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Abstract
A semi-linear second order ODE under a nonlinear two-point boundary condition is considered.
Under appropriate conditions on the nonlinear term of the equation, we define a two-dimensional
shooting argument which allows to obtain solutions for some specific situations by the use of
Poincaré-Miranda’s theorem. Finally, we apply this result combined with the method of upper
and lower solutions and develop an iterative sequence that converges to a solution of the problem.
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1 Introduction

We study the semi-linear second order ODE
u”(t) + g(t,u(t), ' (t)) =0, 0<t<T (1)

under a nonlinear two-point boundary condition.

Problem (1) under various boundary conditions has been studied by many
authors. In the pioneering work of Picard [18], the existence of a solution for the
Dirichlet problem was proved by the well-known method of successive approxi-
mations, assuming that g is Lipschitz and T is small. These conditions have been
improved by Hamel [9], for the special case of a forced pendulum equation (see
also [13], [14]). For general g = g(-,u), the variational approach has been em-
ployed already in 1915 by Lichtenstein [12]. However, when g depends on u' the
problem has non-variational structure, and different techniques are required. As
a historical antecedent of the topological methods, we may mention the shooting
method introduced in 1905 by Severini [20]; later on, more abstract topologi-
cal tools have been applied, such as the Leray-Schauder degree theory. For an
overview of the use of topological methods to this kind of problems, we refer the
reader to [15].

The above-mentioned two-point boundary conditions, as well as some other
standard ones, such as the Neumann or the Sturm-Liouville conditions, are linear;
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it is worthy to mention, however, that the general nonlinear case

¢(w(0), u(T),u'(0),w/(T)) = 0, (2)

where ¢ : R* = R is continuous is very important in applications and, in recent
years, a considerable number of works have been developed in this direction.

We shall study the existence of solutions of (1) under a particular case of
condition (2): namely, nonlinear boundary conditions of the type

u'(0) = fo(u(0), v(T) = fr(u(T)) (3)

where fo, fr : R — R are given continuous functions. The special case f;(z) =
a;x~+b; for 1 = 0,7 corresponds to the Sturm-Liouville conditions, and Neumann
conditions when agp = ar = 0. Our interest in (3) relies on some models in
nonlinear beam theory, usually leading to fourth order problems [7], but that
admit second order analogues (see e.g. [19]). The results in the present paper
complement and extend those in [1].

The paper is organized as follows. In the second section, we impose a growth
condition on g, which allows to prove the unique solvability of the associated
Dirichlet problem. Furthermore, we prove that the trace mapping Tr : S — R?
given by T'r(u) = (u(0),u(T)), where

S:={uec H*0,T) : u"(t) + g(t,u(t), v/ (t)) = 0} (4)

is a homeomorphism for the H2-norm.

Then, we define a two-dimensional shooting argument, which proves to be
successful with the aid of the Poincaré-Miranda theorem (see e.g. [11]) in some
particular situations, which include the Sturm-Liouville boundary conditions.
This generalizes some of the results in [2], and constitutes the main tool for our
iterative method for problem (1)-(3), developed in the third section.

Our method, based on the existence of an ordered couple (o, ) of a lower
and an upper solution, has been successfully applied to different boundary value
problems when g does not depend on u/. For general g, existence results can still
be obtained if one assumes a Nagumo-Bernstein type condition (see [3], [16])).
However, these results are usually proved by fixed point or degree arguments and,
in consequence, they are non-constructive.

We shall assume instead a Lipschitz condition on u/, which is more restrictive,
but allows the construction of a non-increasing (resp. non-decreasing) sequence of
upper (lower) solutions that converges to a solution of the problem. Our method
is slightly different from the monotone techniques known in the literature for
linear boundary conditions, see e.g. [4], [17] among others (for upper and lower
solutions in the reversed order, see [10]).
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2 A continuum of solutions of (1)

For simplicity, let us assume that g is continuous, and write it as

g(t, u(t)7 u/(t)) = T(t)u/(t) + h(t7 U(t), u/(t))v

with r € W1°°(0,T). We shall assume that h satisfies a global Lipschitz condition
on v/, namely

h(t,u, A) — h(t,u, B) T
< — .
B _k<T for A#B (5)

Furthermore, in this section we shall assume the following one-side growth
condition on wu:

h(t,u, A) — h(t,v, A

( , Uy ) ( , U, ) S c (6)
U —v
for u # v, where the constant ¢ € R satisfies

km ™2 1 . ,
e+ < () 3,0, 9

Under these assumptions, the set S of solutions of (1) defined by (4) is homeo-
morphic to R2. More precisely,

Theorem 1. Assume that (5) and (6) hold and let x,y € R. Then there exists
a unique solution u,, of (1) satisfying the non-homogeneous Dirichlet condition

Uzy(0) =z, Uz y(T) =y

Furthermore, the mapping Tr : (S, - || g2) — R? given by Tr(u) = (u(0),u(T))
18 a homeomorphism.

Proof. For fixed v € H*(0,T), let u := Tv be defined as the unique solution of
the linear problem
' = —[rv' + h(-,v,0")]

u(0) ==z, u(T)=y.

It is immediate that 7 : H'(0,7) — H'(0,7T) is compact. Moreover, if S, :
H?(0,T) — L?*(0,T) is the semilinear operator defined by S,u := u" + o[ru’ +
h(-,u,u)], with o € [0, 1], then using (6) and (7) it is seen that the following a
priori bound holds for any u,v € H?(0,T) with u — v € H}(0,T):

lu" =l < pl|Sor — Sovll 2 (8)

for some constant p independent of o.
Hence, if u = oTu for some o € [0,1], then setting I, ,(t) = Y=t + = we
obtain:
lu" — ol yllLe < pllSo(oley)llre < C
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for some constant C' depending only on x and y. Existence of solutions follows
from the Leray-Schauder Theorem. Uniqueness is an immediate consequence of
(8) for o = 1.

Thus, T'r is bijective, and its continuity is clear. On the other hand, if (z,y) —
(20,%0), then applying (8) to u = uyy —lyy and v = Uz 4o — lug .y it is easy to see
that ugy — Uggy, for the Hl-norm. As ug, and wuy,,, satisfy (1), we conclude

from (5) that also ug“y — ugo,yo for the L2-norm and so completes the proof. O

It is worth noticing that the previous result allows to define a two-dimensional
shooting argument as follows: let © : R?> — R? be defined by

O(z,y) = (U4 (0) — fo(x), uy, (T) — fr(y)).

From the previous theorem, we deduce that © is continuous, and it is clear that,
if ©(x,y) = (0,0), then u,, is a solution of the problem.

Example 1. Assume that (5) and (6) hold, and that
h(t,u,0)sgn(u) <0 for |u| > M, (9)

fo(MT)>0> fo(M™), fr(MT) <0< fr(M™) (10)

for some constants M~ < —M < M < M™*. Then (1)-(3) admits at least one
solution.
In particular, the result holds for the Sturm-Liouville conditions

u'(0) = apu(0) + by, ' (T) = aru(T) + br, ap > 0> ar. (11)

Furthermore, in this case the solution is unique, provided that ¢ < 0 in (6).

Indeed, it follows from (9) that usy cannot attain in (0,T) neither a mazimum
value larger than M , nor a minimum value smaller than —M. Moreover, for
M~ <y < M" we obtain:

uM*,y(O) = M+ > y= uM*,y(T)a uM*,y(O) =M~ < y= uM*,y(T>'

Thus, u3w+’y(0) <0< u’M,,y(O), and hence ©1(M*,y) <0< 01(M~,y). In the
same way, it follows that Oy(x, M) > 0 > Oy(x, M~) for M~ <z < M™. By
the Poincaré-Miranda’s generalized intermediate value theorem, we conclude that
© has at least one zero (x,y) € [M~,M™] x [M~,MT].

On the other hand, if w and v are solutions of (1)-(11), then
(u—v)"+ (r+v)(u—2v)+h(-,u,v") = h(-,v,0") =0

where h Y N
SU,U ) — U,V 0o
Y= — € L>(0,7T).

u —v
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Neat, take p(t) = eJo () +4(s)) s multiply the previous equality by (u — v)p and
integrate. We obtain:

T T
0= o’ =)u=0)|, = [ "ot =P+ [ plhleut) = ho =)
T T
a ’LL—U2 —a ’LL—U2 - ’U/—U/Z C U—UZ.
< p(T)or(u—oP(T) — apfu—v*0) = [ o =P +e [ pu—

Hence, for ¢ < 0 it is seen that u = v.

3 Iterative sequences of upper and lower solutions

In this section we shall construct solutions of (1) under the two-point boundary
condition (3) by an iterative method, based upon the existence of upper and
lower solutions.

Let us recall that (a, 3) is an ordered couple of a lower and an upper solution
for (1) if a < B and

o +g(-a,0) = 0> 8"+ g(-, 8,8).

Existence results under various boundary conditions in presence of an ordered
couple of a lower and an upper solution are known (see e. g. [6]). In our
particular case, we shall assume the boundary constraints:

a’(0) = fo(a(0)) = 0 = B'(0) — fo(8(0)),
o/(T) = fr(a(T)) <0< B(T) — fr(B(T))

and a Nagumo type condition adapted from [5]:

gt uv) <o), for al) Su<BEm<pl<M  (12)

where 1) : [0, +00) — (0,400) is continuous and satisfies:

M1
—dt>T,
/m P(t)
and

0) —8(T T)—pB(0
i {2 R, 00, s 510

M > max{|[a[|oo, |5 ]lc, m}-
Then, the following existence result can be obtained as in [1]:

Theorem 2. Assume there exists an ordered couple (a, ) of a lower and an
upper solution as before, and that (12) holds. Then the boundary value problem
(1)-(3) admits at least one solution u, with o < u < .
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Sketch of the proof. The proof follows the outline of the standard results on the
subject. Let P(t,u) = max{«a(t), min{u, 8(t)}} and Q(v) = sgn(v)min{|v|, M},
and apply Schauder’s Theorem in order to obtain a solution of the problem

u(t) = du(t) = —g(t, P(t, u(t), Q' (£))) = AP(t, u(t)),

W'(0) = fo(P(0,u(0)),  u(T) = fr(P(T,u(T))
for some fixed A > 0. It is easy to see that a < u < 3, and hence P(t, u(t)) = u(t)

for every t. Furthermore, if we suppose that for example u/(t1) = M, then there
exists to such that u/(tg) = m and m < u/(t) < M for t between ¢y and ¢;. Hence

M 1 - t1 U”(t)
r< [ gt = ) st <t - ol

a contradiction. The same conclusion holds if we suppose u/(t;) = —M; thus,
|u'(t)] < M and the proof is complete.

a

Example 2. The previous result applies when (9) and (10) hold: indeed, in this
case it is clear (M~, M™) is an ordered couple of a lower and an upper solution.
Thus, conditions (5) and (6) in example 1 can be dropped.

Also, we may consider the forced pendulum equation with friction

u +ru 4 sinu =0,
and assume that the forcing term 6 is a measurable function satisfying:
—1<0@) <1 Vtelo,T).

Then o = 5 and B = %ﬂ' are respectively a lower and an upper solution. Hence,
(1)-(3) has a solution for any continuous fy and fr such that

fo(5) <0< fo (3;)

h@)zwﬁ(?)

Our last result is concerned with the construction of solutions by iteration,
provided that h and f satisfy some stronger assumptions.
Let us firstly establish the following auxiliary lemmas:

and

Lemma 1. Assume that (5) holds and let \ be a positive constant satisfying
A> kT — (%)2 — %infr’. Then for any z,0 € C([0,T]) the equation

W +ru +h(,z,u) = du=10

is uniquely solvable under the Sturm-Liouville conditions (11). Furthermore, the
mapping K : C([0,T])? — C([0,T]) given by K(z,0) = u is compact.
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Proof. Existence and uniqueness follow as a particular case of example 1, with
g(,u, ) =ru + h(-,u,u'), where

h(u,u’) = h(-, z,u") — Au— 6.

Indeed, it is clear that h satisfies (5) and (6) with ¢ = —\. Moreover,

h(t, u, 0)sgn(u) = (h(t, 2(t),0) — 0(t))sgn(u) — Alu| <0
when |u| > [|A(-, z,0) — 0]|co. Thus, (9) is also satisfied.

Let (z,6) tend to (z0,6p), and set u = K(z,0), up = K(20,0p). Then
(w—up)" + (r + ) (u —ug) — Mu — ug) = h(-, z,ul) — h(-, 20, up) + 0 — b
where ¢ = %ﬁéz%) Hence, continuity of K is a consequence of the fol-
lowing estimate, which is valid for any w satisfying (11) with by = by = 0 and

some constant ¢ depending only on k:

[l < clw” + (r+ )’ — dwl|z.

Indeed, this is easily deduced by applying the Cauchy-Schwartz inequality to the
integral fOT pLw.w, where Lw = w” + (r + )w’ — Aw and p(t) = elo (r(8)+(s)) ds
and the fact that 0 < m < p < M for some m and M depending only on k.
Finally, compactness of K follows from the imbedding H'(0,7) < C([0,T]).

O

Remark 1. In the previous proof, an analogous estimate can be also obtained for
the H?-norm of w. This implies the compactness of K, but now regarded as an
operator from C([0,T])% to C*([0,T]). More generally, one might consider also
a; and b; as variables for i = 0,T: in this case, K could be seen as a compact
operator from R* x C(]0,T])? to C1([0,T]).

Lemma 2. Let ¢ € L*(0,T) and assume that w” 4+ ¢w' — Aw > 0 (in the weak
sense) for some A > 0, and

w'(0) — apw(0) > 0 > w'(T) — arw(T)
with ag > 0> ap. Then w < 0.
Proof. If w(0),w(T) < 0, the result is the well-known maximum principle for
Dirichlet conditions.

If for example w(0) > 0, then restricting w up to its first zero if necessary, it

suffices to consider only the case w > 0. Taking p(t) = eo #(s) ds it is observed
that (pw’)’ > Apw > 0. Thus, pw’ is nondecreasing on [0, 7], and hence

0 > p(T)arw(T) > p(T)w'(T) > p(0)w'(0) > p(0)agw(0) > 0,

a contradiction. The proof is similar when w(7") > 0. O
In order to define our iterative scheme, we shall assume that fo and fr satisfy
a one-side Lipschitz condition:
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(F') There exists a positive constant R such that

fo(y) — fo(z) < R(y — z)

if «(0) <z <y <p(0), and

fr(y) — fr(z) > —R(y — z)

if o(T) <z <y<p(T).

In virtue of Lemma 1, if (5) holds then for A = min{R, k7 — (%)2 — Linfr'},

we may define the compact operator T : C([0,7]) — C(]0,T]) given by Tv = u,
where u is the unique solution of the problem

u" +ru +h( o) = du= =X
satisfying the following Sturm-Liouville condition:
u'(0) — Ru(0) = fo(v(0)) — Rv(0), w(T)+ Ru(T) = fr(v(T)) + Ru(T).

From Remark 1, we observe, moreover, that the set 7({v : a < v < }) is
bounded for the C'-norm. In particular, this implies the existence of a constant
M = M (R) such that if u = Tv for some v lying between « and 3, then |[v/||o0 <
M. This suggests to consider the following Lipschitz condition on h:

(H)
’h(tvuaA) - h(t7U7A)’ < R’u - 1}’
for u,v such that a(t) <u < v < f(t) and |A| < M(R).

Remark 2. Conditions (F') and (H) are trivially satisfied if fo, fr and h are
C! functions, and % s bounded with respect to u'.

Theorem 3. Assume there exists an ordered couple (o, ) of a lower and an
upper solution as before. Further, assume that (5), (H) and (F) hold. Set A as
before, and define the sequences {u,,} and {@,} recursively by

QO — Oé, UO = /6
and
Uptr1 = Tﬂna Upi1 = Tgn

Then (u,, Gy,) is an ordered couple of a lower and an upper solution. Furthermore,
{u,} (resp. {u,}) is non-increasing (non-decreasing) and converges to a solution
of the problem.
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Proof. Let us firstly prove that o < w; < 5. From the definition,

a4y + b, B,1) — XNay = —A3 > A3+ B +rB8 4+ h(-,53,8).

Hence, setting
(7ﬁ7ﬂ,1) - h('aﬁvﬁ,)

uy — B

h
P =

e L>®(0,T)
we deduce that
(@ = B)" + (r + ) (@ — B) — Mur — B) = 0.
On the other hand,
@ (0) — Ru1(0) = fo(8(0)) — RB(0)
" w(T) + Rur (T) = fr(B(T)) + RA(T).
Thus,
(@ — B)'(0) — R(w — B)(0) = 0= (w1 — B)'(T') — R(ur — B)(T),

and from Lemma 2 we obtain that u; < .
In the same way,

uy + )+ h(-, B,1)) — Auy < —AB+ " +rd + h(-, o)

and hence
(w — )"+ (r+v¢)w —a) = XNug —a) >0
where ” ) — N
HOo,U - O, 00
) = Hl, — e L>(0,T).
1
Also

71(0) — Ru1 (0) = fo(B(0)) — RA(0) < fo(a(0)) — Rax(0)
and
) (T) + Rur (T) = fr(B(T)) + RA(T) > fr(e(T)) + Ra(T),

and we conclude that w; > «.
On the other hand,

wy+ruy +h( ) = (A= R) (@ =)+ [h(, 1, w0 ) + R | = [h(-, ,1) + RB] < 0,

and we deduce that % is an upper solution of the problem. Inductively, it follows
that u, is an upper solution for every n, with a < w,4+1 < u,, which by Dini’s



12 P. Amster y P. Cardenas

theorem implies that @, converges uniformly to a function @. From the definition
of {u,},
Upyq + 71U,y + BT, Tppyg) — 0

uniformly. Moreover, from Lemma 1 and Remark 1 we know that {@, } is bounded
in H2(0,T), and it follows easily that

w +rd + h(,u,a) = 0.
Thus, w is a solution of the problem. The proof for u,, is analogous. Moreover, if
we assume as inductive hypothesis that u, < u,, then
U;:—&-l + TH;H-I + h('aﬂnvﬂ%—l—l) - /\ﬂnJrl = _)‘ﬂn
< _)\Mn = Qx_t,_l + T@;H-l + h('vuruﬂ;l-i-l) - )‘Qn—&—l'
In the same way as before, we may define

h('7ynaﬂ/n+1) B h('vg'mﬂ'/n—i-l)

— /
Upt1 — Upyg

b = e L=(0,T),

and hence for w = U, 1 — u, 1, we deduce:
w” + (T + ¢)w, — Aw < h("ﬂmagl—‘rl) - h('vﬂmﬂ:ﬁ-l) < *R(En - ﬂn) < —Rw.
From Lemma 2, we conclude that w > 0, i.e. w,, 1 < Upq1. O

Remark 3. It is interesting to observe that, even if (5) is somewhat too restric-
tive, some condition regarding the growth of h with respect to u' is required. We
may recall, for instance, the following example by Habets and Pouso [8] for the
mean curvature operator:

u !
—— ) =u+a,
(\/ 1+ u’2)
where the function a € L*°(0,T) is defined by

a(t) = Q[X[O 1](t> - X(Z,T](t)] = { _22

’2

<t<?
<t<T

N O

Under conditions (11) with by = by = 0, it is seen that « = —3 and = 3 is an
ordered couple of a lower and an upper solution, but the equation has no solutions
when T > 2/2. Howewver, here

h(- u,u’) = (u+ a) (\/1 +u’2>3/2,

and (9) is satisfied. This explains the need of the Nagumo condition, or at least
a similar one, in Theorem 2.
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