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Abstract. Consider a Martin-Löf random ∆0
2 set Z. We give lower

bounds for the number of changes of Zs �n for computable approxima-
tions of Z. We show that each nonempty Π0

1 class has a low member Z
with a computable approximation that changes only o(2n) times. We
prove that each superlow ML-random set already satisfies a stronger
randomness notion called balanced randomness, which implies that for
each computable approximation and each constant c, there are infinitely
many n such that Zs �n changes more than c2n times.

1 Introduction

A computable approximation of a set Z ⊆ N is a computable sequence (Zs)s∈N of
finite sets such that Z(x) = lims Zs(x) for each x. The Shoenfield Limit Lemma
states that a set Z ⊆ N is ∆0

2 iff Z has a computable approximation.
In Sections 3 to 5 we are interested in the number of changes of Zs �n for com-

putable approximations of a Martin-Löf random ∆0
2 set Z. We give some lower

bounds. Next, we obtain a hierarchy theorem saying that allowing more changes
yields new ω-c.e. ML-random sets. Thereafter, we prove the “o(2n) changes”
low basis theorem which says that each nonempty Π0

1 class has a low member Z
with a computable approximation such that Z �n, the initial segment of length n,
changes only o(2n) times. We conclude that there is a computable approximation
of a low ML-random set which changes only o(2n) times.

In [1, Sect. 8.6] evidence was presented for the following thesis: Among ML-
random sets,
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being computationally less complex is equivalent to being more random.

For instance, a ML-random set forms a minimal pair with ∅′ iff it is weakly
2-random. In the final section we use the foregoing results to give some more
evidence for this when the ML-random set is ∆0

2.
To specify what we mean by being more random, we consider variants of

Demuth randomness, a notion that strengthens ML-randomness but is still com-
patible with being ∆0

2. Demuth tests (see [1, Def. 3.6.24]) generalize Martin-Löf
tests (Gm)m∈N in that one can exchange the m-th component a computably
bounded number of times. A set Z ⊆ N passes a Demuth test if Z is in only
finitely many final versions of the Gm.

The passing condition that Z is not in at least one of the Gm yields weak
Demuth randomness. In this case, we can require as well that Gm ⊇ Gm+1

for each m, since we can replace Gm by
⋂
i≤mGi if necessary. A test with this

property will be called monotonic. Note that the number of version changes is
still computably bounded. Thus Z is weakly Demuth random iff it passes all
monotonic Demuth tests (where passing the test can be taken in either sense).

We introduce balanced randomness, an even more restricted form of weak
Demuth randomness where the bound on the number of changes of the m-th
version is O(2m). Each balanced random set is ML-random and Turing incom-
plete.

For evidence of the direction from left to right in the thesis above, we show
that a ML-random set that is superlow is already balanced random. Being ω-c.e.
tracing is a highness property due to Greenberg and Nies [2] that is incompatible
with superlowness (see Sect. 6). In fact we show that a ML-random set that is
not ω-c.e. tracing is already balanced random.

Evidence for the direction from right to left in the thesis above is given by
the fact that a Demuth random set bounds only generalized low1 sets, and the
result of [3] that a c.e. set Turing below a Demuth random set must be strongly
jump-traceable. In [3] further evidence for this direction is given by showing that
a weakly Demuth random set Z is not superhigh, namely, Z ′ 6≥tt ∅′′. (However,
it can be high.) We conjecture that a balanced random set is not LR-complete,
and prove a result in that direction.

2 Counting Changes of a ∆0
2 Set

For a computable approximation (Zs)s∈N, unless otherwise stated, we will as-
sume that Zs(x) = 0 for each x ≥ s. Given such an approximation, for a number
n and a stage number s > 0, to say that Z �n changes at stage s means that
Zs �n 6= Zs−1 �n.

When we say that we bound the number of changes for a ∆0
2 set Z from

above, we mean that the changes of some approximation can be bounded from
above.

Definition 1. Let f : N → N. We say a set Z ⊆ N is f -c.e. if there is a com-
putable approximation (Zs)s∈N of Z such that for each n, Zs �n changes at most
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f(n) times via this approximation. Terminology such as O(f)-c.e. set, o(f)-c.e.
set and so on has the obvious meaning. For instance, Z is o(f)-c.e. if there is a
function g ∈ o(f) such that Z is g-c.e.

Each left-c.e. set is o(2n)-c.e.:

Fact 2. Let Z be a left-c.e. set as shown by the computable approximation
(Zs)s∈N. Then Z is o(2n)-c.e. via this computable approximation.

Proof. Given k, let t be the least stage such that Zt �k+1 has the final value.
Let n ≥ t + k + 1. By our convention that Zs(x) = 0 for each x ≥ s, Z �n
changes at no more than 2t ≤ 2n−k−1 stages that are ≤ t. Furthermore, since
the approximation cannot return to previous states, Z �n changes at no more
than 2n−k−1 stages that are greater than t. Thus Z �n changes at no more than
2n−k stages. ut

Actually, the fact still holds if we require only that the approximation to Z �n
can never return to a previous value.

3 Some Lower Bounds on the Number of Changes of a
ML-random Set

In this section we assume that Z is a ML-random ∆0
2 set with a fixed computable

approximation (Zs)s∈N. We give some lower bounds on the number of times Z �n
can change. We confirm the intuition that the number of changes cannot be far
below 2n.

First we look at computable functions bounding the number of changes of
Z �n for only infinitely many n.

Proposition 3. Let q : N → Q+ be computable. If Z �n changes fewer than
b2nq(n)c times for infinitely many n, then

∑
n q(n) =∞.

Proof. Assume for contradiction that
∑
n q(n) < ∞. We define an effective se-

quence (Si)i∈N of Σ0
1 classes in the following way. For each n, we put into Sn the

first b2nq(n)c versions of [Z �n]. Clearly (Si)i∈N is a sequence of uniformly c.e.
open sets and λSn ≤ q(n) for all n, where λ is Lebesgue measure. Thus (Si)i∈N
is a Solovay test. By hypothesis Z ∈ Sn for infinitely many n. This means that
Z fails the test (Si)i∈N and therefore is not ML-random. ut

Example 4. Z �n changes at least 2nn−2 times for almost every n.

The proof of the foregoing proposition can easily be extended to the case that
the function q is effectively approximable from below, that is, q(n) = sups qs(n)
for an effective sequence of rationals that is nondecreasing in s. For instance, we
can let q(n) = 2−K(n), where K is prefix-free Kolmogorov complexity. Thus, in
the example above, in fact we have a lower bound of 2n−K(n).

If for almost every n the number of changes of Z �n is bounded above by
2nq(n), then the function q is in fact bounded away from 0.
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Proposition 5. Let q : N → Q+ be computable. If Z �n changes fewer than
b2nq(n)c times for almost every n, then infn q(n) > 0.

Proof. Let n∗ be a number such that the bound holds from n∗ on. Assume for a
contradiction that infn q(n) = 0. We show that ∃∞nK(Z �n) ≤+ n, contrary to
the assumption that Z is ML-random. To do so we build a bounded request (aka
Kraft-Chaitin) set L. Let (ni)i>0 be a computable sequence of numbers greater
than n∗ such that q(ni) < 2−i for each i. For each s, we put the request

〈ni, Zs �ni
〉

into L. For each i > 0, the weight put into L is at most 2−ni2niq(ni) ≤ 2−i.
Thus L is a bounded request set. Hence by the usual machine existence theorem
(aka Kraft-Chaitin Theorem), we have ∃∞nK(Z �n) ≤+ n as required. ut

The proof of the foregoing proposition can easily be extended to the case
that the function q is effectively approximable from above. For each i, we can
search for an s and an ni such that qs(ni) < 2−i.

We remark that neither Proposition 3 nor Proposition 5 can be extended
to reals of positive effective Hausdorff dimension. It is easy to construct a real
Z with effective Hausdorff dimension 1, and a computable function q such that∑
n q(n) <∞, and Z �n changes fewer than b2nq(n)c times for almost every n.
It is natural to ask what else we can say about the number of times Z �n

can change for a ∆0
2 ML-random Z. In particular, we consider strengthening

Propositions 3 and 5 simultaneously: whenever Z �n changes fewer than b2nq(n)c
times for infinitely many n, then q(n) is bounded away from zero on these n. By
the following proposition this is true if q is a computable nonincreasing function,
but by Corollary 11 this fails in general.

Proposition 6. Let q : N → Q+ be computable and nonincreasing. If Z �n
changes fewer than b2nq(n)c times for infinitely many n, then infn q(n) > 0.

Proof. Suppose the contrary, that infn q(n) = 0. Let (ni)i∈N be a computable
sequence of natural numbers such that for every i, ni is the least number larger
than ni−1 such that q(ni) < 2−i−1. We build a Solovay test (Si)i∈N by the
following. For each i enumerate into Si the first 2ni−i different versions of [Z �ni

].
Then λSi ≤ 2−i for every i. Since Z is ML-random and Z �n changes fewer than
b2nq(n)c times for infinitely many n, we fix m > n0 and i > 0 such that Z �m
changes fewer than b2mq(m)c times, Z 6∈ Si and i is the least such that ni ≥ m.
Since Z 6∈ Si, there must be at least 2ni−i + 1 many distinct elements in the
set {Zs �ni

: s ∈ N}. Now since ni−1 < m we have q(m) ≤ q(ni−1) < 2−i. Hence
Z �m changes fewer than 2m−i times. This is a contradiction. ut

4 A Hierarchy Theorem for ML-random ω-c.e. Sets

Using a method of Kučera one can code a given set into a path on a Π0
1 class of

positive measure. The method rests on the following lemma (see [1, Lem. 3.3.1]),
where λ(C|x) denotes 2|x|λ(C ∩ [x]).
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Lemma 7. Let C ⊆ 2ω be measurable and λ(C|x) ≥ 2−(r+1). Then for every
n ≥ |x| + r + 2 there are distinct strings y0, y1 � x with |yi| = n such that
λ(C|yi) > 2−(r+2) for i = 0, 1.

An order function is a nondecreasing unbounded computable function.

Theorem 8. Let b be an order function such that ∀n b(n) ≥ ε2n for some pos-
itive real ε. Then for each order function s there is a ML-random Z which is
s · b-c.e. but not b-c.e.

We can restate Proposition 5 as follows: if the ML-random set Z is b-c.e. for
some computable function b, then there is ε > 0 such that ∀n b(n) ≥ ε2n. This
shows that the additional hypothesis ∀n b(n) ≥ ε2n in this hierarchy theorem
does not restrict its generality.

Proof (Theorem 8). The idea is the following. To make Z ML-random, we ensure
that it belongs to an appropriate Π0

1 -class. To make Z non b-c.e., let (fe)e∈N+

be an enumeration of all total computable functions f mapping pairs of natural
numbers to strings such that for all n, #{t : f(n, t) 6= f(n, t + 1)} ≤ b(n),
|f(n, t)| = n, and f(n, t) ≺ f(n + 1, t). Each such f is the approximation of
some b-c.e. set. Conversely, if a set is b-c.e. then there is some f giving the set
in the limit. Thus it suffices to ensure that for every e there is an n such that
limt fe(n, t) 6= Z �n.

Here are the details. Recall that s is the given order function. Choose a
computable sequence (ne)e∈N+ such that n1 = 0,

s(ne) > e+ 1/ε, and ne+1 ≥ ne + e+ 2.

Let P be a Π0
1 -class such that P ⊆ MLR, where MLR is the class of ML-random

sets, and λP > 1/2. Let P̂ be the Π0
1 class of paths through the Π0

1 tree

T = {y : (∀i)[ni ≤ |y| → λ(P|(y �ni
)) ≥ 2−(i+1)]}.

Note that P̂ ⊆ P. Since λP ≥ 1/2, by Lemma 7, P̂ is nonempty.
We define z0 ≺ z1 ≺ z2 ≺ · · · in such a way that |ze| = ne and ze 6=

limt fe(ne, t). We also define Z =
⋂
e[ze]

≺. In this way, we ensure that for all
e ≥ 1, Z �ne 6= limt fe(ne, t) and therefore Z is not b-c.e. At the same time, we
ensure that Z ∈ P̂, and hence Z is ML-random.

The definition of ze proceeds by steps. Let z0,s = ∅ and for e > 0 let

ze+1,s = min{[z] ⊆ P̂s : |z| = ne+1 ∧ z � ze,s ∧ fe(ne, s) 6= z}. (1)

Recall that each Π0
1 class P has an effective approximation by descending clopen

sets Ps; see [1, Sect. 1.8].
Suppose ze,s has already been defined. By Lemma 7 and the definition of P̂,

there are two distinct strings y0, y1 � ze,s such that |yi| = ne and [yi] ∩ P̂ 6= ∅.
Hence ze+1,s is well defined in equation (1).

To show that Z is s ·b-c.e., define a computable approximation (Zi)i∈N+ with
Zs = zs,s. Suppose ne ≤ n < ne+1.

If Zs+1 �n 6= Zs �n then
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[Zs �n] 6⊆ P̂s+1 or ∃i ≤ e fi(n, s+ 1) 6= fi(n, s).

The former may occur at most 2n many times, and the latter at most e · b(n)
times. For all e ≥ 1, the number of changes of Z �n is at most

2n + e · b(n) ≤ b(n)/ε+ e · b(n)

≤ b(n)(e+ 1/ε)

≤ b(n) · s(ne) ≤ b(n) · s(n).

5 Counting Changes for Sets Given by the (Super)Low
Basis Theorem

The low basis theorem of Jockusch and Soare [4] says that every nonempty Π0
1

class has a member Z that is low, that is, Z ′ ≤T ∅′. The proof actually makes
Z superlow, that is, Z ′ ≤tt ∅′. Here we study possible bounds on the number of
changes for a low member of the class. Surprisingly, we find that to make the
member superlow will in general take more changes, not fewer.

Theorem 9. Let P be a nonempty Π0
1 class. For each order function h, the

class P has a superlow 2n+h(n)-c.e. member.

Proof. The idea is to run the proof of the superlow basis theorem with a c.e.
operator WX that codes X ′ only at a sparse set of positions, and simply copies
X for the other bit positions. Let R be the infinite computable set {n : h(n+1) >
h(n)}. Define the c.e. operator W by

WX(n) =

{
X(i) if n is the i-th smallest element in N−R
X ′(j) if n is the j-th smallest element in R

(2)

By the proof of the superlow basis theorem as in [1, Thm. 1.8.38], there is a
Z ∈ P such that B = WZ is left-c.e. via some approximation (Bs). Let Zs be
the computable approximation of Z given by Zs(i) = Bs(n) where n is the i-th
smallest element in N−R. If Zs �n changes then Bs �n+h(n) changes. Thus Zs �n
changes at most 2n+h(n) times. Furthermore, Z ′ ≤m B. Since B is ω-c.e. we have
B ≤tt ∅′, so Z is superlow. ut

Theorem 18 below shows that if P ⊆ MLR, no superlow member can be
O(2n)-c.e. On the other hand, if we merely want a low member, we can actually
get away with o(2n) changes. For the case P ⊆ MLR, this shows that o(2n)-c.e.
ML-random sets can be very different from the Turing complete ML-random set
Ω, even though Ω is also o(2n)-c.e. by Fact 2.

Theorem 10. Each nonempty Π0
1 class P contains a low o(2n)-c.e. member.

Proof. We combine the construction in the proof of Theorem 9 with a dynamic
coding of the jump. At each stage we have movable markers γk at the positions
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where X ′(k) is currently coded. Thus, the positions where X ′ is coded become
sparser and sparser as the construction proceeds.

Construction. At stage 0 let γ0,0 = 1 and B0 be the empty set.
Stage t > 0.
(i). Let WX [t] be the c.e. operator such that

WX [t](v) =

X(i)
if v is the i-th smallest element
not of the form γk,t−1

X ′(k) if v = γk,t−1 .

(3)

We define a sequence of Π0
1 classes Qn[t] (n ∈ N) according to the proof of

the low basis theorem as in [1, Thm. 1.8.38], but at stage t we use the operator
W [t] instead of the jump operator.

Let Q0[t] = P. If Qn[t] has been defined, let

Qn+1[t] =

Qn[t]
if for all X ∈ Qn,t[t],
we have n ∈WX [t]{

X ∈ Qn[t] : n /∈WX [t]
}

otherwise.

In the first case, define Bt(n) = 1; in the second case, define Bt(n) = 0.

(ii). Let k be least such that k = t or Bt �2k 6= Bt−1 �2k. Define γr,t = γr,t−1 for
r < k, and γr,t = t+ 2r for t ≥ r ≥ k.

Verification.
Claim 1. B is left-c.e. via the computable approximation (Bt)t∈N.
Suppose i is least such that Bt(i) 6= Bt−1(i). Since γr,t−1 > 2r for each r, this
implies that γr,t = γr,t−1 for all r such that γr,t−1 ≤ i. Thus the construction
up to Qi[t] behaves like the usual construction to prove the low basis theorem,
whence we have Bt−1(i) = 0 and Bt(i) = 1.

We conclude that γk = limt γk,t exists for each k, and therefore Qn =
limtQn[t] exists as well.

By the compactness of 2ω there is Z ∈
⋂
nQn. Clearly Z is low because

Z ′(k) = B(γk) and the expression on the right can be evaluated by ∅′. It remains
to show the following.
Claim 2. Z is o(2n)-c.e.
We have a computable approximation to Z given by

Zt(i) = Bt(v) where v is the i-th smallest number not of the form γk,t.

Given n let k be largest such that γk ≤ n. We show that Z �n changes at most
2n−k+1 times.

For n ≥ r ≥ k let tr be least stage t such that γr+1,t > n. Then Bt �2r is
stable for tr ≤ t < tr+1. Since (Bt)t∈N is a computable approximation via which
B is left-c.e., B �n+r changes at most 2n−r times for t ∈ [tr, tr+1). Hence Z �n
changes at most 2n−r times for such t. The total number of changes is therefore
bounded by

∑
k≤r≤n 2n−r < 2n−k+1. ut
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Corollary 11. There is a ML-random Z and a computable q : N → Q+ such
that Z �n changes fewer than b2nq(n)c times for infinitely many n, and limn q(n) =
0.

Proof. Follow the proof of Theorem 10, and let P be a Π0
1 class containing only

ML-randoms. We define q(m) = 2−r+1, where r is the least such that γr,m ≥ m.
Then q is computable and limn q(n) = 0 because each marker reaches a limit.
Also, q(γr) = 2−r+1 for every r. By the proof of Theorem 10, for every r, Z �γr
changes fewer than 2γr−r+1 = b2γrq(γr)c times. ut

6 Balanced Randomness

Basics on balanced randomness. We study a more restricted form of weak De-
muth randomness (which was defined in the introduction). The bound on the
number of changes of the m-th version is now O(2m).

Definition 12. A balanced test is a sequence of c.e. open sets (Gm)m∈N such
that ∀mλGm ≤ 2−m; furthermore, there is a function f such that Gm equals
the Σ0

1 class [Wf(m)]
≺ and f(m) = lims g(m, s) for a computable function g such

that the function mapping m to the size of the set {s : g(m, s) 6= g(m, s− 1)} is
in O(2m).

A set Z passes the test if Z 6∈ Gm for some m. We call Z balanced random if
it passes each balanced test.

We denote [Wg(m,s)]
≺ by Gm[s] and call it the version of Gm at stage s.

Example 13. No O(2n)-c.e. set is balanced random.

To see this, simply let Gm[s] = [Zs �m]; then Z fails the balanced test (Gm)m∈N.
Again, we may monotonize a test and thus assume Gm ⊇ Gm+1 for each m,

because the number of changes of
⋂
i≤mGi[s] is also O(2m).

Let (αi)i∈N be a nonincreasing computable sequence of rationals that con-
verges effectively to 0, for instance αi = 1/i. If we build monotonicity into the
definition of balanced randomness, we can replace the bound 2−m on the measure
of the m-th component by αm, and bound the number of changes by O(1/αm).
Thus, the important condition is being balanced in the sense that the measure
bound times the bound on the number of changes is O(1). We emulate a test
(Gm)m∈N by a test (Hi)i∈N as in Definition 12 by letting Hi[s] = Gm[s], where m
is least such that 2−i ≥ αm > 2−i−1.
Difference randomness and Turing incompleteness. Franklin and Ng have re-
cently introduced difference randomness, where the m-th component of a test is
a class of the form Am−Bm with measure at most 2−m, for uniformly given Σ0

1

classes Am, Bm. To pass such a test means not to be in Am − Bm for some m.
(We could replace the individual Bm in each component by B =

⋃
Bm. We may

also assume that the test is monotonic after replacing Am−Bm by
⋂
i≤mAi−B

if necessary.)

Proposition 14. Each balanced random set is difference random.
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Proof. Given a test (Am−Bm)m∈N, we may assume that λ(Am,t−Bm,t) ≤ 2−m

for each t (these are the clopen sets effectively approximating Am, Bm). At stage
t let i be greatest such that λBm,t ≥ i2−m, and let t∗ ≤ t be least such that
λBm,t∗ ≥ i2−m. Let Gm[t] = Am −Bm,t∗ . Then Gm changes at most 2m times.
Clearly Am − Bm is contained in the last version of Gm. For each t we have
λGm[t] ≤ 2−m+1, so after omitting the first component we have a balanced test.

ut

Franklin and Ng [5] show that for ML-random sets, being difference random
is equivalent to being Turing incomplete. Nonetheless, it is instructive to give a
direct proof of this fact for balanced randomness.

Proposition 15. Each balanced random set is Turing incomplete.

Proof. Suppose Z is ML-random and Turing complete. Then Ω = Γ (Z) for some
Turing functional Γ . By a result of Miller and Yu (see [1, Prop. 5.1.14]), there
is a constant c such that 2−m ≥ λ{Z : Ω �m+c≺ Γ (Z)} for each m. Now let
the version Gm[t] copy {Z : Ωt �m+c≺ Γt(Z)} as long as the measure does not
exceed 2−m. Then Z fails the balanced test (Gm)m∈N. ut

Balanced randomness and being ω-c.e. tracing. The following (somewhat weak)
highness property was introduced by Greenberg and Nies [2]; it coincides with
the class G in [1, Proof of 8.5.17].

Definition 16. Z is called ω-c.e. tracing if each function f ≤wtt ∅′ has a Z-c.e.
trace TZx such that |TZx | ≤ 2x for each x.

Since we trace only total functions, by a method of Terwijn and Zambella
(see [1, Thm. 8.2.3]), the bound 2x can be replaced by any order function without
changing the class. Greenberg and Nies [2] show that there is a single benign cost
function such that each c.e. set obeying it is Turing below each ω-c.e. tracing
ML-random set. In particular, each strongly jump-traceable, c.e. set is below
each ω-c.e. tracing set.

Fact 17. No superlow set Z is ω-c.e. tracing.

To prove this, one notes that TZx is truth-table below ∅′ uniformly in x.

Theorem 18. Let Z be a ML-random set. If Z is not balanced random then Z
is ω-c.e. tracing. In particular, Z is not superlow.

Proof. Fix a balanced test (Gm)m∈N such that Z ∈
⋂
mGm. Suppose we are

given a function f ≤wtt ∅′ with computable use bound h. Thus there is a com-
putable approximation f(x) = lims fs(x) with at most h(x) changes. Let (mi)i∈N
be a computable sequence of numbers such that∑

i h(i)2−mi <∞,
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for instance mi = blog h(i) + 2 log(i+ 1)c.
To obtain the required trace for f , we define an auxiliary Solovay test S

of the form
⋃
Si. We put [σ] into Si if there are 2i versions Gmi

[t] such that
[σ] ⊆ Gmi

[t]. Clearly Si is uniformly Σ0
1 . We show that λSi = O(2−i) for each i.

Let (σk) be a prefix free set of strings such that
⋃
k[σk] = Si. Then

O(1) ≥
∑
s

λGmi
[s] ≥

∑
s

∑
k

λ(Gmi
[s] ∩ [σk]) ≥ 2i

∑
k

λ[σk] = 2iλSi.

To define the c.e. operators TZi , when Z enters Gmi
[s], put fs(i) into TZi . Since

Z passes the Solovay test S, for almost every i we put at most 2i numbers into
TZi .

To show that f is traced, we define a further Solovay test R. When fs(i) 6=
fs−1(i), put the current version Gmi

[s] into R. Note that R is a Solovay test
because

∑
i h(i)2−mi < ∞. Since Z passes the test R but fails (Gm)m∈N, we

have f(i) ∈ TZi for almost every i. For, if fs(i) 6= fs−1(i) then Z must enter
a further version Gm[t] for some t ≥ s, so we can put the new value fs(i) into
TZi . ut

By Theorem 10 we have the following result.

Corollary 19. There is an ω-c.e. tracing low ML-random set.

Proof. Applying Theorem 10 to a Π0
1 class P ⊆ MLR, we obtain a low ML-

random set that is o(2n)-c.e. This set is not balanced random. Then, by Theo-
rem 18 the set is ω-c.e. tracing. ut

Recall that any incomplete ML-random set is difference random. So the proof
also shows that some difference random set is not balanced random.

We do not know at present whether the converse of Theorem 18 holds: if Z is
balanced random, does it fail to be ω-c.e. tracing? Any LR-complete set is ω-c.e.
tracing by [1, Thm. 8.4.15]. So this would imply that a balanced random set is
not LR-complete; in particular, no K-trivial set can be cupped above ∅′ via a
balanced random set. By the method of [1, Lem. 8.5.18], we have the following
somewhat weaker converse of Theorem 18.

Theorem 20. Suppose Z is an O(h(n)2n)-weak Demuth random set for some
order function h. Then Z is not ω-c.e. tracing.
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