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Abstract−− The falling cylinder viscometer (FCV) 
is a reliable instrument to quantify the viscosity of 
Newtonian fluids. Nevertheless, when non-
Newtonian fluids are tested in this device, difficulties 
appear to determine the apparent viscosity. Thus, 
conventional rheometric calculations cannot be ap-
plied directly to experimental data provided by the 
FCV in order to obtain the apparent viscosity func-
tion, because the knowledge of a rather complex 
shear rate profile in the annular flow, between the 
falling cylinder and the container, is required. Con-
sequently, experimental data of the FCV must be 
processed numerically by including inevitably an 
appropriate model of the apparent viscosity for the 
fluid under study. Previous works used the Power 
Law model, within several small sub-regions of shear 
rates, selected heuristically, as a reasonable ap-
proximation. The present work proposes an algo-
rithm to process the experimental data provided by 
the FCV for different non-Newtonian fluids. Thus, 
this generic procedure allows one to perform calcu-
lations for any model of the apparent viscosity that 
includes a set of parameters to be appropriately 
identified. 

Keywords−− Falling cylinder viscometer, shear 
rate profile, apparent viscosity, non-Newtonian flu-
ids, ill-posed problem. 

I. INTRODUCTION 
Rheometry is based on well known and conventional 

flow cells, for which theoretical considerations are al-
ready set (see, for instance, Walter, 1975; Bird et al., 
1977; Tanner, 1985; Macosko, 1994). Falling object 
viscometers (Fig. 1 illustrates in particular a falling cyl-
inder viscometer) are also proposed in the literature as 
inexpensive and appropriate instruments to evaluate the 
apparent viscosity of non-Newtonian fluids. In this 
sense, the steady state falling velocity U of a given ob-
ject confined in a tube may be measured and the drag 
imparted by the surrounding fluid calculated readily, 
once geometrical scales and density difference 

ρρρ∆ −= c , involving the object density cρ  and the 
fluid density ρ , are available. Within this simple ex-
perimental framework, the main and difficult problem is 
to translate the experimental information tabulated as 

},{ Uρ∆  into the shear-dependent viscosity or apparent 

viscosity , which is a function of shear rate . 
From previous works, it is clear that apart from the in-
convenience that some rheometric cells present non 
uniform shear rate field (narrow gap concentric cylin-
ders and small angle cone-plate cells are precisely ap-
proximations that eliminate this problem), the rheome-
try associated with falling objects must be comple-
mented with additional theoretical aspects that confront 
with most rigorous and conventional calculation proce-
dures. One should observe here that conventional 
rheometric calculations do not apply to the flow kine-
matics of non-Newtonian fluids generated by falling 
objects, and the attempt to obtain the apparent viscosity 
from experimental data involving drag force versus fal-
ling velocity requires the knowledge of a shear rate field 
around any object selected for this purpose. Therefore, 
the resulting apparent viscosity depends in principle on 
the constitutive model adopted for an acceptable fitting 
of experimental results. In this context of calculations, 
elastic effects may be relevant when the kinematics 
achieved experimentally is not predominately a shear 
flow, and hence the rheometric purpose to determine 

 fails. For instance, the use of a spherical particle 
falling in a cylindrical tube (falling ball viscometer) is 
appropriate for Newtonian fluids only. In fact, for the 
case of non-Newtonian fluids, the mixture of shear and 
elongational kinematics present around this object in-
troduces an additional complexity associated with elas-
tic effects (see, for example, Zheng et al., 1991).  
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It is interesting the fact that one can use as falling 
object a high aspect ratio (slender) cylinder, instead of a 
sphere, and to present, this is the best alternative for 
falling object viscometers. Thus, the falling cylinder 
viscometer (FCV) has become a reliable instrument to 
quantify the viscosity of Newtonian fluids (Lohrenz et 
al., 1960; Davis and Brenner, 2001; Cristescu et al., 
2002). For this purpose, several studies concerning the 
computation of end effects (Chen and Swift, 1972; We-
hbeh et al., 1993; Park and Irvine, 1995) as well as the 
introduction of technical improvements for automated 
measurement (Chan and Jackson, 1985; Ilic and Phan-
Thien, 1994; Sha, 1997; Cristescu et al., 2002) have 
been already published. Concerning non-Newtonian 
fluids, at present it is known that the FCV appropriately 
designed may promote a predominant shear flow with 
negligible elastic effects, because these are confined to 
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small regions around the cylinder tips. In this regard, the 
so-called end effects have been always a problem in 
rheometry and they must be handled with care in all 
rheometric cells (Walters, 1975). In previous studies 
Zheng et al. (1994) found through a numerical boundary 
element method that the cylinder aspect ratio 
(length/radius) must be very high to attain a dominant 
shear rate kinematics when the material under study is 
represented through the Phan-Thien and Tanner viscoe-
lastic model. Thus under these conditions the flow prob-
lem may be solved approximately as one-dimensional 
shear flow because near viscometric flow conditions are 
achieved. Two clear concepts are already available in 
the literature concerning the use of a FCV for non-
Newtonian fluids: (a) the cylinder aspect ratio must be 
higher than 40, approximately, and (b) a model for the 
shear-dependent viscosity is required a priori to process 
experimental data. The last point is conditioned to the 
first, in the sense that as long as condition (a) is ful-
filled, condition (b) within the framework of simple 
fluid theory of non Newtonian fluids implies simply the 
knowledge of a model  involving a set of 
M parameters ( ) that represents the true appar-
ent viscosity . Relevant to our work here is the fact 
that this model may not have necessarily a physical 
meaning; thus  are fitting parameters as the 
only requirement. Nevertheless, it is also clear that the 
function  may be obtained conveniently 
from any inelastic generalized Newtonian fluid (Bird et 
al., 1977) for obvious reasons, independently of the 
values taken by the first and second normal stress coef-
ficients of the basic viscometric shear flow. This func-
tion may be used later as the characteristic apparent 
viscosity curve coming from the viscometric shear flow 
test. In this sense, it is also understood that this particu-
lar fluid evaluation must be complemented with addi-
tional tests like elongational rheometric data, to be able 
at the end of the characterization process to select the 
appropriate tensorial viscoelastic constitutive model for 
the analysis of more complex flows of the fluid under 
study. Thus, in principle, the tensorial viscoelastic 
model may be excluded a priori from any analysis of the 
falling object rheometry if points (a) and (b) described 
above are effectively achieved, eliminating thus the in-
terpretation of elastic effects associated to data process-
ing from the FCV. 
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Despite these concepts being well set for an appro-
priate shear-viscometric flow involving a FCV, the 
processing of experimental data obtained is a challeng-
ing problem at present. In this context, the present work 
discusses an algorithm to process experimental data 
from the FCV. Thus, this generic procedure allows one 
to determine different types of flow curves describing 
the apparent viscosity that non-Newtonian fluids may 
usually present. This method also takes advantage of the 
fact that a function  must be chosen and 
considered inevitably to perform viscometric calcula-

tions with the FCV. Therefore, by analogy to the treat-
ment of the ill-posed problem in capillary viscometry 
(Berli and Deiber, 2001; 2004), here we describe a pro-
cedure to estimate the parameters  directly 
from the experimental data provided as a discrete func-
tion U(∆ρ). Once the parameter values are calculated, 
the curve  of the fluid is readily obtained in the 
range of experimental shear rates achieved with the 
FCV.  
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This paper is organized as follows. In Section 2, the 
equations that govern the shear flow in the FCV are 
outlined, and the calculations difficulties related to this 
rheometric cell are described. In Section 3, the proce-
dure suggested in this work is presented first to show 
how the direct problem involving the calculation of the 
velocity field in the FCV for a characterized fluid may 
be performed. Consequently, in Section 4, the shear rate 
and velocity profiles of different type of fluids in the 
annular flow of the FCV are presented and discussed. 
Then, Section 5 considers the inverse problem, which 
deals with the parameter identification of the apparent 
viscosity function proposed by using experimental data 
from the FCV. For this purpose, the procedure is also 
described in details and relevant examples are included 
to illustrate the salient advantages of these calculations.  
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Figure 1. Schematic representation of the FCV includ-
ing the coordinate system used in calculations. 

II. THEORY 

A. Basic Equations 
For the purposes of the theoretical analysis in this 

section, the basic geometry of the FCV is shown sche-
matically in Fig. 1, where a cylindrical coordinate sys-
tem is used. The experimental features of this device are 
well documented in the literature (Cristescu et al., 2002; 
Chan and Jackson, 1985; Cho et al., 1992; Ilic and 
Phan-Thien, 1994; Sha, 1997). The aspect ratio L/κR 
must be higher than 40 to provide unidirectional flow 
throughout the annular space between the cylinder and 
the confining tube (the effect of the aspect ratio on the 
flow field has been discussed in the literature; Cho et 
al., 1992; Zheng et al., 1994). This requirement assures 
that end effects are negligible (Park and Irvine, 1995). 
Under these conditions it is assumed that the axial com-



ponent of fluid velocity uz(r) varies with the radial coor-
dinate r only. When the falling cylinder reaches the ter-
minal velocity U, the shear stress  in the fluid satis-
fies the following axial component of momentum bal-
ance (Walters, 1975; Bird et al., 1977): 
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where p is the pressure, g is the gravitational accelera-
tion, z is the axial coordinate and the term 

LPzgzp ∆ρ =∂−−∂ )(  is the generalized pressure 
drop along the cylinder. Integrating Eq. (1) to find rzτ  
requires a boundary condition, which is obtained 
through a force balance carried out on the falling cylin-
der in steady state, yielding, 

L
P

R
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κ
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where )( RrzR κττ κ =  is the shear stress at the cylinder 
wall. Equation (2) is quite general in the sense that, 
when additional fields are applied in the axial direction, 
namely magnetic forces, the density difference ρ∆  
must include the term accounting for the “local density” 
associated with this field (Cristescu et al., 2002). There-
fore, Eqs. (1) and (2) with the definition of ∆P yield the 
following expression for the shear stress at any posistion 
r, 
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This equation can be equivalently written in terms of 
P∆  instead of Rκτ . However, it is worth observing that 

neither Rκτ  nor P∆  are accessible experimentally. Also 
under steady state conditions, and considering non-slip 
of the fluid at the walls, the boundary conditions for the 
fluid velocity are, 

URuz −=)(κ ,     (4) 
0)( =Ruz .      (5) 

In addition, since the bottom of the fluid container is 
closed, a mass balance in the flow domain provides the 
following relation between the cylinder velocity U and 
the fluid velocity (r): zu

∫=
R

R z drrruRU
κ

κ )(2)( 2 .    (6) 

B. The Ill-Posed Equations 
Given the equations that govern the unidirectional 

flow in the annular space of the FCV, and following the 
framework of conventional rheometry, one should find 
expressions for τ and  in terms of U and ∆ρ, in order 
to calculate 

γ&

γτγη && =)(  for the fluid tested. Although 
the shear stress is explicitly given by Eq. (3), it cannot 
be quantified at any place in the flow domain because 

Rκτ  (or, equivalently, ∆P) is not known from the ex-
periment. In addition, for the shear flow considered 

here, the shear rate is rzγγ && = , where ruzrz ∂∂−=γ&  is 
the fluid velocity gradient. By using this definition, Eqs. 
(4)-(6) yield (Eichstadt and Swift, 1966; Phan-Thien et 
al., 1993), 
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Nevertheless, any attempt to calculate the shear rate 
from Eqs. (7) and (8) requires the knowledge of either 

 or . This difficulty is analo-
gous to that appearing in Couette viscometry (Walters, 
1975; Bird et al., 1977; Macosko, 1994). 

)( RrzR κγγ κ
&& = )(RrzR γγ && =

In addition, it should be observed that, as it happens 
in capillary viscometry, the shear rate attained in the 
annular flow of the FCV is not uniform throughout the 
flow domain. Therefore, the equations relating  to the 
measured variables cannot be solved in a straightfor-
ward calculation. Indeed, extracting  from Eq. (8) 
requires inverting the integral equation, the solution of 
which is not unique due to the scattering present in the 
experimental data. For this reason, the problem is also 
qualified as “ill posed” in the literature (see, for in-
stance, Friedrich et al., 1996; Berli and Deiber, 2001). 
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C. Relevant Prior Work to Evaluate the Apparent 
Viscosity in the FCV 

In order to overcome the difficulties associated with 
the FCV, Ashare et al. (1965) considered the limiting 
situation where both the annular gap width and the cyl-
inder velocity were very small. Only in this asymptotic 
case, τ and  can be directly calculated from U and ∆ρ 
as follows: 
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where )1( κε −=  and the subscript R indicates that 
these variables are evaluated at the container wall. 
These equations are strictly valid for experiments car-
ried out with ε→0 and U→0. In addition, the numerical 
results yielded by Eq. (10) are very sensitive to the way 
the derivative RdUd τln/ln  is numerically calculated, 
because experimental data are always noisy in some 
degree. 

On the other hand, as explained above, to carry out 
calculations for general values of ε and U, a relationship 
between τ and  must be introduced beforehand. In this 
sense, Eichstadt and Swift (1966) solved the flow field 
in the annular space for the particular cases of Power 
Law (PL) and Bingham fluids. This theoretical approach 
has been reworked later (Park and Irvine, 1988; Cho et 
al., 1992), where extensive tables of numerical data 

γ&



concerning the PL fluid were reported to facilitate the 
estimation of  with the FCV.  )(γη &

Phan-Thien et al. (1993), and then Zheng et al. 
(1994), also exploited the PL model to analyze non-
Newtonian fluids in this viscometer. Important in this 
work is that the procedure is also aimed to be applied to 
different fluids for which the viscosity curve can be 
divided into several sub-regions, each one with a local 
PL behavior (this practice has been already used in cap-
illary viscometry in relation to an ill-posed problem 
similar to that mentioned above). Thus, the equation 
deduced by these authors that must fit the sub-regions of 
experimental data },{ Uρ∆  is, 
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where  is the drag force on the cylin-
der, D

LRgD πκρ∆ 2)(=

N is the respective value for a Newtonian fluid of 
viscosity µ (see Appendix A) and parameters m and n 
are the fitting parameters (see also Table 1). It is also 
shown that the left hand side of Eq. (11) is equal to the 
viscosity function , whereas  is the effective 
shear rate. To use quantitatively this expression, the 
constant K is obtained from semi-empirical relations as 
follows: , + 

 and  (Phan-Thien 
et al., 1993; Zheng et al., 1994). These relations apply 
when 0.1 0.9 and 0.05

)(γη & RKU/

nbbK loglog 10 −= 45790.00 =b
2)1.0(2305.3 −κ 585.0

1 070437.0 −= κb

≤≤ n ≤≤ κ 0.3 with an estimated 
error less than 1.8% (see also in Section 5.4 the system-
atic deviation from the expected flow curve that this 
method introduces). Although this technique appears to 
be a good approximation, the particular method of data 
processing provides results for PL pseudoplastic fluids 
only, and it is limited to a small range of κ.  

Therefore, a simpler and accurate procedure to de-
termine directly the viscosity function of non-
Newtonian fluids would be in addition desirable for 
practical reasons. Having as reference point this last 
conclusion, this work proposes an algorithm to process 
data },{ Uρ∆  for different non-Newtonian fluids. This 
algorithm has been designed to employ a generic func-
tion of the apparent viscosity. The associated iterative 
procedure avoids the use of pre-fitted semi empirical 
equations based on one specific model and is valid for 
any value of κ. 

III. PROCEDURE SUGGESTED 
As discussed above, the only possibility to perform 

viscometric calculations in the FCV is to include addi-
tional information about the fluid, namely, a relation-
ship between rzτ  and  in the form,  rzγ&

rzMrz qq γγητ && ),...,,( 1= ,    (12) 
typical examples of this function are listed in Table 1, 
corresponding to the generalized Newtonian fluid for 
practical reasons. The function  may be 
also obtained from a tensorial constitutive model evalu-

ated for the shear flow kinematics, i.e., q ,...,1 ay be 
actual rheological parameters, although this interpreta-
tion depends on the final tensorial model to be assigned 
to the fluid and it is not necessarily a requirement. It 
should be observed that only the apparent viscosity is 
evaluated here, which is one of several steps in the 
complex rheological process of fluid characterization. 
Therefore after combing Eqs. (3) and (12), the following 
generic expression is derived  
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(13) 
Therefore, the shear flow developed in the FCV is 

described by the set of coupled Eqs. (7), (8) and (13), 
which derive from the momentum and mass balances in 
the fluid, with the apparent viscosity model selected. It 
is relevant to add here that the flow in the annular gap 
between the cylinders depends on the apparent viscosity 
function only, independently of the existence of normal 
stress differences in the fluid, provided that L/κR is 
higher than 40, approximately (Zheng et al., 1994). This 
constraint assures that the flow is near unidirectional 
along the annular space, and hence both  and )(rrzγ&

)(rrzτ  vary in the radial direction only. Of course, the 
other experimental requisites to attain a viscometric 
flow in the cell must be also satisfied: steady state, iso-
thermal flow, no-slip at the walls, and end effects negli-
gible (Walter, 1975; Bird et al., 1977). Under these 
conditions, the FCV can be used to evaluate the appar-
ent viscosity of a non-Newtonian fluid, regardless of its 
possible viscoelastic properties (Zheng et al., 1994).  

 
Table 1. Expressions of the apparent viscosity associ-
ated with typical models (Bird et al., 1977). 

Function  )(γη &  Parameter designations 

I q1 Newton:  
q1 = µ (viscosity coefficient) 

II 1
1

2 −qq γ&  Power Law: 
q1 = m (consistency) 
q2 = n (flow index) 

III
2

2
1 , q

q
q >+ τ

γ&
 

 

Bingham: 
q1 = pη  (plastic viscosity) 

q2 = pτ  (yield stress) 
IV

4
2

41
3)(1

q
q

qq
q

+
+

−

γ&
 

Cross (Cross, 1965): 
q1 = 0η  (low-shear viscosity) 
q2 = λ (relaxation time) 
q3 = α (positive index) 
q4 = ∞η  (high-shear viscosity) 

 
The solution of the algebraic problem defined by 

Eqs. (7), (8) and (13) requires a numerical algorithm, 
except in the case of Newtonian fluids (see Appendix 
A). Further, for a general function , cal-
culations may be performed in two different ways:  
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a) If the parameter values in  for a 
particular fluid are available, one may obtain , U 
and 
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)(rrzγ&

Rκτ  (3 unknowns), for given values of ∆ρ, κ and R 
(designated direct problem). These calculations basi-
cally concern the dynamics of non-Newtonian fluids in 
the annular space of the FCV, and will be considered 
below in Section 4 to examine the behavior of typical 
fluids in this type of rheometric cell. 

b) On the other hand, if data U vs. ∆ρ  are obtained 
in a FCV, Eqs. (7), (8) and (13) allow one to estimate 
the M unknown parameters pertaining to the function 

 appropriately chosen for the fluid under 
study (designated inverse problem). In this case, as the 
unknowns are , 
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)(rrzγ& Rκτ  and the M model parameters, 
at least M pairs of data U vs. ∆ρ are needed. These cal-
culations are of interest to carry out the viscometric test 
in the FCV and constitute the main objective of this 
work (Section 5).  

 

IV. ANALYSIS OF THE SHEAR RATE IN THE 
ANNULAR FLOW (DIRECT PROBLEM) 

A. Calculation Scheme 
The aim of this section is to calculate the shear rate 

profile, as well as to visualize the behavior of typical 
fluids in the annular flow of the FCV, before presenting 
the determination of parameters . In this 
sense, a calculation scheme to solve the set of Eqs. (7), 
(8) and (13) for a given fluid with a known viscosity 
function is described. Therefore once the viscosity 
model and related parameters are specified, the first step 
consists in finding  as numerical roots of Eq. 
(13), for defined values of ∆ρ, κ and R. This task is car-
ried out through a Newton-Raphson subroutine 
(Carnahan et al., 1969), for around 10

),...,( 1 Mqq

)(rrzγ&

4 discrete values 
of r in the range RrR ≤≤κ . Since the unknown  
enters these calculations, an iterative process is con-
ducted by starting with an initial guess obtained from 
Eq. (A3). A Newton-Raphson subroutine is also used to 
correct the value of 

rzτ

Rκτ  at each iteration, until  
satisfies Eq. (7) for a certain relative error of the order 
of 10

)(rrzγ&

−5. When the convergence criterion is reached, the 
roots  at discrete values of r are attained and 
hence U may be calculated from Eq. (8). The velocity 

 is also calculated by integrating 

)(rrzγ&

)(ruz

rur zrz ∂∂−=)(γ&  from κR to R. A simple crosscheck 
for these calculations can be carried out as follows: the 
function RR κκ γτη &= , with values Rκτ  and  ob-
tained numerically, must match the apparent viscosity 

, which is an input in the algorithm for 
this case. 

Rκγ&
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B. Shear Flow Behavior of Typical Fluids 
Results obtained with Functions III and IV of Table 

1 are presented here, as examples of non-Newtonian 
behavior. In particular, the PL fluid (Function II) has 
been well described elsewhere (Park and Irvine, 1988; 
Cho et al., 1992; Phan-Thien et al., 1993; Zheng et al., 
1994). The parameter values used for Function III were 
q1 = 0.1 Pa s and q2 = 0.08 Pa, while for Function IV 
were  q1 = 0.1 Pa s, q2 = 0.05 s, q3 = 1 and q4 = 0. The 
mathematical problem described above (Eqs. (7), (8) 
and (13)) has been solved for these fluids by assigning 
different values to ∆ρ in the range 10-4000 kg/m3, and 
considering a viscometer with κ = 0.25 and R = 0.005 
m. Shear rate and velocity profiles are shown in Figs. 2 
(a) and (b), respectively, where the Newtonian solution 
is also included for comparison (Function I, Eq. (A1)). 
The flow curves corresponding to Function IV show a 
typical pseudoplastic behavior, with the velocity profile 
shifted to the falling cylinder wall, where the shear rate 
is relatively high. For Function III, which predicts plas-
tic behavior, a plug flow is observed in the region where 

)(rrzτ  is lower than q2 = 0.08 Pa.  
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Figure 2. (a) Shear rate and (b) velocity profiles, as a 
function of the radial coordinate in the annular gap be-
tween cylinders. Geometrical characteristics used in 
calculations are R = 0.005 m and κ = 0.25. In particular, 
∆ρ = 100 kg/m3 in the case of Function III and 200 
kg/m3 in the case of Function IV. The parameter values 
of the viscosity functions are reported in the text. 
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Figure 3. Terminal velocity of the falling cylinder as a 
function of the density difference, for R = 0.005 m and 
κ = 0.25. The parameter values are reported in the text. 
The line representing the Newtonian fluid is obtained 
from Eq. (A2) with µ = 0.1 Pa s.  

 
Figure 3 presents the resulting falling cylinder veloc-

ity U for each value of ∆ρ used as input in the algo-
rithm. Once more the solution for a Newtonian fluid 
(Function I) has been included as a reference (straight 
line, from Eq. (A2) with µ = 0.1 Pa s). This figure 
shows how the terminal velocities predicted by Func-
tions III and IV deviate from that of the Newtonian fluid 
(the same value of q1 has been chosen here for all the 
fluids under analysis). In particular, for Function III, the 
velocity U decreases rapidly as ∆ρ decreases, and even-
tually vanishes for a critical value of ∆ρ at which the 
material virtually becomes a solid. Therefore, the curve 
U(∆ρ) provides a relevant information concerning the 
rheological response of the fluid tested. In relation to the 
analysis reported in previous works (Park and Irvine, 
1988; Cho et al., 1992; Phan-Thien et al., 1993; Zheng 
et al., 1994), one finds that the PL fluid always yields 
straight lines in log-log plots of U vs. ∆ρ, the slopes of 
which depend on the flow index n and on the selection 
of the different shear rate zones. 

It is relevant to mention here that the geometric 
scales selected for the numerical examples are typical 
values used in experiments, and although the length L 
does not enter explicitly in calculations, the condition 
L/κR > 40 is easily attained in practice. For example, for 
the above values of κ and R, a cylinder with L> 0.05 m 
yields L/κR > 40. These high values of the aspect ratio 
assure that (a) the elasticity of the fluid does not affect 
the shear stresses on the cylinder (Zheng et al., 1994), 
and (b) errors due to end effects are minimized (Park 
and Irvine, 1995). In this sense, the pairs U vs. ∆ρ re-
ported in Fig. 3 can be regarded as pseudo-experimental 
data for the fluids considered, since the calculations 
emulate ideal experiments with the FCV. 

 

V. CALCULATION OF THE VISCOSITY 
FUNCTION (INVERSE PROBLEM) 

A. Procedure 
In this section the inverse problem is studied, which 

consists in determining the unknown parameters of the 
apparent viscosity (the proposed function) from data Uex 
vs. ∆ρex. The superscript ex refers here to experimental 
data obtained in the FCV with the requirement L/κR 
>40. As mentioned above, the curve Uex(∆ρex) is used 
here within the theoretical framework presented by Eqs. 
(7), (8) and (13), which must include a viscosity model 

 appropriately selected for the fluid under 
study. Therefore one can estimate parameters 

 of the selected model by fitting the theoreti-
cal function U(∆ρ, ) to the curve U

),...,,( 1 Mqqγη &

Mqq ,...,1

Mqq ,...,1
ex(∆ρex). 

Once the best values estimated of  are ob-
tained, η( ) can be readily calculated in the range of 
shear rates obtained experimentally with the FCV.  

Mqq ,...,1

γ&

A crucial aspect here is that Eqs. (7), (8) and (13) 
cannot be abridged into a single expression of the form 
U(∆ρ, ), except in the case of Newtonian fluids 
only (Eq. (A2)). Therefore, for a given viscosity model, 
the function U(∆ρ, ) must be obtained numeri-
cally and then fitted to the curve U

Mqq ,...,1

Mqq ,...,1
ex(∆ρex). To perform 

these calculations, we developed an algorithm in which 
the inputs are N pairs {Uex, ∆ρex} and the initial guess 

,..., , while the output are the best values esti-
mated for  characterizing the apparent viscos-
ity for the fluid under study, as shown in the diagram of 
Fig. 4.  
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a
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The calculation procedure is basically the following: 
for each data , from i = 1 to N, the profiles  
corresponding to the selected function  
are obtained. Then  is calculated through Eq. 
(8). To identify the best parameter values, the sum of 
differences, 

ex
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is minimized through an iterative process, following the 
outer loop indicated in Fig. 4. Therefore, the calculation 
involves a subroutine (Appendix B) designed to solve a 
system of M non-linear algebraic equations, which 
comes from the requirement of minimizing S as a func-
tion of the M model parameters. As mentioned above, 
the minimum number of experimental data required to 
solve this algebraic problem is equal to the number of 
model parameters. Further, in order to attain a statisti-
cally meaningful solution, the degrees of freedom N−M 
should be higher than M (Carnahan et al., 1969). 
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Figure 4. Flow diagram of the algorithm designed to 
identify the parameters of the viscosity model from ex-
perimental data of the FCV. 

B. Criteria for Selecting the Apparent Viscosity 
Model and Initial Parameter Values  

When the apparent viscosity function of a fluid is 
unknown, a preliminary analysis of experimental data 
from the FCV must be carried out in order to select the 
appropriate apparent viscosity model, as indicate above. 
In this sense, one may take advantage of the simple ana-
lytic solutions available explicitly for Newtonian fluids. 
Thus, for each pair {Uex, ∆ρex}, values of both approxi-
mate viscosity function aη  and the apparent shear rate 

 through the equations reported in Appendix A may 
be calculated. The curve  thus obtained presents 
a shape similar to the apparent viscosity η( ) (or true 
viscosity function). In this sense, it is appropriate to 
point out that several authors prefer to designate 

aγ&

)( aa γη &

γ&

aη  as 
the apparent viscosity (a designation typically used for 
η) while  has the same meaning as given in this work 
(see also Brunn and Vorwerk (1993) for relevant discus-
sion concerning these functions). Then different viscos-
ity models can be easily fitted to data , to find a 
set of approximate initial parameters ,..., . An 
analysis of the fitting goodness, which is statistically 
measured through the determination coefficient 

aγ&

)( aa γη &

aq1
a
Mq

2r̂ , de-
fines the suitable model for the sample considered (Berli 

and Deiber, 2001). This calculation is readily performed 
through standard mathematical softwares. 

The selection of parameter values for initialization 
described above is important for the iterative process 
used, which involves the Newton-Raphson subroutine, 
having into account that convergence is satisfactory as 
long as initial parameter values are chosen sufficiently 
close to the solution. In this sense, it has been shown 
that the approximate parameters ,..., , obtained 
from the curve , are good choices to initialize the 
calculation scheme described above (Berli and Deiber, 
2001; 2004). The procedure suggested here may be re-
garded as a form of converting the approximate model 
parameters into a good estimate of the true ones; i.e., 
one obtains η( ) from direct experimental data  
through an iterative process. 
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C. Seudo-experimental data  
Samples of synthetic data are well suited to test the 

procedure suggested, as the true viscosity of the fluid is 
known beforehand (Berli and Deiber, 2001; 2004). Thus 
data reported in Fig. 3 are used here to estimate the vis-
cosity function (supposedly unknown) of the fluid. Data 
for a PL fluid  were also obtained numerically (Function 
II with q1 = 0.2 Pa sn and q2 = 0.7), considering a FCV 
with the same characteristics as those used above (R = 
0.005 m, κ = 0.25) and ∆ρ ranging from 10 to 4000 
kg/m3. In all cases, discrete values of  vs.  
were attained, where superscript f means error-free data 
here. Therefore, in order to simulate the experiments 
better, different levels of experimental noise δ were 
introduced in the velocity data by defining 

fex
iU , fex

i
,ρ∆

( )GUU fex
i

ex
i δδ += 1,, , where G is a Gaussian random 

number with zero mean and unit variance. 
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Figure 5. Apparent viscosity versus shear rate for a 
fluid obeying Function II, with δ = 0.05. Lines represent 
the true and calculated viscosity functions (parameter 
values in Table 2). Symbols refer to the approximate 
values obtained by using Eqs. (A2) and (A4). 
 

Table 2. Parameter values for different samples involving pseudo-experimental data from a FCV. 



δ = 0.01 δ = 0.05  
Function 

 

 
Parameters 

 
True values 

Approximate Calculated  Approximate Calculated 

q1 (Pa sn) 0.2 0.244 0.2002  0.244 0.2010 

q2  0.7 0.699 0.7004  0.698 0.7023 
II 

 
2r̂    0.9991   0.9789 

q1 (Pa s) 0.1 0.099 0.1002  0.101 0.1018 
q2 (s) 0.05 0.032 0.0502  0.033 0.0523 
q3 1 1.070 0.9963  1.085 0.9678 

IV 

 

2r̂    0.9997   0.9925 

 

D. Results and Discussion 
The procedure described above in order to identify 

the parameters of the apparent viscosity models was 
applied to scattered data  vs.  of different 
fluids obtained as described in Section 5.3. The parame-
ter values and the determination coefficient obtained for 
different levels of pseudo-experimental errors are re-
ported in Table 2. In particular, Fig. 5 illustrates the 
results obtained with FCV data corresponding to a PL 
fluid. In this figure, the symbols represent approximate 
values , from which the initial parameters are 
estimated. Also in Fig. 5, the dashed line represents 

 with the parameter values obtained 
through the algorithm proposed here (Table 2), while 
the full line is the apparent viscosity expected. Excellent 
results are observed (the lines are superposed and al-
most indistinguishable from one another), even for the 
highest levels of δ  (around 5%). In this sense it is also 
worth observing that commercial instruments provide 
velocity data with error levels of the order of 1 %. Fig. 5 
shows that the PL model applied to sub-regions of ex-
perimental data is also comprised in our procedure, 
without the need of using semi-empirical correlations. 
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Following we consider a fluid whose apparent vis-
cosity model involves more than two parameters; more 
precisely, Function IV in Table 1 is selected now. This 
example is used to compare our results to those obtained 
through the procedure currently used with FCVs (Sec-
tion 2.3, Eq. (11)). For this purpose, we first obtain 

NDD /µ  vs. , from data  vs. , as 
illustrated in Fig. 6. The curve has been divided into 
three regions, and the flow index n associated to each 
region has been estimated by using Eq. (11). With these 
values of n, which are reported in Fig. 6, the constant K 
and then the effective shear rate  of each re-
gion were obtained (see Section 2.3). The final viscosity 
curve, which consists of discrete and scattered values, is 
presented in Fig. 7 through symbols. This figure also 
includes the numerical prediction through the procedure 
suggested in this work (dashed line). The required pa-

rameters are reported in Table 2. It is observed that the 
curve of scattered data lies to the left of the true viscos-
ity, meaning that  is lower than the true shear 

rate . This result indicates that n, obtained as an aver-
age in each region of Fig. 6, does not sense appropri-
ately the true slope of the curve at each . Thus a sys-
tematic error is introduced in the calculation of K, which 
is a disadvantage observed in the procedure currently 
used to attain the apparent viscosity with the FCV 
(Phan-Thien et al., 1993; Zheng et al., 1994). In con-
trast, the procedure proposed here, based on the identifi-
cation of the unknown parameters, allows one to get a 
calculated apparent viscosity that approximates well the 
expected values (Fig. 7).  

RU ex /,δ δ,exU exρ∆

RKU ex /,δ

RKU ex /,δ

γ&

γ&

0.1 1 10

0.1

0.04

 

 

n = 0.529

n = 0.823

n = 0.966

Uex,δ/R  (s-1)

D
 µ

 /D
N
  (

Pa
 s)

 Experimental data
 Linear fit, Eq. (11)

 
Figure 6. Apparent viscosity as a function of the ratio 
U/R for a fluid obeying Function IV, with δ = 0.01. 
Symbols are the values obtained from the relative drag 
force. Lines represent the prediction of Eq. (11) for dif-
ferent intervals of U/R. 
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Figure 7. Apparent viscosity versus shear rate for a 
fluid obeying Function IV, with δ = 0.01. Lines repre-
sent the true and calculated viscosity functions (parame-
ter values in Table 2). Symbols represent the effective 
values obtained through the procedure involving Fig. 6 
and Eq. (11) (Section 2.3). 

VI. CONCLUSIONS 
Although the FCV provides a simple procedure to 

determine the viscosity of Newtonian fluids, the calcula-
tion of the apparent viscosity γτγη && =)(  of non-
Newtonian fluids is quite complex in this device. In 
fact, both τ and  cannot be obtained directly from the 
experimental values {∆ρ, U}. This remarkable differ-
ence between the FCV and conventional viscometric 
cells motivated the search of procedures capable of 
solving this problem involving non-Newtonian fluids.  

γ&

The present work proposes an algorithm to process 
data measured with the FCV for different non-
Newtonian fluids. This generic procedure has been de-
signed to perform calculations for any model of the ap-
parent viscosity function and for any value of ratio κ. 
As observed in Figs. 5 and 7, the close agreement be-
tween the apparent viscosity (synthetic data) and the 
calculated apparent viscosity through the identification 
of parameters indicates the robustness of the algorithm 
proposed. Although apparent viscosity models were 
selected from Table 1 as typical examples to illustrate 
the study carried out here, any other model may be also 
used in practical situations. Indeed, the success of the 
procedure proposed here relies on the adequate compu-
tation of the unknown function  involved in the 
integral equation (Eq. (7)), by considering a suitable 
apparent viscosity model with appropriate initial pa-
rameter values.  

)(rγ&

Finally, it is worth observing that the evaluation of 
 and then η( ) from data γ& γ& },{ Uρ∆  measured in the 

FCV, requires inverting an integral equation, the solu-
tion of which is not unique due to the scattering present 
in experimental data. In this work, instead of determin-

ing numerical values of η( ), the parameters corre-
sponding to an apparent viscosity model (a required 
function to solve the FCV in the viscometric context) 
are identified for the fluid under study. Therefore, it is 
also clear that this methodology does not eliminate the 
difficulty associated to the existence of other possible 
solutions. Thus, one should not expect a unique solution 
but the best estimate of parameters to construct the 
curve η( ), from those attainable. This implies the 
conversion of  into  through the 
algorithm proposed. 
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APPENDIX 
A. Newtonian Fluids in the FCV 

The use of  in the problem defined by 
Eqs. (7), (8) and (13) yields the following equations for 
the annular flow developed in the FCV (Lohrenz et al., 
1960; Bird et al., 1977; Cristescu et al., 2002), 

rzrz γµτ &=

)()}/ln()1(])/(1{[)( 22 κψκ RrRrUruz ++−−= ,  (A1) 
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where,  is a function in-
volving the geometric parameter κ only. Equation (A2) 
is important in practice to determine the viscosity µ 
from experimental data U versus ∆ρ in the characteriza-
tion of Newtonian fluids.  

κκκκψ ln)1()1()( 22 ++−=

From the above equations, the rheometric shear 
stress and shear rate for a Newtonian fluid at r = κR 
(surface of the falling cylinder) are readily derived, i.e., 
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Also for Newtonian fluids, the drag force 
 (Phan-Thien et al., 1993; Zheng et 

al., 1994) can be written in terms of µ and U as, 
LRgD πκρ∆ 2)(=

)()1(2 2 κψκµπ +−= ULDN .   (A5) 
 
B. Subroutine to Identify the Viscosity Model P
rameters in the FCV 

a-

In order to identify the set of M parameters that 
makes the sum S (Eq. (14)) as small as possible, the 
following functions must be minimized simultaneously, 
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where  j = 1 to M. By defining F = [F1, ..., FM]T  and  q 
= [q1, ..., qM]T, the problem to be solved is expressed, 
F(q) = 0. The best estimate of q is obtained with the 
Newton-Raphson subroutine for systems of non-linear 
algebraic equations (Carnahan et al., 1969). This 
method involves an iterative process in which q is modi-
fied through the following recurrence law,  



)()(' )(1)()()1( llll qFqFqq ⋅−= −+ ,  (B2) 
starting from an initial vector q(0), here included as the 
vector of approximate values q(a). In Eq. (B2), 

qFF dd='  is a symmetrical matrix of dimensions 
M×M that is inverted through the Gaussian elimination 
subroutine (Carnahan et al., 1969). The components of 
this matrix are given by,  
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(B3) 
where k = 1 to M. The iterative process ends when, 

ξ≤−+ )()()1( )( lll qqq ,    (B4) 

with a value of ξ sufficiently small (∼10−3), as shown in 
the diagram of Fig. 4.  

The derivatives dUi/dqj and d2Ui/(dqkdqj) in Eqs. 
(B1) and (B3) are obtained numerically through the fi-
nite differences method. Backward differences q∆  are 
used to make these calculations, for instance, dUi/dq1 = 
[Ui(q1+∆q1, q2,..., qM) − Ui(q1, q2,..., qM)]/∆q1. This im-
plies that M2+M different values of Ui must be calcu-
lated for each  data. That is, Uex

iρ∆ i(q1, q2,..., qM), 
Ui(q1+∆q1, q2,..., qM), … Ui(q1, q2,..., qM +∆qM). 
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