106 cells/mL, normal and infected) were
incubated on ice for 30 minutes in lysis buffer constituting
50 mmol/L Tris (pH 7.5), 150 mmol/L NaCl, 1 mmol/L EDTA,
1 mmol/L EGTA, 1% Nonidet P-40, 2.5 mmol/L KH2PO4, and

1 mmol/L each of glycerophosphate, NaF, and Na3VO4. Cell
lysates were centrifuged at 3000g at 4°C for 15 minutes and
the resultant supernatants stored at �20°C.

For the preparation of nuclear and cytosolic fractions, cells
(69106/mL) were incubated on ice for 30 minutes in buffer A
(10 mmol/L HEPES [pH 7.9], 10 mmol/L NaCl, 0.1 mmol/L
EDTA, 0.1 mmol/L EGTA, 1 mmol/L DTT, 1 mmol/L PMSF)
containing 0.625% NP-40. Cell lysates were centrifuged at
4°C at 10 000g for 1 minute and supernatants stored as a
cytosolic fraction. Pellets were washed with buffer B (1.7
mol/L sucrose, 10 mmol/L HEPES [pH 7.9], 10 mmol/L
NaCl, 0.1 mmol/L EDTA, 0.1 mmol/L EGTA, 1 mmol/L DTT,

Table 1. Continued

Gene
Name Protein Name

Genbank Accession
# Oligonucleotide Oligonucleotide Sequence 5′–3′

Amplicon Size
(bp)

16S 16S rRNA NC_011137.1 16S F CGCATAAGCCTGCGTCAGATAAAA 103

16S R TGTGTTGGGTTGACAGTGAGGGTA

ATP5A ATP synthase complex subunit 5A NM_001001937.1 ATP5A F TACATGGGCTGAGGAATGTTCA 179

ATP5A R ACCAACTGGAACGTCCACAAT

CAT Catalase NM_001752.3 CAT F TAAGACTGACCAGGGCATC 201

CAT R CAAACCTTGGTGAGATCGAA

GPx-1 Glutathione peroxidase-1 NT_022517.18 GPx-1 F AGCCCAACTTCATGCTCTTC 401

GPx-1 R CAGGTGTTCCTCCCTCGTAG

HO-1 Heme oxygenase 1 NM_002133.2 HO-1 F CAGGCAGAGAATGCTGAGTTC 271

HO-1 R GCTTCACATAGCGCTGCA

MnSOD Mn2+ superoxide dismutase NM_001024466.1 MnSOD F ACAGGCCTTATTCCACTGCT 168

MnSOD R CAGCATAACGATCGTGGTTT

BAX Bcl-2-associated X NM_138764.4 BAX F CATGTTTTCTGACGGCAACTTC 107

BAX R AGGGCCTTGAGCACCAGTTT

BCL2 B-cell lymphoma 2 NM_000657.2 BCL2 F GGTGGTGGAGGAGCTCTTCA 92

BCL2 R TGACGCTCTCCACACACATGA

GAPDH Glyceraldehyde 3-P dehydrogenase NM_002046.3 GAPDH F CCACTCCTCCACCTTTGAC 102

GAPDH R ACCCTGTTGCTGTAGCCA

SSBP1 Single-stranded DNA-binding protein NM_003143.1 SSBP1 F TGCTCGGGTTAGATCGTCAGGAAA 175

SSBP1 R GCCCAAGTAAGTGCACACGATTCA

POLG Polymerase gamma, mt NM_001126131.1 POLG F TGTCAACCAGAACTGGGAGCGTTA 95

POLG R TGGCCAGATCCATCAACGACTTCT

PEO1 Progressive external ophthalmoplegia 1 NM_001163812.1 PEO1 F ATTGTAGAAGGACGTGGACGCGAA 123

PEO1 R TGCAGAGCTCACTCTAGGTGCATT

TOP1mt Topoisomerase DNA I, mt NM_052963.1 TOP1 F TTATCCTACAACCGAGCCAACCGA 115

TOP1 R TCTTTGCCTGGATCTTCGTCTGGA

7S DNA 7S DNA, mt NC_012920.1 7S DNA F ATCAACTGCAACTCCAAAGCCACC 184

7S DNA R TGATTTCACGGAGGATGGTGGTCA

18S rRNA 18S ribosomal RNA NT_167214.1 18S rRNA F GTAACCCGTTGAACCCCATT 147

18S rRNA R CCATCCAATCGGTAGTAGCG
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and 1 mmol/L PMSF), resuspended in buffer C (20 mmol/L
HEPES [pH 7.9], 0.4 mol/L NaCl, 1 mmol/L EDTA, 1 mmol/L
EGTA, 1 mmol/L DTT, and 1 mmol/L PMSF), and centrifuged
at 4°C at 13 000g for 5 minutes. The resultant supernatants
were stored at �20°C as nuclear extracts.

Real-Time RT-PCR
Total RNA from cardiomyocytes (69106/sample) was
extracted using an RNeasy Mini Kit (Qiagen), and cDNA was
synthesized using an iScript cDNASynthesis Kit (Bio-Rad). First-
strand cDNA was used as a template in a real-time PCR on an
iCycler thermal cycler with SYBR Green Supermix (Bio-Rad) and
gene-specific oligonucleotides, listed in Table 1. The threshold
cycle (Ct) values for each target mRNA were normalized to
GAPDH mRNA, and the relative expression of each target gene
was calculated with the formula n-fold change=2�DCt, where
DCt represents Ct (infected)–Ct (control).

7

Mitochondrial Mass, mtDNA Content, and mtDNA
Replication
Citrate synthase (CS) activity was measured as an indicator of
mitochondrial mass. Briefly, sample homogenates were added
to 100 mmol/L Tris-HCl (pH 8.0) and 6 mmol/L acetyl CoA,
and CS catalyzed reduction of acetyl CoA (6 mmol/L) in the
presence of oxaloacetate (10 mmol/L) in conjunction with
5,5′dithiobis-2-nitrobenzoic acid (10 mmol/L) reduction was
monitored at 412 nm (e13.6 m/mol/L per centimeter).4

Total DNA from cardiomyocytes (106/sample) or tissue
sections (5 mg) was isolated using a DNA extraction kit
(Qiagen). We determined mtDNA content by real-time PCR
using 20 ng of total DNA with primers amplifying the 16S and
COI regions and normalized to 18S nuDNA. To assess the first
step of mtDNA replication, that is, 7S RNA binding in the D-loop
region and D-loop formation,13 we performed real-time PCR
amplification of the 7S region using RNA extracts (free of DNA)
and normalized to mtDNA amount. Next, we treated the DNA
preparation with MnlI endonuclease (site: 5′-CCTC(N)7�3′),
which selectively digests dsDNA, followed by real-time PCR for
a segment in the CYTB and COI regions. The CYTB sequence is
proximal to the D-loop and contains MnlI sites, whereas the COI
region lacks the MnlI site. The ratio of the PCR products after
the MnlI treatment for the CYTB region and COI indicated the
amount of mtDNA committed to replication.13

Western Blotting
Cell homogenates (15 lg) or cytosolic (15 lg) and nuclear (10
lg) protein fractions were resolved on denaturing 10% acryl-
amide gels and proteins transferred to PVDF membranes using

a wet, vertical Criterion Blotter (Bio-Rad). Membranes were
blocked with 5% nonfat dry milk (NFDM; Lab-Scientific) in
50 mmol/L Tris-HCl (pH 7.4), 150 mmol/L NaCl, and 0.05%
Tween-20 (TBST) or 3% BSA (Santa Cruz) and then incubated
overnight at 4°C with antibodies against CYTB (1:200), SDHA
(1:1000), PGC-1a (1:1000), PPARc (1:1000), ERRa (1:2500),
ERRc (1:50), NRF2 (1:200), TFB2M (1:400), 4-HNE (1:3000),
SOD1 (1:200), or SOD2 (1:200). All antibody dilutions were
made in 5% NFDM-TBST. After washing, membranes were
incubated with the appropriate HRP-conjugated secondary
antibody for 1 hour, and signal was developed using an
enhanced chemiluminescence detection system (GE Health-
care). Membranes were stained with Coomassie blue G250
(Bio-Rad) to confirm an equal loading of samples. Images were
visualized and digitized, and densitometry was performed using
a FluorChem 8800 Image Analyzer System (Alpha Innotech).

ROS Measurements
Supernatants (50 lL/well) from T cruzi–infected cardiomyo-
cytes (0 to 24 hours) were added in triplicate to 96-well
flat-bottomed plates and mixed with 50 lL of 100 lmol/L
10-acetyl-3,7-dihydroxyphenoxazine (Amplex red, Molecular
Probes) and 50 lL of 0.3 U/mL horseradish peroxidase. The
H2O2-dependent oxidation of Amplex red to red fluorescent
resorufin (Ex563nm/Em587nm) was recorded using a Spectra-
Max M2 microplate reader (Molecular Devices).6

Immunohistochemistry
Heart tissue sections were embedded in Tissue-Tek O.C.T and
frozen. Cryostat sections (5 lm) were blocked with 5% normal
goat or rabbit serum and then incubated at 4°C for 12 hours
with antibodies against ND1, CYTB, CYPA, PGC-1a, PPARc,
NRF2, TFB2M, 4-HNE, 3-NT, 8-OHdG, SOD2, or HO-1 (all
antibody dilutions 1:50). After washing, slides were incubated
at room temperature for 1 hour each with biotinylated anti-goat
or rabbit IgG (1:100 dilution) and streptavidin-conjugated
alkaline phosphatase (1:100 dilution), and color was developed
with a Red AP Kit I (Vector Labs). Tissue sections were
counterstained with Mayer’s hematoxylin to highlight the nuclei
(blue). Each tissue section was analyzed for at least 5
microscopic fields on an Olympus polarizing microscope
(Center Valley, PA) and scored for staining as a percentage of
total histological field quantified usingMetaMorphRMicroscopy
Automation & Image Analysis Software (Molecular Devices).

Fluorescence Microscopy
Cardiomyocytes were cultured in NuncR Lab Tek II chamber
slides and incubated with T cruzi for 0 to 24 hours. Cells were
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washed, fixed with ice-cold acetone/methanol (1:1 v/v),
blocked with 1% BSA, and then incubated overnight at 4°C
with mouse anti-8OHdG (IgM) and mouse anti-SDHA (IgG)
antibodies (1:50 dilution). Slides were washed, incubated with
phycoerythrin-conjugated goat anti-mouse IgM (1:100, Santa
Cruz) and FITC-conjugated goat anti-mouse IgG (1:100,
Sigma) for 1 hour in the dark, and counterstained with DAPI
(binds DNA). Fluorescence was monitored on an Olympus BX-
15 fluorescence microscope equipped with a digital camera
(magnification 940).

Statistical Analysis
In vitro experiments were conducted 3 times with triplicate
observations/sample/time. In vivo experiments were con-
ducted twice with duplicate observations per sample (n=6/
group). Data are presented as mean�SD. Normally distrib-
uted data were analyzed by the Student t test (comparison
of 2 groups) and 1-way ANOVA with Tukey’s post hoc test
(comparison of multiple groups). The nonparametric Mann–
Whitney U test (also called the Wilcoxon rank-sum test) and
the Kruskal–Wallis test were used to analyze statistical
significance for data that were not normally distributed.
Significance for all tests was accepted at P<0.05.

Results
Experimental animals infected by T cruzi exhibited decreased
respiratory chain activity (reviewed in reference 14). To
assess if mitochondrial dysfunction occurs in chagasic
patients, we examined mitochondrial markers at the levels
of enzyme activity and gene and protein expression in
infected cardiomyocytes and cardiac biopsies. Citrate syn-
thase activity (a mitochondrial matrix protein) was not
significantly changed in infected cardiomyocytes (Figure 1A).
The cellular protein level of mtDNA-encoded CYTB (complex III
subunit) and nuDNA-encoded SDHA (complex II subunit) was
decreased by 65% (P<0.01ANOVA-Tukey’s) and 20%, respectively,
in cardiomyocytes 24 hours postinfection (pi; Figure 1B).

Immunohistochemistry of cardiac biopsies exhibited
mtDNA-encoded ND1 (complex I subunit) decreased by
70% in chagasic and other cardiomyopathy (OCM) patients,
and CYTB was decreased by 40% in chagasic patients
(Figure 1C, Table 2, all P values <0.05Mann-Whitney). No
change was noted in tissue staining for nuDNA-encoded
CYPA. These results suggest that mitochondrial mass was
not changed, but mitochondria-encoded proteins were
significantly decreased in human cardiomyocytes (by
24 hours pi) and chronically infected chagasic hearts.

PGC-1a serves as a regulator of mitochondrial biogenesis
and thereby plays a key role in maintaining mitochondrial

functional capacity.15 We determined expression of the PGC-1
family members and coactivated transcriptional factors
involved in mitochondrial biogenesis to assess whether the
PGC-1 transcriptional cascade is compromised during T cruzi
infection (Figure 2). The mRNA levels for PRC and ERRa were
increased by 2- to 3-fold in cardiomyocytes during 6 to
24 hours pi (Figure 2B and 2C, P<0.05ANOVA-Tukey’s). The mRNA
levels for PGC-1a, PPARc, NRF1, and NRF2b were increased
by 2.5- to 3.5-fold 6 hours pi (all P<0.001ANOVA-Tukey’s,
P<0.05Kruskal–Wallis), after which a downward trend, reaching
basal level expression by 24 hours pi, was noted.
The increase in mRNA for NRF2 in infected cardiomyocytes
was stable during 3 to 12 hours (P<0.001ANOVA-Tukey’s,
P<0.05Kruskal–Wallis) and normalized 24 hours pi (Figure 2F).
These data suggested that cardiomyocytes responded to
T cruzi infection by (1) increased mRNA levels for PGC-1a, PRC,
and coactivators (PPARc, ERRa, NRF1/NRF2), and (2) PGC-1a

Figure 1. Mitochondrial protein content, but not mass, is
decreased in infected cardiomyocytes and chagasic hearts. A and
B, Cardiomyocytes were infected with Trypanosoma cruzi for 0 to
24 hours: (A) citrate synthase activity; (B) Western blotting for CYTB,
SDHA, and b-actin; (C) cryostat sections of the heart biopsies from
normal healthy donors (a, d, g), chagasic patients (b, e, h), and other
cardiomyopathy (OCM) patients (c, f, i) were submitted to immuno-
staining for ND1 (a-c), CYTB (d-f), and CYPA (g-i) (magnification 920).
Data in all bar graphs are presented as mean�SD. Statistical
significance of normally distributed data was analyzed by the Student
t test/ANOVA/Tukey’s test; *P<0.05, **P<0.01, ***P<0.001. In
some bar graphs, statistical significance by the nonparametric
Kruskal–Wallis test is also presented (horizontal dotted line). SD
indicates standard deviation; ANOVA, analysis of variance.
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and NRF1/2 upregulation was abolished 24 hours pi when
maximal decline in mtDNA-encoded proteins was observed.

We performedWestern blotting for PGC-1a and downstream
transcriptional factors involved in mitochondrial biogenesis to
determine if mRNA levels correlated with protein levels and if
nuclear transport of 1 or more of these factors was compro-
mised in infected human cardiomyocytes and heart. The
cytosolic level of PGC-1a in infected cardiomyocytes was
almost stable, whereas PGC-1-activated transcription factors
exhibited up- or downregulation during the 3- to 24-hour pi
period (Figure 3A and3B). In comparison, nuclear levels of PGC-
1a and coactivated transcription factors (PPARc, ERRa, ERRc,
and NRF2) exhibited a downward trend during the 6 to 24 hours
pi, with maximal decline (30% to 60%) noted 24 hour pi
(Figure 3A and 3B, P<0.05ANOVA-Tukey’s). Immunostaining
showed a majority of the PGC-1a, PPARc, and NRF2 were
localized to nuclei in chagasic heart biopsies (Figure 3C). The
overall expression for PGC-1a was markedly decreased in
chagasic hearts, whereas PPARc and NRF2 were similarly
decreased in chagasic and OCM patients (Figure 3C, Table 2)
and corroborated the in vitro observations in infected
cardiomyocytes.

We assessed the functional significance of a decline in
expression and/or nuclear transport of PGC-1a and its

coactivated targets by evaluating the expression of their
downstream genes involved in mitochondrial function and
biogenesis. The expression of genes under PPAR control, for
example, MCAD, involved in fatty acid metabolism, and
CKMT2, which transports energy from mitochondria to the
cytosol, was increased by 25% to 80% and 2.5- to 3-fold,
respectively, in infected cells (P<0.05ANOVA-Tukey’s; Figure 4A.
a,b). Gene expression for ND1, ND4, UQCRC2, COXIV, and
ATP5A1, the components of respiratory complexes essential
for maintaining OXPHOS and suggested to be controlled by
NRF2, was mostly nonresponsive 3 to 12 hours pi in infected
cardiomyocytes, and remained below or at par level with that
noted in normal controls (Figure 4A.c-i). The nonresponsive-
ness of OXPHOS-related transcripts could be a result of
changes in mitochondrial transcription efficiency, also con-
trolled by PGC-1a-activated NRF1/2. Our data showed that
mRNA levels of POLRMT, TFB1M, TFB2M, and TFAM of the
mitochondrial transcription machinery were increased by 2.7-
fold, 4.5-fold, 4-fold, and 3-fold, respectively, during 3 to
12 hours pi (all P<0.05ANOVA-Tukey’s; Figure 4A.j-m). Only
TFB2M exhibited a significant decline, both at the mRNA
(Figure 4A.l) and protein (Figure 4B) levels, in T cruzi–infected
cardiomyocytes 24 hours pi (P<0.05Kruskal–Wallis). Chagasic
heart biopsies also exhibited a significant decline in TFB2M

Table 2. Semiquantitative Scoring of Immunostaining of Cardiac Tissue Biopsies

Immunostaining

Arbitrary Scores, Mean (Range)

Normal Chagasic Other Cardiomyopathy

Figure 1

CYTB 12.5 (9.3 to 16.8) 7.4 (1.7 to 16.4)*†† 22.0 (1.7 to 40.0)*

ND1 54.6 (2.8 to 26.7) 16.4 (1.5 to 56.5)*‡ 1.9 (0.2 to 4.6)*§§§

CYPA 141 (45.0 to 452) 177 (24.1 to 380) 104 (34.2 to 182)

Figure 3

PGC-1a 1399 (1141 to 1963) 273.9 (5.7 to 1458.8)**‡§§§ 792 (156 to 2557)**§

PPARc 60.1 (3.6 to 369) 6.0 (0.2 to 20.9)***§§§ 1.4 (0.5 to 2.2)*§§

NRF2 1017 (505 to 1798) 846(112 to 1461)* 766 (690 to 895)

Figure 6

4-HNE 12.8 (1.3 to 54.3) 197.4 (53.4 to 817)***‡§§§ 632 (116 to 1934)**§§§

3-NT 7.3 (2.1 to 14.8) 416.0 (173.6 to 711.6)***‡§§§ 260 (4.0 to 1027)**§

8-OHdG 376 (76 to 883) 725 (437 to 1442)* 1099.3 (687 to 1442)§

Figure 7

SOD2 1228(119 to 4629) 763 (156 to 3599)* 1035 (212 to 2651)

HO-1 431(39.4 to 2529) 4.3 (1.3 to 9.4)*‡§§§ 111 (5.0 to 527)**§

Cardiac biopsies of normal donors and of chagasic and other cardiomyopathy patients (n=6 to 8/group) were fixed in OCT, and 5-lm-thick cryostat sections (5 sections/tissue) were
submitted for immunostaining, as described in Materials and Methods. Each slide was analyzed for 5 microscopic fields on an Olympus polarizing microscope (Center Valley, PA), and
staining for primary antibody was scored as a percentage of total histological fields quantified using MetaMorph Microscopy Automation & Image Analysis Software (Molecular Devices).
The Mann–Whitney test was employed for pairwise comparison.
Significance by t tests is presented as *normal versus disease (chagasic or other cardiomyopathy); ‡chagasic versus other cardiomyopathy.
Significance by the Kruskal–Wallis Dunn’s test is presented as §normal versus chagasic; §normal versus other cardiomyopathy; †chagasic versus other cardiomyopathy groups.
Significant at *‡§P<0.05, **††§§P<0.01, ***§§§P<0.001.
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immunostaining (Figure 4C). These results suggested that
coactivation function of PGC-1a and NRF2-driven expression
of genes involved in mitochondrial gene transcription were
maintained at least early during the course of infection and
likely were not responsible for the nonresponsiveness of
OXPHOS-related gene expression in cardiomyocytes and
human heart infected by T cruzi.

Next, we examined whether mtDNA availability for carrying
out transcription of mtDNA-encoded genes was compromised
in infected cardiomyocytes. The mtDNA level, determined by
COI and16S contents normalized to 18S nuDNA, was
decreased by 65% in infected cardiomyocytes 24 hours pi
(P<0.001ANOVA-Tukey’s and P<0.05Kruskal–Wallis; Figure 5A.a) and
by 40% in chagasic heart biopsies (P<0.05ANOVA-Tukey’s; Fig-
ure 5A.b). To substantiate the finding of decreased mtDNA and

to identify the mechanisms for reduced mtDNA levels, we
investigated mtDNA replication capacity in infected cardio-
myocytes. The first step inmtDNA replication is the formation of
the D-loop at the origin of replication. The synthesis of 7S
RNA (normalized to mtDNA content) suggests D-loop formation
and was increased 2.8-fold in infected cardiomyocytes
(P<0.001ANOVA-Tukey’s; Figure 5A.c) compared with normal
controls. However, extension of 7S DNA furthering mtDNA
replication was substantially reduced, evidenced by >75%
decline in single-stranded CYTB versus mtDNA (COI) in
infected cardiomyocytes (P<0.001ANOVA-Tukey’s; Figure 5A.d).
The increase in D-loop formation in infected cardiomyocytes
was consistent with preserved or enhanced mRNA for single-
stranded DNA-binding protein (SSBP1) involved in the
initiation of replication (Figure 5B.a). The decline in mtDNA
replication occurred despite the observation that the mRNA
levels of genes forming the DNA replication complex, that is,
POLG1, PEO1, and TOP1mt, were normal or higher in
infected cardiomyocytes than in normal controls (Figure 5B.
b-d). These results suggest that mtDNA replication machin-
ery and initiation of mtDNA replication were intact; however,
extension of mtDNA strands was defective and resulted in
decreased mtDNA content in infected cardiomyocytes and
chagasic hearts.

We considered that enhanced oxidative stress, noted in
chagasic mice, might be a possible cause of impaired DNA
replication in infected human cardiomyocytes and heart. The
levels of reactive oxygen species (ROS; P<0.01ANOVA-Tukey’s;
Figure 6A) and 4-hydroxynonenal (4-HNE; P<0.05ANOVA-Tukey’s;
Figure 6B), which is an oxidative stress marker, were
progressively increased in infected cardiomyocytes during 6
to 24 hours post infection. 8-Hydroxydeoxyguanosine
(8-OHdG) is an oxidized nucleoside of DNA and the most
frequently detected DNA lesion. Overlay of immunofluores-
cence for 8-OHdG and SDHA (mitochondrial matrix protein)
showed 8-OHdG was primarily localized in mitochondria
surrounding the nucleus in infected cardiomyocytes (Fig-
ure 6C.g), also verified by counterstaining of 8-OHdG-labeled
infected cells with DAPI (accumulates in the nucleus;
Figure 6C.h). Similar to the observations made in T cruzi–
infected cardiomyocytes, chagasic heart biopsies exhibited a
substantial increase in 4-HNE and 3-nitrotyrosine markers of
oxidative and nitrosative stress and up to a 2-fold increase in
8-OHdG levels (Figure 6D). A comparable increase in oxidative
stress was noted in cardiac biopsies of OCM patients. Overall,
the results presented in Figure 6 suggest that oxidative stress
and DNA damage were increased during chagasic and other
cardiomyopathies, and mtDNA (not nuDNA) is primarily
susceptible to oxidative stress–induced damage in T cruzi–
infected cardiomyocytes.

PGC-1a-activated NRF1/2 transcription factors regulate
antioxidant and cell survival gene expression. Despite a

Figure 2. Gene expression of PGC-1 transcriptional cascade in
T cruzi–infected cardiomyocytes. Cardiomyocytes were infected with
Tryapnosoma cruzi (1:3 cell:parasite ratio) for 0 to 24 hours. Shown
are the relative changes in gene expression for PGC-1, PRC, and the
coactivated transcription factors (ERRa, PPARc, NRF1, NRF2, and
NRF2b), determined by real-time RT-PCR. Results were normalized to
GAPDH mRNA and represent mean values obtained from at least 2
independent experiments (triplicate observations/experiment). Sta-
tistical significance of data was analyzed as described in Figure 1.
PGC indicates peroxisome proliferator activated receptor gamma
coactivator-1; ERR, estrogen-related receptor; PPAR, peroxisome
proliferator-activated receptor; NRF, nuclear respiratory factor;
RT-PCR, reverse-transcription polymerase chain reaction.
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substantial increase in ROS levels and oxidative stress, NRF2-
regulated transcription of genes encoding catalase, GPX1, and
HO-1 antioxidants were suppressed or unaltered, and mRNA
for SOD2 (mitochondrial) was marginally increased 12 hours
pi (Figure 7A.a-d). The mRNA ratio for BCL2/BAX was
decreased by 24 hours pi (Figure 7A.e,f), indicating cells
were committed to apoptotic death. At the protein level, we
observed no change or a decline in SOD1 and SOD2 in
infected cardiomyocytes during 3 to 24 hours pi (Figure 7B).
Immunostaining for SOD2 and HO-1 was decreased by 40% to
90% in cardiac biopsies of chagasic (Figure 7C.b,e, Table 2)
but not in OCM (Figure 7C.c,f) patients. The results in
Figure 7 suggest that the antioxidant/cell survival response
was compromised in T cruzi–infected cardiomyocytes and
chagasic hearts.

Discussion
We have performed in vitro and in vivo studies to investigate
the mechanisms of mitochondrial dysfunction in human
Chagas disease. We have found that mtDNA replication was
significantly compromised and caused deficiency of mtDNA
content and expression of OXPHOS genes in T cruzi–infected
human cardiomyocytes and chagasic hearts. The decline in
mtDNA replication did not appear to be a result of defects in
the expression of PGC-1a, PGC-1-coactivated transcription
factors, downstream target genes of mitochondrial transcrip-
tion machinery that provide single-stranded RNA to initiate
mtDNA replication, or the genes of replication machinery that
carry out mtDNA replication. Instead, we found that the
defects in mtDNA replication were a result of increased ROS

Figure 3. Protein level and nuclear translocation of PGC-1-activated transcription factors in infected cardiomyocytes and chagasic hearts. A and
B, Western blots for cytosolic and nuclear protein levels for PGC-1a and coactivated transcriptional factors in cardiomyocytes, harvested 0 to
24 hours postinfection (A) was quantified by densitometry (B). C, Representative immunostaining images for PGC-1a (a-c), PPARc (d-f), and NRF2
(g-i) in cardiac biopsies of normal donors (a, d, g), and chagasic (b, e, h) and OCM patients (c, f, i). Statistical significance of data was analyzed as
described in Figure 1. PGC indicates peroxisome proliferator-activated receptor gamma coactivator-1; ERR, estrogen-related receptor; PPAR,
peroxisome proliferator-activated receptor; NRF, nuclear respiratory factor; OCM, other cardiomyopathy.
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generation and oxidative stress that caused mtDNA oxidation,
rendering it unfit for maintaining replication and expression of
OXPHOS genes. We also found that the selective functional
incapacity of NRF2-mediated antioxidant gene expression
contributed to increased oxidative stress in infected cardio-
myocytes, providing an atmosphere for oxidative stress–
induced mtDNA damage. To the best of our knowledge, this is
the first study demonstrating a molecular mechanism for
mitochondrial functional decline in human Chagas disease.

The heart is highly dependent on mitochondria for the
energy required for its contractile and other metabolic
activities. Mitochondria represent 30% of the total volume of
cardiomyocytes and provide �90% of the cellular ATP energy
through the OXPHOS pathway. In experimental mice and
rats infected by T cruzi, the expression of mitochondrial
function-related transcripts16,17 and, consequently, the

activities of respiratory complexes, NADH-ubiquinone reduc-
tase (CI), ubiquinol-cytochrome c reductase (CIII),4 and ATP
synthase (CV)18 were decreased in the myocardium. The
functional effect of these perturbations was evidenced by
decreased mitochondrial respiration7,19 and reduced myo-
cardial and mitochondrial ATP levels,5 and these defects
were sustained with progressive development of cardiomy-
opathy in infected animals.5,20 Our observations of an overall
decline in OXPHOS-related gene expression at the mRNA
and protein levels in T cruzi–infected human cardiomyocytes
and cardiac biopsies of chagasic patients (Figures 1 and 4)
provide the first molecular evidence of mitochondrial func-
tional decline in human Chagas disease and support the
previously reported observation of a decline in respiratory
complex activities in the peripheral blood of chagasic
patients.21

Figure 4. Expression of genes related to mtDNA-encoded transcripts and mitochondrial transcriptional machinery in T cruzi–infected
cardiomyocytes. A, Cardiomyocytes were harvested 0 to 24 hours postinfection. mRNA levels for PGC-1a downstream gene targets mediated by
ERRs/PPARc (a, b) and ERR/NRFs (c-m) that are involved in fatty acid oxidation (a), energy transport (b), OXPHOS (c-i), and mitochondrial
transcription (f-m) were monitored by real-time RT-PCR. Data are shown as the mean of the fold changes over normal controls�SD and
normalized by GAPDH mRNA. B, Western blotting for TFB2M in infected cardiomyocytes. C, Representative immunostaining images for TFB2M in
heart tissue biopsies. Statistical significance of data was analyzed as described in Figure 1. PGC indicates peroxisome proliferator-activated
receptor gamma coactivator-1; ERR, estrogen-related receptor; PPAR, peroxisome proliferator-activated receptor; NRF, nuclear respiratory factor;
OCM, other cardiomyopathy; SD, standard deviation; RT-PCR, reverse-transcription polymerase chain reaction.
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Stress-responsive PGC-1a is a member of the PGC-1 family
and suggested to play a role in mitochondrial biogenesis, fatty
acid metabolism, and OXPHOS via activation of specific
transcription factors.10,12 For example, PPAR family members
(a, b, c) are key regulators of genes involved in lipid
metabolism and are expressed in tissues with high rates of
mitochondrial fatty acid oxidation, such as heart and skeletal
muscle.22,23 NRF1/2, the nuclear-encoded respiratory factors,
are shown to drive transcription of genes involved in OXPHOS
and transcription and replication of the mitochondrial

genome.12 PGC-1 coactivates both these transcription factors
as well as the ERR (a, b, d) family of transcription factors. The
current models suggest that ERRs cooperate with or directly
activate NRF1/2 and PPARs serving as an amplifier for PGC-1a
coactivation of the OXPHOS pathway and fatty acid oxidation
while inhibiting glucose oxidation.24 In mouse models, PGC-1a
expression is directly correlated to metabolic functional state;
mice with inducible cardiac-specific overexpression of PGC-1a
showed a robust mitochondrial biogenic response on activa-
tion by stress stimuli,25 and PGC-1a-knockout mice developed
cardiomyopathy.26 PGC-1a downregulation was associated
with skeletal muscle catabolic wasting,27 and endurance
exercise training, known to promote oxidative phenotype,
stimulated PGC-1a expression in skeletal muscle of humans.28

These studies suggest that PGC-1-coactivated transcriptional
factors provide the key mechanism for master regulation of
mitochondrial biogenesis and function and may also be
dysregulated in chagasic conditions. Our findings in this study
showed that the mRNA and cytosolic protein levels of PGC-1a,
PPARs, ERRs, and NRF1/2 in T cruzi–infected cardiomyocytes
were initially increased and then returned to basal level or
were decreased by 24 hours pi (Figures 2 and 3), indicating
that chronic infection would dysregulate the expression of
PGC-1 and PGC-1-coactivated transcription factors. This was
supported by the observed decline in PGC-1a, PPARc, and
NRF2 in heart biopsies of chronically infected chagasic
patients (Figure 3). Despite this, the nuclear localization of
PGC-1a, ERRs, PPARc, and NRF2 proteins in the heart biopsies
of chagasic patients was increased compared with that in
normal controls (Figure 3), suggesting that a physiological
deficiency of transcription of downstream target genes would
not ensue in chagasic hearts. Indeed, PPARc/ERRa-regulated
expression of genes of fatty acid metabolism (eg, MCAD) and
energy transport (eg, CKMT2) was enhanced >2-fold in
infected cardiomyocytes (Figure 4). Likewise, NRF1/2-regu-
lated expression of genes involved in transcription (eg, TFB1M,
TFB2M, TFAM) and replication (eg, SSBP1, POLG1) of the
mitochondrial genome was enhanced in infected cardiomyo-
cytes or similar to that detected in normal controls (Figure 4).
These observations suggested that PGC-1a coactivation
function is, in general, not compromised and likely not the
key to mitochondrial impaired function in chagasic cardiomy-
opathy. Others have also reported that PGC-1a downregula-
tion does not uniformly present in human heart failure of other
etiologies.29 Thus, our studies indicate that further activation
of PGC-1a may not be beneficial in chagasic cardiomyopathy
and may actually cause harm, as is noted in mice in whom
overexpression of PGC-a resulted in tremendous mitochondrial
biogenesis, leading to cardiomyopathy.25,30

NRF2, in addition to regulating the expression of genes
involved in mitochondrial transcription and replication, is
known to modulate antioxidant gene expression.31 We noted

Figure 5. Defects of mtDNA replication cause mtDNA deficiency
during T cruzi infection. A, mtDNA content in T cruzi–infected human
cardiomyocytes (a) and cardiac biopsies of chagasic patients (b) was
determined by real-time PCR amplification of COI and 16S regions of
mtDNA, normalized to 18S nuDNA. D-loop formation was assessed
by measuring 7S RNA, normalized to mtDNA amount in infected
cardiomyocytes (c). mtDNA replication was assessed by measuring
the extension of 7S DNA beyond the D-loop (d). B, Real-time RT-PCR
amplification of mRNA for PGC-1/NRF gene targets (SSBP1, POLG,
PEO1, and TOP1mt) involved in mtDNA replication in T cruzi–infected
cardiomyocytes. Statistical significance of data was analyzed as
described in Figure 1. RT-PCR indicates reverse-transcription poly-
merase chain reaction; SSBP, single-stranded DNA-binding protein.
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the NRF2-regulated expression of antioxidants (eg, CAT,
GPX1, HO-1) was nonresponsive to increased oxidative stress
in infected cardiomyocytes and chagasic hearts, also sup-
ported by experimental studies in mice demonstrating the
nonresponsiveness of glutathione antioxidant defense during
chronic Chagas disease.8 How T cruzi may modulate NRF2 is
not known; however, we can speculate that parasite expres-
sion of antioxidants (eg, tryparedoxin peroxidases)32 may
provide autocrine regulation of NRF2, setting the stage for
oxidative stress in the host. Indeed, pro-oxidant milieu of
chagasic hearts in experimental mice is evidenced by
increased levels of ROS, GSSG, and lipid and protein
oxidation.5,8 A pro-oxidant status in human chagasic patients
is documented on the basis of a systemic increase in
peripheral GSSG and MDA content,33,34 further supported by
our observations of increased oxidative stress (4-HNE, 3-NT)
in infected cardiomyocytes and human heart (Figure 6).

Moreover, the treatment of T cruzi–infected animals with an
antioxidant tipped the balance in favor of preserving mito-
chondrial and cardiac function,5,20 thus supporting the idea
that antioxidant depletion or inefficient scavenging of ROS is
linked to mitochondrial dysfunction in Chagas disease. In this
study, we have provided the first observation that mtDNA is
oxidized (Figure 6), and an increase in mtDNA oxidation is of
pathological importance in human Chagas disease. This is
because oxidized mtDNA was not fit for completing replica-
tion. Our data showed that mtDNA replication, that is, D-loop
formation, was initiated at an almost 2-fold higher rate than
that noted in controls; however, the infected host exhibited
significant disability in completing mtDNA replication
(Figure 5), leading to decreased capacity to maintain mtDNA
content and expression of mtDNA-encoded genes of the
OXPHOS pathway (Figure 4). Our observations are consistent
with some studies suggesting that NRF1/2 activation

Figure 6. Oxidative stress-induced mtDNA damage was increased in infected cardiomyocytes and chagasic hearts. A-C, Cardiomyocytes were
infected with Trypanosoma cruzi for 0 to 24 hours. A, ROS release was determined by a Amplex red assay. B, Cell lysates were subjected to
Western blotting with anti-4-hydroxynonenal antibody (control: anti-b-actin antibody). C, Immunofluorescence for 8-OHdG (a, e) and SDHA (b, f) in
normal and infected cells (24 hours postinfection). Overlay (c, g) shows mitochondrial localization of 8-OHdG, also confirmed by counterstaining
of anti-8OHG-stained cells with DAPI (d, h). D, Immunostaining for 4-HNE (a-c), 3-nitrotyrosine (d-f), and 8-OHdG (g-i) in heart biopsies of normal
donors (a, d, g) and chagasic (b, e, h) and OCM (c, f, i) patients. Statistical significance of data was analyzed as described in Figure 1. ROS
indicates reactive oxygen species; OCM, other cardiomyopahy.
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prevents diabetic cardiomyopathy,35 whereas they refute
others who have reported ERR downregulation as a key
mechanism in decreased expression of PGC-1 target genes in
heart failure.29 We surmise that future studies identifying
the mechanism of selective dysregulation of NRF2-dependent
antioxidant gene expression will provide clues to therapies
for the restoration of mitochondrial function in chagasic
hearts.

In summary, we have shown that infected cardiomyocytes
and chagasic hearts are severely impaired in mitochondrial
biogenesis, evidenced by decreased mtDNA content. We have
identified the potential mechanisms for mtDNA depletion in the
heart. First, our data suggest that mtDNA replication was
severely impaired, resulting in a significant loss of mtDNA and
mtDNA-encoded proteins of OXPHOS pathway. Second, we
found that mtDNA replication defects were associated with
increased ROS generation and selective functional incapacity of
NRF2-mediated antioxidant gene expression. Our data suggest
that oxidation of mtDNA rendered it unfit for replication and
gene expression. The PGC-1a-coactivated NRF1/2 transcrip-
tional activity in the expression of genes of mitochondrial
transcription and replication machinery was not compromised.

Overall, our studies provide a basis for investigating the novel
mechanisms of chagasic heart disease and designing therapies
targeting restoration of NRF1/2 function in maintaining
antioxidant status to prevent heart failure.
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