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Abstract. We extend our previous work on Poisson-like formulas for
subresultants in roots to the case of polynomials with multiple roots
in both the univariate and multivariate case, and also explore some
closed formulas in roots for univariate polynomials in this multiple roots
setting.

1. Introduction

In [DKS2006] we presented Poisson-like formulas for multivariate subre-
sultants in terms of the roots of the system given by all but one of the input
polynomials, provided that all the roots were simple, i.e. that the ideal gen-
erated by these polynomials is zero-dimensional and radical. Multivariate
resultants were mainly introduced by Macaulay in [Mac1902], after ear-
lier work by Euler, Sylvester and Cayley, while multivariate subresultants
were first defined by Gonzalez-Vega in [GLV1990, GLV1991], generalizing
Habicht’s method [Hab1948]. The notion of subresultants that we use in
this text was introduced by Chardin in [Cha1995].

Later on, in [DHKS2007, DHKS2009], we focused on the classical uni-
variate case and reworked the relation between subresultants and double
Sylvester sums, always in the simple roots case (where double sums are
actually well-defined). This is also the subject of the more recent articles
[RS2011, KS2012]. As one of the referees of the MEGA’2007 conference
pointed out to us, working out these results for the case of polynomials with
multiple roots would also be interesting.

This paper is a first attempt in that direction. We succeed in describing
Poisson like formulas for univariate and multivariate subresultants in the
presence of multiple roots, as well as to obtain formulas in roots in the
univariate setting for subresultants of degree 1 and of degree immediately
below the minimum of the degrees of the input polynomials: the two non-
trivial extremal cases in the sequence of subresultants. We cannot generalize
these formulas for other intermediate degrees, and it is still not clear for us
which is the correct way of generalizing Sylvester double sums in the multiple
roots case.

The paper is organized as follows: In Section 2 we recall the definitions
of the classical univariate subresultants and Sylvester double sums, and of
the generalized Wronskian and Vandermonde matrices. We then show how
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the Poisson formulas obtained in [Hon1999] for the subresultants in the
case of simple roots extend to the multiple roots setting by means of these
generalized matrices. We also obtain formulas in roots for subresultants in
the two extremal non-trivial cases mentioned above. In Section 3 we present
Poisson-like formulas for multivariate subresultants in the case of multiple
roots, generalizing our previous results described in [DKS2006].
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the MEGA 2009 Conference in Barcelona. Part of this work was done at the
Fields Institute in Toronto while the authors were participating in the Fall
2009 Thematic Program on Foundations of Computational Mathematics.

2. Univariate Case: Subresultants in multiple roots

2.1. Notation. We first establish a notation that will make the presentation
of the problem and the state of the art simpler.

Set d, e ∈ N and let A :=
(
α1, . . . , αd

)
and B :=

(
β1, . . . , βe

)
be two

(ordered) sets of d and e different indeterminates respectively.

For m,n ∈ N, set (d1, . . . , dm) ∈ Nm and (e1, . . . , en) ∈ Nn such that
d1 + · · ·+ dm = d and e1 + · · ·+ en = e, and let

A :=
(
(α1, d1); . . . ; (αm, dm)

)
and B :=

(
(β1, e1); . . . ; (βn, en)

)

(these will be regarded as “limit sets” of A and B when roots are packed
following the corresponding multiplicity patterns).

We associate to A and B the monic polynomials f and g of degrees d and
e respectively, and the set R(A,B), where

f(x) :=
d∏

i=1

(x− αi) and g(x) :=
e∏

j=1

(x− βj),

R(A,B) =
∏

1≤i≤d,1≤j≤e

(αi − βj), =
∏

1≤i≤d

g(αi)

with natural limits when the roots are packed

f(x) :=
m∏

i=1

(x− αi)di and g(x) :=
n∏

j=1

(x− βj)ej ,

R(A, B) =
∏

1≤i≤m,1≤j≤n

(αi − βj)diej =
∏

1≤i≤m

g(αi)di .

2.2. Subresultants and Sylvester double sums. We recall that for 0 ≤
t ≤ d < e or 0 ≤ t < d = e, the t-th subresultant of the polynomials
f = adx

d + · · ·+ a0 and g = bex
e + · · ·+ b0, introduced by J.J. Sylvester in

[Sylv1853], is defined as
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Srest(f, g) := det

d+e−2t

ad · · · · · · at+1−(e−t−1) xe−t−1f(x)
. . .

...
... e−t

ad · · · at+1 x0f(x)
be · · · · · · bt+1−(d−t−1) xd−t−1g(x)

. . .
...

... d−t

be · · · bt+1 x0g(x)

with a` = b` = 0 for ` < 0. When t = 0 we have Srest(f, g) = Res(f, g).
In the same article Sylvester also introduced for 0 ≤ p ≤ d, 0 ≤ q ≤ e the

following double-sum expression in A and B,

Sylvp,q(A,B; x) :=
∑

A′⊂A, B′⊂B
|A′|=p, |B′|=q

R(x,A′) R(x,B′)
R(A′, B′) R(A\A′, B\B′)
R(A′, A\A′) R(B′, B\B′)

,

where by convention R(A′, B′) = 1 if A′ = ∅ or B′ = ∅. For instance

(1) Sylv0,0(A,B; x) = R(A,B) =
∏

1≤i≤d,1≤j≤e

(αi − βj) = Res(f, g).

We note that Sylvp,q(A, B; x) only makes sense when αi 6= αj and βi 6= βj for
i 6= j, since otherwise some denominators in Sylvp,q(A,B;x) would vanish.

The following relation between these double sums and the subresultants
(for monic polynomials with simple roots f and g) was described by Sylvester:
for any choice of 0 ≤ p ≤ d and 0 ≤ q ≤ e such that t := p + q satisfies
t < d ≤ e or t = d < e, one has

(2) Srest(f, g) = (−1)p(d−t)

(
t

p

)−1

Sylvp,q(A,B; x).

This gives an expression for the subresultant in terms of the differences of
the roots —generalizing the well-known formula (1)— in case f and g have
only simple roots. However, when the roots are packed, i.e. when we deal
with A and B, the expression for the resultant is stable, i.e.

Res(f, g) =
∏

1≤i≤m, 1≤j≤n

(αi − βj)diej ,

while not only there is no simple expression of what Srest(f, g) is in terms
of differences of roots but moreover there is no simple definition of what
Sylvp,q(A,B; x) should be in order to preserve Identity (2). Of course, since
Srest(f, g) is defined anyway, Sylvp,q(A,B; x) could be defined as the result

Sylvp,q(A, B; x) := (−1)p(d−t)

(
t

p

)
Srest(f, g)

but this is not quite satisfactory because on one hand this does not clarify
how Srest behaves in terms of the roots when these are packed, and on the
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other hand, Sylvp,q(A,B; x) is defined for every 0 ≤ p ≤ d and 0 ≤ q ≤ e
while Srest is only defined for t := p + q ≤ min{d, e}.

In what follows we express some particular cases of the subresultant of
two univariate polynomials in terms of the roots of the polynomials, when
these polynomials have multiple roots. These are partial answers to the
questions raised above, since we were not able to give a right expression
for what the Sylvester double sums should be, even in the particular cases
we could consider. Nevertheless the results we obtained give a hint of how
complex it can be to give complete general answers, at least in terms of
double or multiple sums, see Theorem 2.7 below.

2.3. Generalized Vandermonde and Wronskian matrices. We need
to recall some facts on generalized Vandermonde and Wronskian matrices.

Notation 2.1. Set u ∈ N. The generalized Vandermonde or confluent (non-
necessarily square) u×d matrix Vu(A) associated to A =

(
(α1, d1); . . . ; (αm, dm)

)
,

[Kal1984], is

Vu(A) = Vu

(
(α1, d1); . . . ; (αm, dm)

)
:=

d

Vu(α1, d1) . . . Vu(αm, dm) u ,

where

Vu(αi, di) :=

di

1 0 0 . . . 0
αi 1 0 . . . 0
α2

i 2αi 1 . . . 0 u

...
...

...
...

αu−1
i (u− 1)αu−2

i

(
u−1

2

)
αu−3

i . . .
(

u−1
di−1

)
αu−di

i

with the convention that when k < j,
(
k
j

)
αk−j

i = 0.

When di = 1 for all i, this gives the usual Vandermonde matrix Vu(A).
When u = d, we omit the sub-index u and write V (A) and V (A).

For example

V
(
(α, 3); (β, 2)

)
=




1 0 0 1 0
α 1 0 β 1
α2 2α 1 β2 2β
α3 3α2 3α β3 3β2

α4 4α3 6α2 β4 4β3




and

V3((α, 3); (β, 2)) =




1 0 0 1 0
α 1 0 β 1
α2 2α 1 β2 2β


 .

The determinant of a square confluent matrix is non-zero, and satisfies,
[Ait1939],
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det
(
V (A)

)
=

∏

1≤i<j≤m

(αj − αi)didj .

In the same way that the usual Vandermonde matrix V (A) is related to
the Lagrange Interpolation Problem on A, the generalized Vandermonde
matrix V (A) is associated with the Hermite Interpolation Problem on A
[Kal1984]: Given {yi,ji , 1 ≤ i ≤ m, 0 ≤ ji < di}, there exists a unique
polynomial p of degree deg(p) < d which satisfies the following conditions:




p(α1) = 0! y1,0, p′(α1) = 1! y1,1, . . . , p(d1−1)(α1) = (d1 − 1)! y1,d1−1,
...

...
...

...
p(αm) = 0! ym,0, p′(αm) = 1! ym,1, . . . , p(dm−1)(αm) = (dm − 1)! ym,dm−1.

This Hermite polynomial p = a0 +a1x+ · · ·+ad−1x
d−1 is given by the only

solution of

(a0 a1 . . . ad−1) · V (A) = (y1,0 y1,1 . . . ym,dm−1)

(here the right vector is indexed by the pairs (i, ji) for 1 ≤ i ≤ m, 0 ≤ ji < di)
and satisfies

(3) det
(
V (A)

)
p(x) = − det

d 1

1
x

V (A)
... d

xd−1

y1,0 y1,1 . . . ym,dm−1 0 1

.

The polynomial p can also be viewed in a more suitable basis, where the
corresponding “Vandermonde” matrix has more structure. We introduce
the d polynomials in this basis.

Notation 2.2. For 1 ≤ i ≤ m we set

f i :=
∏

j 6=i

(x− αj)dj

and, for 0 ≤ ki < di,

f i,ki
:=

f

(x− αi)di−ki
= (x− αi)kif i.

Then, in this basis, the polynomial p =
∑

i,ki
ai,kif i,ki

is given by the only
solution of

(a1,0 a1,1 . . . am,dm−1) · V ′(A) = (y1,0 y1,1 . . . ym,dm−1)

where

V ′(A) :=

d1 dm

V ′(α1, d1) 0 0 d1

0
. . . 0

0 0 V ′(αm, dm) dm

,
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with

V ′(αi, di) :=

di

f i(αi) f
′
i(αi) . . .

f
(di−1)
i (αi)
(di−1)!

0 f i(αi) . . .
f
(di−2)
i (αi)
(di−2)!

0 0
. . .

... di

...
...

...
0 0 . . . f i(αi)

and satisfies

det
(
V ′(A)

)
p(x) = − det

d 1

f1,0

f1,1

V ′(A)
... d

fm,dm−1

y1,0 y1,1 . . . ym,dm−1 0 1

.

We note that

det(V ′(A)) =
∏

1≤i≤m

f i(αi)di

= (−1)
m(m−1)

2

( ∏

1≤i<j≤m

(αj − αi)didj

)2
= (−1)

m(m−1)
2 det(V (A))2.

In particular p =
∑

i,ji
yi,jipi,ji where for 1 ≤ i ≤ m, 0 ≤ ji < di, the basic

Hermite polynomials pi,ji are the unique polynomials of degree deg(pi,ji) < d
determined by the conditions for 1 ≤ ` ≤ m, 0 ≤ q` < d`,

(4)

{
p
(q`)
i,ji

(α`) = ji! for ` = i and q` = ji,

p
(q`)
i,ji

(α`) = 0 otherwise.

When A = A =
(
α1, . . . , αd), then, denoting fi := f i, we have

pi,0 =
∏

` 6=i

x− α`

αi − α`
=

1
fi(αi)

fi for 1 ≤ i ≤ d,

while for A = (α, d),

p1,j = (x− α)j = f1,j for 0 ≤ j < d.

The following proposition generalizes these two extremal formulas.

Proposition 2.3. Fix 1 ≤ i ≤ m and 0 ≤ j < di. Then

pi,j =
1

f i(αi)

di−1−j∑

k=0

(−1)k


 ∑

k1+...+ bki+...+km=k

∏

` 6=i

(
d`−1+k`

k`

)

(αi − α`)k`


 f i,j+k

where k1 + · · · + k̂i + · · · + km denotes the sum without ki. (When m = 1,
the right expression under brackets is understood to equal 1 for k = 0 and 0
otherwise.)



SUBRESULTANTS IN MULTIPLE ROOTS 7

Proof. Applying for instance [Sp1960, Th. 1], we first remark that

pi,j =
di−1−j∑

k=0

1
k!

(
1
f i

)(k)

(αi) f i,j+k.

Then we plug into the expression the following, given by Leibnitz rule for
the derivative of a product:

(
1
f i

)(k)

(αi) = (−1)k k!
∑

k1+...+ bki+...+kr=k

∏

6̀=i

(
d`−1+k`

k`

)

(αi − α`)d`+k`
.

¤

The basic Hermite polynomials enable us to compute the inverse of the
confluent matrix V (A):

V (A)−1 =

d

V ∗
1 d1

...
V ∗

m dm

where V ∗
i :=

d

coefficients of pi,1
... di

coefficients of pi,di

, 1 ≤ i ≤ r

(here the coefficients of pi,ji(x) are written in the monomial basis 1, x, . . . xd−1).

Now we set the notation for a slight modification of a case of generalized
Wronskian matrices.

Notation 2.4. Set u ∈ N. Given a polynomial h(z), the generalized Wron-
skian (non-necessarily square) u × d matrix Wh,u(A) associated to A =(
(α1, d1); . . . ; (αm, dm)

)
is

Wh,u(A) = Wh,u

(
(α1, d1); . . . ; (αm, dm)

)
:=

d

Wh,u(α1, d1) . . . Wh,u(αm, dm) u ,

where

Wh,u(αi, di) :=

di

h(αi) h′(αi) . . . h(di−1)(αi)
(di−1)!

(zh)(αi) (zh)′(αi) . . . (zh)(di−1)(αi)
(di−1)!

...
...

... u

(zu−1h)(αi) (zu−1h)′(αi) . . . (zu−1h)(di−1)(αi)
(di−1)!

.

When u = d, we omit the sub-index u and write Wh(A).
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For example for h(z) = x− z and A = (α, 3),

Wx−z(α, 3) = Wx−z,3(α, 3) =

3

x− α −1 0
αx− α2 x− 2α −1 3

α2x− α3 2αx− 3α2 x− 3α
.

The determinant of a square Wronskian matrix is easily obtainable perform-
ing row operations in the case of one block, and by induction in the size of
the matrix in general:

det
(
Wh(A)

)
=

( ∏

1≤i<j≤m

(αj − αi)didj

)
h(α1)d1 · · ·h(αm)dm .

2.4. Subresultants in multiple roots. In this section, we describe ex-
plicit formulas we can get for the non-trivial extremal cases of subresul-
tants in terms of both sets of roots of f = (x − α1)d1 · · · (x − αm)dm and
g = (x − β1)e1 · · · (x − βn)en with d =

∑m
i=1 di and e =

∑n
j=1 ej . More

precisely, we present formulas for Srest(f, g) for the cases t = d − 1 < e
(Proposition 2.6 below) and t = 1 < d ≤ e (Theorem 2.7). We will de-
rive them from Theorem 2.5 below, a generalization of [Hon1999, Th. 3.1]
and [DHKS2007, Lem. 2] which includes the multiple roots case (and is also
strongly related to a multiple roots case version of [DHKS2009, Th. 1]). The
main drawback of this approach to obtain formulas for all cases of t is the
fact that submatrices of generalized Vandermonde matrices are not always
generalized Vandermonde matrices, so in general their determinants cannot
be expressed as products of differences. This is why the search for nice
formulas in double sums in the case of multiple roots is more challenging.

Theorem 2.5. Set 0 ≤ t ≤ d < e or 0 ≤ t < d = e. Then

Srest(f, g) = (−1)d−t det
(
V (A)

)−1 det

d 1

1

Vt+1(A)
... t+1

xt

Wg,d−t(A) 0 d−t

= (−1)c det
(
V (A)

)−1 det
(
V (B)

)−1 det

d e 1

1

Vt+1(A) 0
... t+1

xt

Vd+e−t(A) Vd+e−t(B) 0 d+e−t

,

where c := max{e (mod 2), d− t (mod 2)}.
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Proof. The proof is quite similar to the proofs of Lemmas 2 and 3 in [DHKS2007],
replacing the usual Vandermonde and Wronskian matrices by their general-
ized counterparts. We will thus omit the intermediate computations.
Let f =

∑d
i=0 aix

i, where ad = 1, and g =
∑e

j=0 bjxi, where be = 1. We
introduce the following matrices of [DHKS2007]:

Mf :=

d+e−t

a0 . . . ad

. . . . . . e−t

a0 . . . ad

, Mg :=

d+e−t

b0 . . . be

. . . . . . d−t

b0 . . . be

.

and

St :=

d+e−t

Mx−z t

Mf e−t

Mg d−t

where Mx−z :=

d+e−t

x −1 0 . . . . . . 0
. . . . . . . . .

... t

x −1 0 . . . 0
.

We have ([DHKS2007, Lem. 1]):

Srest(f, g) = (−1)(e−t)(d−t) det(St).

Also, exactly as in the proof of [DHKS2007, Lem. 2],

d+e−t

t Mx−z

e−t Mf

d−t Mg

d e−t

0 d

Vd+e−t(A)
Ide−t e−t

=

d e−t

Wx−z,t(A) ∗ t

0 M ′
f

e−t

Wg,d−t(A) ∗ d−t

.

This implies first the generalization of [DHKS2007, Lem. 2] to the multiple
roots case:

det
(
V (A)

)
Srest(f, g) = det

d

Wx−z,t(A) t

Wg,d−t(A) d−t
= (−1)d−t det

d 1

1

Vt+1(A)
... t+1

xt

Wg,d−t(A) 0 d−t

,

where the second equality is a consequence of obvious row and column
operations. Next, we get as in the proof of [DHKS2007, Lem. 3],

det
(
V (A)

)
det

(
V (B)) Srest(f, g) = (−1)c det

d e 1

1
Vt+1(A) 0

... t+1xt

Vd+e−t(A) Vd+e−t(B) 0 d+e−t

.

¤
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We note that starting from the first equality above and applying similar
arguments, we also get very simply
(5)

det
(
V (A)

)
det

(
V (B)) Srest(f, g) = (−1)(d−t)e det

d e

Wx−z(A) 0 t

Vd+e−t(A) Vd+e−t(B) d+e−t
.

As mentioned above, when t = 0 the formula in roots for Sres0(f, g)
specializes well when considering Sres0(f, g). When t = d < e, the for-
mula Sresd(f, g) =

∏
1≤i≤d(x − αi) also specializes well as Sresd(f, g) =∏

1≤i≤m(x− αi)di . Our purpose now is to understand formulas in roots for
the following extremal subresultants, i.e for Sres1 and Sresd−1, in case of
multiple roots.
• The case t = d − 1 < e: When f has simple roots, it is known (or can
easily be derived for instance from Sylvester’s Identity (2) for p = d− 1 and
q = 0) that

Sresd−1(f, g) =
d∑

i=1

g(αi)
(∏

j 6=i

x− αj

αi − αj

)
=

d∑

i=1

g(αi) pi,

where pi is the basic Lagrange interpolation polynomial of degree strictly
bounded by d such that pi(αi) = 1 and pi(αj) = 0 for j 6= i. In other words,
Sresd−1(f, g) is the Lagrange interpolation polynomial of degree strictly
bounded by d which coincides with g in the d values α1, . . . , αd. This for-
mula does not apply when f has multiple roots, but we can show that we
get the natural generalization of this fact, that is, that Sresd−1(f, g) is the
Hermite interpolation polynomial of degree strictly bounded by d which co-
incides with g and its derivatives up to the corresponding orders in the m
values α1, . . . , αm:

Proposition 2.6.

Sresd−1(f, g) =
m∑

i=1

di−1∑

ji=0

g(ji)(αi)
ji!

pi,ji ,

where pi,ji is the basic Hermite interpolation polynomial defined by Condi-
tion (4) or Proposition 2.3 for A.

Proof. In this case, applying the first statement of Theorem 2.5 we get

Sresd−1(f, g) = − det
(
V (A)

)−1 det

d 1

1

Vd(A)
... d

xd−1

Wg,1(A) 0 1

where when following the subindex notation of Formula (3), we note that

(
Wg,1(A)

)
i,ji

=
g(ji)(αi)

ji!
.
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The conclusion follows by Formula (3). ¤
For example, when A = (α, d), we get

Sresd−1((x− α)d, g) =
d−1∑

j=0

g(j)(α)
j!

(x− α)j ,

the Taylor expansion of g up to order d− 1.

• The case t = 1 < d ≤ e: We keep Notation 2.2. When f has simple roots,
it is known (or can easily be derived for instance from Sylvester’s Identity (2)
for p = 1 and q = 0) that

Sres1(f, g) = (−1)d−1
d∑

i=1

(∏

j 6=i

g(αj)
αi − αj

)
(x− αi)(6)

= (−1)d−1
d∑

i=1

∏
j 6=i g(αj)
fi(αi)

(x− αi).

The general situation is a bit less obvious, but in any case we can get an
expression of Sres1(f, g) by using the coefficients of the Hermite interpolation
polynomial, in this case of the whole data

A ∪B :=
(
(α1, d1); . . . ; (αm, dm); (β1, e1); . . . ; (βn, en)

)
.

We note that

det
(
V (A ∪B)

)
= det

(
V (A)

)
det

(
V (B)

)
R(B, A)

which holds even when αi = βj for some i, j.

Theorem 2.7.

Sres1(f, g) =
m∑

i=1

(−1)d−di

(∏
j 6=i g(αj)dj

f i(αi)

)
g(αi)di−1

(
(x− αi)·

∑

k1 + · · ·+ bki + · · ·
· · ·+ km+n = di − 1

∏

1 ≤ j ≤ m
j 6= i

(
dj−1+kj

kj

)

(αi − αj)kj

∏

1≤`≤n

(
e`−1+km+`

km+`

)

(αi − β`)km+`

+ min{1, di − 1}
∑

k1 + · · ·+ bki + · · ·
· · ·+ km+n = di − 2

∏

1 ≤ j ≤ m
j 6= i

(
dj−1+kj

kj

)

(αi − αj)kj

∏

1≤`≤n

(
e`−1+km+`

km+`

)

(αi − β`)km+`

)
.

Proof. Setting t = 1 in Expression (5) we get

det
(
V (A)

)
det

(
V (B)

)
Sres1(f, g) = (−1)(d−1)e det

d e

Wx−z,1(A) 0 1

Vd+e−1(A) Vd+e−1(B) d+e−1

where

Wx−z,1 = (x− α1,−1, 0, . . . , 0︸ ︷︷ ︸
d1

, . . . , x− αm,−1, 0 . . . , 0︸ ︷︷ ︸
dm

).

We expand the determinant w.r.t. the first row, and observe that when we
delete the first row and column j, the matrix that survives coincides with
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V (A ∪ B)(d+e,j), the submatrix of V (A ∪ B) obtained by deleting the last
row and column j. Therefore,

det Wx−z,1(A) 0
Vd+e−1(A) Vd+e−1(B)

=
m∑

j=1

(−1)φ(j)−1
(

det
(
V (A ∪B)|(d+e,φ(j))

)
(x− αj) + det

(
V (A ∪B)|(d+e,φ′(j))

))
,

where φ(i) equals the number of the column corresponding to (1, αi, . . . , α
d+e−1
i )

in V (A ∪B), and φ′(i) = φ(i) + 1 if di > 1 and 0 otherwise.
Now, from

det
(
V (A ∪B)|(d+e,φ(j))

)
= (−1)d+e−φ(j) det

(
V (A ∪B)

)
V (A ∪B)−1

φ(j),d+e,

det
(
V (A ∪B)|(d+e,φ′(j))

)
= (−1)d+e−φ′(j) det

(
V (A ∪B)

)
V (A ∪B)−1

φ′(j),d+e

(by the cofactor expression for the inverse) and

det
(
V (A ∪B)

)
= (−1)de det

(
V (A)

)
det

(
V (B)

)
R(A,B)

we first get, since R(A,B) =
∏

1≤i≤m g(αi)di , that

Sres1(f, g) = (−1)d−1
( ∏

1≤i≤m

g(αi)di
)
(

m∑

i=1

V (A ∪B)−1
φ(i),d+e(x− αi)−

m∑

i=1

V (A ∪B)−1
φ′(i),d+e

)
.

We set h := f g, and for i = 1, . . . , m, hi := h/(x−αi)di . In [Cs1975, Id. 9],
it is shown that

V (A ∪B)−1
φ(i),d+e =

1
(di − 1)!

(
1
hi

)(di−1)

(αi),

and when di > 1,

V (A ∪B)−1
φ′(i),d+e =

1
(di − 2)!

(
1
hi

)(di−2)

(αi).

Therefore, we obtain the statement by applying Leibnitz rule
(

1
hi

)(k)

= (−1)k k!
∑

k1+···+ bki+···+km+n=k

∏

1 ≤ j ≤ m
j 6= i

(
dj−1+kj

kj

)

(x− αj)dj+kj

∏

1≤`≤n

(
e`−1+km+`

km+`

)

(x− β`)e`+km+`
.

¤

Note that in the case that f has simple roots we immediately recover
Identity (6) while when f = (x− α)d for d ≥ 2, we recover Proposition 3.2
of [DKS2009]:

Sres1((x− α)d, g) = g(α)d−1
( ∑

k1+···+kn=d−1

( n∏

`=1

(
e`−1+k`

k`

)

(α− β`)k`

)
(x− α) +

∑

k1+···+kn=d−2

n∏

`=1

(
e`−1+k`

k`

)

(α− β`)k`

)
.
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3. Multivariate Case: Poisson-like formulas for Subresultants

We turn to the multivariate case, considering the definition of subresul-
tants introduced in [Cha1995]. Our goal is to generalize Theorem 3.2 in
[DKS2006] –that we recall below– to the case when the considered polyno-
mials have multiple roots. We first fix the notation, referring the reader to
[DKS2006] for more details.

3.1. Notation. Fix n ∈ N and set Di ∈ N for 1 ≤ i ≤ n + 1. Let

fi :=
∑

|α|≤Di

ai,αxα ∈ K[x1, . . . , xn],

be polynomials of degree Di in n variables, where α = (α1, . . . , αn) ∈
(Z≥0)

n, xα := xα1
1 · · ·xαn

n , |α| = α1 + · · · + αn, and K is a field of charac-
teristic zero, that we assume without loss of generality to be algebraically
closed.

Fix t ∈ N. Let k := HD1...Dn+1(t) be the Hilbert function at t of a regular
sequence of n + 1 homogeneous polynomials in n + 1 variables of degrees
D1, . . . , Dn+1, i.e.

k = #{xα : |α| ≤ t, αi < Di, 1 ≤ i ≤ n, and t− |α| < Dn+1}.
We set

S := {xγ1 , . . . , xγk} ⊂ K[x]t
a set of k monomials of degree bounded by t, and

∆S(f1, . . . , fn+1) := ∆(t)

Sh(fh
1 , . . . , fh

n+1),

for the order t subresultant of fh
1 , . . . , fh

n+1 with respect to the family Sh :=
{xγ1x

t−|γ1|
n+1 , . . . , xγkx

t−|γk|
n+1 } defined in [Cha1995]. Here, fh

i denotes the ho-
mogenization of fi by the variable xn+1.

We recall that the subresultant ∆S is a polynomial in the coefficients of
the fh

i of degree HD1...Di−1Di+1...Dn+1(t −Di) for 1 ≤ i ≤ n + 1, having the
following property: ∆S = 0 if and only if It∪Sh does not generate the space
of all forms of degree t in k[x1, . . . , xn+1], where It denotes the degree t part
of the ideal generated by the fh

i ’s.
By [Cha1994] we know that

det(MS) = E(t)∆S ,(7)

where MS denotes the Macaulay-Chardin matrix obtained from

(8)

[
Mf1...

Mfn+1

]

by deleting the columns indexed by the monomials in S, and E(t) is the
extraneous factor defined as the determinant of a specific square submatrix
of (8) (see [Cha1995, Cha1994, DKS2006]).
We set ρ := (D1 − 1) + · · ·+ (Dn − 1) and for j ≥ 0, τj := HD1...Dn(j), the
Hilbert function at j of a regular sequence of n homogeneous polynomials
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in n variables of degrees D1, . . . , Dn. We define also

(9) Tj :=
{

any set of τj monomials of degree j if j ≥ max{0, t−Dn+1 + 1}
{xα : |α| = j, αi < Di for 1 ≤ i ≤ n} if 0 ≤ j < t−Dn+1 + 1,

and denote with D := D1 · · ·Dn the Bézout number, the number of common
solutions in Kn of n generic polynomials.
Set T := ∪j≥0Tj and T ∗ := ∪ρ

j=t+1Tj . Note that |T | = D. We enumerate
the elements of T as follows: T = {xα1 , . . . , xαD}, and assume that for
s := |T ∗| we have T ∗ = {xα1 , . . . ,xαs} . Also set
(10)
R := {xβ1 , . . . ,xβr} = {xα : |α| ≤ t, αi < Di, 1 ≤ i ≤ n, t− |α| ≥ Dn+1}.

Finally, for 1 ≤ i ≤ n, let f̃i be the homogeneous component of degree Di

of fi, and ∆̃Tj := ∆(j)
Tj

(f̃1, . . . , f̃n) be the order j subresultant of f̃1, . . . , f̃n

with respect to Tj .

3.2. Poisson-like formula for subresultants. From now on we assume
that f1, . . . , fn are generic in the sense they have no roots at infinity (which
implies by Bézout theorem that the quotient algebra A := K[x]/(f1, . . . , fn)
is a finitely dimensional K-vector space of dimension D, which equals the
number of common roots in Kn of these polynomials, counted with mul-
tiplicity, see e.g. [CLO1998, Ch. 3, Th. 5.5]), and that T is a basis of
A.

In [DKS2006] we treated the case of general polynomials with indetermi-
nate coefficients, which specializes well under our assumptions to the case
when the common roots ξ1, . . . , ξD of f1, . . . , fn in Kn are all simple. Set
Z := {ξ1, . . . , ξD}. We introduced the Vandermonde matrix

(11) VT (Z) :=
ξα1

1 · · · ξα1
D

...
...

ξαD
1 · · · ξαD

D

∈ KD×D

whose determinant is non zero, since T is assumed to be a basis of A, and
we defined

(12) OS(Z) :=

D

ξ
γ1
1 · · · ξ

γ1
D

...
... k

ξ
γk
1 · · · ξ

γk

D

ξα1
1 · · · ξα1

D
...

... s

ξαs
1 · · · ξαs

D

ξ
β1
1 fn+1(ξ1) · · · ξ

β1
D fn+1(ξD)

...
... r

ξ
βr
1 fn+1(ξ1) · · · ξ

βr

D fn+1(ξD)

∈ KD×D.
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Theorem 3.1. [DKS2006, Th. 3.2] For any t ∈ Z≥0 and for any S =
{xγ1 , . . . , xγk} ⊂ K[x]t of cardinality k = HD1...Dn+1(t), we have

∆S(f1, . . . , fn+1) = ±



t∏

j=t−Dn+1+1

∆̃Tj


 det

(OS(Z)
)

det
(
VT (Z)

) .

In order to generalize this result to systems with multiple roots, and
obtain an expression for the subresultant in terms of the roots of the first
n polynomials f1, . . . , fn, we need to introduce notions of the multiplicity
structure of the roots that are sufficient to define (f1, . . . , fn). To be more
precise, in the case of multiple roots, the set of evaluation maps {evξ : A →
K | ξ common root of f1, . . . , fn} is not anymore a basis of A∗, the dual of
the quotient ring A as a K-vector space, though still linearly independent.
Hence other forms must be considered in order to describe A∗ and to get a
non-singular matrix generalizing VT (Z).

All along this section we will use the language of dual algebras to gener-
alize Theorem 3.1 for the multiple roots case (see for instance in [KK1987,
BCRS1996] and the references therein). In Theorem 3.4 below we show that
any basis of the dual A∗ gives rise to generalizations of Theorem 3.1, as long
as we assume that T is a basis of A. This is the most general setting where
a generalization of Theorem 3.1 will hold. However, this version of the The-
orem, using general elements of the dual, does not give a formula for the
subresultant in terms of the roots.

In order to obtain these expressions, we need to consider a specific basis
of A∗ which contains the evaluation maps described above. It turns out
that one can define a basis for A∗ in terms of linear combinations of higher
order derivative operators evaluated at roots of f1, . . . , fn. This is the con-
tent of the so called theory of “inverse systems” introduced by Macaulay
in [Mac1916], and developed in a context closer to our situation under the
name of “Gröbner duality ” in [Gr1970, MMM1995, EM2007] among others.

The following is a multivariate analogue of Definition 2.4:

Definition 3.2. Let Λ := {Λ1, . . . , ΛD} be a basis of A∗ as a K-vector
space. Given any set E = {xα1 , . . . ,xαu} of u monomials and given any
polynomial h ∈ K[x], the generalized Vandermonde matrix VE(Λ) and the
generalized Wronskian matrix Wh,E(Λ) corresponding to E, Λ and h are
the following u×D matrices:

VE(Λ) =

D

Λ1(xα1) · · · ΛD(xα1)
...

... u

Λ1(xαu) · · · ΛD(xαu)
, Wh,E(Λ) =

D

Λ1(xα1h) · · · ΛD(xα1h)
...

... u

Λ1(xαuh) · · · ΛD(xαuh)
.

We modify the definition of the matrix OS(Z) in (12) as follows:
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Definition 3.3. Let S = {xγ1 , . . . ,xγk} ⊂ K[x]t be of cardinality k =
HD1...Dn+1(t), T ∗ := ∪ρ

j=t+1Tj as in (9) and R as in (10). Then

OS(Λ) :=

D

VS(Λ) k

VT ∗(Λ) s

Wfn+1,R(Λ) r

∈ KD×D.

Note that by our assumption on T being a basis of A and Λ being a
basis of A∗, we have det

(
VT (Λ)

) 6= 0. The following is the extension of
Theorem 3.1 to the multiple roots case.

Theorem 3.4. Let (f1, . . . .fn+1) ⊂ K[x] and T := ∪j≥0Tj specified in
(9) satisfying our assumptions, and Λ be an arbitrary basis of A∗. For
any t ∈ Z≥0 and for any S = {xγ1 , . . . ,xγk} ⊂ K[x]t of cardinality k =
HD1...Dn+1(t), we have

∆S(f1, . . . , fn+1) = ±



t∏

j=t−Dn+1+1

∆̃Tj


 det

(OS(Λ)
)

det
(
VT (Λ)

) .

Proof of Theorem 3.4. The proof is similar to the proof of Theorem 3.2 in
[DKS2006], to which we refer for notations and details. Extra care must be
taken however, as we are not anymore considering the polynomials f1, . . . , fn

to have simple common roots.
Using the exact same argument as in the proof of Theorem 3.2 in [DKS2006]
we can prove that

±E(t)∆S(f1, . . . , fn+1) det
(
VT (Λ)

)
= ±det(M ′) det

(OS(Λ)
)
,

where

(13) M ′ :=

M ′
f1

...
M ′

fn

,

is the submatrix of (8) obtained by removing the columns corresponding the
monomials in T . In [DKS2006] we also showed that

det(M ′) = ±E(t)
( t∏

j=t−Dn+1+1

∆̃Tj

)
,

so the claim is proved when E(t) 6= 0.
If E(t) = 0, we consider a perturbation “à la Canny” as in [Can1990], i.e.
we replace fi by fi,λ := fi + λ xDi

i ∈ K(λ)[x], where λ is a new param-
eter, for 1 ≤ i ≤ n. It is easy to see that this perturbed system has no
roots at infinity over the algebraic closure K(λ) of K(λ), since the lead-
ing term in λ of the resultant of its homogeneous components of degrees
D1, . . . , Dn does not vanish, and hence the dimension of the quotient ring
Aλ := K(λ)[x]/(f1,λ, . . . , fn,λ) as a K(λ)-vector space is also equal to D.
It can also be shown (see [Can1990]) that Eλ(t) 6= 0, where Eλ(t) denotes
the extraneous factor in Macaulay’s formulation applied to the polynomials
fi,λ, 1 ≤ i ≤ n. Indeed, if Et is the matrix whose determinant gives E(t)
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with rows and columns ordered properly, it is easy to see that the perturbed
matrix is equal to Et + λ I, where I is the identity matrix.
Therefore, the statement holds for this perturbed family:

(14) ∆S(f1,λ, . . . , fn,λ, fn+1) = ±



t∏

j=t−Dn+1+1

∆̃Tj ,λ


 det

(OS(Γλ)
)

det
(
VT (Γλ)

)

for any basis Γλ of A∗λ (here, ∆̃Tj ,λ = ∆(j)
Tj

(f̃1,λ, . . . , f̃n,λ)).
The subresultants appearing in (14) are polynomials in λ, that, when eval-
uated in λ = 0, satisfy:

∆S(f1,λ, . . . , fn,λ, fn+1)|λ=0 = ∆S(f1, . . . , fn, fn+1), ∆̃Tj ,λ

∣∣∣
λ=0

= ∆̃Tj , ∀j.
So, in order to prove the claim, it is enough to show that there exists a basis
of A∗λ which “specializes” to Λ when setting λ = 0, i.e. to find a basis Λλ

of A∗λ such that

(15)
det

(OS(Λλ)
)

det
(
VT (Λλ)

)
∣∣∣∣∣
λ=0

=
det

(OS(Λ)
)

det
(
VT (Λ)

) ,

and then to apply Identity (14) to Λλ and to specialize it at λ = 0.
We now construct the basis Λλ: The monomial basis T = {xα1 , . . . ,xαD}
of A is also a monomial basis of Aλ, since clearly linearly independent, and
therefore it defines the dual bases {yα1

, . . . ,yαD
} ⊂ A∗ and {yα1,λ, . . . , yαD,λ} ⊂

A∗λ, satisfying for 1 ≤ j, k ≤ D,

yαk
(xαj ) = yαk,λ(xαj ) = 1 if k = j and 0 otherwise .

We write Λi =
∑D

k=1 cikyαk
for 1 ≤ i ≤ D, where cik ∈ K, and then set

Λλ := {Λ1,λ, . . . ,ΛD,λ}, with Λi,λ :=
∑D

k=1 cikyαk,λ, 1 ≤ i ≤ D. Note that

Λi,λ(xαj ) = Λi(xαj ) = cij for 1 ≤ i, j ≤ D,(16)

det
(
VT (Λλ)

)
= det

(
VT (Λ)

)
= det

(
cij

)
1≤i,j≤D

∈ K \ {0},(17)

as the matrix (cij)1≤i,j≤D is invertible. This implies that Λλ is a basis of
A∗λ.
We claim now that, for every α ∈ Nn, there exist polynomials pα and Aj,α,
1 ≤ j ≤ D, in K[λ] such that

(18) pα(λ) xα =
D∑

j=1

Aj,α(λ)xαj in Aλ, and pα(0) 6= 0.

For this, it suffices to express the monomial xα in terms of the basis T of
Aλ and take pα(λ) as a common denominator when lifting the expression to
K[λ][x], satisfying the condition gcd

(
pα, Aj,α, 1 ≤ j ≤ D) = 1. It is clear

that pα(0) 6= 0 because T is also a basis of A, and by assumption 0 is not a
common root of pα and Aj,α, 1 ≤ j ≤ D.
Applying Λi,λ to Identity (18) and Λi to Identity (18) specialized at λ = 0,
we then get by (16) for 1 ≤ i ≤ D:

pα(λ)Λi,λ(xα) =
D∑

j=1

cijAj,α(λ) and pα(0)Λi(xα) =
D∑

j=1

cijAj,α(0).
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This implies that the entries of the matrix OS(Λλ) are the same K-linear
combinations of the quotients Aj,α(λ)

pα(λ) than the entries of the matrix OS(Λ)

in terms of Aj,α(0)
pα(0) . This and Identity (17) implies (15), which proves the

statement. ¤

As we mentioned before, for an arbitrary basis Λ of A∗ the expression in
Theorem 3.4 may not provide a formula in terms of the roots of f1, . . . , fn.
In order to obtain one, we recall here the notion of Gröbner duality from
[MMM1995].
For α = (α1, . . . , αn) ∈ Nn define the differential operator

∂α :=
1

α1! · · ·αn!
∂|α|

∂xα1
1 · · · ∂xαn

n

and consider the ring K[[∂]] := {∑α∈Nn aα∂α : aα ∈ K}.
For 1 ≤ i ≤ n define the K-linear map

σi : K[[∂]] → K[[∂]]; σi (∂α) =

{
∂(α1,...,αi−1,...,αn) if αi > 0,

0 otherwise,

and for β = (β1, . . . , βn) ∈ Nn define σβ = σβ1
1 ◦ · · · ◦ σβn

n .
A K-vector space V ⊂ K[[∂]] is closed if dimK(V ) is finite and for all β ∈ Nn

and D ∈ V we have σβ(D) ∈ V . Note that K[[∂]] and its closed sub-
spaces have a natural K[x]-module structure given by xβD(f) := D(xβf) =
σβ(D)(f).
Let ξ ∈ Kn. For a closed subspace V ⊂ K[[∂]] define

∇ξ(V ) := {f ∈ K[x] : D(f)(ξ) = 0, ∀D ∈ V } ⊂ K[x].

Let mξ ⊂ K[x] be the maximal ideal defining ξ. For an ideal J ⊂ mξ define

∆ξ(J) := {D ∈ K[[∂]] : D(f)(ξ) = 0, ∀ f ∈ J} ⊂ K[[∂]].

Then the following theorem gives the so called Gröbner duality:

Theorem 3.5 ([Gr1970, MMM1995]). Fix ξ ∈ Kn. The correspondences
between closed subspaces V ⊂ K[[∂]] and mξ-primary ideals Q, V 7→ ∇ξ(V )
and Q 7→ ∆ξ(Q) are 1-1 and satisfy V = ∆ξ(∇ξ(V )) and Q = (∇ξ(∆ξ(Q))).
Moreover,

dimK(∆ξ(Q)) = mult(Q) and mult(∇ξ(V )) = dimK(V ).

We set Z := {ξ1, . . . , ξD} for the set of all common roots of f1, . . . , fn in Kn,
with multiplicities, and mξi

⊂ K[x] for the maximal ideal corresponding to
ξi for 1 ≤ i ≤ m.

Example 3.6. ([EM2007, Exemple 7.37])
Let f1 = 2x1x

2
2 + 5x4

1, f2 = 2x2
1x2 + 5x4

2 ∈ C[x, y].
Then Z = {0, ξ1, ξ2, ξ3, ξ4, ξ5} where 0 = (0, 0) has multiplicity eleven and
ξi = ( −2

5ξ2i ,
−2
5ξ3i ) where ξ is a primitive 5-th root of unity, are all simple,

1 ≤ i ≤ 5.
Denote by Q0, Qξi

, 1 ≤ i ≤ 5, the primary ideals corresponding to the roots,
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then ∆ξi
(Qξi

) = 〈1〉 for 1 ≤ i ≤ 5 and if {e1, e2} is the canonical basis of
Z2,

∆0(Q0) =〈1, ∂e1 , ∂e2 , ∂2e1 , ∂e1+e2 , ∂2e2 , ∂3e1 , ∂3e2 ,

(4∂4e1 − 5∂e1+2e2), (4∂4e2 − 5∂2e1+e2), (3∂2e1+3e2 − ∂5e1 − ∂5e2)〉.

Using Gröbner duality, we are now able to give an expression for the
subresultant in terms of the roots of f1, . . . , fn. For D ∈ K[[∂]]and ξ ∈ Kn,
we denote by D|ξ the element of A∗ defined as D|ξ(f) = D(f)(ξ). In
particular, under this notation, 1|ξ = evξ.

Corollary 3.7. Using our previous assumptions, let I = (f1, . . . , fn) and

I = Q1 ∩ · · · ∩Qm

be the primary decomposition of I, where Qi is a mξi
-primary ideal with

di := mult(Qi). For 1 ≤ i ≤ m let Vi := ∆ξi
(Qi) ⊂ K[[∂]] be the corre-

sponding closed subspace, and fix a basis {Di,1, . . . ,Di,di} for Vi such that
Di,1 = 1. Then

Λ := {D1,1|ξ1
, . . . ,D1,d1 |ξ1

, . . . ,Dm,1|ξm
, . . . ,Dm,dm |ξm

}

is a basis of A∗ over K.

Note that the above choice for the dual basis Λ contains the evaluation
maps for the roots of I, and using this Λ in Theorem 3.4 gives an expression
for the subresultant in terms of the roots of I.

Example 3.8. This is a very simple example containing an expression for
a subresultant in terms of the roots.
Let f1 := x1x2, f2 := x2

1 + (x2 − 1)2 − 1, f3 := c0 + c1x1 + c2x2, with
c0, c1, c2 ∈ C. Then Z = {(0, 0), (0, 2)} where (0, 0) has multiplicity 3 and
(0, 2) is simple. By computing explicitly, we check that T := {1, x1, x2, x

2
2}

is a basis of A = C[x1, x2]/(f1, f2) and that

Λ :=
{
1|(0,0), ∂e1 |(0,0), (∂e2 + 2∂2e1)|(0,0), 1|(0,2)

}

is a basis of A∗. We will use these bases to express the degree t = ρ = 2
subresultant ∆x2

1
(f1, f2, f3) with S = {x2

1} in terms of the roots of f1, f2.
First, ∆x2

1
(f1, f2, f3) is equal to the following 6× 6 determinant (since here

the extraneous factor is 1):

∆x2
1
(f1, f2, f3) = detMS = det

0 0 0 1 0 0
0 0 −2 1 0 1
0 0 0 0 1 0
c0 c1 c2 0 0 0
0 c0 0 c1 c2 0
0 0 c0 0 c1 c2

= c3
0 + 2c2

0c2.
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On the other hand, Theorem 3.4 gives the following expression:




2∏

j=2

∆̃Tj


 detOS(Λ)

detVT (Λ)
=

det

0 0 2 0
c0 c1 c2 c0 + 2c2

0 c0 2c1 0
0 0 c0 2c0 + 4c2

det

1 0 0 1
0 1 0 0
0 0 1 2
0 0 0 4

=
4(c3

0 + 2c2
0c2)

4
,

using that T2 = {x2
2} is the degree 2 part of T , and

∆̃T2(f̃1, f̃2) = det
0 0 1
1 0 1
0 1 0

= 1.
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585, 08007 Barcelona, Spain.

E-mail address: cdandrea@ub.edu

URL: http://atlas.mat.ub.es/personals/dandrea
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