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Abstract

In this paper we solve a problem posed in [3] and [5] about the
axiomatizability of a system of quantum computational gates known
as the Poincaré irreversible quantum computational system. A Hilbert-
style calculus is introduced obtaining a strong completeness theorem.
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Introduction

The idea of quantum computation was introduced in 1982 by Richard Feyn-
mann and remained primarily of theoretical interest until developments such
as the invention of an algorithm to factor large numbers triggered a vast do-
main of research. In a classical computer, information is encoded in a series
of bits and these bits are manipulated via Boolean logical gates like NOT,
OR, AND, etc, arranged in succession to produce an end result. Standard
quantum computing is based on quantum systems described by finite di-
mensional Hilbert spaces, specially C2 -the two-dimensional space of a qbit.
A qbit (the quantum counterpart of the classical bit) is represented by a
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unit vector in C2 and, generalizing for a positive integer n, n-qbits are repre-
sented by unit vectors in C2n

. Similarly to the classical computing case, we
can introduce and study the behavior of a number of quantum logical gates
(hereafter quantum gates for short) operating on qbits. Quantum comput-
ing can simulate all computations which can be done by classical systems;
however, one of the main advantages of quantum computation and quantum
algorithms is that they can speed up computations [19].

In [3] and [5], a quantum gate system called Poincaré irreversible quan-
tum computational system (IP-system for short) was developed. The IP-
system is an interesting set of quantum gates specially for two reasons: i) it
is related to continuous t-norms [17], i.e. continuous binary operations on
the interval [0, 1] that are commutative, associative and non-decreasing with
1 is the unit element. They are naturally proposed as interpretations of the
conjunction in systems of fuzzy logic [13]. ii) Subsequent generalizations al-
low to connect the IP-system with sequential effect algebras [10], introduced
to study the sequential action of quantum effects which are unsharp versions
of quantum events [11, 12].

Our work is motivated by the IP-system, and mainly by the following
question proposed by the authors in [3] and [5]: “The axiomatizability of
quantum computational logic is an open problem.”. To answer this claim,
we study an algebraic structure related to the IP-system and we provide a
Hilbert-style calculus, obtaining a strong completeness theorem with respect
to the mentioned structure.

The paper is structured as follows: In Section 1, we briefly resume ba-
sic physical notions of mathematical approaches to quantum computation.
Section 2 contains generalities on universal algebra and algebraic structures
associated with  Lukasiewicz infinite-valued calculus as MV -algebras and
product MV -algebras. In Section 3 we introduce a set of quantum gates
known as Poincaré irreversible quantum gates system. The mathematical
representation of these quantum gates is closely related with the product
MV -algebras structure. In Section 4, algebraic structures associated to
quantum computation are introduced. Specifically, we introduce an expan-
sion of the equational class known as square root quasi MV -algebras [9], ex-
pansion that we call “square root quasi PMV -algebra” (or

√
qPMV -algebra

for short). In Section 5 we focus on a subvariety of the
√
qPMV -algebras

called Irreversible Poincaré Algebras. In Section 6 we introduce the notion of
probabilistic consequence. It provides a generalization of a classical problem
related to digital circuits which consists in knowing whether a determinate
state of the output of a set of a circuits conditions a determine state of
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the output of another circuit. Finally, in Section 7 we give a Hilbert-style
axiomatization, called LIP, for the probabilistic consequence. A strong
completeness theorem for LIP with respect to the variety of Irreversible
Poincaré Algebras is obtained.

1 Basic notions in quantum computation

In quantum computation, information is elaborated and processed by means
of quantum systems. The pure state of a quantum system is described by a
unit vector in a Hilbert space, denoted by |ϕ〉 in Dirac notation. A quantum
bit or qbit, the fundamental concept of quantum computation, is a pure
state in the Hilbert space C2. The standard orthonormal basis {|0〉, |1〉}
of C2 where |0〉 = (1, 0) and |1〉 = (0, 1) is called the logical basis. Thus,
pure states |ϕ〉 in C2 are coherent superpositions of the basis vectors with
complex coefficients

|ψ〉 = c0|0〉+ c1|1〉, with |c0|2 + |c1|2 = 1

Recalling the Born rule, any qubit |ψ〉 = c0|0〉+c1|1〉 may be regarded as
a piece of information, where the number |c0|2 corresponds to the probability-
value of the information described by the basic state |0〉; while |c1|2 corre-
sponds to the probability-value of the information described by the basic
state |1〉. The two basis-elements |0〉 and |1〉 are usually taken as encoding
the classical bit-values 0 and 1, respectively. By these means, a probability
value is assigned to a qbit as follows:

Definition 1.1 [3], [5] Let |ψ〉 = c0|0〉+c1|1〉 be a qbit. Then its probability
value is p(|ψ〉) = |c1|2

The quantum states of interest in quantum computation lie in the tensor
product ⊗nC2 = C2 ⊗ C2 ⊗ . . . ⊗ C2 (n times), a 2n-dimensional complex
space. A special basis, called the 2n-computational basis, is chosen for ⊗nC2.
More precisely, it consists of the 2n orthogonal states |ι〉, 0 ≤ ι ≤ 2n where
ι is in binary representation and |ι〉 can be seen as tensor product of states
(Kronecker product) |ι〉 = |ι1〉 ⊗ |ι2〉 ⊗ . . . ⊗ |ιn〉 where ιj ∈ {0, 1}. A pure
state |ψ〉 ∈ ⊗nC2 is a superposition of the basis vectors |ψ〉 =

∑2n

ι=1 cι|ι〉
with

∑2n

ι=1 |cι|2 = 1.
In the usual representation of quantum computational processes, a quan-

tum circuit is identified with an appropriate composition of quantum gates,
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i.e. unitary operators acting on pure states of a convenient (n-fold tensor
product) Hilbert space ⊗nC2 [25]. Consequently, quantum gates represent
time reversible evolutions of pure states of the system.

In general, a quantum system is not in a pure state. This may be caused,
for example, by the non complete efficiency in the preparation procedure or
by the fact that systems cannot be completely isolated from the environ-
ment, undergoing decoherence of their states. On the other hand, there
are interesting processes that cannot be encoded in unitary evolutions, for
example, at the end of the computation a non-unitary operation, a mea-
surement, is applied, and the state becomes a probability distribution over
pure states, or what is called a mixed state. In view of these facts, several
authors [1, 10, 27] have paid attention to a more general model of quantum
computational processes, where pure states are replaced by mixed states.
This model is known as quantum computation with mixed states. In what
follows we briefly describe the mentioned model.

LetH be a complex Hilbert space. We denote by L(H) the space of linear
operators on H. In the model of quantum computation with mixed states,
we regard a quantum state in a Hilbert space H as a density operator i.e., an
Hermitian operator ρ ∈ L(H) that is positive semidefinite (ρ ≥ 0) and has
unit trace (tr(ρ) = 1). We denote by D(H) the set of all density operators in
H. A quantum operation is a linear map E : L(H1) → L(H2) that is trace-
preserving and completely positive. Intuitively, completely positive means
that if we embed H into some larger system, the standard lifting of E to the
larger system preserves positive definiteness, and thus states get mapped
to states. Formally, this means that for any Hilbert space K, the linear
map E ⊗ IK : L(H1 ⊗K) → L(H2 ⊗K) where IK is the identity in L(H),
satisfies that for any ρ ∈ L(H1 ⊗K), if ρ > 0 then (E ⊗ IK)(ρ) > 0. Each
quantum operation E may be expressed as E(ρ) =

∑
iAiρA

†
i where Ai are

linear operators satisfying
∑

iA
†
iAi = I (Kraus representation [18]).

In the representation of quantum computational processes based on
mixed states, a quantum circuit is a circuit whose inputs and outputs are
labeled with density operators and whose quantum gates are labeled with
quantum operations. In terms of density operators, a n-qbit |ψ〉 ∈ ⊗nC2 can
be represented as a matrix product ρ = |ψ〉〈ψ|, where 〈ψ| = |ψ〉†. Moreover,
every unitary operator U on a Hilbert space ⊗mC2 gives rise to a quan-
tum operation OU such that OU (σ) = UσU† for each σ ∈ L(H). In fact,
quantum computation with mixed states is a generalization of the standard
model based on qbits and unitary operations. We want to stress that the

4



measurement process in quantum computation can also be described by a
quantum operation, an important fact that reinforces the election of quan-
tum operations to represent quantum gates. We refer to [1, 25, 27], for more
details and motivations about quantum operations.

In this powerful model we can extend, in a natural way, the logical base
of qbits and the notion of probability assigned to a qbit. In fact: we may
relate to each vector of the logical basis of C2 one of the distinguished density
operators P0 = |0〉〈0| and P1 = |1〉〈1| that represent the falsity-property
and the truth-property respectively. Generalizing to the framework of n
dimensions, the two special operators P

(n)
0 = 1

Tr(In−1⊗P0)
In−1 ⊗ P0 and

P
(n)
1 = 1

Tr(In−1⊗P1)
In−1⊗P1 (where n is even and n ≥ 2) represent, in each

space D(⊗nC2), the falsity-property and the truth-property respectively. By
applying the Born rule, the probability to obtain the truth-property P

(n)
1

for a system being in the state ρ is given by the following definition:

Definition 1.2 [3], [5] Let ρ ∈ D(⊗nC2). Then, its probability value is
p(ρ) = Tr(P (n)

1 ρ).

Note that, in the particular case in which ρ = |ψ〉〈ψ| where |ψ〉 = c0|0〉 +
c1|1〉, we obtain that p(ρ) = |c1|2. This definition of probability allows to
introduce a binary relation ≤w on D(⊗nC2) in the following way:

σ ≤w ρ iff p(σ) ≤ p(ρ)

One can easily see that 〈D(⊗nC2),≤w〉 is a preorder and it will play an
important role in the rest of the paper.

2 MV -algebras and PMV -algebras

We freely use all basic notions of universal algebra that can be found in
[2]. Let σ be a type of algebras and let A be a class of algebras of type
σ. We denote by TermA the absolutely free algebra of type σ built from
the set of variables V = {x1, x2, . . .}. Each element of TermA is referred
as an A-term. For t ∈ TermA we often write t as t(x1, x2, . . . , xn) to indi-
cate that the variables occurring in t are among x1, x2, . . . , xn. Let A ∈ A.
If t(x1, x2, . . . , xn) ∈ TermA and a1, . . . an ∈ A, by tA[a1, . . . , an], we de-
note the result of the application of the term operation tA to the elements
a1, . . . an ∈ A. A valuation in A is a map v : V → A. Of course, any valua-
tion v in A can be uniquely extended to an A-homomorphism v : TermA →
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A in the usual way, i.e., if t1, . . . , tn ∈ TermA then v(t(t1, . . . , tn)) =
tA(v(t1), . . . , v(tn)). Thus, valuations are identified with A-homomorphisms
from the absolutely free algebra. If t, s ∈ TermA, A |= t = s means that for
each valuation v in A, v(t) = v(s) and A |= t = s means that for each A ∈ A,
A |= t = s. If S is a subclass of A, V(S) denotes the variety generated by
S.

Now we introduce some basic notions in algebraic structures associated
to fuzzy logic. An MV-algebra [4] is an algebra 〈A,⊕,¬, 0〉 of type 〈2, 2, 0〉
satisfying the following equations:

MV1 〈A,⊕, 0〉 is an abelian monoid,

MV2 ¬¬x = x,

MV3 x⊕ ¬0 = ¬0,

MV4 ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x.

In agreement with the usual MV -algebraic operations we define:

x� y = ¬(¬x⊕ ¬y), x→ y = ¬x⊕ y,

x ∧ y = x� (x→ y), 1 = ¬0,

x ∨ y = (x→ y) → y.

On each MV -algebra A we can define an order x ≤ y iff x → y = 1.
This order turns 〈A,∧,∨, 0, 1〉 into a distributive bounded lattice with 1 the
greatest element and 0 the smallest element.

A very important example of MV -algebra is [0, 1]MV = 〈[0, 1],⊕,¬, 0〉
such that [0, 1] is the real unit segment and ⊕ and ¬ are defined as follows:

x⊕ y = min(1, x+ y) ¬x = 1− x

The derivate operations in [0, 1]MV are given by x� y = max(0, x+ y − 1)
(called  Lukasiewicz t-norm) and x → y = min(1, 1 − x + y). Finally the
MV -lattice structure is the natural order in [0, 1].

A product MV -algebra [22, 23, 24] (for short: PMV -algebra) is an alge-
bra 〈A,⊕, •,¬, 0〉 of type 〈2, 2, 1, 0〉 satisfying the following:
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1 〈A,⊕,¬, 0〉 is an MV -algebra,

2 〈A, •, 1〉 is an abelian monoid,

3 x • (y � ¬z) = (x • y)� ¬(x • z).

An important example of PMV -algebra is [0, 1]MV equipped with the
usual multiplication (called product t-norm). This algebra is denoted by
[0, 1]PMV . The following are almost immediate consequences of the defini-
tion of PMV -algebras:

Lemma 2.1 In each PMV -algebra we have

1. 0 • x = 0,

2. If a ≤ b then a • x ≤ b • x,

3. x� y ≤ x • y ≤ x ∧ y.

2

Proposition 2.2 [23, Lemma 2.3] Each PMV -algebra is isomorphic to a
subdirect product of linearly ordered PMV -algebras.

2

Definition 2.3 A PMV 1
24

-algebra is an algebra 〈A,⊕, •,¬, 0, 1
2 , 1〉 of type

〈2, 2, 1, 0, 0, 0〉 satisfying the following:

1. 〈A,⊕, •,¬, 0, 1〉 is a PMV -algebra,

2. ¬1
2 = 1

2 ,

3. 1
24 ⊕ 1

24 = 1
23 where 1

2n means the term 1
2n−1 • 1

2 (n ≥ 2).

It is well known that a PMV -algebra has at most a fix point of the
negation [15, Lemma 2.10]. An example of PMV 1

24
-algebra is [0, 1]PMV

where the fix point of the negation is 1
2 .

We denote PMV 1
24

the variety of PMV 1
24

-algebras. This variety plays
a crucial role in Section 5 and Section 7.
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3 The Poincaré irreversible quantum gates system

The Poincaré irreversible quantum computational system is framed in the
model of quantum computation with mixed states. It takes into account a set
of quantum gates –represented by quantum operations– acting on quantum
mixed states –represented by density operators of D(C2). We first describe
some basic properties of density operators in D(C2). Due to the fact that
the Pauli matrices:

σx =
(

0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
plus I, where I is the 2×2 identity matrix, are a basis for the set of operators
over C2, an arbitrary density operator ρ ∈ D(C2) may be represented as

ρ =
1
2

(I + r1σx + r2σy + r3σz)

where r1, r2, r3 are real numbers such that r21 + r22 + r23 ≤ 1. When a density
operator ρ ∈ D(C2) represents a pure state, it can be identified with a point
(r1, r2, r3) on the sphere of radius 1 (the Bloch sphere) and each ρ ∈ D(C2)
that represents a mixed state with a point in the interior of the Bloch sphere.
We denote this identifications as ρ = (r1, r2, r3). In this way P1 = (0, 0− 1)
and P0 = (0, 0, 1). An interesting feature of density operators in D(C2) is
the following: any real number λ ∈ [0, 1], uniquely determines a density
operator ρλ given by

ρλ = (1− λ)P0 + λP1

Lemma 3.1 [6, Lemma 6.1] Let ρ = (r1, r2, r3) ∈ D(C2). Then we have:

1. p(ρ) = 1−r3
2 .

2. If ρ = ρλ for some λ ∈ [0, 1] then ρ = (0, 0, 1− 2λ) and p(ρλ) = λ.

2

Definition 3.2 The Poincaré irreversible quantum computational system
(IP-system) [3, 5] is given by the following set of quantum gates

• σ ⊕ τ = ρp(σ)⊕p(τ) [ Lukasiewicz gate]

• σ • τ = ρp(σ)·p(τ) [IAND gate]
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• ¬τ = σxτσ
†
x [NOT gate]

•
√
τ =

(
1+i
2

1−i
2

1−i
2

1+i
2

)
τ

(
1+i
2

1−i
2

1−i
2

1+i
2

)†
[
√
NOT gate]

where σ and τ belong to D(C2).

By the Kraus representation mentioned in Section 1, it is immediate
that ¬ and √. are quantum operations. We refer to [8] for a representation
of the IAND gate and the  Lukasiewicz gate as quantum operations. The
IP-system defines a set of operations on D(C2) giving rise to the structure

〈D(C2),⊕, •,¬,√, P0, ρ 1
2
, P1〉

known as Poincaré irreversible quantum computational algebra (shortly IQC-
algebra) [3, 5]. The following lemma gives the main properties of the IQC-
algebra.

Lemma 3.3 [6, Lemma 6.1] and [7, Lemma 3.7] Let τ, σ ∈ D(C2) and let p
be the probability function over D(C2). Then we have:

1. 〈D(C2), •〉 and 〈D(C2),⊕〉 are abelian monoids,

2. τ • P0 = P0,

3. τ • P1 = ρp(τ),

4. p(τ • σ) = p(τ)p(σ),

5. p(τ ⊕ σ) = p(τ)⊕ p(σ),

6.
√
¬τ = ¬

√
τ ,

7.
√√

τ = ¬τ .

Moreover if σ = (r1, r2, r3) then

8. ¬σ = (r1,−r2,−r3) and
√
σ = (r1,−r3, r2), hence p(¬σ) = 1+r3

2 and
p(
√
σ) = 1−r2

2 ,

9. p(
√
τ • σ) = p(

√
τ ⊕ σ) = 1

2 .

2
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Taking into account Lemma 3.3-7, ¬ becomes a definable operation in
the IQC-algebra. Recalling that in our case the assignment of probability is
done via a function p : D(C2) → [0, 1], it is possible to establish the following
equivalence relation in D(C2):

σ ≡ τ iff p(σ) = p(τ)

This equivalence is strongly related to the preorder ≤w mentioned at the
end of Section 1. In view of Lemma 3.1 and Lemma 3.3, we can see that ≡
is a (⊕, •,¬)-congruence but not a √.-congruence.

Proposition 3.4 Let [σ] be the equivalence class of σ ∈ D(C2) and consider
the natural application π≡ : D(C2) → D(C2)/≡. Then

1. [σ] = [σ • P1] = [σ ⊕ P0] = [ρp(σ)]

2. 〈D(C2)/≡,⊕, •,¬, [P0], [ρ 1
2
], [P1]〉 is a PMV 1

24
-algebra and the assign-

ment [ρλ]
f→ λ is a PMV 1

24
-isomorphism from D(C2)/≡ onto [0, 1]PMV .

3. The following diagram is commutative

-

?
���

��	 f

D(C2) [0, 1]PMV

D(C2)/≡

p

π≡

Proof: 1) Follows from Lemma 3.3. 2) By item 1, we can consider the
identification (D(C2)/≡) = (ρλ)λ∈[0,1]. Then it may be easily proved that

〈(D(C2)/≡),⊕, •,¬, [P0], [ρ 1
2
], [P1]〉 is a PMV 1

24
-algebra and [ρλ]

f→ λ is a

PMV 1
24

-isomorphism from D(C2)/≡ onto [0, 1]PMV . 3) Immediate.
2

Remark 3.5 By Proposition 3.4-3, we can see that the assignment of prob-
ability p : D(C2) → [0, 1] can be identified with the natural application π≡ :
D(C2) → D(C2)/≡ where D(C2)/≡ is endowed with a PMV 1

24
-structure.

This crucial fact is particularly relevant in the definition of probabilistic
consequence introduced in Section 6.
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4 Quantum computational algebras

In this Section we introduce algebraic structures by means of simple equa-
tions in an attempt to capture the basic properties of the IQC-algebra.

The first and more basic algebraic structure associated to the IP-system
was introduced in [21] for the  Lukasiewicz and the NOT gates. This is the
quasi MV -algebra or qMV -algebra for short. A qMV -algebra is an algebra
〈A,⊕,¬, 0, 1〉 of type 〈2, 1, 0, 0〉 satisfying the following equations:

Q1. x⊕ (y ⊕ z) = (x⊕ y)⊕ z,

Q2. ¬¬x = x,

Q3. x⊕ 1 = 1,

Q4. ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x,

Q5. ¬(x⊕ 0) = ¬x⊕ 0,

Q6. (x⊕ y)⊕ 0 = x⊕ y,

Q7. ¬0 = 1.

From an intuitive point of view, a qMV -algebra can be seen as an MV -
algebra which fails to satisfy the equation x⊕ 0 = x. We define the binary
operations �,∨,∧,→ in the same way as we did for MV -algebras.

Lemma 4.1 ([21, Lemma 6]) The following equations are satisfied in each
qMV -algebra:

1. x⊕ y = y ⊕ x, 5. x⊕ 0 = x ∧ x,

2. x⊕ ¬x = 1, 6. x ∧ y = y ∧ x,

3. x� ¬x = 0, 7. x ∨ y = y ∨ x,

4. 0⊕ 0 = 0.

2

Another algebraic structure associated to the IP-system was introduced
in [9] for the  Lukasiewicz, the NOT and the

√
NOT gates. These algebras

are known as square root quasi MV -algebras or
√
qMV -algebras for short.
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A
√
qMV -algebra is an algebra 〈A,⊕,√, 0, 1

2 , 1〉 of type 〈2, 1, 0, 0, 0〉 such

that, upon defining ¬x =
√√

x for all x ∈ A, the following conditions are
satisfied:

SQ1. 〈A,⊕,¬, 0, 1
2 , 1〉 is a qMV -algebra,

SQ2.
√
¬x = ¬

√
x,

SQ3.
√
x⊕ y ⊕ 0 =

√
1
2 = 1

2 .

In what follows we will extend the
√
qMV -algebra structure taking into

account the basic properties of the IAND gate given in Lemma 3.3.

Definition 4.2 A
√
qPMV -algebra is an algebra 〈A,⊕, •,√, 0, 1

2 , 1〉 of type
〈2, 2, 1, 0, 0, 0〉 satisfying the following:

1. 〈A,⊕,√, 0, 1
2 , 1〉 is a

√
qMV -algebra,

2. x • y = y • x,

3. x • (y • z) = (x • y) • z,

4. x • 1 = x⊕ 0,

5. x • y = (x • y)⊕ 0,

6. x • (y � ¬z) = (x • y)� ¬(x • z),

7.
√
x • y ⊕ 0 = 1

2 .

We denote by
√
qPMV the variety of

√
qPMV -algebras. It is not

very hard to see that the IQC-algebra 〈D(C2),⊕, •,¬,√, P0, ρ 1
2
, P1〉 is a

√
qPMV -algebra.

Let A be a
√
qPMV -algebra. Then we define two binary relations ≤

and ≡ on A as follows:

a ≤ b iff 1 = a→ b

a ≡ b iff a ≤ b and b ≤ a

Clearly, 〈A,≤〉 is a preorder and one can also easily prove that a ≤ b iff
a ∧ b = a⊕ 0 iff a ∨ b = b⊕ 0. Moreover a ≡ a⊕ 0.
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Proposition 4.3 Let A be a
√
qPMV -algebra and a, b ∈ A. Then:

1. a • 0 = 0,

2. If a • b = 1 then a⊕ 0 = b⊕ 0 = 1,

3. If a ≤ b then a • x ≤ b • x,

4. x • y ≤ x,

5. x • (y ⊕ 0) = (x • y)⊕ 0,

6. 1
2 = ¬1

2 ,

7. 1
2 ⊕ 0 = 1

2 ,

8.
√
x⊕ y ⊕

√
z ⊕ w = 1.

Proof: 1) a • 0 = a • (0� ¬0) = (a • 0)� ¬(a • 0) = 0. 2) Suppose that
a• b = 1. Then ¬(a⊕0) = 1�¬(a•1) = (a• b)�¬(a•1) = a• (b�¬1) = 0.
Thus ¬(a⊕0) = 0, hence a⊕0 = 1. 3) If a ≤ b then 1 = a→ b = ¬(a�¬b)
and 0 = a � ¬b. Using item 1. we have that 0 = x • 0 = x • (a � ¬b) =
(x • a) � ¬(x • b). Thus, 1 = ¬((x • a) � ¬(x • b)) = (x • a) → (x • b)
resulting (x • a) ≤ (x • b). 4) Since x ≤ 1 by item 3. we have that
x•y ≤ x•1 = x⊕0 ≤ x. 5) x•(y⊕0) = x•(y•1) = (x•y)•1 = (x•y)⊕0.
Items 6.,7. and 8. can be easily proved.

2

Definition 4.4 Let A be a
√
qPMV -algebra. An element a ∈ A is regular

iff a⊕ 0 = a. We denote by Reg(A) the set of regular elements.

Proposition 4.5 Let A be a
√
qPMV -algebra. Then:

1. 〈Reg(A),⊕, •,¬, 0, 1〉 is a PMV -algebra.

2. ≡ is a 〈⊕, •,¬〉-congruence on A and 〈A/≡,⊕, •,¬, [0], [1]〉 is a PMV -
algebra.

3. A/≡ is PMV-isomorphic to Reg(A). This isomorphism is given by
the assignment [x] 7→ x⊕ 0.

13



Proof: 1) From [21, Lemma 9] 〈Reg(A),⊕,¬, 0, 1〉 is an MV -algebra.
Using Proposition 4.3-5, the operation • is closed in Reg(A). Now from
the axioms of the

√
qPMV -algebras, 〈Reg(A),⊕, •,¬, 0, 1〉 results a PMV -

algebra.
2) It is easy to see that ≡ is a 〈⊕,¬〉-congruence and 〈A/≡,⊕,¬, [0]〉

is an MV -algebra. For technical details see [21]. By Proposition 4.3-3,
≡ is compatible with •. Note that [1] is the identity in 〈A/≡, •, [1]〉 since
[x] • [1] = [x • 1] = [x ⊕ 0] = [x]. Hence, by definition of

√
qPMV -algebra,

〈A/≡,⊕, •,¬, [0], [1]〉 is a PMV -algebra.
3) Since [x] = [x⊕ 0] for each x ∈ A, then ϕ is injective. If x ∈ Reg(A)

then x = x ⊕ 0. Therefore ϕ([x]) = x ⊕ 0 = x and ϕ is surjective. Using
Proposition 4.3-5 we have that ϕ([x] • [y]) = ϕ([x • y]) = (x • y) ⊕ 0 =
(x ⊕ 0) • (y ⊕ 0) = ϕ([x]) • ϕ([y]). In the same way we can prove that
ϕ([x]⊕[y]) = ϕ([x])⊕ϕ([y]). By axiom Q5, ϕ(¬[x]) = ¬ϕ([x]) and ϕ([c]) = c
for c ∈ {0, 1

2 , 1} since they are regular elements in A. Thus [x] 7→ x⊕ 0 is a
PMV-isomorphism.

2

Definition 4.6 Let 〈A,⊕, •,¬, 0, 1〉 be a PMV -algebra with fix point of
the negation 1

2 . The pair algebra over A is the algebra

SA = 〈A×A,⊕, •,√, 0,
1
2
, 1〉

where:

(a, b)⊕ (c, d) := (a⊕ c, 1
2), 0 := (0, 1

2)

(a, b) • (c, d) := (a • c, 1
2), 1 := (1, 1

2)√
(a, b) := (b,¬a), 1

2 := (1
2 ,

1
2)

Proposition 4.7 Let A be a PMV -algebra with fix point of the negation 1
2 .

Then:

1. The pair algebra SA is a
√
qPMV -algebra.

2. (a, b) ≤ (c, d) in SA iff a ≤ c in A.

3. R(SA) is PMV-isomorphic to A.

14



Proof: 1) It is not very hard to see that 〈A × A,⊕,√, 0, 1
2 , 1〉, where

¬x =
√√

x, is a
√
qMV -algebra. We only have to prove that SA satisfies

axioms 6 and 7 of
√
qPMV -algebras.

Ax 6) x• (y�¬z) = (x•y)�¬(x• z). In fact, (a, b)• ((c, d)�¬(z, w)) =
(a, b) • ((c, d)� (¬z,¬w) = (a • (c�¬z), 1

2) = ((a • c)�¬(a • z), 1
2). On the

other hand ((a, b) • (c, d)) � ¬((a, b) • (z, w)) = (a • c, 1
2) � (¬(a • z), 1

2) =
((a • c)� ¬(a • z), 1

2).

Ax 7)
√
x • y ⊕ 0 = 1

2 . In fact:
√

(a, b) • (c, d) ⊕ (0, 1
2) =

√
(a • c, 1

2) ⊕
(0, 1

2) = (1
2 ,¬(a • c))⊕ (0, 1

2) = (1
2 ,

1
2) = 1

2 .
Hence SA is a

√
qPMV -algebra.

2) (a, b) ≤ (c, d) iff (1, 1
2) = (a, b) → (c, d) = (¬a⊕ b, 1

2) iff 1 = ¬a⊕ b in
A iff a ≤ b in A.

3) If we consider SA⊕ 0 = {(x, y)⊕ (0, 1
2) : (x, y) ∈ A×A} then we have

that SA ⊕ 0 = {(x, 1
2) : x ∈ A}. Therefore, SA ⊕ 0 is PMV-isomorphic to

A. Then, by Proposition 4.5, R(SA) is PMV-isomorphic to A.
2

Definition 4.8 A
√
qPMV -algebra is called flat iff it satisfies the equation

0 = 1.

Note that if A is flat
√
qPMV -algebra then Reg(A) = {0} and x⊕ y =

x • y = 0 for each x, y ∈ A. There is a standard technique for extracting a
flat

√
qPMV -algebra out of an arbitrary

√
qPMV -algebra:

Let 〈A,⊕, •,√, 0, 1
2 , 1〉 be

√
qPMV -algebra. Define the structure

Fl(A) = 〈A,⊕, •,√, 0F ,
1
2

F

, 1F 〉

where

1. 0F = 1
2

F = 1F

2. x⊕ y = x • y = 0F

3.
√
x = x

Such an algebra is easily seen to be a flat
√
qPMV -algebra.

15



Proposition 4.9 Let A be a PMV -algebra with fix point of the negation 1
2

and F be a flat
√
qPMV -algebra that satisfies

√
x = x. Consider the algebra

D = F × S where S is a sub
√
qPMV -algebra of the pair algebra SA. Then

1. {(0, (r2, r3)) : (0, (r2, r3)) ∈ D} defines a sub
√
qPMV -algebra of D,√

qPMV-isomorphic to S.

2. The projection πS : D → S is a
√
qPMV-homomorphism.

3. If t contains an occurrence of ? ∈ {⊕, •} then only one of the following
possibilities holds: for each D-valuation v, v(t) = (0, r, 1

2) or for each
D-valuation v, v(t) = (0, 1

2 , r).

4. If t contains an occurrence of ? ∈ {⊕, •} then, for each D-valuation
v, there exists a S-valuation v′ such that v(t) = v′(t).

5. D |= t = s iff S |= t = s

Proof: 1, 2) are straightforward. In what follows we identify (x, (y, z))
with (x, y, z) for each (x, (y, z)) ∈ D.

3) Induction on the complexity of t. Since t contains at least an oc-
currence of ? ∈ {⊕, •}, it cannot be an atomic term. Its minimum pos-
sible complexity is therefore represented by the case in which t is t1 ? t2
where each ti is either a variable or constant. Thus for each D-valuation v,
v(t) = v(t1 ? t2) = (0, r, 1

2) for some r ∈ A. Now let our claim hold whenever
the complexity of a term is less that n and t has complexity n. Suppose

that t is
√
s. If v(s) = (0, r, 1

2) then v(
√
t) =

√
(0, r, 1

2) = (0, 1
2 ,¬r). If

v(s) = (0, 1
2 , r) then v(

√
t) =

√
(0, 1

2 , r) = (0, r, 1
2). The case in which t is

s1 ? s2 is immediate.
4) Let v be a D-valuation. By item 2, the composition v′ = πSv is

an S-valuation. Let t be a
√
qPMV-term containing an occurrence of ? ∈

{⊕, •}. By item 3, for each D-valuation v, v(t) = (0, r2, r3) = πS(0, r2, r3) =
πSv(t) = v′(t).

5) We will consider the non trivial direction. Suppose that D 6|= t = s.
If neither t nor s contain any occurrence of ⊕, then t is

√
t1

n and s is
√
s1

m,
where n,m ≥ 1 are indexes of the successive application of the operation.
If t1 is a constant symbol then trivially S 6|= t = s since s1 is a variable or
constant symbol. If t1 and s1 are both variables then D 6|= t = s implies
that t1 and t2 are different. Hence evaluate t1 to (0, 0, 1

2) and s1 to (0, 1
2 ,

1
2)

to get the required counterexample.
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Suppose that t contains an occurrence of ? ∈ {⊕, •} but s does not. We
have to consider the following three sub cases:

i) If s is a constant symbol then D |= s = s ⊕ 0 and D 6|= t = s ⊕ 0.
Let v be a D-valuation such that v(t) 6= v(s ⊕ 0). By item 4, there exists
an S-valuation v′ such that v(t) = v′(t) and v(s ⊕ 0) = v′(s ⊕ 0). Thus
v′(t) 6= v′(s⊕ 0) = v′(s) and S 6|= t = s.

ii) Suppose that s is a variable. By item 3, we first assume that v(t)
has the form (0, r, 1

2) for each S-valuation v. Then evaluate s to (0, 1, 0)
to get the required counterexample. If we assume that v(t) has the form
(0, 1

2 , r) for each D-valuation v, evaluate s to (0, 0, 1) to get the required
counterexample. Hence S 6|= t = s.

iii) With the same argument used in ii, we can prove that S 6|= t = s
when s is

√
s1

m.
Suppose that t and s contain an occurrence of ? ∈ {⊕, •}. Since D 6|=

t = s then there exists a D-valuation v such that v(t) 6= v(s). By item 4,
there exists an S-valuation v′ such that v(t) = v′(t) and v(s) = v′(s). Hence
v′(t) 6= v′(s) and S 6|= t = s.

2

Proposition 4.10 Let A be a
√
qPMV -algebra. Consider the

√
qPMV -

algebra A∗ = Fl(A)× SReg(A) and the application f : A→ A∗ such that

f(x) =
{

(0, (x⊕ 0,
√
x⊕ 0)), if x ∈ Reg(A)

(x, (x⊕ 0,
√
x⊕ 0)), if x 6∈ Reg(A)

Then f is an injective
√
qPMV-homomorphism.

Proof: By definition f is an injective function. We need to prove that f
is a

√
qPMV-homomorphism. In what follows we identify (x, (y, z)) with

(x, y, z) for each (x, (y, z)) ∈ A∗.

• Let a ∈ {0, 1
2 , 1}. In this case a ∈ Reg(A) and

√
a⊕ 0 = 1

2 . Therefore
f(a) = (0, a⊕ 0,

√
a⊕ 0) = (0, a, 1

2).

• Let ? ∈ {⊕, •}. f(x?y) = (0, (x?y)⊕0,
√
x ? y⊕0) = (0, (x?y)⊕0, 1

2) =
(tx, x⊕ 0,

√
x⊕ 0) ? (ty, y ⊕ 0,

√
y ⊕ 0) = f(x) ? f(y).

• For each x ∈ A, we define tx as follows:

tx =
{

0, if x ∈ Reg(A)
x, if x 6∈ Reg(A)
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Then f(
√
x) = (t√x,

√
x ⊕ 0,

√√
x ⊕ 0) = (t√x,

√
x ⊕ 0,¬(x ⊕ 0)) =√

(t√x, x⊕ 0,
√
x⊕ 0) =

√
f(x).

Thus f is a
√
qPMV-homomorphism.

2

Theorem 4.11 Let S2 be the sub-class of pair algebras SA where A is a
PMV -chain with fix point of the negation. Then√

qPMV = V(S2)

Proof: We shall prove that
√
qPMV |= t = s iff S2 |= t = s. As regards

the non-trivial direction, assume that S2 |= t = s. Suppose that there exists
a
√
qPMV-algebra A such that A 6|= t = s. By Proposition 4.10, A can be

embedded in Fl(A) × SReg(A). Therefore Fl(A) × SReg(A) 6|= t = s and by
Proposition 4.9-5, SReg(A) 6|= t = s. By Proposition 2.2 we can consider a
subdirect representation β : Reg(A) ↪→ Πi∈IAi such that (Ai)i∈I is a family
of PMV -chains. For each i ∈ I, let pi be the ith-projection in Ai and
consider the following function:

βi : SReg(A) → SAi s.t. (x, y) 7→ βi((x, y)) = (piβ(x), piβ(y))i∈I

We shall prove that βi is a
√
qPMV-homomorphism.

• The preservation of (0, 1
2), (1

2 ,
1
2) and (1, 1

2) is immediate.

• Let ? ∈ {⊕, •}. βi((x1, y1)? (x2, y2)) = βi(x1 ?x2,
1
2) = (x1i ?x2i,

1
2 i

) =
(x1i, y1i) ? (x2i, y2i) = βi((x1, y1)) ? βi((x2, y2)).

• βi(
√

(x, y)) = βi((y,¬x)) = (yi,¬xi) =
√

(xi, yi) =
√
βi(x, y).

Thus βi is a
√
qPMV-homomorphism for each i ∈ I. Now we define the

function

β∗ : SReg(A) → Πi∈ISAi s.t. (x, y) 7→ β∗((x, y)) = (βi(x, y))i∈I

Note that β∗ is injective since β is a subdirect embedding. Moreover β∗ is
a
√
qPMV-homomorphism since βi is a

√
qPMV-homomorphism for each

i ∈ I. Thus SReg(A) 6|= t = s implies that there exists m ∈ I such that SAm 6|=
t = s which is contradiction since SAm lies in S2. Hence

√
qPMV |= t = s.

2
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We have seen that the structure of the
√
qPMV -algebra is a good ab-

straction for the IQC-algebra. However, we do not yet know whether√
qPMV = V(D(C2)). In what follows we will show that this is not the

case. In order to do it, we need some preliminary results:

Lemma 4.12 1. The set D(C2)y,z = {(0, y, z) : (0, y, z) ∈ D(C2)} de-
fines a sub

√
qPMV -algebra of D(C2).

2. Consider the real interval [−1, 1] equipped with the following opera-
tions: x ⊕ y = x • y = 0,

√
x = x and 0[−1,1] = 1

2

[−1,1] = 1[−1,1] = 0.

Then F[−1,1] = 〈[−1, 1],⊕, •,√, 0[−1,1], 1
2

[−1,1]
, 1[−1,1]〉 is a flat algebra.

3. f : F[−1,1] × D(C2)y,z → D(C2) such that (x, (0, y, z)) 7→ (x, y, z) is a√
qPMV -isomorphism.

Proof: Straightforward.
2

Let S[0,1] be the pair algebra over the standard PMV -algebra [0, 1]PMV .
If we consider the set

D[0,1] = {(x, y) ∈ S[0,1] : (x− 1
2

)2 + (y − 1
2

)2 ≤ 1
4
}

it is not very hard to see that 〈D[0,1],⊕, •,√, 0, 1
2 , 1〉 is a sub

√
qPMV -

algebra of S[0,1]. MoreoverReg(D[0,1]) = Reg(S[0,1]) and it is PMV -isomorphic
to [0, 1]PMV .

Proposition 4.13 1. ϕ : D(C2)y,z → D[0,1] such that ϕ(y, z) = (1−z
2 , 1−y

2 )
is a

√
qPMV-isomorphism.

2. D(C2) |= t = s iff D[0,1] |= t = s.

Proof: 1) Let σ = (0, b, c) ∈ D(C2)y,z. Then ϕ(σ) = (1−c
2 , 1−b

2 ) and
(1−c

2 − 1
2)2 + (1−b

2 − 1
2)2 = 1

4(c2 + b2) ≤ 1
4 . Thus the image of ϕ is contained

in D[0,1]. It is clear that ϕ is injective. Let (a, b) ∈ D[0,1]. If we consider
σ = (0, 1− 2b, 1− 2a) then (1− 2b)2 + (1− 2a)2 = 4(1

2 − a)2 + 4(1
2 − b)

2 ≤ 1.
Hence σ ∈ D(C2)y,z, ϕ(σ) = (a, b) and ϕ is a surjective map. Now we prove
that ϕ is a

√
qPMV-homomorphism. Let σ = (0, r2, r3) and τ = (0, s2, s3).

Using Lemma 3.1 and Lemma 3.3 we have that:

• Let ? ∈ {⊕, •}. ϕ(σ ? τ) = ϕ(ρp(σ)?p(ρ)) = ϕ(0, 0, 1− 2(p(σ) ? p(ρ))) =
(p(σ) ? p(ρ), 1

2) = (1−r3
2 , 1−r2

2 ) ? (1−s3
2 , 1−s2

2 ) = ϕ(σ) ? ϕ(τ).
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• ϕ(
√
σ) = ϕ(0,−r3, r2) = (1−r2

2 , 1+r3
2 ) = (1−r2

2 , 1−1−r3
2 ) =

√
(1−r3

2 , 1−r2
2 ) =√

ϕ(σ).

• ϕ(P1) = ϕ(0, 0,−1) = (1, 1
2), ϕ(P0) = ϕ(0, 0, 1) = (0, 1

2) and
ϕ(ρ 1

2
) = ϕ(0, 0, 0) = (1

2 ,
1
2).

Thus ϕ is
√
qPMV-isomorphism.

2) By item 1 and Lemma 4.12 we can see that D(C2) is
√
qPMV-

isomorphic to F[−1,1] ×D[0,1]. Hence by Proposition 4.9-5 D(C2) |= t = s iff
D[0,1] |= t = s.

2

Proposition 4.14 Consider the pair algebra S[0,1] and a = (a1, a2) ∈ S[0,1].
Then the following conditions are equivalent:

1. a ∈ D[0,1],

2. a satisfies the equation 1 = ( 1
24 ⊕ (x•x

22 ⊕
√

x•
√

x
22 )) → ( x

22 ⊕
√

x
22 ),

3. a satisfies the equation 1 = ( 1
24 ⊕ (¬x•¬x

22 ⊕
√

x•
√

x
22 )) → (¬x

22 ⊕
√

x
22 ),

4. a satisfies the equation 1 = ( 1
24 ⊕ (x•x

22 ⊕
√
¬x•

√
¬x

22 )) → ( x
22 ⊕

√
¬x
22 ),

5. a satisfies the equation 1 = ( 1
24 ⊕ (¬x•¬x

22 ⊕
√
¬x•

√
¬x

22 )) → (¬x
22 ⊕

√
¬x
22 ),

where 1
2n means the term 1

2n−1 • 1
2 and t

2n means the term t • 1
2n (n ≥ 2).

Proof: 1 ⇐⇒ 2) 1 = ( 1
24 ⊕ (x•x

22 ⊕
√

x•
√

x
22 )) → ( x

22 ⊕
√

x
22 ) is satisfied by a =

(a1, a2) ∈ S[0,1] iff (1, 1
2) = (( 1

24 ,
1
2)⊕ ((a2

1
22 ,

1
2)⊕ (a2

2
22 ,

1
2))) → ((a1

22 ,
1
2)⊕ (a2

22 ,
1
2))

iff (1, 1
2) = ( 1

24⊕
a2
1

22 ⊕
a2
2

22 ,
1
2) → (a1

22 ⊕ a2
22 ,

1
2) iff 1 = ( 1

24⊕
a2
1

22 ⊕
a2
2

22 ) → (a1
22 ⊕ a2

22 ) iff
1
24⊕

a2
1

22⊕
a2
2

22 ≤ a1
22⊕ a2

22 iff 1
24 + a2

1
22 + a2

2
22 ≤ a1

22 + a2
22 iff a2

1−a1+ 1
22 +a2

2−a2+ 1
22 ≤ 1

22

iff (a1 − 1
2)2 + (a2 − 1

2)2 ≤ 1
4 iff a = (a1, a2) ∈ D[0,1].

1 ⇐⇒ 3) 1 = ( 1
24 ⊕ (¬x•¬x

22 ⊕
√

x•
√

x
22 )) → (¬x

22 ⊕
√

x
22 ) is satisfied by a =

(a1, a2) ∈ S[0,1] iff (1, 1
2) = (( 1

24 ,
1
2)⊕ (( (1−a1)2

22 , 1
2)⊕ (a2

2
22 ,

1
2))) → ((1−a1

22 , 1
2)⊕

(a2
22 ,

1
2)) iff (1, 1

2) = ( 1
24 ⊕ (1−a1)2

22 ⊕ a2
2

22 ,
1
2) → ( (1−a1)

22 ⊕ a2
22 ,

1
2) iff 1 = ( 1

24 ⊕
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(1−a1)2

22 ⊕ a2
2

22 ) → (1−a1
22 ⊕ a2

22 ) iff 1
24 ⊕ (1−a1)2

22 ⊕ a2
2

22 ≤ 1−a1
22 ⊕ a2

22 iff 1
8 + a2

1
2 + a2

2
2 ≤

a1
2 + a2

2 iff (a1 − 1
2)2 + (a2 − 1

2)2 ≤ 1
4 iff a = (a1, a2) ∈ D[0,1].

With the same argument we can prove 1 ⇐⇒ 4) and 1 ⇐⇒ 5).
2

Theorem 4.15
√
qPMV 6= V(D(C2))

Proof: By Proposition 4.13-2 and Proposition 4.14, the equation 1 =
( 1
16 ⊕ (x•x

4 ⊕
√

x•
√

x
4 )) → (x

4 ⊕
√

x
4 ) holds in D(C2) and fails in S[0,1]. Hence√

qPMV 6= V(D(C2)).
2

5 Poincaré irreversible algebras

In this section we introduce and study an algebraic structure called “Poincaré
irreversible algebra” with the following motivation. As shown by Proposi-
tion 4.13 the

√
qPMV-equations which hold in the IQC-algebra coincide

with the
√
qPMV-equations which hold in D[0,1]. Moreover, the property

that characterizes D[0,1], i.e. a circle of radius 1
2 and center (1

2 ,
1
2) circum-

scribed in the square [0, 1]× [0, 1], may be captured by the set of equations
given in Proposition 4.14. Since these four equations may be formulated in
the language of

√
qPMV, this allows to study a subvariety of the

√
qPMV -

algebras that captures in a more faithful manner the basic properties of the
IQC-algebra.

Definition 5.1 A Poincaré irreversible algebra (IP -algebra for short) is a√
qPMV -algebra satisfying the following axioms:

IP1. 1 = ( 1
24 ⊕ (x•x

22 ⊕
√

x•
√

x
22 )) → ( x

22 ⊕
√

x
22 ),

IP2. 1 = ( 1
24 ⊕ (¬x•¬x

22 ⊕
√

x•
√

x
22 )) → (¬x

22 ⊕
√

x
22 ),

IP3. 1 = ( 1
24 ⊕ (x•x

22 ⊕
√
¬x•

√
¬x

22 )) → (x
4 ⊕

√
¬x
22 ),

IP4. 1 = ( 1
24 ⊕ (¬x•¬x

22 ⊕
√
¬x•

√
¬x

22 )) → (¬x
22 ⊕

√
¬x
22 ),

IP5. 1
24 ⊕ 1

24 = 1
23 .

where 1
2n means the term 1

2n−1 • 1
2 and t

2n means the term t • 1
2n (n ≥ 2) .
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Remark 5.2 In the particular case of D[0,1], axioms IP1,...,IP4 are all
equivalent. This is due to simple arithmetic properties of the real num-
bers. In the general case, a

√
qPMV -algebra that satisfies one of these

axioms does not necessarily satisfy the others. It is due to this fact that the
four equations must be introduce as axioms in the definition of IP -algebra.

We denote by IP the subvariety of
√
qPMV given by the IP -algebras.

Clearly IP-homomorphisms are
√
qPMV-homomorphisms. D[0,1] is an IP -

algebra and constitutes the standard model for IP. Another important
examples of IP -algebras are the flat algebras.

Remark 5.3 Unfortunately we cannot give a completeness theorem for the
IP-equations of the form t = s with respect to D[0,1]. In fact, the open
problem for the axiomatization of all identities in the language of PMV
which are valid in the PMV -algebra arising from the real interval [0, 1] (see
[22, 16]) will appear in IP. In view of this, we delineate a generalization of
the D[0,1] algebra, whose role is analogous to the PMV -chains with respect
to the equational theory of PMV.

Let A be a PMV 1
24

-algebra (see Definition 2.3) and SA be the pair alge-
bra over A. We consider the following subsets in SA:

Q1 = {x ∈ SA : 1 = ( 1
24 ⊕ (x•x

22 ⊕
√

x•
√

x
22 )) → ( x

22 ⊕
√

x
22 )}

Q2 = {x ∈ SA : 1 = ( 1
24 ⊕ (¬x•¬x

22 ⊕
√

x•
√

x
22 )) → (¬x

22 ⊕
√

x
22 )}

Q3 = {x ∈ SA : 1 = ( 1
24 ⊕ (x•x

22 ⊕
√
¬x•

√
¬x

22 )) → ( x
22 ⊕

√
¬x
22 )}

Q4 = {x ∈ SA : 1 = ( 1
24 ⊕ (¬x•¬x

22 ⊕
√
¬x•

√
¬x

22 )) → (¬x
22 ⊕

√
¬x
22 )}

Then we define
DA = Q1 ∩Q2 ∩Q3 ∩Q4

Proposition 5.4 Let SA be the pair algebra over the PMV 1
24

-algebra A.
Then:

〈DA,⊕, •,√, (0,
1
2

), (
1
2
,
1
2

), (1,
1
2

)〉

is the largest IP -algebra contained in SA as sub-
√
qPMV -algebra. Moreover

(a, 1
2) 7→ a defines a PMV 1

24
-isomorphic from Reg(DA) onto A.
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Proof: We first prove that Reg(SA) ⊆ DA. Let (a, 1
2) ∈ Reg(SA). We

have to prove the following four cases:
Case 1: (a, 1

2) ∈ Q1. 1
24 ⊕ (x•x

22 ⊕
√

x•
√

x
22 )|(a, 1

2
) = ( 1

24 ,
1
2) ⊕ (( 1

22 ,
1
2) •

(a, 1
2) • (a, 1

2))⊕ (( 1
22 ,

1
2) •

√
(a, 1

2) •
√

(a, 1
2)) = ( 1

24 ,
1
2)⊕ (a•a

22 ,
1
2)⊕ ( 1

24 ,
1
2) =

(a•a
22 ⊕ 1

23 ,
1
2) since A is a PMV 1

24
-algebra, i.e. 1

24 ⊕ 1
24 = 1

23 holds in the first
component.

x
22 ⊕

√
x

22 |(a, 1
2
) = (( 1

22 ,
1
2) • (a, 1

2))⊕ (( 1
22 ,

1
2) •

√
(a, 1

2)) = ( a
22 ⊕ 1

23 ,
1
2).

Since a•a
22 ⊕ 1

23 ≤ a
22 ⊕ 1

23 in the PMV 1
24

-algebra A, 1
24 ⊕(x•x

22 ⊕
√

x•
√

x
22 )|(a, 1

2
) ≤

x
22 ⊕

√
x

22 |(a, 1
2
). Hence (a, 1

2) ∈ Q1 for each a ∈ A.

Case 2: (a, 1
2) ∈ Q2. 1

24 ⊕ (¬x•¬x
22 ⊕

√
x•
√

x
22 )|(a, 1

2
) = ( 1

24 ,
1
2) ⊕ (( 1

22 ,
1
2) •

(¬a, 1
2) • (¬a, 1

2)) ⊕ (( 1
22 ,

1
2) •

√
(a, 1

2) •
√

(a, 1
2)) = ( 1

24 ,
1
2) ⊕ (¬a•¬a

22 , 1
2) ⊕

( 1
24 ,

1
2) = (¬a•¬a

22 ⊕ 1
23 ,

1
2).

x
22 ⊕

√
x

22 |(¬a, 1
2
) = (( 1

22 ,
1
2) • (¬a, 1

2))⊕ (( 1
22 ,

1
2) •

√
(a, 1

2)) = (¬a
22 ⊕ 1

23 ,
1
2).

Since ¬a•¬a
22 ⊕ 1

23 ≤ ¬a
22 ⊕ 1

23 in the PMV 1
24

-algebra A, 1
24 ⊕ (¬x•¬x

22 ⊕
√

x•
√

x
22 )|(a, 1

2
) ≤

¬x
22 ⊕

√
x

22 |(a, 1
2
). Hence (a, 1

2) ∈ Q2 for each a ∈ A.

Case 3: (a, 1
2) ∈ Q3: 1

24 ⊕ (x•x
22 ⊕

√
¬x•

√
¬x

22 )|(a, 1
2
) = ( 1

24 ,
1
2) ⊕ (( 1

22 ,
1
2) •

(a, 1
2)•(a, 1

2))⊕(( 1
22 ,

1
2)•

√
¬(a, 1

2)•
√
¬(a, 1

2)) = ( 1
24 ,

1
2)⊕(a•a

22 ,
1
2)⊕( 1

24 ,
1
2) =

(a•a
22 ⊕ 1

23 ,
1
2) since A is a PMV 1

24
-algebra, i.e. 1

24 ⊕ 1
24 = 1

23 holds in the first
component.

x
22 ⊕

√
¬x
22 |(a, 1

2
) = (( 1

22 ,
1
2) • (a, 1

2))⊕ (( 1
22 ,

1
2) •

√
¬(a, 1

2)) = ( a
22 ⊕ 1

23 ,
1
2).

Since a•a
22 ⊕ 1

23 ≤ a
22⊕ 1

23 in the PMV 1
24

-algebraA, 1
24⊕(x•x

22 ⊕
√
¬x•

√
¬x

22 )|(a, 1
2
) ≤

x
22 ⊕

√
¬x
22 |(a, 1

2
). Hence (a, 1

2) ∈ Q3 for each a ∈ A.

Case 4: (a, 1
2) ∈ Q4. 1

24 ⊕ (¬x•¬x
22 ⊕

√
¬x•

√
¬x

22 )|(a, 1
2
) = ( 1

24 ,
1
2)⊕ (( 1

22 ,
1
2) •

(¬a, 1
2) • (¬a, 1

2))⊕ (( 1
22 ,

1
2) •

√
¬(a, 1

2) •
√
¬(a, 1

2)) = ( 1
24 ,

1
2)⊕ (¬a•¬a

22 , 1
2)⊕

( 1
24 ,

1
2) = (¬a•¬a

22 ⊕ 1
23 ,

1
2).

¬x
22 ⊕

√
¬x
22 |(¬a, 1

2
) = (( 1

22 ,
1
2)• (¬a, 1

2))⊕ (( 1
22 ,

1
2)•

√
¬(a, 1

2)) = (¬a
22 ⊕ 1

23 ,
1
2).
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Since ¬a•¬a
22 ⊕ 1

23 ≤ ¬a
22 ⊕ 1

23 in the PMV 1
24

-algebra A, 1
24 ⊕ (¬x•¬x

22 ⊕
√
¬x•

√
¬x

22 )|(a, 1
2
) ≤

¬x
22 ⊕

√
¬x
22 |(a, 1

2
). Hence (a, 1

2) ∈ Q4 for each a ∈ A.

Hence (a, 1
2) ∈ DA for each a ∈ A and Reg(SA) ⊆ DA.

Now we prove that DA defines a sub
√
qPMV -algebra of SA.

• DA is closed by ? ∈ {⊕, •}. Let (x1, y1), (x2, y2) in DA and ? ∈
{⊕, •}. By the precedent argument, (x1, y1) ? (x2, y2) = (x1 ? x2,

1
2) ∈

Reg(SA) ⊆ DA. Hence, DA is closed by ⊕ and •.

• DA is closed by √. Let t ∈ DA. We have to prove the following four
cases:

Case 1:
√
t ∈ Q1. ( 1

24⊕(x•x
22 ⊕

√
x•
√

x
22 )) → ( x

22⊕
√

x
22 )|√t = ( 1

24⊕(
√

t•
√

t
22 ⊕√√

t•
√√

t
22 )) → (

√
t

22 ⊕
√√

t
22 ) = ( 1

24 ⊕ (
√

t•
√

t
22 ⊕ ¬t•¬t

22 )) → (
√

t
22 ⊕ ¬t

22 ) = 1
since t ∈ Q2. Hence,

√
t ∈ Q1.

Case 2:
√
t ∈ Q2. ( 1

24 ⊕ (¬x•¬x
22 ⊕

√
x•
√

x
22 )) → (¬x

22 ⊕
√

x
22 )|√t = ( 1

24 ⊕

(
√
¬t•

√
¬t

22 ⊕
√√

t•
√√

t
22 )) → (

√
¬t

22 ⊕
√√

t
22 ) = ( 1

24 ⊕ (
√
¬t•

√
¬t

22 ⊕ ¬t•¬t
22 )) →

(
√
¬t

22 ⊕ ¬t
22 ) = 1 since t ∈ Q4.

Case 3:
√
t ∈ Q3. ( 1

24 ⊕ (x•x
22 ⊕

√
¬x•

√
¬x

22 )) → ( x
22 ⊕

√
¬x
22 )|√t = ( 1

24 ⊕

(
√

t•
√

t
22 ⊕

√
¬
√

t•
√
¬
√

t
22 )) → (

√
t

22 ⊕
√
¬
√

t
22 ) = ( 1

24 ⊕ (
√

t•
√

t
22 ⊕ t•t

22 )) →
(
√

t
22 ⊕ t

22 ) = 1 since t ∈ Q1. Hence,
√
t ∈ Q3.

Case 4:
√
t ∈ Q4. ( 1

24 ⊕ (¬x•¬x
22 ⊕

√
¬x•

√
¬x

22 )) → (¬x
22 ⊕

√
¬x
22 )|√t = ( 1

24 ⊕

(
√
¬t•

√
¬t

22 ⊕
√
¬
√

t•
√
¬
√

t
22 )) → (

√
¬t

22 ⊕
√
¬
√

t
22 ) = ( 1

24 ⊕ (
√
¬t•

√
¬t

22 ⊕ t•t
22 )) →

(
√
¬t

22 ⊕ t
22 ) = 1 since t ∈ Q3. Hence,

√
t ∈ Q4.

Hence
√
t ∈ DA and DA is closed by √.

Thus DA is a sub-
√
qPMV -algebra of SA. Since Reg(SA) ⊆ DA, Reg(DA) is

PMV 1
24

-isomorphic to A. By definition of DA it is immediate that DA is an

IP -algebra. Let B be an IP -algebra such that B is a sub-
√
qPMV -algebra

of SA. If a ∈ B, then a satisfies IP1,..., IP4. Then s ∈ DA and B ⊆ DA.
HenceDA is the largest IP -algebra contained in SA as sub-

√
qPMV -algebra.

2
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Theorem 5.5 Let S◦ be the sub-class of IP -algebras DA where A is a
PMV 1

24
-chain. Then:

IP = V(S◦)

Proof: We shall prove that IP |= t = s iff S◦ |= t = s. As regards the
non-trivial direction, assume that S◦ |= t = s. Suppose that there exists
an IP -algebra A such that A 6|= t = s. By Proposition 4.10, there exists a√
qPMV-embedding f : A → Fl(A) × SReg(A). Thus the image f(A) is an

IP -algebra and it is a sub
√
qPMV-algebra of Fl(A)× SReg(A).

We prove that f(A) is a sub IP -algebra of Fl(A)×DReg(A). Let (a1, a2) ∈
f(A). Then there exists a ∈ A such that f(a) = (a1, a2). Since a satisfies
IP1,...,IP4, f(a) also satisfies these equations. It implies that a2 satisfies
IP1,...,IP4 and by Proposition 5.4, a2 ∈ DReg(A). This proves that f(a) =
(a1, a2) ∈ Fl(A) ×DReg(A) and then, f(A) is a sub IP -algebra of Fl(A) ×
DReg(A). Consequently Fl(A)×DReg(A) 6|= t = s and, by Proposition 4.9-5,
DReg(A) 6|= t = s.

By Proposition 2.2, consider a subdirect representation β : Reg(A) ↪→
Πi∈IAi such that (Ai)i∈I is a family of PMV 1

24
-chains. For each i ∈ I, let

pi be the ith-projection in Ai and consider the following function:

βi : DReg(A) → SAi s.t. (x, y) 7→ βi((x, y)) = (piβ(x), piβ(y))i∈I

Following the same argument used in the proof of Theorem 4.11 we can prove
that βi is a

√
qPMV-homomorphism. Since DReg(A) is an IP -algebra, the

image βi(DReg(A)) is an IP -algebra. Then, by Proposition 5.4, βi(DReg(A))
is a sub IP -algebra of DAi . In other words, we can see βi as a

√
qPMV-

homomorphism βi : DReg(A) → DAi for each i ∈ I. Now we define the
function

β∗ : DReg(A) → Πi∈IDAi s.t. (x, y) 7→ β∗((x, y)) = (βi(x, y))i∈I

β∗ is injective since β is injective. Moreover β∗ is a
√
qPMV-homomorphism

since βi is a
√
qPMV-homomorphism for each i ∈ I.

Thus DReg(A) 6|= t = s implies that there exists m ∈ I such that DAi 6|=
t = s which is a contradiction since DAi ∈ S◦. Hence IP |= t = s.

2

6 Probabilistic consequence

An usual problem treated in digital techniques is the following: if T is a
set of Boolean circuits and t is a Boolean circuit, we want to know if a

25



determinate state of the outputs of the circuits of T , represented in a string
of bits 0, 1, forces a determinate state of the output of t given by a bit,
either 0 or 1. As a general rule, this problem can be solved through effective
procedures solving the particular case in which a set of circuits T with all
outputs in state 1 forces the state 1 in the output of a circuit t.

One may naturally extend this problem by considering circuits made
from assemblies of quantum gates of the IP-system called IP-circuits. In
fact: let T be a set of IP-circuits and t be an IP-circuit. Suppose that the
output of the circuits of T are labeled with density operators (σi)i such that
p(σi) = 1 for each i. We want to know whether from the above, necessarily
follows an output of t labeled with a density operator σ such that p(σ) = 1.
Since each IP-circuit can be related to a

√
qPMV-term we can define a

relation of consequence based on the preservation of probability values 1.

Definition 6.1 Let t ∈ Term√
qPMV and T ⊆ Term√

qPMV . We say that
t is a probabilistic consequence of T in D(C2) (noted T |=Prob

D(C2) t) iff for each
valuation e : Term√

qPMV → D(C2), p(e(t)) = 1 whenever p(e(s)) = 1 for
each s ∈ T .

Taking into account Proposition 3.4 and Remark 3.5, for each
√
qPMV-

term t and for each valuation e : Term√
qPMV → D(C2), the probability

valued p(e(t)) can be identifies with e(t ⊕ 0). Thus we can establish the
following result:

Proposition 6.2 Let t ∈ Term√
qPMV and T ⊆ Term√

qPMV . Then the
following conditions are equivalent:

1. T |=Prob
D(C2) t.

2. For each valuation e : Term√
qPMV → D(C2), e(t⊕ 0) = P1 whenever

e(s⊕ 0) = P1 for each s ∈ T .

2

The equivalence given in Proposition 6.2 allows to extend, in a natural
way, the concepts of probability assignment and probabilistic consequence
with respect to each IP -algebra.

Definition 6.3 Let A be an IP -algebra, e : Term√
qPMV → A be a valua-

tion and t ∈ Term√
qPMV . Then we define the generalized probability value

associated to e as ep(t) = e(t⊕ 0).
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We introduce the following notation: Let T ⊆ Term√
qPMV and e :

Term√
qPMV → A be a valuation. Then ep(T ) = 1 means that for each

s ∈ T , ep(s) = 1.

Definition 6.4 Let t ∈ Term√
qPMV , T ⊆ Term√

qPMV and A be an IP -
algebra. We say that t is a probabilistic consequence of T in A iff for each
valuation e : Term√

qPMV → A, if ep(T ) = 1 then ep(t) = 1.

We preserve the notation T |=Prob
A t for the probabilistic consequence in

A. In particular T |=Prob
IP t means that T |=Prob

A t for each A ∈ IP.
A
√
qPMV-term t is said to be a tautology iff for each A ∈ IP and

for each e : Term√
qPMV → A, ep(t) = 1. Note that t is a tautology iff

∅ |=Prob
IP t. Thus we use the notation |=Prob

IP t in the case in which t is a
tautology.

Proposition 6.5 Let DA ∈ S◦ where A is a PMV 1
24

-algebra. If e, e′ are

two valuation over DA such that for each atomic term α, ep(α) = e′p(α) and
ep(
√
α) = e′p(

√
α) then, e = e′.

Proof: By definition of valuation, we have to see that e and e′ coincide
over atomic terms. Let α be an atomic term. Suppose that e(α) = (a, b)
and e′(α) = (a′, b′). On the one hand, (a, 1

2) = (a, b)⊕ 0 = ep(α) = e′p(α) =
(a′, b′)⊕0 = (a′, 1

2) and then, a = a′. On the other hand, (b′, 1
2) = (b′,¬a′)⊕

0 = ep(
√
α) = e′p(

√
α) = (b′,¬a′) ⊕ 0 = (b′, 1

2) and then, b = b′. Hence
e(α) = e′(α).

2

7 Hilbert system for the probabilistic consequence

Let t ∈ Term√
qPMV and T ⊆ Term√

qPMV . One may naturally consider the
following decision problem: does there exist an effective procedure deciding
whether T |=Prob

IP t? In this section we shall reformulate this problem in
purely logical terms within a Hilbert-style axiomatization (LIP) for the
probabilistic consequence.

Definition 7.1 Consider the absolutely free algebra Term√
qPMV taking

into account the following syntactic abbreviations:

¬t is a syntactic abbreviation for
√√

t,
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t1 � t2 is a syntactic abbreviation for ¬(¬t1 ⊕ ¬t2),

t1 → t2 is a syntactic abbreviation for ¬t1 ⊕ t2,

t1 ↔ t2 is a syntactic abbreviation for (t1 → t2)� (t2 → t1),

1
2n is a syntactic abbreviation for 1

2n−1 • 1
2 (n ≥ 2),

t
2n is a syntactic abbreviation for t • 1

2n (n ≥ 2).

An axiom of the Hilbert-style calculus LIP is a
√
qPMV-term that can

be written in any one of the following ways, where α, β and γ denote arbi-
trary terms in Term√

qPMV :

 Lukasiewicz axioms:

W1 α→ (β → α),

W2 (α→ β) → ((β → γ) → (α→ γ)),

W3 (¬α→ ¬β) → (β → α),

W4 ((α→ β) → β) → ((β → α) → α),

Constant axioms:

C1 1,

C2 ¬0 ↔ 1,

C3 ¬1
2 ↔

1
2 ,

C4 ( 1
24 ⊕ 1

24 ) ↔ 1
23 ,

Product axioms:

P1 (α • β) → (β • α),

P2 (1 • α) ↔ α,

P3 (α • β) → β,

P4 ((α • β) • γ) ↔ (α • (β • γ)),

P5 (α • (β � ¬γ)) ↔ ((α • β)� ¬(α • γ)),
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Sqrt axioms:

sQ1
√
¬α↔ ¬

√
α,

sQ2
√
α ? β ↔ 1

2 where ? ∈ {⊕, •},

sQ3
√
c↔ 1

2 where c ∈ {0, 1
2 , 1},

sQ4 ( 1
24 ⊕ (α•α

22 ⊕
√

α•
√

α
22 )) → ( α

22 ⊕
√

α
22 ),

sQ5 ( 1
24 ⊕ (¬α•¬α

22 ⊕
√

α•
√

α
22 )) → (¬α

22 ⊕
√

α
22 ),

sQ6 ( 1
24 ⊕ (α•α

22 ⊕
√
¬α•

√
¬α

22 )) → ( α
22 ⊕

√
¬α
22 ),

sQ7 ( 1
24 ⊕ (¬α•¬α

22 ⊕
√
¬α•

√
¬α

22 )) → (¬α
22 ⊕

√
¬α
22 ).

The deduction rule of LIP is modus ponens

{α, α→ β} `LIP β (MP )

Note that, axioms W1...W4, C1, C2 and MP define the same proposi-
tional system as the infinite valued  Lukasiewicz calculus [4, §4]. By adding
C3...C4 and P1...P5, the propositional system associated to the product
 Lukasiewikz logic [14, 22] with fix point of the negation [15] is obtained. sQ1,
sQ2 and sQ3 axiomatize the basic properties of the operation √

. Finally,
sQ4...sQ7 allow to introduce in the calculus the property that characterizes
the subvariety of IP -algebras with respect to the variety

√
qPMV, as was

already mentioned at the beginning of Section 5 and in Remark 5.2.

A theory is any set T ⊆ Term√
qPMV . A proof from T is a sequence of

terms α1, ..., αn such that each member is either an axiom or a member of T
or follows from preceding members of the sequence by modus ponens. The
notation T `LIP α (to be read ‘α is provable form T ’) means that α is the
last term of a proof from T . Thus the Hilbert-style calculus LIP is given
by

LIP = 〈Term√
qPMV , `LIP〉

Let T be a theory. If T = ∅ we use the notation `LIP α and we say
that α is a theorem of LIP. T is inconsistent iff T `LIP α for each α ∈
Term√

qPMV ; otherwise it is consistent.

29



Lemma 7.2 Let α, β ∈ Term√
qPMV and T ⊆ Term√

qPMV . Then the
following items may be proved using only W1...W4, C1, C2, P1...P5 and
MP.

1. `LIP α→ α,

2. T `LIP α� β iff T `LIP α and T `LIP β,

3. T `LIP α↔ β iff T `LIP α→ β and T `LIP β → α,

4. T `LIP α→ β and T `LIP β → γ then T `LIP α→ γ,

5. `LIP ¬¬α→ α,

6. `LIP (α→ β) → (¬β → ¬α),

7. `LIP (α→ β) → ((α⊕ γ) → (β ⊕ γ)),

8. `LIP ((α↔ β)� (β ↔ γ)) → (α↔ γ),

9. `LIP (α↔ β) → ((α→ γ) ↔ (β → γ)),

10. `LIP (α↔ β) → ((γ → α) ↔ (γ → β)),

11. `LIP (α→ β) → ((γ • α) → (γ • β)).

Proof: Items 1...10 follow by observing that this result are theorems and
metatheorems in the infinite valued  Lukasiewicz calculus (see [13]). We
prove item 11:

(1) `LIP γ • (α� ¬β) → ((α� ¬β)) by Ax P3

(2) `LIP ((γ • α)� ¬(γ • β)) → γ • (α� ¬β) by Ax P5

(3) `LIP ((γ • α)� ¬(γ • β)) → (α� ¬β) by 1,2, Ax W2

(4) `LIP (((γ • α)� ¬(γ • β)) → (α� ¬β)) →
(¬(α� ¬β) → ¬((γ • α)� ¬(γ • β))) by Ax W3

(5) `LIP ¬(α� ¬β) → ¬((γ • α)� ¬(γ • β)) by MP 3,4

(6) `LIP (α→ β) → ¬(α� ¬β) by def �, item 1

(7) `LIP (α→ β) → ¬((γ • α)� ¬(γ • β)) by 5,6 , Ax W2
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(8) `LIP ¬((γ • α)� ¬(γ • β)) → ((γ • α) → (γ • β)) by def �, item 1

(9) `LIP (α→ β) → ((γ • α) → (γ • β)) by 7,8, Ax W2

2

Proposition 7.3 Let α, β ∈ Term√
qPMV and T ⊆ Term√

qPMV . Then:

1. Axioms of LIP are tautologies.

2. {α, α→ β} |=Prob
IP β.

3. If T `LIP α then T |=Prob
IP α.

Proof: 1) Immediate. 2) Let α, β ∈ Term√
qPMV and e :

√
qPMV → A

be an IP-valuation such that ep(α→ β) = 1 and ep(α) = 1. We show that
ep(β) = 1. In fact: 1 = ep(α → β) = e((α → β) ⊕ 0) = e(α ⊕ 0) → (β ⊕ 0)
and then ep(α) = e(α⊕ 0) ≤ e(β ⊕ 0) = ep(β). Therefore ep(α) = 1 implies
that 1 = ep(β) since 1 ≤ e(β ⊕ 0) = e(β) ⊕ 0 ∈ Reg(A) and Reg(A) is a
PMV -algebra (see Proposition 4.5-1). 3) Immediate from items 1 and 2.

2

Now we focus on a sub-calculus of LIP particularly relevant in the study
of the completeness of LIP. Consider the set V ∪ (

√
x)x∈V where V is the

usual set of variables in Term√
qPMV . Let Term√

V be the smallest set
S ⊆ Term√

qPMV such that {0, 1
2 , 1} ∪ V ∪ (

√
x)x∈V ⊆ S and if α, β ∈ S

then, ¬α ∈ S and α ? β ∈ S where ? ∈ {⊕, •}. Now we define the Hilbert-
style calculus

L√V = 〈Term√
V ,`L√V

〉
given by the axioms W1 . . . W4, C1 . . . C4, P1 . . . P5 and MP as inference
rule.

Remark 7.4 By definition of L√V , the results of Lemma 7.2 continue to
be valid in L√V .

Let T ⊆ Term√
V i.e., a theory in Term√

V . Then T is said to be
complete in L√V iff for each pair of terms α, β in Term√

V ; T `√V α → β
or T `√V β → α. Moreover T is inconsistent in L√V iff T `√V α for each
α ∈ Term√

V , otherwise it is consistent in L√V .

Lemma 7.5 Let T be a theory and α be a term, both in Term√
V . Suppose

that T 6`√V α. Then there exists a complete theory T ′ in Term√
V such that,

T ⊆ T ′ and T ′ 6`√V α.
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Proof: It follows by the same arguments used in [13, Lemma 2.4.2].
2

Let A be a PMV 1
24

-algebra. Term√
V -valuations in A are functions

v : Term√
V → A satisfying v(0) = 0, v(1

2) = 1
2 , v(1) = 1, v(¬α) = ¬v(α)

and v(α ? β) = v(α) ? v(β) where ? ∈ {⊕, •}. Note that for a Term√
V -

valuation, the terms in the set (
√
x)x∈V have no restriction in the election

of the value v(
√
x).

Theorem 7.6 Let T be a consistent theory in Term√
V . For each α ∈

Term√
V we consider the class

[α] = {β ∈ Term√
V : T `L√V

α↔ β}

Let LT = {[α] : α ∈ Term√
V }. If we define the following operations in LT :

0 = [0] ¬[α] = [¬α]

1
2 = [12 ] [α] ∗ [β] = [α ∗ β] for ∗ ∈ {⊕, •}

1 = [1]

Then:

1. 〈LT ,⊕, •,¬, 0, 1
2 , 1〉 is a PMV 1

24
-algebra.

2. If α ∈ T then [α] = 1.

3. If T is a complete theory then LT is a totally ordered set.

Proof: 1) We first show that the operations are well defined on LT . In the
cases ⊕,¬, 0, 1

2 , 1 we refer to [13, Lemma 2.3.12]. The case • follows from
Lemma 7.2-11. By axioms W1 . . . W4, C1 . . . C4, P1 . . . P5, it is not very
hard to see that LT is a PMV 1

24
-algebra. 2) Follows from axiom W1. 3)

Follows using the same argument as in [13, Lemma 2.4.2].
2

We will refer to LT as the Lindenbaum algebra associated to the theory
T ⊆ Term√

V . Clearly, the natural application α 7→ [α] is a Term√
V -

valuation in LT .

Definition 7.7 We define the
√
V -translation α

t→ αt as the application
t : Term√

qPMV → Term√
V such that:
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x
t7→ x and

√
x

t7→
√
x for each x ∈ V ,

c
t7→ c and

√
c

t7→ 1
2 for each c ∈ {0, 1

2 , 1},

¬α t7→ ¬(αt),

√
¬α t7→ (¬

√
α)t,

√
α ? β

t7→ 1
2 for each binary connective ?,

α ? β
t7→ αt ? βt for each binary connective ?

If T is a theory in Term√
qPMV , then we define the

√
V -translation over

T as the set Tt = {αt : α ∈ T}.

Proposition 7.8 Let α ∈ Term√
qPMV . Then:

`LIP α↔ αt

Proof: We use induction on the complexity of terms. Let α be an atomic
term. By definition of

√
V -translation, Lemma 7.2-1 and axiom sQ3 of LIP

it is clear that `LIP α↔ αt and `LIP
√
α↔ (

√
α)t.

Suppose that `LIP α↔ αt and `LIP β ↔ βt.

• By Lemma 7.2-6 we have that `LIP ¬α↔ ¬αt.

• Let ? ∈ {⊕, •}. Then we have that:

(1) `LIP α→ αt

(2) `LIP (α→ αt) → ((α ? β) → (αt ? β)) by Lemma 7.2, item 7 or 11

(3) `LIP (α ? β) → (αt ? β) MP 1-2

(4) `LIP β → βt

(5) `LIP (β → βt) → ((αt ? β) → (αt ? βt)) by Lemma 7.2, item 7 or 11

(6) `LIP (αt ? β) → (αt ? βt) MP 4-5

(7) `LIP (α ? β) → (αt ? βt) by Lemma 7.2-4

By the same argument we can prove that `LIP (αt ? βt) → (α ? β).
Hence `LIP (α ? β) ↔ (α ? β)t.

33



• If α is
√
γ then we have to consider two cases:

i) γ is γ1?γ2 such that ? ∈ {⊕, •}. Then αt = (
√
γ)t = (

√
γ1 ? γ2)t = 1

2 .
By Axiom sQ2, `LIP (

√
γ) ↔ 1

2 . Hence `LIP α↔ αt.

ii) γ is
√
γ1. Then αt = (

√√
γ1)t = (¬γ1)t = ¬(γ1)t. By inductive

hypothesis `LIP γ1 ↔ (γ1)t and then `LIP ¬γ1 ↔ ¬(γ1)t. Hence
`LIP

√√
γ1 ↔ ¬γ1 and `LIP α↔ αt.

2

Taking into account the axiom sQ4,... sQ7, we introduce, in the following
definition, the theory TD ⊆ Term√

V which will allow to establish a relation
between proofs in LIP and proofs in L√V .

Definition 7.9 We consider the following sets of terms in Term√
V

T1 = {( 1
24 ⊕ ( s•s

22 ⊕
√

s•
√

s
22 )) → ( s

22 ⊕
√

s
22 ) : s ∈ V ∪ {0, 1

2 , 1}},

T2 = {( 1
24 ⊕ (¬s•¬s

22 ⊕
√

s•
√

s
22 )) → (¬s

22 ⊕
√

s
22 ) : s ∈ V ∪ {0, 1

2 , 1}},

T3 = {( 1
24 ⊕ ( s•s

22 ⊕
√
¬s•

√
¬s

22 )) → ( s
22 ⊕

√
¬s

22 ) : s ∈ V ∪ {0, 1
2 , 1}},

T4 = {( 1
24 ⊕ (¬s•¬s

22 ⊕
√
¬s•

√
¬s

22 )) → (¬s
22 ⊕

√
¬s

22 ) : s ∈ V ∪ {0, 1
2 , 1}.

Then we define:
TD = T1 ∪ T2 ∪ T3 ∪ T4

Proposition 7.10 Let α ∈ Term√
qPMV . Then:

1. TD `L√V
(( 1

24 ⊕ (α•α
22 ⊕

√
α•
√

α
22 )) → ( α

22 ⊕
√

α
22 ))t.

2. TD `L√V
(( 1

24 ⊕ (¬α•¬α
22 ⊕

√
α•
√

α
22 )) → (¬α

22 ⊕
√

α
22 ))t.

3. TD `L√V
(( 1

24 ⊕ (α•α
22 ⊕

√
¬α•

√
¬α

22 )) → ( α
22 ⊕

√
¬α
22 ))t.

4. TD `L√V
(( 1

24 ⊕ (¬α•¬α
22 ⊕

√
¬α•

√
¬α

22 )) → (¬α
22 ⊕

√
¬α
22 ))t.

Proof: Let α ∈ Term√
qPMV . For the sake of simplicity we use the fol-

lowing notation:
α1

t means (( 1
24 ⊕ (α•α

22 ⊕
√

α•
√

α
22 )) → ( α

22 ⊕
√

α
22 ))t,
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α2
t means (( 1

24 ⊕ (¬α•¬α
22 ⊕

√
α•
√

α
22 )) → (¬α

22 ⊕
√

α
22 ))t,

α3
t means (( 1

24 ⊕ (α•α
22 ⊕

√
¬α•

√
¬α

22 )) → ( α
22 ⊕

√
¬α
22 ))t,

α4
t means (( 1

24 ⊕ (¬α•¬α
22 ⊕

√
¬α•

√
¬α

22 )) → (¬α
22 ⊕

√
¬α
22 ))t.

We use induction on the complexity of α.

• The case α ∈ V ∪ {0, 1
2 , 1} is immediate from definition of TD.

• Suppose that α is α1 ? α2 where ? ∈ {⊕, •}.

By Axiom P3, Axiom C4 and Lemma 7.2-4 it follows that for each α ∈
Term√

V

`L√V
(

1
24
⊕ (

α • α
22

⊕ 1
24

)) → (
α

22
⊕ 1

23
) (1)

We prove that TD `L√V
α1

t . By definition of
√
V -translation we have

that α1
t = (( 1

24 ⊕ ( (α1?α2)•(α1?α2)
22 ⊕

√
α1?α2•

√
α1?α2

22 )) → (α1?α2
22 ⊕

√
α1?α2

22 ))t =
( 1
24 ⊕ ( (α1?α2)t•(α1?α2)t

22 ⊕ 1
24 ) → ((α1?α2)t

22 ⊕ 1
23 ). Since (α1 ? α2)t ∈ Term√

V ,
by (1), we have `L√V

α1
t and TD `L√V

α1
t . Cases TD `L√V

α2
t , TD `L√V

α3
t

and TD `L√V
α4

t follow in a similar way.

• Suppose α is
√
β.

We prove that TD `L√V
α1

t . By definition of
√
V -translation we have that

α1
t = (( 1

24 ⊕ (
√

β•
√

β
22 ⊕

√√
β•
√√

β
22 )) → (

√
β

22 ⊕
√√

β
22 ))t = (( 1

24 ⊕ ( (
√

β)t•(
√

β)t

22 ⊕
¬βt•¬βt

22 )) → ( (
√

β)t

22 ⊕ ¬βt

22 ). By inductive hypothesis we have TD `L√V
β2

t

and by Lemma 7.2 it is straightforward to see that

TD `L√V
β2

t ↔ ((
1
24
⊕ (

(
√
β)t • (

√
β)t

22
⊕ ¬βt • ¬βt

22
)) → (

(
√
β)t

22
⊕ ¬βt

22
))

Hence, by Lemma 7.2-3, TD `L√V
α1

t . Cases TD `L√V
α2

t , TD `L√V
α3

t and
TD `L√V

α4
t follow in a similar way.

2

Theorem 7.11 Let α ∈ Term√
qPMV and T ⊆ Term√

qPMV . Then:

T `LIP α iff Tt ∪ TD `L√V
αt
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Proof: Suppose that T `LIP α. We use induction on the length of the
proof of α noted by Length(α). If Length(α) = 1 then we have the following
possibilities:

1. α is one of the axioms W1...W4, C1...C4, P1...P5. In this case αt

results an axiom of L√V and `L√V
αt.

2. α is one of the axioms sQ1...sQ3. In this case αt looks like β ↔ β in
Term√

V . Then, by Proposition 7.2-1, `L√V
αt.

3. α is one of the axioms sQ4...sQ7. In this case, by Proposition 7.10,
TD `L√V

αt.

4. If α ∈ T then αt ∈ Tt. Hence, Tt `L√V
αt.

Suppose that the theorem is valid for Length(α) < n. We consider
Lengh(α) = n. Thus we have a proof of α from T as follows

α1, · · · , αm → α, · · · , αm, · · · , αn−1, α

obtaining α by MP from αm → α and αm. Using the inductive hypothesis
we have that Tt∪TD `L√V

(αm → α)t and Tt∪TD `L√V
(αm)t. Taking into

account that (αm → α)t = (αm)t → αt, by MP, we have Tt ∪ TD `L√V
αt.

For the converse, suppose that Tt ∪ TD `L√V
αt. Then there exist two

subsets {β1, · · · , βn} ⊆ T and {γ1, · · · , γm} ⊆ TD such that

{(β1)t, · · · , (βn)t, γ1, · · · , γm} `L√V
αt

Consequently {(β1)t, · · · , (βn)t, γ1, · · · , γm} `LIP αt. By Lemma 7.8 we have
that `LIP α↔ αt and `LIP βi ↔ (βi)t for each i ∈ {1, · · · , n}. Moreover, by
Axiom sQ4...sQ7, `LIP γj for each j ∈ {1, · · · ,m}. Thus {β1, · · · , βn} `LIP
α and T `LIP α.

2

Corollary 7.12 Let α ∈ Term√
qPMV . Then, `LIP α iff TD `L√V

αt.
2

Let SA be the pair algebra over the PMV 1
24

-chain A. Consider the

sub-algebra DA of SA (i.e. the IP -algebra defined in Proposition 5.5). We
introduce the following sets:

EDA
= {valuations e : Term√

qPMV → DA}
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VDA
= {Term√

V -valuations v : Term√
V → Reg(DA) s.t. v(TD) = 1}

Proposition 7.13 Let e ∈ EDA
and the restriction ve = ep |Term√

qPMV
where ep(t) is the generalized probability value. Then the assignment e 7→ ve

is a bijection EDA
→ VD such that ep(α) = ve(αt).

Proof: We first prove that e 7→ ve is well defined in the sense that ve ∈ VD.
Let α ∈ TD. Then ve(α) = ep(α) = e(α ⊕ 0) = e(α) = 1 since DA ∈ IP.
Hence ve(TD) = 1.

We prove the injectivity. Suppose that ve1 = ve2 . Let t be an atomic
term in termIP . Then we have that e1p(t) = ve1(t) = ve2(t) = e2p(t) and
e1p(

√
t) = ve1(

√
t) = ve2(

√
t) = e2p(

√
t). Therefore by Proposition 6.5,

e1 = e2 and e 7→ ve is injective.

Now we prove the surjectivity. Let v ∈ VDA
. By Proposition 5.4, con-

sider the PMV 1
24

-isomorphism g : Reg(DA) → A given by g(a, 1
2) = a and

define the valuation e : Term√
qPMV → DA such that for each atomic term

t in Term√
qPMV e(t) = (gv(t), gv(

√
t)). By induction on the complexity of

terms we prove that ve = v.

Let t be an atomic term in Term√
V .

• The case t ∈ {0, 1
2 , 1} is immediate.

• If t is a variable x then, ve(x) = ep(x) = e(x ⊕ 0) = e(x) ⊕ 0 =
(gv(x), gv(

√
x))⊕ 0 = (gv(x), 1

2) = v(x).

• If t is
√
x where x is variable then, ve(

√
x) = ep(

√
x) = e(

√
x ⊕ 0) =

e(
√
x)⊕0 =

√
e(x)⊕0 =

√
(gv(x), gv(

√
x))⊕0 = (gv(

√
x),¬gv(x))⊕

0 = (gv(
√
x), 1

2) = v(
√
x).

That constitutes the base of the induction in the language Term√
V .

Now let our claim hold whenever the complexity of Term√
V -terms is

less than n and α has complexity n.

• if α ∈ Term√
V is α1 ? α2 where ? ∈ {⊕, •} then ep(α) = e(α ⊕ 0) =

e((α1 ? α2) ⊕ 0) = e((α1 ⊕ 0) ? (α2 ⊕ 0)) = e(α1 ⊕ 0) ? e(α2 ⊕ 0) =
ep(α1) ? ep(α2) = v(α1) ? v(α2) = v(α1 ? α2).
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• if α ∈ Term√
V is ¬α1 then, ve(α) = ep(¬α1) = e(¬α1⊕0) = e(¬(α1⊕

0)) = ¬e(α1 ⊕ 0) = ¬ep(α1) = ¬v(α1) = v(¬α1) = v(α).

Thus v = ve and e 7→ ve is a bijection from EDA
onto VDA

.
Let e ∈ EDA

. By induction on the complexity of terms we prove that
for each α ∈ Term√

qPMV , ep(α) = ve(αt).
If α is an atomic term then ep(α) = ep(αt) = ve(αt). Now let our

claim hold whenever the complexity of the term is less than n and α have
complexity n.

Suppose that α is α1 ? α2 where ? ∈ {⊕, •}. Then ep(α) = ep(α1 ? α2) =
e((α1?α2)⊕0) = e((α1⊕0)?(α2⊕0)) = e(α1⊕0)?e(α2⊕0) = ep(α1)?ep(α2) =
ve(α1t) ? ve(α2t) = ve(α1t ? α2t) = ve(αt).

Suppose that α is
√
α1. Let us consider the following cases:

• α1 is an atomic term. Then its follows from the fact that (
√
α1)t =√

α1.

• α is
√√

α1. Then ep(α) = ep(
√√

α1) = ¬ep(α1) = ¬ve(α1t) =
ve(¬α1t) = ve((

√√
α1)t) = ve(α).

• α1 is
√
α2 ? α3 where ? ∈ {⊕, •}. Then ep(α) = ep(

√
α2 ? α3) =

(1
2 ,

1
2) = ep(1

2) = ve((
√
α2 ? α3)t) = ve(αt).

Hence ep(α) = ve(αt) for each α ∈ Term√
qPMV .

2

Theorem 7.14 Let T be a theory and α be a term both in Term√
qPMV

then
T |=Prob

IP α iff T `LIP α

Proof: We assume that T is consistent. Suppose that T |=Prob
IP α but

T 6`LIP α. Then, by Theorem 7.11, Tt ∪ TD 6`L√V
αt. By Lemma 7.5

and Theorem 7.6, there exists a complete theory T ′ ⊆ Term√
V such that

Tt ∪ TD ⊆ T ′, T ′ 6`L√V
αt, LT ′ is a totally ordered PMV 1

24
-algebra. Thus

[αt] 6= 1. Consider the natural Term√
V -valuation v : Term√

V → LT ′ i.e.,
s 7→ v(s) = [s]. Then [αt] = v(αt) 6= 1. Moreover, by Theorem 7.6, v(β) = 1
for each β ∈ T ′.

By Proposition 7.13 there exits a valuation e : Term√
qPMV → DLT ′

such that ep(β) = v(βt) for each β ∈ Term√
qPMV . One the one hand, for
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each γ ∈ T , ep(γ) = v(γt) = 1 since γt ∈ T ′. Hence ep(T ) = 1. On the other
hand, ep(α) = v(αt) 6= 1 which is a contradiction since T |=Prob

IP α. Thus
T `LIP α. For the converse see Proposition 7.3.

2

Now we can establish a compactness theorem for the probabilistic con-
sequence:

Theorem 7.15 Let T be a theory and α be a term both in TermIP . Then:

T |=Prob
IP α iff ∃ T0 ⊆ T finite such that T0 |=Prob

IP α

Proof: If T |=Prob
IP α by Theorem 7.14 there exists a proof of α, α1, · · ·αn, α

from T . If we consider T0 = {αk ∈ T : αk ∈ {α1, · · ·αn}} then T0 |=Prob
IP α.

The converse is immediate. 2

8 Conclusion

In this paper we have developed a logical-algebraic study for the system
of quantum computational gates known as Poincaré irreversible quantum
computational system or IP-system for short. The IP-system is interesting
not only due to its relation with the continuous t-norms but also because it
may be possibly applicable to the study of error-correcting codes [20] in the
context of quantum computation. Several algebraic structures originated
in reducts of the IP-system, as qMV -algebras and

√
qMV -algebras, were

introduced and studied in recent years, remaining as an open problem that
posed in [3] and [5] about the axiomatizability of the IP-system.

Facing this situation, the main results of this paper are the follwing:
i) We have introduced an algebraic structure, the IP -algebra, that allows
to give a mathematical representation of circuits made from assemblies of
quantum gates of the IP-system. ii) We have established a Hilbert-style
calculus and a completeness theorem respect to the variety of IP -algebras,
thus providing an answer to the mentioned open problem.
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[15] U. Höhle: Commutative, residuated l-monoids, In: Non-classical Logics
and their applications to Fuzzy Subset, a Handbook on the Mathe-
matical Foundations of Fuzzy Set Theory, U. Höhle, E. P. Klement,
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