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Abstract

We study N = 2 supersymmetric gauge theories on a large family of squashed 4-spheres preserving 
SU(2) × U(1) ⊂ SO(4) isometry and determine the conditions under which this background is supersym-
metric. We then compute the partition function of the theories by using localization technique. The results 
indicate that for N = 2 SUSY, including both vector-multiplets and hypermultiplets, the partition function 
is independent of the arbitrary squashing functions as well as of the other supergravity background fields.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Supersymmetric localization techniques furnish a rich ground for exact computation of vari-
ous quantities in Supersymmetric Quantum Field Theories. This program started with the work 
of [1], later pursued by [2,3] and more recently brought back by [4] which gave rise to an intense 
activity of exact calculations in various dimensions and/or manifolds [5–12]. A systematic way 
to put rigid SUSY on curved spaces in the case of N = 1 theories was worked out by [13,14], 
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and, for N = 2 theories in [15]. The partition function on squashed spheres depends in gen-
eral on the squashing parameters [8,11]. However for some squashing, preserving a particular 
isometry of the manifold, the partition function comes out to be independent of squashing pa-
rameters. Detailed studies of 3-dimensional cases had appeared in [8,16,17] and [18–20]. For the 
four dimensional case, the analysis of which geometrical background data the partition function 
depends on, has been performed for N = 1 SUSY. The four dimensional squashed sphere has 
also been considered, first in [11], and later in [9,21,22]. The SUSY partition function on the 
branched S4 in [9,21] computes the SUSY Rènyi entropy of a circular region in a 4-dimensional 
space [23,24].

In this paper we calculate N = 2 supersymmetric partition function on a very general squashed 
S4 with SU(2) × U(1) isometry, and show that it is independent of the squashing metric param-
eters and of the other supergravity backgrounds. In the case of N = 2 theories on the ellipsoid 
considered in [11] the isometry is generically U(1) ×U(1). In the limit l = r in [11] this symme-
try is enhanced to the SO(3) × SO(2) subgroup of SO(5). On the other hand, the SU(2) × U(1)

isometry in our case is a subgroup of SO(4) ≡ SU(2)L × SU(2)R . The paper is organized as 
follows. In Section 2, the Killing spinor equations for N = 2 rigid SUSY on squashed S4 are 
given, in Section 3 the squashed S4 metric and spin connection components are given and we 
solve the Killing spinor equations, calculating various background fields and then giving the con-
ditions for their regularity. Section 4 contains the calculation of the Q2 action on the fields of 
vector-multiplets and hypermultiplets. In Sections 5 and 6, we find the saddle point configura-
tions and one-loop determinants for vector multiplet and hypermultiplet respectively. In Section 7
we comment on the contribution of point-like instantons and anti-instantons to the supersymmet-
ric partition function. A brief summary of the main result is given in Section 8.

2. Rigid supersymmetric theories on curved spaces

By now a systematic way to put rigid SUSY on a curved spaces has been developed: the 
procedure is to start from the supergravity transformations [13,14,25,15] and obtain a rigid SUSY 
theory on a given curved manifold by freezing the quantum fluctuations of the gravitational 
background by taking the Planck mass limit MP → ∞, setting to zero and the fermionic fields 
in the supergravity multiplet. By following this procedure for N = 2 one obtains a set of Killing 
spinor equations which have to be satisfied in order to obtain rigid 4D N = 2 SUSY and at the 
same time constrain the background geometry. They are:

DmξA + T klσklσmξ̄A = −ισmξ̄ ′
A,

Dmξ̄A + T̄ kl σ̄kl σ̄mξA = −ισ̄mξ ′
A for a given pair ξ ′

A, ξ̄ ′
A, (1)

(where ι ≡ √−1) coming from the gravitino variation, and:

σmσ̄ nDmDnξA + 4DlTmnσ
mnσ l ξ̄A = MξA,

σ̄mσnDmDnξ̄A + 4DlT̄mnσ̄
mnσ̄ lξA = Mξ̄A, (2)

with M a real scalar background field, which is a consequence of the variation of a spin 1/2 field 
in the supergravity multiplet.

Here ξA and ξ̄A (spinor indices are omitted) are chiral and anti-chiral Killing spinors satis-
fying reality conditions to be specified later and are the parameters of N = 2 SUSY. The index 
A is a SU(2)R R-symmetry index of the N = 2 theory. The fields T kl , T̄ kl are self-dual and 
anti-self-dual real tensor background fields respectively. The covariant derivatives in (1) and (2)
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are covariantized also with respect to a background SU(2)R gauge field (Vm)AB , in addition to 
the local Lorenz and gauge transformations. We work in four component notation, where (1) is 
written compactly as

Dmξ + T .��mξ = −ι�mξ ′, (3)

where T .� ≡ Tkl�
kl .1 Now multiplying from left by �m and using the identity �m�kl�

m = 0 we 
get

ξp ≡ �mDmξ = −4ιξ ′. (4)

Here a new spinor ξp is defined which will be useful later on, when we will calculate the square 
of supersymmetry transformation Q2 acting on different fields of N = 2 theory.

3. Supersymmetry on the squashed S4

The family of squashed 4-spheres which we will consider is defined by the following metric 
or vielbein one-forms:

ds2 = dr2 + f (r)2

4

(
dθ2 + sin2 θdφ2

)
+ h(r)2

4
(dψ + cos θdφ)2,

e4 = dr, e3 = −h(r)

2
(dψ + cos θdφ) , e2 = f (r)

2
(sinψdθ − sin θ cosψdφ) ,

e1 = −f (r)

2
(cosψdθ + sin θ sinψdφ) , (5)

where f (r) and h(r) are smooth arbitrary functions of r . The above metric has SU(2) × U(1)

isometry. The spin connection is given by the following non-zero components 	ab
m ,

	21
1 = 1 − h(r)2

2f (r)2
, 	43

1 = h′(r)
2

, 	31
2 = h(r) sin(ψ)

2f (r)
, 	32

2 = h(r) cos(ψ)

2f (r)
,

	41
2 = 1

2
cos(ψ)f ′(r), 	42

2 = −1

2
sin(ψ)f ′(r), 	21

3 = cos(θ) − h(r)2 cos(θ)

2f (r)2
,

	31
3 = −h(r) sin(θ) cos(ψ)

2f (r)
, 	32

3 = h(r) sin(θ) sin(ψ)

2f (r)
, 	41

3 = 1

2
sin(θ) sin(ψ)f ′(r),

	42
3 = 1

2
sin(θ) cos(ψ)f ′(r), 	43

3 = 1

2
cos(θ)h′(r), (6)

where a, b = 1, . . . , 4 are flat indices and m = 1, . . .4 is curved space index.

3.1. Solution of killing spinor equation on the squashed S4

The purpose of this section is to show that if the background fields (Vm)AB, Tmn, T̄mn, M are 
chosen appropriately, the squashed S4 admits a Killing spinor which is solution of the two stets 
of Killing spinor equations (1) and (2). We write the backgrounds T and V in a complexified 
version:

1 Our conventions of � matrices can be simply read off the Killing spinor equations of [11] and their σ matrices.
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Vm =
(

ιv3m ι(v1m + ιv2m)

ι(v1m − ιv2m) −ιv3m

)
,

T =

⎛
⎜⎜⎜⎝

ιt3 ι(t1 − ιt2) 0 0

ι(t1 + ιt2) −ιt3 0 0

0 0 ιt3 ι(t̄1 − ιt̄2)

0 0 ι(t̄1 + ιt̄2) −ιt̄3

⎞
⎟⎟⎟⎠ . (7)

We will consider the following ansatz for the Killing spinor and we will calculate the background 
fields T , V and M such that this ansatz satisfies the set of Killing spinor equations

ξ =

⎛
⎜⎜⎜⎝

s1(r) 0

0 t2(r)

s3(r) 0

0 t4(r)

⎞
⎟⎟⎟⎠ . (8)

The Killing spinor satisfies the reality condition given in [11]:

(ξαA)† = εABεαβξβB, (ξ̄α̇A)† = εABεα̇β̇ξβ̇B . (9)

The parameters in the Killing spinor are arbitrary smooth functions of r . After solving the Killing 
spinor equations, it turns out that some of these parameters are constrained.

The general solution to the main and auxiliary equations using the ansatz (8) takes the follow-
ing form:

s1(r) = s(r), s3(r) = ι c h(r)

s(r)
, t2(r) = s(r),

t4(r) = − ι c h(r)

s(r)
,

t3 = s(r)
(
f (r)

(
2f (r)s′(r) − s(r)f ′(r)

) + h(r)s(r)
)

4cf (r)2h(r)
,

t̄3 = c
(
f (r)h(r)

(
s(r)f ′(r) + 2f (r)s′(r)

) − 2f (r)2s(r)h′(r) + h(r)2s(r)
)

4f (r)2s(r)3
,

v33 = 1

2

(
h(r)

f (r)2
+ h′(r) − 2

h(r)
− 2s′(r)

s(r)

)
,

M = 2f ′′(r)
f (r)

+ f ′(r)2 − 2h′(r) + 4h(r)s′(r)
s(r)

f (r)2
+ h(r)2

f (r)4
+ 4s′(r)

(
s(r)h′(r) − h(r)s′(r)

)
h(r)s(r)2

.

(10)

Here only the non-zero part of the background fields and Killing spinor components are given, 
c is a real arbitrary constant which sets the normalization of the killing vector we will use to 
localize, s(r) is a smooth function of r and the background fields T and Vm are indexed by 
flat tangent space indices. For these background fields to be well defined on the squashed S4, 
it is necessary that s(r) has no zero between the two poles. We thus determined the form of 
all the additional background fields in order for N = 2 SUSY to be preserved on the squashed 
four-sphere. We have set v12 = 0, this choice of background preserves SU(2) × U(1) × U(1)R
symmetry. Should we take v12 	= 0 it can be shown that the symmetry is reduced to SU(2) ×U(1)′
where U(1)′ ≡ (U(1) × U(1)R)diagonal.
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3.2. Regularity of the background fields

Our metric should look like the round S4 at the North and South poles, this implies that 
f (r) = h(r) = 0 at r = 0 and r = π . Moreover for our metric to be non-singular in the interval 
π > r > 0, the functions f (r) and h(r) are strictly non-zero and do not change sign inside the 
interval.

North pole (r = 0): Near the North pole the regularity of invariant quantities R, RμνR
μν and 

of the background fields both in flat tangent space indices and curved space indices, fixes f (r), 
h(r) and s(r) in the following form:

h(r) = r + hn3r
3 + O(r4),

f (r) = r + fn3r
3 + O(r4),

s(r) = sn0 + sn2r
2 + sn3r

3 + O(r4). (11)

There are higher order terms, but those are irrelevant to the present analysis.
South pole (r = π): Similarly near the South pole the regularity requirements fix f (r), h(r)

and s(r) in the following way

h(r) = π − r + hs3(π − r)3 + O
(
(π − r)4

)
,

f (r) = π − r + fs3(π − r)3 + O
(
(π − r)4

)
,

s(r) = (π − r)ss1 + (π − r)3ss3 + O
(
(π − r)4

)
. (12)

Here hn3 , fn3 , sn0 , sn2 , sn3 , hs3, fs3, ss1, ss3 are arbitrary real constants.
For reasons that will become clear later, a quantity of interest which we want to calculate is 

(s(r)2 − c2h(r)2

s(r)2 ). At the North pole it evaluates to s2
n0

, whereas at the South pole it evaluates to 

− c2

s2
s1

. So it has the interesting property that it changes sign between North and South poles and 

hence passes through zero. This result will have important consequences later on, in Section 6
when we will calculate the one-loop determinant, where we show that the relevant differential 
operators are transversally elliptic. Before proceeding, we want to comment that there is an am-
biguity in the choice of the functions f (r), h(r) and s(r) at the North and South poles, that is, if 
we take the following choice for these functions at the North pole

h(r) = −r + hn3r
3 + O(r4),

f (r) = r + fn3r
3 + O(r4),

s(r) = sn1 + sn3r
3 + O(r4), (13)

and the following choice at the South pole

h(r) = r − π + hs3(π − r)3 + O
(
(π − r)4

)
,

f (r) = π − r + fs3(π − r)3 + O
(
(π − r)4

)
,

s(r) = ss0 + ss2(π − r)2 + ss3(π − r)3 + O
(
(π − r)4

)
, (14)
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all the background fields are still regular there. The only difference is that the quantity (s(r)2 −
c2h(r)2

s(r)2 ) evaluates to − c2

s2
n1

at the South pole and to s2
s0

at the South pole. Every other result 

remains the same.

4. Multiplets

4.1. Vector multiplet

In 4D N = 2 SUSY with Euclidean signature, vector multiplets are made of a gauge field Am, 
two independent gauginos λαA, λ̄α̇A, two scalar fields φ, φ̄ and an auxiliary field DAB = DBA, all 
Lie algebra valued. The supersymmetric Yang–Mills Lagrangian with the additional couplings 
to the backgrounds was written in [11], we write it again for completeness:

LYM = Tr[1

2
FmnFmn + 16Fmn(φ̄T mn + φT̄ mn) + 64φ̄2TmnT

mn + 64φ2T̄ mnT̄mn

− 4Dmφ̄Dmφ + 2Mφφ̄ − 2ιλAσmDmλ̄A − 2λA[ ¯φ,λA]
+ 2λ̄A[φ, λ̄] + 4[φ, φ̄]2 − 1

2
DABDAB], (15)

with the inclusion of the θ -term:

SYM = 1

g2
YM

∫
d4x

√
gLYM + ι

θ

8π2

∫
Tr(F ∧ F). (16)

4.2. Hypermultiplet

The hypermultiplet consists of scalars qAI and fermions ψαA, ψ̄ α̇
I satisfying reality conditions 

[11]. The index I runs from 1 to 2r . There is also an auxiliary scalar FIA transforming as a 
doublet under a local SU(2)

Ř
symmetry. This symmetry and the auxiliary field are introduced in 

the theory by the requirement that the SUSY algebra of matter multiplet is closed off shell respect 
to the supercharge that is used to localize [4]. From [11] the gauge covariant kinetic Lagrangian 
for the hypermultiplet is

Lmat = 1

2
DmqADmqA − qA{φ, φ̄}qA + ι

2
qADABqB + 1

8
(R + M)qAqA − ι

2
ψ̄σ̄mDmψ

− 1

2
ψφψ + 1

2
ψ̄φ̄ψ̄ + ι

2
ψσklTklψ − ι

2
ψ̄σ̄ kl T̄klψ̄

− qAλAψ + ψ̄λ̄qA − 1

2
FAFA. (17)

4.3. Closure of the supercharge algebra

For localization computation we need to identify a continuous fermionic symmetry Q and the 
corresponding Killing spinor is taken to be commuting. The supersymmetry transformation Q
acting on the fields of N = 2 SUSY theory squares into a combination of bosonic symmetries:

Q2 ≡ Lv + Gauge(�̂) + Lorentz(Lab) + Scale(ω)

+ RU(1)(�) + RSU(2)(�̂AB) + ŘSU(2)(
ˆ̌
�), (18)
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with various parameters defined as in [11]. For the vector multiplet the SUSY algebra is closed 
off shell, the only requirement being that the Killing spinor equations be satisfied. For the hy-
permultiplet the closure of full N = 2 SUSY algebra requires the existence of infinite number 
of auxiliary spinors and auxiliary fields. But for localization computation we need only one su-
percharge corresponding to a particular Killing spinor and in this case only finite number of 
auxiliary spinors are required. These auxiliary spinors are required to satisfy certain constraint 
equations (see [4]).

Next we compute these transformation parameters for our background. First of all, we observe 
that ξAξpA = ξ̄Aξ̄pA = 0. This condition implies that ω = � = 0. In other words the square of 
the supersymmetry transformation does not give rise to dilation or U(1)R transformation. This 
condition is necessary because the non-zero values of the background fields Tab and T̄ab break 
the U(1)R symmetry anyway.

The explicit expression for other transformation parameters are given below

Lab =

⎛
⎜⎜⎜⎝

0 −8c 0 0

8c 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠ ,

�AB =
⎛
⎝ 0 2c

(
h(r)2

f (r)2 − 2s′(r)h(r)
s(r)

+ h′(r)
)

2c
(

h(r)2

f (r)2 − 2s′(r)h(r)
s(r)

+ h′(r)
)

0

⎞
⎠ ,

�̂A
B =

(
4c 0

0 −4c

)
,

Lievξ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 2cs(r)
((

h′(r)−2
)
f (r)2+h(r)2)

f (r)2 0

0
2cs(r)

((
h′(r)−2

)
f (r)2+h(r)2)

f (r)2

2ιc2h(r)
(
f (r)2(h′(r)+2

)−h(r)2)
f (r)2s(r)

0

0
2ιc2h(r)

(
f (r)2

(
h′(r)+2

)−h(r)2
)

f (r)2s(r)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (19)

where the Lie derivative Liev is defined as Lvξ ≡ υmDmξ + 1
4D[aυb]�abξ . The non-zero Lab

implies the fact that the U(1) group which is used to find the fixed points of the manifold, belongs 
to the Cartan of SU(2) part of the isometry group SU(2) × U(1). Therefore it follows that our 
Killing spinor is invariant under Q2. In 4-component notation:

Q2ξ = ιLievξ − ξ�̂ = 0. (20)

The auxiliary spinor, which helps to close off-shell the supersymmetry, is given by:

ξ̌ =

⎛
⎜⎜⎜⎜⎝

ch(r)
s(r)

0

0 ch(r)
s(r)

−ιs(r) 0

0 ιs(r)

⎞
⎟⎟⎟⎟⎠ . (21)

To fix the background SU(2) ˇ , we have to fix the corresponding gauge field V̌m:

R
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V̌m =
(

ιv̌3m ι(v̌1m + ιv̌2m)

ι(v̌1m − ιv̌2m) −ιv̌3m

)
. (22)

The requirement that all the background fields be invariant under the action of Q2 fixes all the 
components of V̌m to zero except v̌33, v̌34, which remain arbitrary.

After the gauge fixing, ˆ̌
�A

B becomes

ˆ̌
�A

B =
(

−4(h(r)v̌33(r)c + c) 0

0 4(h(r)v̌33(r)c + c)

)
. (23)

And also the auxiliary spinor ξ̌ is proven to be invariant under Q2

Q2ξ̌ = 0. (24)

5. Localization

5.1. SYM saddle points

The path integral computation of the expectation value of an observable of a supersymmetric 
YM theory which is invariant under a supercharge Q localizes to a subset SQ of the entire field 
space. The zero locus of the supercharge Q coincides with the set of bosonic configurations for 
which the supersymmetry variations of the fermions vanish:

Q� = 0 for all fermions �. (25)

This is easily seen if we take as regulator the Q-exact deformation: QV = Q((Q�)†�).
To take into account the gauge fixing, the supercharge Q is generalized to Q̂ ≡ Q +QB , where 

QB is the BRST-supercharge. However as pointed out in [4], this does not affect the zero locus. 
To effectively calculate the zero locus of the supercharge, we add to the Lagrangian a Q-exact 
quantity QV , whose critical point set is SQ and whose bosonic part is semi-positive definite. 
Now either solve the localization equation

Q̂λ = 0 (26)

directly or analyze the Q̂-transform of the following quantity,

V = Tr[(Q̂λαA)†λαA + (Q̂λ̄α̇
A)†λ̄α̇

A], (27)

which has semi-positive definite bosonic part. In writing explicitly (27) we use the proper reality 
conditions which make the action well defined. We get the analogous expression to the equation 
(4.2) in [11]. Analyzing that expression we get two partial differential equations for φ − φ̄ ≡
φ2(ψ, θ, ϕ, r), where we make use of Bianchi identities to get the second one:

∂ψφ2(ψ, θ,ϕ, r) = 0, (28)

and

∇̃2φ2(θ,ϕ, r) + f (r)2

2h(r)
ξ�mξp∂mφ2(θ,ϕ, r) + G(r)φ2(θ,ϕ, r) = 0, (29)

in the second equation we used the fact that φ2(ψ, θ, ϕ, r) is independent of ψ -coordinate, ∇̃2 is 
the following Laplacian like operator:
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∇̃2∗ = f (r)2

2h(r)

h(r)√
gf (r)ξn

∇μ

(√
gξ2

ngμν∇ν(
f (r)

h(r)
∗)

)
(30)

ξn = ξ.ξ is the proper norm of the four component spinor and G(r),

G(r) = 1

h(r)3s(r)3

(
−c2h(r)4

(
s(r)

(
f ′(r)2 + 2h′(r)

)
− 2f (r)f ′(r)s′(r)

)

− h(r)2
(
−3c2f (r)2s(r)h′(r)2 + 2f (r)s(r)4f ′(r)s′(r) + s(r)5f ′(r)2

)
+ h(r)3

(
c2f (r)2s(r)h′′(r) + 2s′(r)

(
s(r)4 − 2c2f (r)2h′(r)

))
+ 2c2h(r)5s′(r)

+ f (r)h(r)s(r)4 (
2h′(r)

(
s(r)f ′(r) + 2f (r)s′(r)

) + f (r)s(r)h′′(r)
)

− f (r)2s(r)5h′(r)2

)
, (31)

For the round sphere

f (r) = sin r, h(r) = sin r, s(r) = 1√
2

cos(
r

2
), c = 1

4
, (32)

the field φ2 = 0 at the localization locus, which will also ensure that Am = 0 at the locus. This 
result is true in an open neighborhood of the round S4, as appears also in [11], and so we will 
assume, it is the solution to the locus equations.

The saddle points are thus labeled by a Lie Algebra valued constant a0, and are given by the 
equations [4,11]:

Am = 0, φ = φ̄ = a0, DAB = −ιa0ωAB. (33)

The value of the Super-Yang–Mills action on this saddle point is then:

1

g2
YM

∫
d4x

√
gLYM |saddle point = 2π3 Tr

[
a2

0

]
c2g2

YM

. (34)

5.2. Saddle points for matter multiplet

To find the saddle points of the matter multiplet we will use the following fermionic functional

Vmat = Tr[(Q̂ψαI )
†ψαI + (Q̂ψ̄ α̇

I )†ψ̄ α̇
I ]. (35)

The bosonic part of Q̂Vmat is

Q̂Vmat|bos = Tr[(Q̂ψαI )
†Q̂ψαI + (Q̂ψ̄ α̇

I )†Q̂ψ̄ α̇
I ]. (36)

It is easy to check that:

Q̂Vmat|bos = 4‖ξ‖2(
1

2
(DmqAI − PmqAI )2 + Mq(r)qAI qIA − 1

2
FAIFIA), (37)

where

P B
mA = 1

‖ξ‖2
(2(εξγmξp + εξT γmξ)B A + Dn Log(‖ξ‖2)(εξγnmξ)B A), (38)

and



158 A. Cabo-Bizet et al. / Nuclear Physics B 899 (2015) 149–164
Mq = −1

4
R + 1

‖ξ‖2
(8ξA

p ξpA + ξAγ mT 2γmξA − Dn Log(‖ξ‖2)ξA(3γmξpA + T γmξA)

+ 1

2
(P mA

BP B
mA)) − 1

2‖ξ‖2
P mA

AP B
mB, (39)

where ξA = (ξαA, ξ̄α̇A),εAB is the SU(2)R tensor and R is the Ricci scalar. As a result of the 
condition F †

IA = −FAI which is imposed along the contour of path integration, all the bosonic 
terms are manifestly positive definite, except the term containing Mq(r). For the round S4

Mq(r) = 7

8
+ cos(2r)

8
, (40)

and it is bounded from below by 3
4 . Therefore there is a large open neighborhood of the round 

sphere for which Mq(r) is positive definite. So we get the result for the saddle points of the 
hypermultiplet as

qIA = 0, FIA = 0. (41)

Hence there will be no classical contribution from the hypermultiplet sector.

6. One-loop determinant

To calculate the one-loop determinant we have to first fix the gauge. We choose the following 
gauge function [11].

G = ι∂mAm + ιLv((ξ
AξA − ξ̄Aξ̄A)φ2 − υmAm). (42)

The saddle point conditions do not change under the new supercharge Q̂2 ≡ (QB + Q)2, with 
the zero mode of φ1 = a0 at the saddle point.

6.1. Vector multiplet contribution

The basic idea of localization is that the actual value of the path integral or any other Q-closed 
observable remains unchanged under any Q̂-exact deformation L → L + sQ̂(V + VGF). By 
choosing the bosonic part of L → L + sQ̂(V + VGF) positive definite and sending s → ∞, 
Gaussian approximation becomes exact for the path integral over the fluctuations around the 
locus. The Gaussian integral evaluates to the square root of the ratio between the determinant of 
a fermionic kinetic operator Kfermion and that of a bosonic kinetic operator Kboson. These kinetic 
operators coming from the quadratic part of the Q̂-exact regulator.

To compute the 1-loop contribution it is convenient to change variables in the path integral to 
a set, X, �, which makes manifest the cohomology of Q̂ [4,11]. After doing that, the quadratic 
part of V + VGF can be written as:

(V + VGF)|quadratic = (Q̂X,�)

(
D00 D01

D10 D11

)(
X

Q̂�

)
, (43)

where Dij are differential operators and X, � are cohomologically paired bosonic and fermionic
fields respectively,

� ≡ (�AB, C̄,C), X = (φ2,Am; ā0,B0), (44)
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and

�AB ≡ 2ξ̄(Aλ̄B) − 2ξ(AλB), (45)

where C̄, C, ā0, B0 belong to the ghost multiplets The fields X and � can be regarded as 
sections of bundles E0, E1 over the squashed sphere and hence D10 acts on the complex as 
D10 : �(E0) → �(E1). The invariance of the deformation term Q̂(V + VGF) under the action 
of Q̂ and the pairing of the fields under Q̂2 = H leads to the cancellations between bosonic and 
fermionic fluctuations, which gives the following ratio [4,11]:

detCokerD10H
detKerD10H

. (46)

The fact that Q̂2 commutes with the differential operators Dij is used in the derivation of the last 
expression and is a result of the invariance of (V + VGF) under Q̂2. This can readily be seen by 
considering Q̂2(V + VGF)Quad .

Q̂(V + VGF)Quad =
(

X Q̂�
)
D

(
−Q̂2 0

0 1

)(
X

Q̂�

)

−
(

Q̂X �
)
D

(
1 0

0 Q̂2

)(
Q̂X

�

)
, (47)

where D ≡
(

D00 D01
D10 D11

)
.

Then

Q̂2(V + VGF)Quad

= (
Q̂X Q̂2�

)(
−Q̂2 0

0 1

)
D

(
X

Q̂�

)
+ (

X Q̂�
)(

−Q̂2 0

0 1

)
D

(
Q̂X

Q̂2�

)

− (
Q̂2X Q̂�

)
D

(
1 0

0 −Q̂2

)(
Q̂X

�

)
+ (

Q̂X �
)
D

(
1 0

0 Q̂2

)(
Q̂2X

Q̂�

)

= (
Q̂X �

)(
1 0

0 −Q̂2

)(
−Q̂2 0

0 1

)
D

(
X

Q̂�

)
+ (

X Q̂�
)(

−Q̂2 0

0 1

)

D

(
1 0

0 Q̂2

)(
Q̂X

�

)
− (

X Q̂�
)(

−Q̂2 0

0 1

)
D

(
1 0

0 Q̂2

)(
Q̂X

�

)

+ (
Q̂X �

)
D

(
1 0

0 Q̂2

)(
Q̂2 0

0 1

)(
X

Q̂�

)
. (48)

Now with the requirement that [Q̂2, Dij ] = 0, different terms cancel among each other and we 
get

Q̂2(V + VGF)Quad = 0. (49)



160 A. Cabo-Bizet et al. / Nuclear Physics B 899 (2015) 149–164
6.2. Index of D10

To evaluate the ratio (46) through the index computation, we first note that the constant fields 
B0, ā0 have each weight 0 under the action of U(1) at the poles and are thus regarded as sitting in 
the kernel of D10 and making a contribution of 2. For the contribution of other fields we need an 
explicit expression for D10,2 which is read from equation (43) To compute the index of D10 it is 
better to use its, symbol σ(D10), this is computed by taking the Fourier transform of the operator 
D10 and then retaining only the highest order derivative (momentum) terms [4]. To write the 
symbol explicitly we have to express the Fourier transform of D10 in the following orthonormal 
basis of four unit vector fields μm

a (a = 1, 2, 3, 4), which relabels the original vielbein basis

−2ι(τ a)ABξ̄Bσ̄mξA = 4ch(r)μm
a , 2ξ̄Aσ̄mξA = 4ch(r)μm

4 (a = 1,2,3). (50)

Here c is the constant appearing in the definition of the Killing spinor. So the symbol is given by:

σ(D10) =

⎛
⎜⎜⎜⎝

p4W(r) p3 −p2 −p1W(r) −4cp1h(r)

−p3 p4W(r) p1 −p2W(r) −4cp2h(r)

p2 −p1 p4W(r) −p3W(r) −4cp3h(r)

pp1p4 p2p4 p3p4 p2
4 − 8c

(
p2

1 + p2
2 + p2

3

)
h(r) 2

(
p2

1 + p2
2 + p2

3

)
W(r)

⎞
⎟⎟⎟⎠ ,

(51)

where W(r) ≡ 2s(r)2 − 2c2h(r)2

s(r)2 . This matrix can be block diagonalized in terms of 1 × 1 and 
4 × 4 factors, the relevant part of the symbol to compute the index is the following 4 × 4 block,

σ(D′
10) =

⎛
⎜⎜⎜⎝

p4W(r) p3 −p2 −p1

−p3 p4W(r) p1 −p2

p2 −p1 p4W(r) −p3

p1 p2 p3 p4W(r)

⎞
⎟⎟⎟⎠ . (52)

The determinant of this symbol is:

Det(σ (D′
10)) =

(
4c4p2

4h(r)4

s(r)4
− 8c2p2

4h(r)2 + p2
1 + p2

2 + p2
3 + 4p2

4s(r)
4

)2

. (53)

For p1 = p2 = p3 = 0 and p4 	= 0, this value of determinant changes sign between North and 
South poles as discussed in Section 3.2, hence it has at least one zero. Therefore the symbol is 
not invertible at the location of that zero and by definition D10 cannot be elliptic. But restricting 
the momentum to p4 = 0, σ is always invertible provided (p1, p2, p3) are not all zero simultane-
ously. Therefore D10 is a transversally elliptic operator with respect to the symmetry generated 
by υ . In general the kernel and cokernel of such transversally elliptic operator are infinite dimen-
sional, but since [Q̂2, Dij ] = 0, they both can be split into irredeucible representations of H with 
finite multiplicities, these multiplicities can be read off from the index theorem as explained in 
[4]. The index theorem localizes the contributions to the fixed points of the action of H, that is to 
the North and South poles of the squashed S4. According to the Atiyah–Bott [26] formula, the 
index is given by

2 Strictly speaking the relevant differential operator for the index computation is a combination of the original D10 and 
D11. But it turns out that this operator commutes with H and the distinction becomes irrelevant.
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ind(D′
10) =

∑
x=fixed points

TrE0(γ ) − TrE1(γ )

det(1 − ∂x̃
∂x

)
, (54)

where γ denotes the eigenvalue of the action of the operator eιHt on the vector and SU(2)R
indices of the fields. So we need the action of eιHt Near the North and South poles, on the local 
coordinates z1 ≡ x1 + ιx2, z2 ≡ x3 + ιx4, where we are defining near the North pole:

x1 + ιx2 = r cos

(
θ

2

)
eι

ψ+ϕ
2 ,

x3 + ιx4 = r sin

(
θ

2

)
eι

ψ−ϕ
2 , (55)

so,

z1 → e4ιct z1 ≡ q1z1, z2 → e4ιct z2 ≡ q2z2, (56)

with 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π , 0 ≤ ψ ≤ 4π . As for the action of Q2 on the fields of vector 
multiplet, its eigenvalues turn out to be of the same form as in [11], except that in our case 
q1 = q2 = q = e4ιct . Putting all together, also the similar contribution from the South pole, we 
get the index D10.

The one loop determinant can be computed by extracting the spectrum of eigenvalues of 
H from the index. For a non-abelian group G, with a0 in its Cartan subalgebra, the one loop 
contribution of the vector-multiplet can be written as [11]:

Zvec
1−loop = (

detKfermion

detKboson
)

1
2

=
∏

α∈�+

1

(â0.α)2

∏
m,n≥0

((m + n) + ιâ0.α)((m + n + 2) + ιâ0.α)

× ((m + n) − ιâ0.α)((m + n + 2) − ιâ0.α)

=
∏

α∈�+

ϒ1(ιâ0.α)ϒ1(−ιâ0.α)

(â0.α)2
, (57)

where â0 ≡ a0
4c

. The function ϒ(x) has zeros at x = −(m + n), (m + n + 2), this function is 
implemented to regularized the infinite products. It is defined by:

ϒb(x) =
∏

n1,n2≥0

(bn1 + n2

b
+ x)(bn1 + n2

b
+ b + 1

b
− x), (58)

where b is a constant that in the case of [11] is exactly the squashing parameter, while and in our 
case b = 1.

6.3. Hypermultiplet one-loop contribution

We begin also with cohomological pairing [4,11] for the matter sector, the computation of the 
one-loop determinant reduces to that of the index of an operator Dmat

10 . This operator corresponds 
to the terms bilinear in the fields � and qIA in the functional Vmat. Its symbol σ(Dmat

10 ) is given 
by
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σ(Dmat
10 ) =

⎛
⎝ 2

(
(p3−ιp4)s(r)

4+c2h(r)2(p3+ιp4)
)

s(r)4+c2h(r)2 2(p1 + ιp2)

2(p1 − ιp2) − 2
(
(p3+ιp4)s(r)

4+c2h(r)2(p3−ιp4)
)

s(r)4+c2h(r)2

⎞
⎠ . (59)

The determinant of this symbol is

Det[σ(Dmat
10 )] = −4

(
s(r)4 − c2h(r)2

)2

(
c2h(r)2 + s(r)4

)2
p2

4 − 4p2
1 − 4p2

2 − 4p2
3. (60)

For p1 = p2 = p3 = 0, p4 	= 0, the determinant changes sign somewhere between North and 
South poles (see Section 3.2) and hence it possesses at least one zero. Therefore the operator Dmat

10
is again transversally elliptic with respect to the isometry generated by Lv in the p4 direction.

The index for the action of H on different fields at the poles can be calculated by using 
Atiyah–Bott formula. With q1 = q2 = e4ιct in our case of squashed S4, the eigenvalues for the 
action of Q2 on the matter multiplet case again turn out to have the same form as in [11].

For the hypermultiplets coupled to gauge symmetry, in the representation R
⊕

R̄ the final 
result for the one-loop determinant for the hypermultiplets becomes:

Z
hyp
1−loop =

∏
ρ∈R

∏
m,n≥0

((m + n + 1) − ιâ0.α)−1((m + n + 1) + ιâ0.α)−1

=
∏
ρ∈R

ϒ1(ιâ0.ρ + 1)−1, (61)

where ρ runs over all the weights in a given representation.

7. Instanton contribution

Near the North pole the Killing spinor evaluates to

ξ =

⎛
⎜⎜⎜⎜⎝

sn0 0

0 sn0
ιcr
sn0

0

0 − ιcr
sn0

⎞
⎟⎟⎟⎟⎠ , (62)

so that ξAξA = 2s2
n0

and ξ̄Aξ̄A = 2c2r2

s2
n0

. Since ξ̄Aξ̄A → 0 at the North pole, the localization 

equation has to be evaluated away from the North pole to have smooth gauge field configurations.
Similarly near the South pole

ξ =

⎛
⎜⎜⎜⎜⎝

(π − r)ss1 0

0 (π − r)ss1
ιc
ss1

0

0 − ιc
ss1

⎞
⎟⎟⎟⎟⎠ , (63)

and ξAξA = 2(π − r)2s2
s1

and ξ̄Aξ̄A = 2c2

s2
s1

. In this case ξAξA → 0. Therefore the South pole has 

also to be excluded if smooth gauge field configurations are assumed.
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To include the contribution from the poles, we first notice that because ξ̄Aξ̄A → 0 at the 
North pole, in general F+

mn 	= 0, F−
mn = 0 there and still solve the localization equation. These 

configurations are the pointlike anti-instantons contribution.
Also at the North pole the following condition is satisfied for our background

1

4
	ab

m σabξA + ιξBV B
mA = 0. (64)

Likewise, at the South pole ξAξA → 0, and we get the point instanton contribution F+
mn = 0, 

F−
mn 	= 0 and the following twisting condition is satisfied

1

4
	ab

m σ̄abξ̄A + ιξ̄BV B
mA = 0. (65)

The Killing vector near the North pole can be written as

υm ∂

∂xm

= 4c(x1
∂

∂x2
− x2

∂

∂x1
) + 4c(x3

∂

∂x4
− x4

∂

∂x3
). (66)

Notice that near the South pole our N = 2 theory on squashed S4 approaches topologically 
twisted theory with Omega deformation parameters ε1 = 4c, ε2 = 4c [2,3], and the contribution 
of these point-instantons is given by Zinst(a0, ε1, ε2, τ), where the parameter τ is defined by 
τ ≡ θ

2π
+ 4πι

g2
YM

.

Whereas near the North pole, the contribution of point anti-instantons is given by Zinst(a0, ε1,

ε2, τ̄ ). Putting all together, the final form of the squashed S4 partition function is

Z =
∫

dâ0e
− 2π3 Tr[a2

0 ]
c2g2

YM |Zinst|2
∏

α∈�+
ϒ1(ιâ0.α)ϒ1(−ιâ0.α)

∏
ρ∈R

ϒ1(ιâ0.ρ + 1)−1. (67)

8. Conclusions

We have computed the partition function of N = 2 SUSY on squashed S4 which admits 
SU(2) × U(1) isometry, using SUSY localization technique. We find that the full partition func-
tion is independent of the squashing parameters as well as the other supergravity background 
fields.

The squashing functions independence of the one-loop part of the partition function, which is 
obvious from the form of the relevant Killing vector v, can perhaps be attributed to the fact that 
in our squashed S4 the theory is topologically twisted at the poles. This is because the SU(2)R
symmetry which is generically broken down to U(1)R on the squashed S4 excluding the poles, 
is again enhanced to SU(2)R at the poles. So this SU(2)R can be identified at the poles with the 
SU(2) Lorentz isometry to topologically twist the theory. The classical part can be written as a 
total derivative and gives to a contribution which is independent of the squashing parameters.

It will be interesting to explain this independence along the same lines given in [17]. That 
is to say, if we deform the vector multiplet and hypermultiplet actions around the round S4

with respect to e.g. f (r), it might be possible to write these deformed actions as Q-exact terms 
separately. This Q-exactness of the deformed action will explain the independence of partition 
function of the parameter f (r) in the sense of [17]. However we have to consider perturbations 
around the round S4, unlike [17], where it is perturbed around flat R4.
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