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Abstract 1 

Eddies in the Southwestern Atlantic were detected from more than 18 years of 2 

satellite altimetry data using a modified version of the Okubo–Weiss method. The 3 

spatial distribution and polarity of eddies were examined. A larger concentration of 4 

cyclonic (anticyclonic) eddies was found on the left (right) side when looking 5 

downstream on some of the largest current systems in the region, such as the South 6 

Atlantic Current, the anticyclonic circulation associated with the Zapiola Drift (ZD) 7 

and the northern branch of the Antarctic Circumpolar Current. In the region isolated 8 

by the anticyclonic Zapiola Current, 91% of eddies were cyclonic. The observed 9 

distribution of eddies is in agreement with the generation of eddies from meanders of 10 

the above-mentioned currents: cyclonic (anticyclonic) eddies might detach from a 11 

meander of the current on the left (right) side when looking downstream on the 12 

current. Furthermore, in the ZD area, the bottom topography plays a key role in 13 

determining the trajectory of eddies: the anticyclonic current associated with the ZD 14 

meanders and eventually generates a cyclonic eddy that enters the ZD region only 15 

across the northeastern border, where the gradient of potential vorticity is lower. 16 

Finally, average surface chlorophyll-a concentration inside cyclonic and anticyclonic 17 

eddies shows that the former have higher chlorophyll-a values. Thus, on average, the 18 

classical eddy-pumping theory explains the difference in chlorophyll-a concentration 19 

within eddies in the Southwestern Atlantic. 20 

  21 
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1. Introduction 1 

Eddies are important to all aspects of oceanography and often involve the overlap of 2 

research areas such as physical and biogeochemical oceanography. From a physical 3 

point of view their importance resides in the fact that they play an important part in 4 

the mixing processes in the surface layer of the ocean and for transporting energy, like 5 

heat. Eddies can contribute significantly to the transfer of the temperature and salinity 6 

characteristics of one region to another, very different, region. Thus they play an 7 

important role in the meridional overturning circulation, the strength of which is a key 8 

parameter for monitoring and predicting climate change [e.g. Mazllof et al., 2010; 9 

Farneti et al., 2010]. From a biogeochemical point of view, cold-core (cyclonic) 10 

eddies bring nutrients to the surface which become available for photosynthesis. 11 

Hence they can fertilize the upper ocean to support phytoplankton blooms. Eddies 12 

also play an important ecological role, since they can trap, transport and disperse 13 

different communities of organisms. Thus eddies play a crucial role at regional and 14 

global scales in several domains. Improving the knowledge of the spatial distribution 15 

and polarity of eddies will contribute to a better understanding of their role in the 16 

ocean. 17 

In the Southwestern Atlantic (SWA), the eddy kinetic energy can be as high as 1700 18 

cm2 s-2 (Figure 1). The confluence of the Malvinas Current (MC) and the Brazil 19 

Current (BC) near 38ºS, forms the Brazil/Malvinas Confluence region (BMC, 20 

hereafter), one of the most energetic regions of the world ocean [Gordon, 1981; 21 

Chelton et al., 1990]. The meanders, eddies and filaments in the BMC are 22 

extraordinary in terms of their shape, size and abundance compared to other regions 23 

of the ocean. High-resolution images of sea surface temperature (SST) and 24 

chlorophyll-a concentration suggest that the associated mesoscale processes enhance 25 

the productivity in the region [e.g. Barré et al., 2006; Saraceno et al., 2005].  26 

The BMC is characterized by the confluence of the Subantarctic Front (SAF) and the 27 

Subtropical Front (STF), which are, respectively, the northern limit of the subantarctic 28 

waters and the southern limit of the subtropical waters. The region where the SAF and 29 

STF merge at about 39ºS is usually referred to as the Brazil/Malvinas front [e.g. 30 

Saraceno et al., 2004]. A scheme of the upper circulation of the region, including the 31 

position of these fronts, is shown in Figure 1. The MC is part of the northern branch 32 

of the Antarctic Circumpolar Current (ACC), which carries the cold (<7ºC at the 33 



 4

surface in winter) and relatively fresh Subantarctic Mode Water (SAMW) 1 

equatorwards along the western edge of the Argentine continental shelf. The BC 2 

flows polewards along the continental margin of South America as part of the western 3 

boundary current of the South Atlantic subtropical gyre. It transports the warm 4 

(higher than 26ºC at the surface) and salty South Atlantic Central Water (SACW). 5 

After its confluence with the MC, the BC separates into two branches [Peterson and 6 

Stramma, 1991]. One branch turns to the north forming a recirculation cell while the 7 

other branch flows southwards and returns northeastwards at about 44ºS. This second 8 

branch is commonly referred to as the overshoot of the Brazil Current and, east of 9 

45ºW, it forms the South Atlantic Current [Peterson and Stramma, 1991]. After the 10 

collision with the BC, the main flow of the MC describes a sharp loop forming the 11 

Malvinas return flow. The Malvinas return flow flows southwards and turns eastwards 12 

at 49ºS. 13 

Further towards the center of the South Atlantic, an important feature that affects the 14 

large-scale circulation is the presence of a large zonal sedimentary deposit known as 15 

the Zapiola Drift (ZD). The effect of this submarine feature on the surface of the 16 

ocean is clearly observed in the satellite images of SST, SST gradient, chlorophyll-a 17 

and sea surface height (SSH) [Saraceno et al., 2005]. The anticyclonic circulation 18 

around the ZD is eddy-driven [Dewar, 1998]. A meridional transport of 80 Sverdrups 19 

(1 Sverdrup = 106 m3 s-1) on the western and eastern flanks of the ZD with southgoing 20 

and northgoing currents, respectively, of about equal magnitude, has been estimated 21 

from in situ measurements during the WOCE A11 cruise [Saunders and King, 1995b]. 22 

Satellite altimetry data [Saraceno et al., 2009] and model outputs [Bigorre and Dewar, 23 

2009; Venaille et al., 2011] suggest that the anticyclonic circulation associated with 24 

the ZD is characterized by an important interannual variability. Despite the 25 

importance of eddies in the ZD circulation, a precise description of the interaction 26 

between eddies and the anticyclonic circulation has not been provided yet.  27 

Eddies have been detected in the Southwestern Atlantic since the first global satellite 28 

infrared images of SST were acquired [Legeckis and Gordon, 1982]. Despite their 29 

high spatial resolution, sea surface temperature (SST) images are limited by the cloud 30 

coverage. In contrast, satellite radar altimetry sensors provide “cloud-free” SSH 31 

images. Using a combination of along-track SSH, climatological temperature and 32 

salinity fields, Lentini et al. [2006] showed that 40 warm-core eddies were released by 33 

the BC in the period 1993-1998. Analysis of gridded SSH maps suggested that a 34 
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much larger number of eddies is present in the region [Saraceno, 2010]. Mesoscale 1 

surface circulation can be accurately estimated from SSH data when two or more 2 

satellite missions are used to construct gridded fields [Pascual et al., 2006; Chelton et 3 

al., 2011a]. Thus, gridded maps of SSH data are particularly useful in the study of 4 

mesoscale structures and of the interaction between mean currents and eddies in the 5 

ocean. Several studies have therefore used satellite SSH data to detect and track 6 

eddies in the ocean [e.g. Chaigneau et al., 2008; Chaigneau et al., 2009; Chelton et al., 7 

2011a]. 8 

We took advantage of the 18-year-long altimetry time-series to detect eddies and track 9 

them in the Southwestern Atlantic. We used one of the most popular techniques to 10 

detect eddies, the Okubo–Weiss (OW) algorithm [Okubo, 1970; Weiss, 1991; Isern-11 

Fontanet et al., 2003]. The OW algorithm is based on physical criteria, whereas other 12 

methods of eddy detection are more geometrical. Because of the complex nature of 13 

the flow field in the Southwestern Atlantic and in order to distinguish eddies from 14 

meanders we had to modify the OW method slightly. We validated the modified 15 

method and then applied it to the whole altimetry time-series. We examined the 16 

distribution of eddies and of eddy polarity and discuss their relation with the 17 

circulation in the region.  18 

The article is organized as follows. Section 2 provides a brief description of the 19 

datasets. The methodology and the validation strategy are explained in section 3. 20 

Section 4 presents and discusses the results. Section 5 summarizes the results and 21 

outlines perspectives. 22 

23 
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2. Data 1 
 2 
2.1 Satellite sea-level anomaly 3 

We used the reference, delayed time-series of the gridded data fields of sea level 4 

anomaly (SLA) produced by Ssalto/Duacs and distributed by AVISO 5 

(www.aviso.oceanobs.com). SLA AVISO fields are computed with reference to a 6 

mean for the period 1993–1999. We extracted the gridded data fields of SLA for the 7 

region of interest (60ºW–35ºW, 50ºS–35ºS) from the global SLA fields for the period 8 

14 October 1992–1 December 2010 (18+ years).  9 

Satellite altimetry missions have accurately determined sea surface height (SSH) since 10 

the launch of the TOPEX/Poseidon (T/P) satellite in 1992 [Fu and Cazenave, 2001]. 11 

Six satellite altimetry missions (Jason-1, ERS-1, ERS-2, Envisat, GFO and Jason-2) 12 

have been launched since then. The processing of along-track data from the altimetric 13 

missions into gridded fields of SSH was described by Le Traon et al. [2003]. The 14 

reference time-series always uses two contemporary satellite missions to construct the 15 

interpolated SSH fields: one in a 10-day repeat orbit (T/P, followed by Jason-1 and 16 

Jason-2) and another one in a 35-day repeat orbit (ERS-1, followed by ERS-2 and 17 

Envisat). The time-series is produced weekly on a 1/3°×1/3° grid in a Mercator 18 

projection. The objective procedure to obtain the gridded fields of SSH by AVISO 19 

includes a spatial filtering that has half-power filter cut-off wavelengths of about 2º in 20 

latitude and 2º in longitude, which corresponds to an e-folding radius of about 0.4º, or 21 

about 40 km at mid-latitudes [Chelton et al., 2011a]. The dataset can then be used to 22 

detect eddies whose radii are larger than 40 km. We only considered eddies detected 23 

offshore in depths greater than 200 m. Indeed, intrinsic difficulties affect the 24 

corrections applied to the altimeter data on the Patagonian shelf (e.g. wet tropospheric 25 

component, tidal component) and data are usually flagged as unreliable within a 26 

certain distance of the coast. Moreover, the interpolation of along-track data provides 27 

only marginal resolution of high-frequency and small-scale structures which are 28 

abundant on the Patagonian shelf [Acha et al., 2004].  29 

 30 

2.2 SeaWiFS-derived chlorophyll-a concentrations31 

Near-surface chlorophyll-a concentrations used in this study consist of 8-day, 9-km 32 

gridded estimates derived from satellite measurements of ocean color by the Sea-33 
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viewing Wide Field-of-view Sensor (SeaWiFS) [McClain et al., 1998] using the 1 

Garver–Siegel–Maritorena (GSM) semi-analytical ocean color algorithm [Garver and 2 

Siegel, 1997; Maritorena et al., 2002]. These chlorophyll-a concentration fields are 3 

available online at 4 

ftp://ftp.oceancolor.ucsb.edu/pub/org/oceancolor/MEaSUREs/Seawifs/. Despite the 5 

fact that cloud cover places a strong limitation on this dataset, the composite average 6 

minimizes the cloud-cover problem and keeps a reasonable time resolution to allow 7 

detection of mesoscale features in the ocean surface layer. Color images are used in 8 

the validation strategy described in Section 3.3 and to composite chlorophyll-a 9 

concentrations within eddies of the same polarity. The most common explanation for 10 

the different chlorophyll-a concentration in the eddy interior is that the geostrophic 11 

adjustment required to maintain the circulation implies a thermocline rise inside the 12 

cyclonic eddies and a depression in the anticyclonic eddy. When the nutricline and the 13 

thermocline are coincident, then enhanced production is expected within cyclonic 14 

eddies. However this simple explanation has its shortcomings: complex non-linear 15 

biophysical dynamics control the phytoplankton growth, which depends on the critical 16 

balance of stirring, mixed-layer depth, stability of the water column, temperature and 17 

availability of light.  18 

 19 

2.3 Surface-buoy trajectories 20 

Satellite-tracked drifter data used in this work are part of the global data set available 21 

from the Drifter Data Assembly Center (DAC) at the National Oceanographic and 22 

Atmospheric Administration's Atlantic Oceanographic and Meteorological Laboratory 23 

(NOAA/AOML). The data set is public and can be downloaded from AOML’s ftp 24 

server (ftp://ftp.aoml.noaa.gov/phod/pub/buoydata).  25 

Quality control at DAC involves the interpolation of the raw fixes (16 to 20 satellite 26 

fixes per day per drifter) uniformly at six-hour intervals using a kriging interpolation 27 

scheme [Hansen and Poulain, 1996]. The data from drifters with no drogue attached 28 

were discarded, as were all interpolated positions with an uncertainty greater than 1 29 

km. The remaining trajectories were low-pass-filtered with a 2-day Gaussian filter in 30 

order to remove tidal fluctuations and other high-frequency variability of no interest 31 

in the present study. The Ekman component, estimated following Ralph and Niiler 32 
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Results (not shown) obtained with the classical OW algorithm described above 1 

indicated that several eddies were identified in regions where non-closed contours of 2 

SLA were present. This happens in regions where a strong curvature of the 3 

geostrophic velocities exists; i.e. where strong meanders are present. The 4 

Brazil/Malvinas Confluence and overshoot regions are the two regions where most of 5 

the eddies corresponding to non-closed contours were detected. To overcome this 6 

difficulty we adopted the following strategy: Once we obtained the center of the eddy 7 

by applying the OW algorithm described above, we looked for the corresponding 8 

SLA value and searched for the highest (lowest) closed contour for cyclonic 9 

(anticyclonic) eddies. The center of the eddy was then re-estimated based on the new 10 

contour. We stopped the algorithm when one of the following two conditions first 11 

arose: (i) the length of the eddy contour was larger than the previous one by more than 12 

7 pixels; (ii) the distance between any pair of points within the contour considered 13 

must be less than 400 km. These two conditions avoid cases of multiple centers and 14 

preserve the usual notion of a compact form for rotating vortices. The second 15 

condition is the same as in Chelton et al. [2011a]. We then estimated the amplitude of 16 

each eddy as the absolute difference between the SLA at the center of the eddy and 17 

the average of the SLA at the corresponding contour. We considered only eddies with 18 

amplitudes greater than 2 cm. The 2-cm threshold was chosen after a sensitivity study 19 

(section 3.3).   20 

The simple technique described above combines the physical criteria of the OW 21 

method with the conventional geometric definition of an eddy as a closed contour of 22 

SLA. 23 

3.2 Eddy tracking 24 

The eddy-tracking algorithm was adapted from Penven et al. [2005] and follows the 25 

approach used by Chaigneau et al. [2008]. The method minimizes a distance D 26 

between the detected eddies of two consecutive maps. For each eddy (e1) identified 27 

on a given map at time t1 and for each eddy (e2) identified on the next map at time t2 28 

and rotating in the same sense as e1, the non-dimensional distance De1;e2 is defined as: 29 

 (8)
 30 

 31 



 10

where �D is the spatial distance between e1 and e2, and �R, �  and �EKE are, 1 

respectively, the radius, the vorticity and the eddy kinetic energy (EKE) differences 2 

between e1 and e2. D0, R0, 0 and EKE0 are, respectively, the characteristic length 3 

scale (D0 = 100 km), the characteristic radius (R0 = 50 km), the characteristic vorticity 4 

( 0 = 10-6 s-1) and the characteristic EKE (EKE0 = 100 cm2 s-2). De1;e2 represents the 5 

degree of similarity between two eddies (the smaller the value,  the higher the 6 

similarity between e1 and e2). Thus, the algorithm selects the eddy pair (e1, e2) that 7 

minimizes De1;e2 and considers this pair to be the same eddy that is tracked from t1 to 8 

t2. To avoid jumping from one track to another, the search distance, �D, was 9 

restricted to 150 km. Eddies may also disappear between consecutive maps, 10 

particularly if they pass into the gaps between satellite ground tracks. To minimize 11 

this problem, we searched for the same eddy for two weeks after its disappearance.12 

3.3 Validation strategy 13 

To determine the accuracy of the methodology described above we applied an 14 

objective validation protocol similar to the one described by Chaigneau et al. [2008]. 15 

The location and number of eddies detected with the modified OW method were 16 

compared with the location and number of eddies detected by two different methods, 17 

one using drifting buoys (method A1), the other using composite images of 18 

chlorophyll-a concentration and SLA (method B1). The two methods are described 19 

below. An example illustrating eddies detected by the three methods (modified OW, 20 

A1 and B1) is shown in Figure 2.  21 

3.3.1 Method A1: eddy detection using drifting buoys22 

We selected buoy trajectories that clearly showed loops suggesting eddy-trapping, 23 

that is trajectories that made more than two complete loops (clockwise or 24 

anticlockwise) in a geographical region no larger than 3° by 3°. This way, fifty-two 25 

trajectories were selected. For each section of the trajectory considered as 26 

corresponding to an eddy, the center and radius were computed taking into account 27 

the positions of the buoy in the region where the buoy made at least two complete 28 

loops. The center was estimated as the intersection of the average latitude and 29 

longitude of the selected buoy positions. The radius was estimated as half of the 30 

largest distance between positions. 31 

�

�

�
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3.3.2 Method B1: eddy detection using images of chlorophyll-a concentration and 1 

SLA 2 

Ten randomly selected maps of SLA were used in combination with the 3 

corresponding chlorophyll-a concentration images. An example is shown in Figure 2. 4 

We chose the center and radius of each vortex present in the ten composite images by 5 

a careful inspection of the closed contours of SLA and the spatial distribution of 6 

chlorophyll-a concentration. Each composite image was displayed in a PC screen and 7 

using an interactive program we selected the center and radius of each eddy. We 8 

repeated the procedure separately for cyclonic and anticyclonic eddies.  9 

3.3.3 Comparison strategy 10 

To quantify the differences between the number of eddies detected by methods A1 11 

and B1 with those detected by the modified OW method, we computed, for the 12 

cyclonic and anticyclonic eddies separately, the intersection and complementary areas 13 

of each eddy. If the intersection area was larger than 50% of the complementary area, 14 

we considered the eddy detection to be correct. A sensitivity study (results not shown) 15 

in which we modified the radius and position of two overlapping eddies showed us 16 

that the 50% value is a good choice for the correct detection of eddies whose radii do 17 

not differ by more than 50% and for which the distance between the centers is shorter 18 

than the average of the two eddies’ radii.  19 

While method A1 could only be used to compare 52 eddies, we counted a total of 223 20 

eddies in the 10 images selected at random (method B1). Results are presented in 21 

Section 4.1.  22 

 23 

4. Results  24 

4.1 Validation 25 

As discussed in the data section (2.1), we do not consider the continental platform. 26 

The total number of eddies detected by each method (A1, B1, OW) and their polarity, 27 

whether cyclonic or anticyclonic, are reported in Table 1. 28 

According to the criteria defined in section 3.3.3, of the 52 eddies detected using 29 

method A1 (drifting buoys), 42 matched those detected by the OW method, leading to 30 

a 81% agreement between the A1 and OW methods.  31 
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The B1 method (composite color images and SLA maps) and the OW method 1 

detected 223 and 264 eddies, respectively, in the 10 randomly selected images that 2 

lead to an agreement of 80% between the A1 and OW methods. Inspection of the 41 3 

mismatched eddies showed that they were randomly distributed and equally 4 

proportioned between cyclonic and anticyclonic ones. On the other hand, methods B1 5 

and OW both gave a slightly larger number of cyclonic than anticyclonic eddies 6 

(Table 1).  7 

Thus, the comparison of the OW method with methods A1 and B1 suggests that the 8 

uncertainty associated with the automated eddy-detection methodology used in this 9 

work is less than 20%. Detecting eddies with amplitudes smaller than 2 cm led to 10 

larger differences between the methods, so we kept the 2-cm threshold, which 11 

corresponds to the accuracy of SLA maps. We consider that the modified OW method 12 

is validated and applied it to the entire altimetric time series.    13 

 14 

4.2 Eddy distribution 15 

Figure 3 shows the distribution of cyclonic (C) and anticyclonic (A) eddies in the 16 

Southwestern Atlantic. First, there are more C than A eddies inside the area defined 17 

by the ZD. In the rectangular box contained inside the longest potential vorticity 18 

contour that encloses the ZD (see Figure 3), the number of C eddies is 10 times 19 

greater than the number of A eddies (182 and 18, respectively, for the period 20 

considered). On the other hand, just outside the ZD, the number of A eddies (236) is 21 

greater than the number of C eddies (180). The region defined as outside the ZD was 22 

estimated as a one-degree margin that follows the closed potential vorticity contour 23 

depicted in Figure 3. The two results described above are compatible with the 24 

following explanation, schematically shown in Figure 4. The ZD is a dynamically 25 

isolated region [Dewar, 1998; Saraceno et al., 2005, 2009] which is contoured by an 26 

A circulation. We propose that eddies that can enter the ZD isolated area are 27 

detachments attributable to meanders in the A circulation associated with the ZD 28 

(Figure 4). This mechanism may also explain why the number of A eddies is higher 29 

than the number of C eddies just outside the ZD area. The eddy-formation mechanism 30 

is the same as that used to explain the formation of A (C) eddies north (south) of the 31 

Gulf Stream in the North Atlantic [e.g. Schmitz and Holland, 1982]. 32 
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Second, as expected, the number of eddies is maximum in regions where the EKE is 1 

higher, such as the BMC region or the region between the SAF and the ZD, south of 2 

46ºS (Figure 1 and Figure 3). C eddies are more numerous north of the STF, while A 3 

eddies are more numerous along or south of the STF (Figure 3). Meanders of the BC 4 

and the consequent generation of A (C) eddies south (north) of the mean position of 5 

the STF is a potential mechanism explaining the distribution of eddies in the BMC 6 

region. Detachments of eddies from meanders of the Antarctic Circumpolar Current 7 

(ACC), which flows westwards along the SAF, may also explain the larger 8 

concentration of C eddies north of the SAF between 50ºW and 35ºW (Figure 3). 9 

However, a larger concentration of A eddies south of the SAF is not observed. Two 10 

spots centered approximately at 50ºS, 48ºW and 50ºS, 37ºW with a significant 11 

number of eddies (both C and A) are located south of the SAF and correspond to 12 

regions where the sea floor is shallower than it is in the surrounding regions, 13 

enhancing the formation of meanders and eddies. This is also reflected by large values 14 

of EKE (Figure 1).15 

Third, eddies are mostly observed within the region with potential vorticity larger 16 

than  –2.1 × 10-8 m-1 s-1 (Figure 3). Indeed, the –2.1 × 10-8 m-1 s-1 potential vorticity 17 

contour appears as a barrier for eddies except for the two locations south of the SAF 18 

mentioned above and for the region north of Brazil/Malvinas front. The modified OW 19 

algorithm did not find eddies either in the MC itself or in the Malvinas return-flow 20 

area. Evidently, the Brazil/Malvinas front is a barrier for eddies. The position of the 21 

Brazil/Malvinas front, indicated in Figure 3, has been estimated from infrared sea 22 

surface temperature images [Saraceno et al., 2004], hence a completely independent 23 

dataset.   24 

Fourth, there is a local maximum in the number of C eddies centered just over the top 25 

of the ZD; that is, where the ZD reaches its maximum height (see Figure 3 at 44.5ºW, 26 

45.5ºS). This can be explained by considering that, once C eddies are generated inside 27 

the ZD area, the bottom topography favors their location over the top of the ZD: 28 

assuming that bottom friction is weak, the conservation of potential vorticity implies 29 

that a vorticity anomaly travelling upslope would need to decrease its relative 30 

vorticity (neglecting the beta effect for simplicity), so that anticyclones would 31 

weaken, whereas cyclones would be reinforced on their way towards the peak of the 32 

ZD.  33 
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Finally, comparison of potential vorticity contours (Figure 5) with the trajectories of 1 

the C and A eddies that we could follow for more than 6 weeks (Figure 6) also 2 

suggests a relevant observation: most of the C eddies that enter the ZD region did so 3 

from the northeastern flank. This is the region where the slope of the potential 4 

vorticity contours is less pronounced (Figure 6). It is therefore more likely that the A 5 

current associated with the ZD is able to meander more vigorously in this region or, in 6 

other words, is less controlled by the topographic gradient that defines the ZD. As a 7 

consequence, C eddies generated as illustrated in Figure 4 enter the ZD area more 8 

frequently on the northeastern flank of the ZD region.  9 

 10 

4.3 Temporal evolution of cyclonic eddies inside the Zapiola Drift area 11 

The time-series of the number of C eddies inside the ZD area suggests that eddies 12 

entered at specific dates (Figure 7). The time-series is compared with an estimation of 13 

the transport around the ZD (Figure 7). Using satellite altimetry data for the period 14 

1993–2006, Saraceno et al. [2009] showed that the 4-year low-pass-filtered transport 15 

time-series associated with the ZD had a local minimum during the years 1998–2003. 16 

We extended the transport estimation to compare it with the time-series of the number 17 

of C eddies that enter the ZD area produced in this work (Figure 7). The comparison 18 

suggests that when the low-frequency component of the transport associated with the 19 

ZD is less than 25 Sverdrups, more eddies are able to enter the ZD area and, when the 20 

transport is larger than 25 Sverdrups, fewer C eddies enter the ZD area. On the other 21 

hand, the non-filtered transport time-series (not shown) does not significantly 22 

correlate at any time lag with the number of C eddies inside the ZD area. While the 23 

low-frequency transport may affect the distribution of eddies, an instantaneous 24 

response is not necessarily expected. In other words, the foregoing results suggest that 25 

the low-frequency component of the transport of the anticyclonic current associated 26 

with the ZD may be associated with the number of C eddies inside the ZD area, 27 

whereas this is not observed at higher frequencies. 28 

The yearly average temporal distribution of A eddies that entered the ZD area (18 in 29 

total) shows that a maximum of three eddies per year entered during the years 2003 30 

and 2007, whereas during the other years a maximum of two eddies per year entered 31 

(not shown). The low number of A eddies does not allow any robust statistical 32 
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analysis. Furthermore, trajectories of long-lived eddies (Figure 6) suggest that A 1 

eddies that entered the ZD area dissipated very quickly. 2 

3 

5. Summary and discussion 4 

Eddies in the Southwestern Atlantic are detected from satellite altimetry data using a 5 

modified version of the OW method. Distribution of eddies in the region shows two 6 

salient observations: (i) the number of C eddies detected inside the ZD area is ten 7 

times larger than the number of A eddies; and (ii) a larger number of A eddies were 8 

detected just outside the ZD area. We proposed that perturbations of the A circulation 9 

associated with the ZD may generate meanders which, when occurring inside the ZD 10 

area, could detach from the main current and generate a C eddy (Figure 4). A similar 11 

mechanism may explain the higher number of A eddies observed outside the ZD area.  12 

The absence of A eddies inside the ZD anticyclone is a strong indication that 13 

meandering is occurring. Although very few anticyclonic eddies made their way to 14 

the center of the ZD region, this happened when the associated circulation was at its 15 

weakest (Figure 7) and indicates the key role of the mean anticyclonic Zapiola 16 

Current in selecting what type of eddies can enter the ZD anticyclone.  17 

However, another explanation for a preference for cyclonic eddies near the ZD is 18 

linked to the conservation of potential vorticity, assuming that bottom friction is 19 

weak. Indeed a vorticity anomaly traveling upslope would need to decrease its relative 20 

vorticity, so that anticyclonic eddies would weaken, whereas cyclonic eddies would 21 

be reinforced on their way towards the ZD center. Figure 6 supports this mechanism, 22 

since it shows that anticyclones quickly disappear after entering the ZD area. 23 

The preferred path for C eddies to enter the ZD area is the northeastern side of the 24 

region, where the potential vorticity gradient is lower compared to other sides (Figure 25 

5). Thus, the distribution of eddies described in this work is coherent with an 26 

anticyclonic ZD circulation that might meander and release more eddies on the 27 

northeastern side of the region. 28 

As the elevation of the ZD results in a selection mechanism to filter A eddies, we 29 

could anticipate that a similar result should occur in other places with similar 30 

characteristics. In the North Atlantic, the Azores Plateau (AP) is an anomaly of the 31 
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Mid-Atlantic Ridge (MAR), located approximately at 40ºN, 30ºW. The AP appears as 1 

a local topographic elevation of roughly 1200 m altitude relative to the MAR, and a 2 

lateral extent of 1500 km in both the meridional and zonal directions, and therefore 3 

with similar characteristics to the ZD. Evidence also exists that there is an 4 

anticyclonic gyre over the AP [Klein and Siedler, 1989; Pollard et al, 1996], but of 5 

one to two orders of magnitude lower intensity in transport compared to the 6 

anticyclonic ZD Current (100 Sv, according to Saunders and King [1995a]). Since we 7 

do not estimate eddies in the AP region, we compared eddy censuses in both the ZD 8 

and AP regions by looking at figures from Chelton et al. [2011a]. Their figures 4a and 9 

8 clearly show that more cyclonic than anticyclonic eddies entered the ZD region, as 10 

we illustrated in the present article. A white spot coincident with the AP region is 11 

visible in their Figure 4a [Chelton et al., 2011a], clearly suggesting the bathymetric 12 

forcing. However, no predominance of a given eddy polarity is observed in the AP 13 

region (their Figure 8). This may be due to the difference in strength of the two 14 

anticyclonic currents associated with the seabed elevations.   15 

The prospects for continuing the work presented here include a study of the 16 

contribution of eddies to an explanation of the spatio-temporal distribution of 17 

chlorophyll-a in the Southwestern Atlantic. As a preliminary result, Figure 8 shows 18 

that the average surface chlorophyll-a concentration in C eddies is higher than that in 19 

A eddies. Thus, on average, the classical eddy pumping theory, i.e. uplift of the upper 20 

thermocline inside the eddy to bring nutrients into the euphotic zone [e.g. 21 

McGillicuddy et al., 1998; Siegel et al., 1999], explains the difference in chlorophyll-22 

a concentration in the two types of eddies in the SWA. However, careful inspection of 23 

the different mechanisms (e.g. eddy pumping, eddy advection, wind-forced Ekman 24 

pumping and submesoscale effects) that might explain the spatio-temporal 25 

distribution of the chlorophyll-a concentration forced by the eddies is necessary 26 

before assessing which mechanism makes the largest contribution. Given the wide 27 

range of eddy energy (e.g. 102 to 2 × 103 cm2 s-2) and the sharp contrasts in 28 

chlorophyll-a concentration (0.05 to 10 mg m-3), the SWA is a useful region to test 29 

the role of eddies in the chlorophyll-a distribution in different environments. 30 

 31 

  32 
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Tables 1 
 2 
 3 

Method Cyclonic Anticyclonic Total 
A1 23 29 52 
B1 118 105 223 
OW 137 127 264 

 4 
Table 1: Cyclonic, anticyclonic and total number of eddies detected by methods A1, 5 

B1 and the modified OW.  6 

 7 
 8 
 9 

10 
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Figure Captions 1 
 2 
Figures:  3 

Figure 1: Colors indicate the EKE values (units cm2 s-2) of sea-level anomalies for the 4 

period 1992–2010 estimated from satellite altimetry data (see text for details of the 5 

dataset). Black lines indicate potential vorticity isolines (units –1 × 10-8 m-1 s-1) and 6 

range from –2.1 × 10-8 m-1 s-1 to –1.92 × 10-8 m-1 s-1. The boldface closed potential 7 

vorticity contour centred at 43ºW, 45ºS corresponds to the –1.92 × 10-8 m-1 s-1 value 8 

and is used to represent the Zapiola Drift area [Saraceno et al., 2009]. The mean 9 

positions of the Subtropical Front (STF) and the Subantarctic Front (SAF) are from 10 

Saraceno et al. [2004] and are indicated by black and magenta dash-dotted lines, 11 

respectively. Representative positions of the Brazil Current (BC), Malvinas Current 12 

(MC), Malvinas Return Flow (MRF), Antarctic Circumpolar Current (ACC), South 13 

Atlantic Current (SAC) and overshoot region are indicated.  14 

 15 

Figure 2: a) chlorophyll-a concentration (mg m-3) in the background; thin black and 16 

red contour lines are SLA isolines contoured every 10 cm from –100cm to 0 cm and 17 

from +10 cm to +150 cm; the blue dotted line is the trajectory of the buoy # 2529260. 18 

b) and c) are enlarged regions from (a). Black (red) circles correspond to the cyclonic 19 

(anticyclonic) eddies detected by the OW method (boldfaced-line circles), method A1 20 

(dashed-line circle, see panel b) and method B1 (thin-line circles). On panel (b), 21 

black dots correspond to the part of the buoy trajectory considered to compute the 22 

date of the SLA and chlorophyll-a concentration images displayed (27 February 23 

2008). Colorbar on the right refers to the background chlorophyll-a concentration 24 

field and is common to the three panels. 25 

 26 

Figure 3: Normalized spatial distribution of the concentration of cyclonic (panel a) 27 

and anticyclonic (panel b) eddies in the SWA. The total number of eddies whose 28 

centers fall in the area of a given pixel is divided by the largest common value (36). 29 

Black and magenta lines are as in Figure 1 except for the boldface black line which 30 

here corresponds to the –2.1 × 10-8 m-1 s-1 potential vorticity contour.. The red line 31 

corresponds to the area considered in the count of the number of A and C eddies 32 

inside the ZD.  33 
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 1 

Figure 4: Schematic representation of the mechanism proposed to explain the larger 2 

number of C (A) eddies inside (outside) the ZD area. Left panel: The anticyclonic 3 

Zapiola Current (black arrows) may generate meanders inside (loop with blue 4 

arrows) and outside the ZD (loop with red arrows). Right panel: meanders may 5 

eventually separate from the main current, creating a C eddy (blue arrows) inside the 6 

ZD area and an A eddy (red arrows) outside the ZD area. 7 

 8 

Figure 5: Potential vorticity contours (units –1 × 10-8 m-1 s-1). Boldface black line 9 

corresponds to the –1.92 × 10-8 m-1 s-1
 contour. 10 

 11 

Figure 6: Trajectories corresponding to the cyclonic (panel a) and anticyclonic (panel 12 

b) eddies detected. SAF and STF are represented by magenta and black dash-dotted 13 

lines, respectively. The potential vorticity contour –1.92 × 10-8 m-1 s-1
 is plotted with a 14 

boldface black line.  15 

 16 

Figure 7: Number of cyclonic eddies inside the ZD area (black line) and a 4-year low-17 

pass-filtered transport time-series associated with the Zapiola Current (red line, units 18 

Sverdrups, 1 Sverdrup = 106 m3 s-1). 19 

 20 

Figure 8: Composite average of chlorophyll-a concentration within cyclonic (left 21 

panel) and anticyclonic (right panel) eddy interiors in a translating and normalized 22 

coordinate system. Only eddies with more than 50% of pixels without clouds have 23 

been considered.  24 

  25 
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 2 
Title: On eddy polarity distribution in the Southwestern Atlantic 3 
 4 
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 6 
 7 
Highlights 8 
 9 

� Eddies are detected from 18 years of satellite altimetry data. 10 
� Eddies are distributed unevenly according to their polarity. 11 
� Eddies polarity distribution is explained considering direction of the currents.  12 
� 91% of eddies are cyclonic inside the large Zapiola anticyclone. 13 
� Chlorophyll-a averaged inside eddies is larger into cyclonic eddies. 14 
 15 
 16 
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Article's reference number: DSRI 2127 1 
 2 
Title: On eddy polarity distribution in the Southwestern Atlantic 3 
 4 
Authors: Martin Saraceno and Christine Provost  5 
 6 
 7 
Highlights 8 
 9 

� Eddies in the Southwestern Atlantic are detected from 18 years of satellite 10 
altimetry data. 11 

� A larger concentration of cyclonic (anticyclonic) eddies is found on the left 12 
(right) side when looking downstream on some of the largest current systems 13 
in the region. 14 

� The observed distribution of eddies is in agreement with the generation of 15 
eddies from meanders of the currents. 16 

� In the region isolated by the anticyclonic Zapiola Current, 91% of eddies are 17 
cyclonic and enter through the region where the gradient of potential vorticity 18 
is lower. 19 

� Classical eddy-pumping theory explains the difference in surface chlorophyll-20 
a concentration within eddies: average values inside cyclonic eddies are larger 21 
than into anticyclonic ones.  22 
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