
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 157.92.4.6

This content was downloaded on 28/04/2014 at 18:31

Please note that terms and conditions apply.

Collision problems treated with the Generalized Hyperspherical Sturmian method

View the table of contents for this issue, or go to the journal homepage for more

2014 J. Phys.: Conf. Ser. 488 012049

(http://iopscience.iop.org/1742-6596/488/1/012049)

Home Search Collections Journals About Contact us My IOPscience

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CONICET Digital

https://core.ac.uk/display/158827641?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/488/1
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Collision problems treated with the Generalized

Hyperspherical Sturmian method

D. M. Mitnik1,3, G. Gasaneo2,3, L. U. Ancarani4 and M. J. Ambrosio2

1 Instituto de Astronomı́a y F́ısica del Espacio (IAFE), and Departamento de F́ısica, FCEyN,
Universidad de Buenos Aires, Argentina
2 Departamento de F́ısica, Universidad Nacional del Sur, 8000 Bah́ıa Blanca, Buenos Aires,
Argentina
3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas, Argentina
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Abstract.

An hyperspherical Sturmian approach recently developed for three–body break–up processes
is presented. To test several of its features, the method is applied to two simplified models.
Excellent agreement is found when compared with the results of an analytically solvable problem.
For the Temkin–Poet model of the double ionization of He by high energy electron impact,
the present method is compared with the Spherical Sturmian approach, and again excellent
agreement is found. Finally, a study of the channels appearing in the break–up three–body
wave function is presented.

1. Introduction

The incorporation of appropriate boundary conditions on break–up three–body problems is a
very difficult task. Various approaches have been developed to provide ab initio solution of such
problems. Some of them, like the convergent close–coupling [1] or the J–Matrix [2] methods,
impose the boundary conditions explicitly. Other approaches, such as the exterior complex
scaling [3] or the Generalized Sturmian Functions (GSF) [4] approach, circumvent an explicit
imposition. In the latter methods, at large distances, the outgoing flux conditions are enforced
separately on each one of the outgoing particles (e.g. two electrons) coordinates. It turns out that
this generates for the scattering wave function an overall hyperspherical outgoing asymptotic
shape. Even though this is the expected behavior for a three–body collision problem, it is
not completely clear how this front is generated. Hyperspherical coordinates should provide,
in principle, the most effective framework to generate a basis set to build up, naturally, this
expected asymptotic behavior. However, as different ionization channels are simultaneously
present and coupled (single ionization with or without excitation, and double ionization) it is
very useful to investigate which scheme (spherical or hyperspherical or a combination) is best
suited. In order to do so, and to identify the advantages of each, we have used the Generalized
Sturmian approach in both systems of coordinates (for a review see [4] and [5]). It consists
of a spectral method with the essential feature that the asymptotic behavior can be explicitly
imposed on the basis functions. In this way, Generalized Sturmian functions need to expand
only the reaction zone, rendering the method very efficient.
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2. Theory

2.1. General scattering problem

In any scattering process there is always a prepared initial state defining the initial channel, and
a final state which is the result of the collision itself. When performing a quantum study of the
process within a time–independent representation, one can split the wave function Ψ as the sum
of two terms Ψ = Ψ0 + Ψsc. The initial channel wave function Ψ0 satisfies an initial channel
hamiltonian. The scattering solution Ψsc, on the other hand, possesses all the information about
the collision problem and satisfies a driven Schrödinger equation

[H − E] Ψsc (r1, r2) = − [H − E] Ψ0 (r1, r2) ≡ ϕ (r1, r2) , (1)

where H is the three–body hamiltonian, and ϕ (r1, r2) is named the driven term. The Peterkop–
type asymptotic behavior [6]

Ψ+
sc (r1, r2) −→ A (r̂1, r̂2, α)

eiKρ+iγ ln(2Kρ)

ρ5/2
, (2)

should be imposed on the solution in the Ω0 region where all three particles are far from each
other. In Eq. (2), K =

√
2E defines the hyper–momentum, ρ =

√
r21 + r22 the hyper-radius and

α = tan−1(r2/r1) the hyperangle, and the hyperspherical Sommerfeld parameter is defined as

γ =
1

K

[
1

cosα
+

1

sinα
− 1√

1− r̂1 · r̂2 sin 2α

]
≡ C(ω5)

K
(3)

which clearly depends on the angular coordinates ω5 = {r̂1, r̂2, α}.

2.2. The Hyperspherical Generalized Sturmian method

The GHSF have been thoroughly described, e.g. in [7, 8]. Here we just recall that the kinetic–
energy operator reads

T = − 1

2μ

[
1

ρ5
∂

∂ρ

(
ρ5

∂

∂ρ

)
− Λ2

ρ2

]
(4)

where Λ2 is the grand orbital angular momentum. The interaction between all the particles

V (ρ, ω5) =
C(ω5)

ρ
. (5)

can be viewed as a Coulomb potential having a 1/ρ behavior and a charge depending on all the
angular variables.

To solve Eq. (1) we use the following expansion in terms of GHSF basis set [8, 9]

ΨNUM (ρ, α) =
1

ρ
5

2

∑
m

∑
n

an,m S+
n,m(ρ) Ωn(α) (6)

where Ωn(ω5) and Sn,m(ρ) are the angular and radial GSF, respectively. In this contribution we
deal only with S–wave models so that the Ωn(ω5) functions depend only on the α coordinate. In
particular we will use Ωn(α) functions being the eigenfunctions of the grand angular momentum,
Λ2Ωn(α) = (q2n−4)Ωn(α); the eigenvalues are (q

2
n−4) = λn(λn+4) with λn = 2n (n = 0, 1, . . .).

The hyperradial Sturmian functions satisfy the following equation[
− 1

2μ

∂2

∂ρ2
+

q2n − 1/4

2μρ2
+ U(ρ)− E

]
Sn,m(ρ) = βn,m Vg(ρ)Sn,m(ρ), (7)

where U(ρ) is called the auxiliary potential, Vg(ρ) the generating potential, βn,m are the
eignevalues while the energy E is externally fixed. By choosing a short range generating
potential, all hyperradial Sturmian functions will possess the same asymptotic behavior dictated
by the long range behavior of the auxiliary potential (outgoing behavior is taken in Eq. (6)).
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3. Application Example: a scattering model problem

Before tackling the full double ionization problem, we wanted to make sure that all developed
numerical tools were working properly and proceeded in the following way. Knowing that the full
Coulomb interaction involves C(ω5), we started first by analyzing a problem where the charge
is taken as a constant C(ω5) = C, and named this the model problem. Then, we increased the
difficulty by considering C(ω5) = C(α), i.e., a Temkin–Poet model. In this contribution, we first
present results of these two models and then some preliminary results corresponding to the full
problem.

3.1. Model Problem

In this case we considered the Coulomb potential C/ρ and a driven model source [9, 10]

ϕ(r1, r2) = e−aρ 1

2

[
sin(r1)

r1

sinh(r2)

r2
+

sin(r2)

r2

sinh(r1)

r1

]
, (8)

which simulates a symmetrized bound-free initial state multiplied by a Coulombic potential (a
is a parameter such that �(a) > 1). The proposed model three–body problem is non separable
in either spherical or hyperspherical coordinates. It has an analytical solution [9] which provides
a solid benchmark to test the proposed numerical expansion (6). The latter is built to have the
desired outgoing asymptotic behavior

lim
ρ→∞

Ψ+(ρ, α) = f(α)
eiKρ−iη ln(2Kρ)

ρ
5

2

, (9)

expected for a Coulomb scattering problem [6] (η = Cμ/K is the Sommerfeld parameter). This
limit provides an analytical expression also for the transition amplitude f(α). Numerically, for
the radial GSF, the auxiliary potential U(ρ) is taken to be equal to the interaction potential
C/ρ, while the generating potential Vg (ρ) is set as a Yukawa potential in ρ. With this choice,
asymptotically, Eq. (7) reduces to a Coulomb homogeneous equation providing all basis functions
(and thus the hypersherical GSF) a unique – and appropriate – asymptotic behavior

lim
ρ→∞

S+
n,m (ρ) ∝ eiKρ−iη ln(2Kρ). (10)

Then the transition amplitude can be easily extracted

f(α) =
∑
n

(∑
m

an,m

)
Ωn (α) (11)

and compared to the analytical result.
In Ref. [9, 10], several kinematic situations were studied and overall excellent agreement was

found between the numerical hyperspherical expansion ΨNUM (ρ, α) and the analytical solution.
An example is provided by Fig. 1.

The model problem allowed one to explore how the scattering wave function behavior is
modified for different hyperradial domains, and how far one should go to extract the transition
amplitude from the wave function itself. It was found that, although the driven term vanishes for
ρ > 5 a.u. for a = 2, the required hyperradial distances are very large, especially for low energies,
as illustrated in Fig. 2. As a rule of thumb, to obtain converged transition amplitudes one
should get the scattering solution up to ρσ > 3000/K, implying enormous distances. It should

XXVIII International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC 2013) IOP Publishing
Journal of Physics: Conference Series 488 (2014) 012049 doi:10.1088/1742-6596/488/1/012049

3



0 0.02 0.04 0.06 0.08 0.1

0.1236

0.1238

0.124

0.1242

0.1244

0 π / 8 π / 4 3 / 4 π π / 2
α

0.1

0.11

0.12

0.13

| f
(α

) |
2

Figure 1. The analytical (full line) and numerical (dotted line) transition amplitude for K = 1
a.u., are shown as a function of α. Inset: partial summations (different hyperangular quantum
numbers n in Eq. (11) for the numerical transition amplitudes, with 2 terms (dashed line), 3
terms (dot–dashed line), and 8 terms (dotted line).

be emphasized that with the GHSF method, we are able to reach the truly outgoing asymptotic
region, where no other numerical method (besides the propagations performed by Malegat et al
[11]) can handle the calculations. In this sense our hyperspherical approach is highly efficient in
comparison with spherical methods. It is worth noting that, in general, other methods cannot
reach the required asymptotic distances and therefore need to extrapolate the numerical wave
functions; our method will allow to explore the validity of such extrapolation technique. While
integral formulae succeed in providing transition amplitudes from a much smaller domain, it is
interesting to know how far it is necessary to go to really reach the asymptotic region.
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Figure 2. Squared amplitude versus the hyperradial distance ρσ at which the calculation is
performed: (left) K = 1 a.u. (E = 0.5 a.u.) and (right) K = 0.1 a.u. (E = 0.005 a.u.)

4. Double Ionization of He: Temkin–Poet model

As a second test we consider a Temkin-Poet model of the double ionization of He by fast electrons
[12]. As these may be described by plane waves, one ends up with a first order driven equation

[E −H] Φ(1)+
sc (r1, r2) = − 1

(2π)3
4π

q2
(−Z + eiq·r1 + eiq·r2

)
Φ(0) (r1, r2) , (12)
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where Φ(0) (r1, r2) represents the initial He target (Z = 2), and q is the momentum transfer.
Within a S–model approach, Eq. (12) becomes[

− 1

2r21

∂

∂r1

(
r21

∂

∂r1

)
− 1

2r22

∂

∂r2

(
r22

∂

∂r2

)
− Z

r1
− Z

r2
+

1

r>
− Ea

]
Φ+
sc (r1, r2) = F (r1, r2) , (13)

where the driven term reads

F (r1, r2) = − 1

(2π)3
4π

q2
[−Z + j0(qr1) + j0(qr2)] Φ

(0) (r1, r2) . (14)

To further simplify, in Ref. [12], the ground state of the S–wave model of He Φ(0) (r1, r2) was
chosen as the simple product of screened exponentials with variational charge Z = 1.6875.

Figure 3. Left: real part of the scattering wave function Φ
(1)+
sc (r1, r2) × ρ5/2 obtained with

GSF as a function of the ejected electrons radial coordinates r1 and r2, for E = 0.791 a.u. and

q = 0.24 a.u. Right: real part of Φ
(1)+
sc (ρ, α)× ρ5/2 obtained with GHSF.

The model equation (13) was numerically investigated [12] with both the spherical [5, 13] and
the hyperspherical GSF method. For the latter, expansion (6) was used with basis functions with
the desired asymptotic outgoing boundary condition (10) with charge Z. One of the kinematical
situations studied in [12] is for a momentum transfer q = 0.24 a.u. which corresponds to the
initial and final projectile energies of, respectively, Ei = 5599 eV and Ef = 5500 eV, and a
deflection of 0.450, used in the (e, 3e) Orsay experiment [14]. These values, together with the
exact ground state energy of the bound initial state, define the final two–electrons energy equal
to � 20 eV. For an equal energy sharing situation, this corresponds to 10 eV per electron, as
in the experiments [14]. It has to be noted that, no theoretical study of the full (e, 3e) problem
has yet managed to describe satisfactorily all the experimental data. What is more confusing
and difficult to explain, is that several ab initio methods provide different answers both in cross
sections shapes and magnitudes (see a review in Ref. [15]).

For the model (e, 3e) problem, the real part of the scattering solution (actually Φ
(1)+
sc × ρ5/2)

is presented in Fig. 3 as a function of r1 and r2. The left panel shows that the coupling of
products of spherical basis functions manage to generate, in the inner region, the appropriate
solution with a hyperspherical outgoing front (this was shown also for the (e, 2e) process [13]).
With the hyperspherical expansion (right panel), the hyperspherical wave front is naturally
generated by the basis. The two completely independent methods (and codes) are leading to
the same answer, and the double ionization channel is obtained by enforcing outgoing type flux
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conditions on the basis set. This agreement can be further appreciated through a more detailed
and quantitative comparison between both numerical methods. Fig. 4 shows a comparison
between both calculations for r1 = r2 (i.e., at α = π/4), a region in which – although the
amplitudes of the solutions are very low – the agreement between the results given by the two
numerical approaches is excellent.
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Figure 4. Real (left) and imaginary (right) part of the scattering wave function Φ
(1)+
sc × ρ5/2

as a function of the ejected electrons hyperspherical coordinate ρ, obtained with the spherical
(red, dotted) and hyperspherical (black, continuous) coordinates Sturmian expansions. α = π/4,
E = 0.791 a.u. and q = 0.24 a.u.

Within the same double ionization S–wave model, a detailed analysis of the scattering solution
has been recently presented [16]. The single continuum (single ionization) channels populate the
asymptotic domains Ωi (with i = 1, 2) [17] which correspond to the situation in which one of
the electrons is close to the nucleus, forming a bound state, and the other one is far away.
Let us consider, for instance, the Ω1 region, where the wave function should have the following
asymptotic form:

Φ+
sc,1 (q, r1, r2) →

r1→∞

1

2π

∑
n

Fn (knr̂1,q)
eiknr1−iη1,n ln(2knr1)

r1
φn(r2), (15)

with Fn (knr̂1,q) denoting the transition amplitude for that single ionization channel and the
eikonal corresponds to the ejected electron asymptotic behavior. The extraction of the ejected
electron functions is obtained by projecting the three–body Φ+

sc (r1, r2) function onto each
single electron He+ bound state φn(r2). Within the GSF formulation there is a particular
basis set which does contain those bound states, and makes the extraction of single continuum
channels a trivial matter [16]. In Fig 5, we present separately the contributions of the wave
function corresponding to the single ionization channels (up to n = 5) and the remainder of the
function. Note that the double continuum with its hyperspherical front remains unaffected by
this separation.

5. Double Ionization of He: full calculation

Although we are presently checking the convergence and agreement among the independent
implementations, we show some preliminary GSF results for the full double ionization of He
problem, going beyond the Temkin–Poet and L = 0 models.
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Figure 5. Separation of channels: single ionization (left) versus double ionization (right).

We have solved Eq. (12) again with q = 0.24 a.u.. In Fig. 6, we show the partial scattering
wave functions corresponding to some of the dominant pairs contribution: (l1, l2) = (0, 0)
coupling to a total L = 0, (l1, l2) = (0, 1) coupling to L = 1, (l1, l2) = (0, 2) coupling to
L = 2, and (l1, l2) = (1, 2) coupling to L = 1. As for the (e, 2e) or the model (e, 3e) processes,
the angular coupling of spherical GSF generates the outgoing Ω0 hyperspherical front for the
double continuum. It can be observed that the L = 1 waves produces the major contribution
to double ionization process. This can be easily related to the fact that in the low momentum
transfer limit this process has to resemble the double photoionization dipole limit, and within
this regime there is a ΔL = 1 selection rule. While for (e, 3e) the same rule does not apply
strictly, even at small q values, some trace can be found in the presented partial waves.

For the double ionization channel, in view of the Ω0 region Peterkop asymptotic behavior in
which hyperspherical coordinates appear naturally, an hyperspherical formulation is expected
to be optimal. In the Ωi (i = 1, 2) regions, which correspond to single ionization channels,
spherical coordinates are more natural and therefore the spherical formulation is presumably
more adequate and efficient [16]. This said, both schemes can be used for either channel.
Indeed, similarly to what observed for the (e, 3e) S–wave model (See Fig. 3 and 4), we also
found beautiful mutual agreement in both Ω0 and Ωi regions for the full physical problem. The
two formulations (GSF and GHSF) are somehow complementary to understand the underlying
physics of break–up problems. A comparison between them is presently being studied, and
the advantages of each scheme being analyzed in separate spatial domains. Differential cross
sections are also being tested within different numerical implementations and will be presented
elsewhere.

6. Summary

The results presented in this contribution showed that the hyperspherical Sturmian approach is
very efficient. First of all it provides a natural way to describe three–body break–up problems
and in particular the Peterkop–type behavior (2) in the Ω0 region. Second, the method has
been tested successfully with two model problems, leading to indistinguishable results from
those obtained with a spherical approach which is supposed to work better in the Ωi regions.
The same conclusions are obtained for the real double ionization problem.
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Figure 6. Partial wave contributions of the scattering wave function for double ionization of
He (all multiplied by 10000). From left to right, first row: (l1, l2) = (0, 0) coupling to a total
L = 0, (l1, l2) = (0, 1) coupling to L = 1. Second row: (l1, l2) = (0, 2) coupling to L = 2, and
(l1, l2) = (1, 2) coupling to L = 1.
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