
gdbOF: A Debugging Tool for OpenFOAMR©

Santiago Márquez Damiána, Juan M. Giméneza, Norberto M. Nigroa

aInternational Center for Computational Methods in Engineering (CIMEC),
INTEC-UNL/CONICET, Güemes 3450, Santa Fe, Argentina,

http: // www. cimec. org. ar

Abstract

OpenFOAMR© libraries are a great contribution to CFD community and a
powerful way to create solvers and other tools. Nevertheless in this creative
process a deep knowledge is needed concerning with classes structure, for
value storage in geometric fields and also for matrices resulting from equation
systems, becoming a hard task for debugging.
To help in this process a new tool, called gdbOF, attachable to gdb (GNU
Debugger) is presented in this paper. It allows to analyze classes structures
at debugging time. This application is implemented by gdb macros, these
macros can access to code classes and also to their data in a transparent way,
giving the requested information. This tool is tested for different application
cases, such as the assemble and storage of matrices in a scalar advective-
diffusive problem, non orthogonal correction methods in purely diffusive tests
and multiphase solvers based on Volume of Fluid Method. In these tests
several type of data are checked, such as: internal and boundary vector and
scalar values from solution fields, fluxes in cell faces, boundary patches and
boundary conditions. As additional features of this tool data dumping to file
and a graphical monitoring of fields are presented.
All these capabilities give to gdbOF a wide range of use not only in academic
tests but also in real problems.

Keywords: Data Structures, debugging, OpenFOAM, gdbOF

1. INTRODUCTION

OpenFOAMR© is a CFD library that allows users to program solvers and
tools (for pre-processing or post-processing) in a high-level specific language.
This high-level language refers to the fact of writing in a notation closer to

Preprint submitted to Advances in Engineering Software November 8, 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CONICET Digital

https://core.ac.uk/display/158828036?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.cimec.org.ar


the mathematical description of the problem, releasing the user from the in-
ternal affairs of the code.

This programming approach contrasts with procedural languages approach,
such as Fortran, that are widely used in academic and scientific environments
but oriented to the low-level problem resolution, i.e., the manipulation of in-
dividual floating-points values. Thus, in order to achieve the abstraction
from the low-level coding it is necessary to use another approach, so that the
Object-Oriented Programming (OOP) paradigm is selected. This method-
ology produces code which is easier to write, to validate and to maintain
compared with purely procedural techniques. OpenFOAMR© is completely
written is C++ language. It is less rigorously object-oriented than the oth-
ers languages (such as SmallTalk or Eiffel), due to the inclusion of some
characteristics that are not strictly object-based. The main add-on is oper-
ator overloading, which is essential to work with tensor, vector and scalar
fields objects concepts as in the mathematical notation. In addition, it is a
multiplatform language and, being based on C, is as fast as any procedural
languages [1].

There are five fundamental concepts in OOP, whereby OpenFOAMR©

achieves its objectives: modularization, abstraction, encapsulation, inheri-
tance and polimorphism[2], widely used in the code. Polymorphism is a key
concept in OpenFOAMR©, which is clearly demonstrated by the proliferation
of virtual methods (methods that must be implemented in child classes).
Examples of this include the implementation of boundary conditions, which
inherit from a base class patchField, so they have the same interface but
different implementations. Another example is the representation of tensor
fields: in this case geometricField is the parent class and various tensor fields
inherit from this: scalarField (rank 0), vectorField (rank 1) and tensorField

(rank 2), each one implements the interface provided by the parent class in
different ways.

In addition to these OOP features, there are other tools of the C++ lan-
guage which are not strictly object-based and those are used in OpenFOAMR©.
They are the aforementioned operator overloading and the use of preproces-
sor macros. Macros allow to insert code directly in the program, avoiding
the overhead of invoking a function (passing parameters to the stack, do a
jump, take parameters), without losing the code readability [3].

2



As it was mentioned, using these techniques a library oriented to high-
level development is generated, ensuring that the user only has to take care
about the model to solve and not other details of coding [4]. On the other
hand, some problems could arise in the application creation stage yielding to
undesired results. There begins the code debugging work, and this includes
monitoring values corresponding to variables involved in the resolution, such
as, tensors, vectors and/or scalar fields defined at cell or face centers, coeffi-
cients in the system matrix, and many other examples. In addition, debug-
ging is not ever motivated by problems, but simply for exploratory or control
purposes [5].

From the side of debugging tools in GNU-Linux platforms, gdb (GNU-
debugger) is the defacto standard. It includes a variety of tools for code
analysis and data inspection at run-time [6] which gives a successful envi-
ronment for OpenFOAMR© debugging. gdb offers a powerful print command
likely to inspect arrays in memory, nevertheless is can be used directly only in
simple data structures like lists or Fields. Data examination get hard when
viewing the desired data involving polymorphism and inheritance connected
with the virtual methods used by the library. This work requires to walk
through the general class tree looking for the attributes which are wanted to
be inspected. Moreover, once desired attributes are found, these maybe do
not directly represent the information required by the developer. In the case
of the matrices generated by fvm methods, they store the coefficients using
the LDU Addressing technique (See gdbOF User’s Manual, Appendix A), so
it is necessary to apply a decoding algorithm to transform it into the tradi-
tional format (full or sparse), and to control and to operate with their values.

The main objective of the gdbOF tool is for solving problems like those
explained in the previous paragraph. This tool is implemented by gdb macros
and it is based on an implementation of gdb macros for STL (Standard Li-
brary for C++) debugging [7]. These macros simplify the task of debugging
the OpenFOAMR© libraries, performing the work actions transparently to
the user: the simple call of a gdb macro from console triggers a sequence of
actions that include: navigate the OpenFOAMR© class tree, collect informa-
tion and reorder it for representation in an user readable format. Moreover,
gdbOF includes the option of writing the output into a file on disk and to
view it graphically. This output is formatted appropriately to be imported

3



in numerical computation software such as Octave or MatlabR©, thus allowing
the developer to expand the possibilities of data inspection at debugging time.

In this work the design concept of the tools will be presented and several
cases will be solved as examples of use. These problems not only emerge in an
academic context but also occur in real application environments: the first
consists in a scalar advective-diffusive problem in which the emphasis will
be placed on the assembling and storage of matrices; the second consists in
a non-orthogonal correction methods in purely diffusive tests; and the third
is an analysis of multiphase solvers based on Volume of Fluid Method. The
last examples are focused in volumetric and surface data inspection both in
array and graphical format.

2. Problems with basic debugging

One of the most common tasks in the debugging process is to look at
the values stored in an array, that is possible in gdb with the command of
Example 1, where v is the array to analyze.

Example 1 View array.

$(gdb) p *v@v_size

Nevertheless, as it was pointed out in previous section, data inspection
in OpenFOAMR© requires often more complex sentences. A typical example
is to verify at debugging time that a certain boundary condition is being
satisfied (typically when the boundary condition is coded directly in the
solver and the next field information is obtained after solving the first time-
step). Boundary conditions in OpenFOAMR© are given for each patch in
a GeometricField, then, assuming that the inspected patch is indexed as 0
(the attribute BoundaryField has information of all the patches), sentence
presented in Example 2 is needed to observe the values on this patch, where
vSF is a volScalarField.

Note that the statement in Example 2 doesn’t include any call to inline
functions, which could generate some problems in gdb1, giving even more

1In-lining is an optimization which inserts a copy of the function body directly in

4



Example 2 View Boundary Field values.

$(gdb) p *(vSF.boundaryField_.ptrs_.v_[0].v_)
@(vSF.boundaryField_.ptrs_.v_[0].size_)

complex access to information.

gdbOF solves the inconvenience of knowing the attribute’s place and using
long statements. Using gdbOF commands, as it is shown in Example 3, the
same results are obtained. Note the simplification of the statement, this is
the gdbOF spirit, reducing the work needed to debug and perform the same
tasks more simply and transparently.

Example 3 View Boundary Field values with gdbOF.

$(gdb) ppatchvalues vSF 0

There are many examples in OpenFOAMR© like the previous one in which
the necessity of a tool that simplifies the access to the complex class diagram
can be useful. Note that in the last example it wasn’t mentioned how the
index of the desired patch was known. Usually OpenFOAMR© user knows
only the string that represents the patch, but not the index by which it is
ordered in the list of patches. Here gdbOF simplifies the task again, pro-
viding the ppatchlist command which displays the list of patches with each
corresponding index. Regarding to other basic gdfOF tools please refer to
the User’s Manual (CITA XXXXXXXXXXXXXXXXXXXXXXXXX).

each calling, instead of jumping to a shared routine. gdb displays in-lined functions just
like non in-lined functions. To support in-lined functions in gdb, the compiler must record
information about in-lining into debug information. gcc uses the dwarf 2 format to achieve
this goal like several other compilers. On the other hand gdb only supports in-lined
functions by means of dwarf 2. Versions of gcc before 4.1 do not emit two of the required
attributes (DW AT call file and DW AT call line) so that gdb does not display in-lined
function calls with earlier versions of gcc. [8]

5



3. Advanced Debugging

3.1. System matrix

Increasing the complexity of debugging, it can be found cases involving
not only the search and dereference of some plain variables. A typical case
is the dumping of the linear system, Ax = b, generated by the discretization
of a set of differential equations which are being solved. This is stored using
LDUAddressing technique (see ??) which takes advantage of the sparse ma-
trix format and saves the coefficients in an unusual way. This storing format
and the necessity of accessing to individual matrix coefficients leads to trace
the values one by one and to apply a decoding algorithm. There are two
commands to do this task, one to dump the data as full matrices and the
other to dump the data as sparse matrices.

In order to implement the necessary loops over the matrix elements, gdb
provides a C-like syntax to use iterative (while, do-while) and control struc-
tures (if, else). These commands have a very low performance, so the it-
eration over large blocks of data must be done externally. gdbOF becomes
independent of gdb for the assembly of matrix using another platform: the
lduAddressing vectors are exported to auxiliary files, and the calculation is
performed in another language through calls to the shell. Thus, python
is chosen due to its ability to run scripts from console and having a sim-
ple file management, both to load and to save data. This is performed by
the pfvmatrixfull/pfvmatrixsparse commands whose structure is presented in
Pseudo-code 1

3.2. Mesh Search

Another group of macros are those which search in the mesh. The afore-
mentioned inability of gdb to perform loops on large blocks of data extents
to the case of meshes, forcing thus to do the searching tasks using external
tools. In order to circumvent this issue OpenFOAMR©’s mesh methods are
used to accomplish these tasks. Thus gdbOF includes ad hoc stand-alone
applications to which call at debugging time to search in the mesh. Even
though this way means creating a new instance of the mesh in memory, the
cost in time and development is lower than that required to accomplish the
search on the mesh in gdb, implementing the loops in the gdb C-like syntax,
or in another language such as python. These OpenFOAMR© applications are

6



Pseudo-code 1 Structure of gdbOF Command pfvmatrixfull/
pfvmatrixsparse.

1. Get parameters
2. Get upper and lower arrays with gdb
3. Redirect data to an auxiliary file
4. Format the auxiliary files: gdb format → python format
5. Call python script to assemble the matrix

(a) Read auxiliary files
(b) Set limits
(c) Do lduAddressing (See appendix ??)
(d) Complete with zeros

6. Format auxiliary files: python format → gdb format
7. Show output or/and save file in octave format. Add header (sparse case)

included in gdbOF package and they are compiled when the gdbOF installer
is run.

Cases of searching on the mesh typically covered by gdbOF are those
which start with a point defined by [x, y, z], returning a cell index or values
in some field, either in the center of cell (volFields) or at each of its faces
(surfaceFields).

Regarding to obtain the value of a field at some point there is no more
inconvenient that finding the index of the cell or index of the cell containing
the point (via pfindcell command), whose centroid is nearest to it. The
corresponding volFields command returns two indexes: the index of the cell
that contains the point, and the index of the cell which has the nearest
centroid. Afterwards, the user put one of these indexes in the command
pinternalvalueslimits to extract the field value in the cell centroid, or to ob-
serve the equation assembled for that cell with the command pfvmatrix.

A Pseudo-code of this tool is presented in 2, where it may be noted that it
doesn’t exist any communication between gdb and other platforms more that
the shell call. The return of the results is through temporal files, which must
be generated in a particular format to be readable by gdbOF. This technique
is used because it is not possible to access to values in memory from one
process to another process.

7



Pseudo-code 2 Structure of gdbOF Command pfindcell.
1. Get parameters
2. Call FOAM app. to make the search

(a) Start new case
(b) Do search (as it is explained in ??)
(c) Save results in a temporal file

3. Read temporal file using a shell script
4. Show the indexes by standard output

Another kind of searching through the mesh is to find a list of indices of
faces belonging to a cell. This task operates in similar way. The user invokes
a gdbOF command and this uses a back-end application. Nevertheless the
simplicity of using the commands, the code is more intricate because the
storage of faces in a cell is not correlated, and the faces are subdivided in
internal or boundary faces (this requires walking through the list of faces
in the mesh). It is also needed to identify whether these faces are in the
internalField or in one of the patches in the boundaryField: the last option
requires seeking the patch at which the cell belongs to and which is the lo-
cal index of the face within the patch. With this information it is possible
to obtain the field’s value at that face. For more information see appendix
gdbOF User’s Manual Appendix C.

The gdbOF command psurfacevalues performs this search: given a cell,
find the indices of the faces that make up it and the value of the chosen field
in each of these faces.

In pfindcell, the result stored on disk was only necessary to parse and
display it on console, but in this case, the indexes that returns the applica-
tion should be used to access to an array containing the values of the field.
To do that, this implementation requires to generate a temporal gdb macro
(using a shell script) because it is not possible in gdb to assign the result
of extracted data from a file to a variable. The Pseudo-code 3 presents this
implementation.

Note that the temporal gdb macro is generated on the fly and it is only
functional for the parameters generated in the temporal code of the macro
(Field name and location of the desired value), then the loop in all faces of

8



Pseudo-code 3 Structure of gdbOF Command psurfacevalues.
1. Get parameters and check if it is a surfaceField

2. Call FOAM app. to make the search
(a) Start new case
(b) Do search (how is explained in appendix ??)
(c) Save results in a temporal file

3. Read temporal file using a shell script
4. Through each index:

(a) Generate temporal macro
(b) Call macro (this macro prints the results)

the cell is transparent to the user and it is not a problem for debugging.

3.3. Graphical debugging

Having in mind that the aim of these tools is the debugging of field ma-
nipulation software, the most powerful tool is finally presented. It consists
on the spatial visualization of fields in a graphical way.

This is a widely spread concept which remind us the first efforts in graph-
ical debugging [9]. An usual application of graphical debugging are general
data structures [10, 11], and particularly linked-lists [12] and graphs [13].
Data Display Debugger [14, 15] can be cited as an useful and general tool
for these purposes. Respect to the field manipulation software debugging, it
requires mesh manipulation and more sophisticated data analysis tools which
drives to specific implementations [16, 17].

In the gdbOF particular case, this objective summarizes previously pre-
sented tools, and it is particularly tailored for volField debugging. Basically
it consists in an OpenFOAMR© format data dump tool callable from any de-
bugging point with optional .vtk file format for exporting (via foamToVtk tool)
and ParaviewR© [18] on the fly running. The main details of this Pseudo-code
4 are the following:

9



Pseudo-code 4 Structure of gdbOF Command pexportfoamformat.
1. Get parameters and check if it is a volField

2. OS environment setting (first run)
(a) Creation of data dump directories
(b) Symbolic linkage of constant/ and system/ to avoid data duplication

3. Get actual time-step and last data written name
4. Write OpenFOAMR© file format header and set field dimensions
5. Write internalField

6. Identification of boundary patches via ppatchlist calling.
7. For each patch, write boundaries’ surfaceFields.
8. Close file.
9. Call optional parameters (.vtk exporting and ParaviewR© running)

4. Tests

4.1. Scalar Transport Test

The first test consists of the unsteady advective-diffusive equation, in a
two dimensional geometry with a mesh of 3 × 3 cells, which is shown in
Figure 1.

Partial differential equation is presented in Equation (1).

∂ρφ

∂t
+∇ · (ρUφ)−∇ · (ρΓφ∇φ) = Sφ(φ) (1)

with the boundary conditions shown in Equations (2)- (4).

∇φ · n|insulated = 0 (2)

φfixed1 = 373[K] (3)

φfixed2 = 273[K] (4)

To solve this problem, the following parameters are selected: U = [1, 0][m
s
],

∆t = 0.005[s], ρ = 1[ kg
m3 ], Γφ = 0.4[m2

s
], Sφ(φ) = 0 and φ0 = 273[K] uniform

along the whole domain as initial solution.

In the Finite Volume Method, each cell is discretized as it is shown in
equation (5). [19]

10



4 TESTS

4.1 Scalar Transport Test

The first study case consists of the unsteady advective-diffusive equation, in a bidimensional
mesh with 3 × 3 cells, which is shown in Figure ??.

0 1 2

3 4 5

6 7 8

insulated2

fixed2

insulated1

fixed1

Figure 1: Geometry and patches in scalar transport test (numbers idenfies cells

Partial differential equation is presented in Equation (??).

∂ρφ

∂t
+∇ · (ρUφ)−∇ · (ρΓφ∇φ) = Sφ(φ) (1)

with the boundary conditions shown in Equations (??), (??) and (??).

∇φ · n|insulated = 0 (2)

φfixed1 = 373[K] (3)

φfixed2 = 273[K] (4)

To solve this problem, the following parameters are selected: U = [1, 0][m
s
], Δt = 0.005[s],

ρ = 1[ kg
m3 ], Γφ = 0.4[m

2

s
], Sφ(φ) = 0 and φ0 = 273[K] ∀ Ω as initial solution.

In the Finite Volume Method, each cell is discretized as is shown in equation (??). (?)

φn
p − φ0

p

Δt
Vp +

�

f

Fφn
f −

�

f

ΓφSf (∇φ)n
f = 0 (5)

It is known that the assembly of a problem that includes convection using the upwind method,
results in a non-symmetric matrix, in addition, increasing the diffusive term and decreasing the
time step, this matrix will tend to be diagonal dominant.

Assembling the equation (??) in each cell for the initial time (t = 0.005), the system of
equations presented in (??) is obtained.

Figure 1: Geometry and patches in scalar transport test (numbers identify cells)

φnp − φ0
p

∆t
Vp +

∑
f

Fφnf −
∑
f

ΓφSf (∇φ)nf = 0 (5)

It is known that the assembly of a problem that includes convection using
the upwind method, results in a non-symmetric matrix, in addition, increas-
ing the diffusive term and decreasing the time step, this matrix will tend to
be diagonal dominant.

Assembling the equation (5) in each cell for the initial time (t = 0.005),
the system of equations presented in (6) is obtained.

11



202.6φ0 − 0.4φ1 − 0.4φ3 = 55271.4

−1.4φ0 + 202.2φ1 − 0.4φ4 = 54600

−1.4φ1 + 201.6φ2 − 0.4φ5 = 54545.4

−0.4φ0 + 203φ3 − 0.4φ4 − 0.4φ6 = 55271.4

−0.4φ1 − 1.4φ3 + 202.6φ4 − 0.4φ5 − 0.4φ7 = 54600 (6)

−0.4φ2 − 0.14φ4 + 202φ5 − 0.4φ8 = 54545.4

−0.4φ3 + 202.6φ6 − 0.4φ7 = 55271.4

−0.4φ4 − 1.4φ6 + 202.2φ7 − 0.4φ8 = 54600

−0.04φ5 − 1.4φ7 + 201.6φ8 = 54545.4

4.1.1. OpenFOAMR© Assembly

The above system, which was assembled manually, can be compared with
the system obtained by running the OpenFOAMR© solver scalarTransportFoam.

Establishing a breakpoint in the proper code line, and calling the gdbOF
pfvmatrixfull command, the system matrix A is printed on the console. This
matches the manually generated system, showing the right performance of
the tool (data can be additionally saved to a file compatible with Octave and
MatlabR©).

Example 4 View system matrix with gdbOF

$(gdb) b fvScalarMatrix.C:144
$(gdb) run
$(gdb) pfvmatrixfull this fileName.txt
$(gdb) shell cat fileName.txt
202.60 -0.40 0.00 -0.40 ...
-1.40 202.20 -0.40 0.00 ...
0.00 -1.40 201.60 0.00 ...
-0.40 0.00 0.00 203.00 ...
... ... ... ... ...

(gdb) p *totalSource.v_@9
{55271.4, 54600, 54545.4, 55271.4 ...

An additional feature of this command and others, is the ability to ex-

12



port data in a file format compatible with the calculation software Octave
and MatlabR©. To do this only one more parameter is needed in the com-
mand invocation, indicating the file name. gdbOF is responsible for ex-
porting the values in the correct format, using rows, columns and values in
[row,col,coeff] format. pfvmatrixsparse exports the matrix of the system in
this format which has a header that identifies the file as a sparse matrix.
This method greatly reduces the size needed to store the matrices in the case
of medium or large meshes.

Regarding to patch commands this example is also useful to show their
potentiality. Suppose that checking a boundary condition is wanted, for ex-
ample the value φ = 3732 in the fixed1 patch. First of all, it is necessary to
know the index of this patch. Once the patch index is known, it is possible
to see its values (See Example 5). The output is an array with three values
corresponding to the boundary condition on each one of the three faces that
make up this patch.

Example 5 View patches list with gdbOF

(gdb) ppatchlist T
PatchName --> Index to Use
FIXED1 --> 0
FIXED2 --> 1
INSULATED2 --> 2
INSULATED1 --> 3
FRONT_AND_BACK --> 4
(gdb)
(gdb) ppatchvalues T 0
(gdb) $1 = {373,373,373}

Appendix B of the gdbOF User’s Manual shows how the internal and
boundary values (in volFields and in surfaceFields) are stored in OpenFOAMR©.

2In the case, T is used to represent the scalarField instead of φ because OpenFOAMR©

preserves φ for a surfaceScalarField which represents the flux through each face (φ =
Sf · Uf )

13



4.2. Laplacian Test
In this problem, gdbOF is used to monitor the field values and the re-

sulting equations system, in order to realize how the correction method for
non-orthogonal mesh used in OpenFOAMR© works 3[19, 20].

The problem to solve is defined in the Equation (7), with the boundary
conditions shown in (8)- (10), and the non-orthogonal mesh presented in Fig-
ure 2.

∇ · (ρΓφ∇φ) = 0 (7)

∇φ · n|insulated = 0 (8)

φfixed1 = 273[K] (9)

φfixed2 = φfixed1 (10)

0

1

fixed1

insulated1

fixed2

insulated2

Figure 2: Geometry and patches in Laplacian test (numbers identifies cells).

Constants and initial conditions are: ρ = 1, Γφ = 1 and φ0 = 0[K] ∀ Ω.

Example ?? allows to verify the proper initialization of the internal field. The list shown
presents the values of the field.

Example 10 View internalField values with gdbOF

(gdb) pinternalvalues T
(gdb) $1 = {0,0}

It can be shown analytically that the solution to this problem is a linear function φ(x) =
ax + b, and if φfixed2 = φfixed1 ⇒ a = 0 and the solution is constant, doing unnecessary the
second term in non-orthogonal correction ( kf · (∇φ)f = 0), but allows to compare the systems
generated by the different approaches in comparison with the generated in OpenFOAM R�, and
to determine which one is the used method.

Using minimum-correction approach (Δf = d·S
|d|

d):

−3.29φ0 + 1.79φ1 = −409.5

1.79φ0 +−3.29φ1 = −409.5

Using orthogonal-correction approach (Δf = d
|d|
|S|):

−4.5φ0 + 3φ1 = −409.5

3φ0 +−4.5φ1 = −409.5

Using over-relaxed approach (Δf = d
d·S
|S|2):

−5.25φ0 + 3.75φ1 = −409.5

3.75φ0 +−5.25φ1 = −409.5

Example ?? shows how gdbOF extracts the equations system was shown. Here, the reader
can verify that the over-relaxed approach is implemented in OpenFOAM R�.

Figure 2: Geometry and patches in Laplacian test (numbers identifies cells).

Constants and initial conditions are: ρ = 1, Γφ = 1 and φ0 = 0[K] ∀ Ω,
the problem domain.

3The diffusive term in a non-orthogonal mesh is discretized in the following way: Sf ·
(∇φ)f = ∆f · (∇φ)f + kf · (∇φ)f , where Sf = ∆f + kf . The correction methods propose
different forms to find ∆f .

14



Example 6 allows to verify the proper initialization of the internal field.
The list shown presents the values of the field.

Example 6 View internalField values with gdbOF

(gdb) pinternalvalues T
(gdb) $1 = {0,0}

It can be shown analytically that the solution to this problem is a linear
function φ(x) = ax + b, and if φfixed2 = φfixed1 ⇒ a = 0 and the solution
is constant, doing unnecessary the second term in non-orthogonal correction
[kf · (∇φ)f = 0]. It allows us to compare the systems generated by the dif-
ferent approaches in comparison with the obtained in OpenFOAMR©, and to
determine which one is used as default.

Using minimum-correction approach (∆f = d·S
|d| d):

−3.29φ0 + 1.79φ1 = −409.5

1.79φ0 +−3.29φ1 = −409.5

Using orthogonal-correction approach (∆f = d
|d| |S|):

−4.5φ0 + 3φ1 = −409.5

3φ0 +−4.5φ1 = −409.5

Using over-relaxed approach (∆f = d
d·S |S|

2):

−5.25φ0 + 3.75φ1 = −409.5

3.75φ0 +−5.25φ1 = −409.5

Example 7 shows how gdbOF extracts the equation system. Here, the
reader can verify that the over-relaxed approach is implemented as default
in OpenFOAMR©.

4.3. Multiphase Test

As the last example, a multiphase solver, namely interFoam is used show-
ing gdbOF functionality. In this case a 2D reference problem is solved, which
has analytical solution. Let be a rectangular domain with a Couette velocity
profile (see Figure 3), and filled with a light fluid as initial condition and the

15



Example 7 Equation System debugging in LaplacianTest

$(gdb) b fvScalarMatrix.C:144
Breakpoint 1 at 0xb71455dc: file fvMatrices/fvScalarMatrix... line 144
$(gdb) run
...
$(gdb) pfvmatrixfull this this.txt
Saved correctly!
$(gdb) shell cat this.txt
-5.25 3.75
3.75 -5.25

(gdb) p *totalSource.v_@2
{-409.5, -409.5}

Example 11 Equation System debugging in LaplacianTest

$(gdb) b fvScalarMatrix.C:144
Breakpoint 1 at 0xb71455dc: file fvMatrices/fvScalarMatrix... line 144
$(gdb) run
...
$(gdb) pfvmatrixfull this this.txt
Saved correctly!
$(gdb) shell cat this.txt

-5.25 3.75
3.75 -5.25

(gdb) p *totalSource.v_@2
{-409.5, -409.5}

4.3 Multiphase Test

As the last example, a multiphase solver, namely interFoam is used showing gdbOF func-
tionality. In this case a 2D reference problem is solved, which has analytical solution. Let be a
rectangular domain with a Couette velocity profile (see Figure ??), and filled with a light fluid
as initial condition and a domain inlet with a heavy fluid in all extension. The problem to solve
is the evolution of the heavy phase thought the domain along the time.

������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������

������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������

Interface

V = 1 (Moving wall)

V = 0 (Stationary wall)
∂α
∂n = 0

∂α
∂n = 0

α = 1

Inlet
∂α
∂n = 0

L = 10

h = 1

x

y

Heavier phase α = 1

Less dense phase α = 0

Figure 3: Geometry in interFoam test

This two phase system is solved by means of a momentum equation (See Equation ??) and
an advection equation for the void fraction function α (See Equation ??) (?)

∂ρU

∂t
+∇• (ρUU)−∇• (µ∇U)− (∇U) •∇α = −∇pd − g•x∇ρ + σκ∇α (11)

∂α

∂t
+∇• (Uα) +∇• [Urα (1− α)] = 0 (12)

In this case, g = 0, ρ = 1 and it can be shown that ∇pd and κ = 0 (no pressure gradient
is needed in a velocity driven flow and curvature vanishes due a linear interface). Taking this
in account, initial linear velocity profile is an spatial solution of Equation ?? so it reduces to
Equation ??.

∂U

∂t
= 0 (13)

Figure 3: Geometry in interFoam test

domain inlet with a heavy fluid in all its extension. The problem to solve is
the evolution of the heaviest phase through the domain along the time.

This two phase system is solved by means of a momentum equation (See
Equation 11) and an advection equation for the void fraction function α (See
Equation 12) [21]

∂ρU

∂t
+∇• (ρUU)−∇• (µ∇U)− (∇U) •∇α = −∇pd−g•x∇ρ+σκ∇α (11)

16



∂α

∂t
+∇• (Uα) +∇• [Urα (1− α)] = 0 (12)

In this case, g = 0 and it can be shown that ∇pd and κ are both null (no
pressure gradient is needed in a velocity driven flow and curvature vanishes
due a linear interface). Taking this in mind, an initial linear velocity profile
is an spatial solution of Equation 11 so it reduces to Equation 13.

∂U

∂t
= 0 (13)

From this conclusion it is clear that streamlines are horizontal, and the
heaviest phase advances more quickly as streamlines are closer at the top
region, giving a linear interface front (See Figure 3). This advancement is
governed by an advective equation for the indicator function which includes
an extra term, suitable to compress the interface [22].

Using Finite Volume Method Equation 12 can be discretized as in Equa-
tion 14 [23]

αn+1 − αn

∆t
V +

∑
f

[
αnf φ

n
f + αnf

(
1− αnf

)
φr

n
f

]
= 0 (14)

where φnf = Un · Sf , φrnf = Un
r · Sf and superindex n implies the time-

step. Ur is the compressive velocity and is computed directly as a flux:

φrf = nf min

[
Cα

|φ|
|Sf | ,max

(
|φ|
|Sf |

)]
. Cα is an adjustment constant and

nf =
(∇α)f

|(∇α)f +δn| •Sf is the face unit normal with δn as a stabilization fac-

tor [21]. φrf values are variable only vertically in this example and will be
checked at debugging time against those calculated from theory, using gdbOF
tools. In this case, because of how the advective terms are calculated it is
necessary to show values at faces.

Domain was meshed as a 3D geometry due to OpenFOAMR© requirements
[24] with a 100× 10× 1 elements in the grid, so each hexahedron has edges
of 0.1 units in size. Since its definition and taking Cα = 1, |Ur| = |U|, there-
fore φrf = Ur · Sf = 0.01 |Ur|

(
Ǔr · Šf

)
. So taking three distances from the

bottom edge of the domain, y = 0.05, y = 0.45 and y = 0.95, values for φrf
in faces with Sf aligned with x direction must be |φrf | = 0.005, |φrf | = 0.045

17



and |φrf | = 0.095 respectively.

Again, it is necessary to find the indices of three cells with such y coor-
dinates, taking for example x = 0.05, and using pFindCell tool the results
shown in Example 8 can be obtained.

Example 8 View cell index in multiphase problem.

(gdb) pfindcell 0.05 0.45 0.05
RESULTS:
Nearest cell centroid cell number: 400
Containing point cell number (-1=out) : 400

As it was explained in Subsection 3.2 using only the index of the cell is not
enough to address the values in a surfaceField of a given field. Each cell has
as many surface values as faces in the cell, therefore it is necessary to show
all these values, extracting the information from faces whose indexes are not
necessarily correlative. psurfacevalues gdbOF command simplifies this task.
Knowing the index of the cell to analyze, it returns the information on each
face about the field indicated in the command line parameters: boundary face
or internal face (categorized according to whether it has a neighbour or not)
and field value. If it is working with a 2D mesh, information is also returned
as in a 3D mesh, but it indicates which of these faces has an empty bound-
ary condition (see gdbOF User’s Manual, Appendix C or the Subsection 3.2).

So that, applying this command to the cell previously found, make it
possible to show φrf in all faces of that cell (See Example 9). Results are
consistent with the original problem. Two faces are marked as empty be-
cause the mesh has only one cell in depth. This boundary condition is used
by OpenFOAMR© to represent no variability in direction perpendicular to the
face, allowing a 2D calculation. Faces 5 and 7 corresponds to top and bot-
tom faces of the cell where flux is null. Finally, faces 6 and 8 have faces with
normals aligned with the velocity and the flux values are those predicted
theoretically for y = 0.45. Values have different sign due to the normals
orientation.

Regarding graphical debugging presented in Section 3.3 pexportfoamformat

18



Example 9 Example of usage of psurfacevalues for face defined field.

(gdb) psurfacevalues phir 400
internal Face:
$5 = 0
internal Face:
$6 = -0.0045
internal Face:
$7 = 0
empty Face
empty Face
boundary Face:
$8 = 0.0045

i is a useful tool to inspect the α field as in Figure 3. To do so, command is
invoked as in Example 10 and results are shown in Figure 4.

Example 10 Field exporting to .vtk by means of pexportfoamformat.
ParaviewR© is invoked as well

(gdb) pexportfoamformat alpha1 VTK Paraview
Including internal field...
Including boundary field(s)
fixedWall
movingWall
inlet
outlet
frontAndBackPlanes
--------------------------------
Field saved to gdbOF_dump/alpha1.0.dump
--------------------------------
Exporting to VTK...
Launching Paraview...

5. Conclusions

OpenFOAMR© is a free software tool that enables high-level programming
using a similar sintaxis as the mathematical expression that solves the prob-
lem. The use of C++ programming language and all its object-oriented

19



Figure 4: α field representation in ParaviewR© using pexportfoamformat (with VTK option)

machinery allows a fast and expandable code improving the performance of
procedural languages. The OOP approach provides greater simplicity for
maintenance and code expansion, since it uses five main features: modular-
ity, abstraction, encapsulation, inheritance and polymorphism. To complete
the machinery, the flexibility of C++ allows to include non object-based el-
ements, such as operator overloading and the definition of macros instead of
functions.

The downside of all these benefits is an intricate code, which is difficult to
learn and analyze. These difficulties arise, for example, when there are prob-
lems with unwanted results, or simply looking for analyzing if a procedure
is properly executed. These tasks require debugging with tools like gdb, but
given the complexity of the aforementioned code it is necessary to expand
the capabilities of the debugger with a set of commands that allow simply
navigation through the code and class inspection, giving the place to gdbOF.

So, gdbOF was presented simplifying the tasks to a single line. In addi-

20



tion, due to the use of parameters in each command, gdbOF offers the ver-
satility of adapting to different objects that exists in a typical OpenFOAMR©

simulation, such as volFields and surfaceFields each with its derivatives
Scalar, Vector and Tensor. Another benefit presented and tested was the
ability to do geometric searches in the mesh at debugging time, being able
to find the index of a particular cell or face, or the list of faces surrounding
a cell. All of these tasks were achieved through calls to backend applications
which are included in the gdbOF distribution package. In addition to this list
of benefits it may be included the ability to obtain the system of equations
associated to the discrete version of the problem, allowing to see it in differ-
ent formats and exporting it to disk to be manipulated with other software,
and the possibility of extracting only a sub-matrix to analyze only a specific
part of it.

Finally a graphical debugging tool was presented. This goal is achieved
by means of an interface between gdb an ParaviewR© which is built up based
on more basic gdbOF tools. Once data are properly exported all the benefits
of graphical tool can be resorted in order to analyze the results.

All of these gdbOF features described above, allow to the user to have
greater efficiency and flexibility at debugging OpenFOAMR© applications.

6. Acknowledgments

Authors want to give thanks to CONICEC, UNL (CAI+D PI 65-333) and
ANPCyT (PICT 2008-1645) for their financial support and to Dr. Lisandro
Dalćın for his valuable comments about this work. An special acknowledg-
ment is given to OpenFOAMR©, gdb, octave and ParaviewR© developers and
users community for their contribution to free software.

References

[1] J. Cary, S. Shasharina, J. Cummings, Comparison of C++ and for-
tran 90 for object-oriented scientific programming, Computer Physics
Communications 105(1) (1997) 20–36.

21



[2] H. G. Weller, G. Tabor, H. Jasak, C. Fureby, A tensorial approach to
computational continuum mechanics using object-oriented techniques,
Computer in Physics 12(6) (1998) 620–631.

[3] B. Eckel, Thinking in C++, volume 1 Introduction to Standard C++,
Prentice Hall Inc., 2nd. edition, 2000.

[4] L. Mangani, C. Bianchini, A. Andreini, B. Facchini, Development and
validation of a C++ object oriented CFD code for heat transfer analy-
sis, in: ASME-JSME, Thermal Engineering and Summer Heat Transfer
Conference.

[5] J. Ewer, B. Knight, D. Cowell, Case study: an incremental approach
to re-engineering a legacy fortran computational fluid dynamics code in
C++, Advances in Engineering Software 22(3) (1995) 153–168.

[6] N. Matloff, P. Salzman, The Art of Debugging with GDB, DDD, and
Eclipse, No Starch Press, 1st edition, 2008.

[7] D. Marinescu, Stl-views-1.0.3.gdb, 2008.

[8] R. Stallman, R. Pesch, S. Shebs, Debugging with GDB: The GNU
Source-Level debugger, GNU Press, Free Software Foundation Inc., 9th
edition, 2002.

[9] A. Dewar, J. Cleary, Graphical display of complex information within
a prolog debugger, International Journal of Man-Machine Studies 25
(1986) 503–521.

[10] V. Waddle, Graph layout for displaying data structures, in: Graph
Drawing, Springer, pp. 98–103.

[11] J. Korn, P. U. D. of Computer Science, Abstraction and visualization in
graphical debuggers, Princeton University Princeton, NJ, USA, 1999.

[12] T. Shimomura, S. Isoda, Linked-list visualization for debugging, Soft-
ware, IEEE 8 (1991) 44–51.

[13] G. Parker, G. Franck, C. Ware, Visualization of large nested graphs
in 3d: Navigation and interaction, Journal of Visual Languages and
Computing 9 (1998) 299–317.

22



[14] A. Zeller, D. Lutkehaus, DDD A free graphical front-end for unix de-
buggers, ACM Sigplan Notices 31 (1996) 22–27.

[15] D. Cruz, P. Henriques, M. Pereira, Alma versus ddd (2008).

[16] V. Grimm, Visual debugging: A way of analyzing, understanding and
communicating bottom-up simulation models in ecology, Natural Re-
source Modeling 15 (2002) 23–38.

[17] D. Abramson, I. Foster, J. Michalakes, R. Sosič, Relative debugging: A
new methodology for debugging scientific applications, Communications
of the ACM 39 (1996) 69–77.

[18] A. Squillacote, J. Ahrens, The paraview guide, Kitware, 2006.

[19] H. Jasak, Error analysis and estimation for the finite volume method
with applications to fluid flows, Ph.D. thesis, Department of Mechanical
Engineering Imperial College of Science, Technology and Medicine, 1996.

[20] H. Versteeg, W. Malalasekera, An introduction to computational fluid
dynamics: the finite volume method, Prentice Hall, 2007.

[21] E. Berberovic, N. Van Hinsberg, S. Jakirlic, I. Roisman, C. Tropea,
Drop impact onto a liquid layer of finite thickness: Dynamics of the
cavity evolution, Physical Review E 79 (2009).

[22] OpenCFD, OpenCFD Technical report no. TR/HGW/02 (unpublished),
2005.

[23] P. Bohorquez R. de M., Study and Numerical Simulation of Sedi-
ment Transport in Free-Surface Flow, Ph.D. thesis, Málaga University,
Málaga, 2008.

[24] OpenCFD, OpenFOAM, The Open Source CFD Toolbox, User Guide,
OpenCFD Ltd., 2009.

23


	INTRODUCTION
	Problems with basic debugging
	Advanced Debugging
	System matrix
	Mesh Search
	Graphical debugging

	Tests
	Scalar Transport Test
	OpenFOAM® Assembly

	Laplacian Test
	Multiphase Test

	Conclusions
	Acknowledgments

