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Puerto Iguazú, Misiones, Argentina, 4 CONICET, Departamento de Ecologı́a, Genética y Evolución, FCEN, Universidad de Buenos Aires, Buenos Aires, Argentina, 5 UFZ -

Helmholtz Centre for Environmental Research, Department of Bioenergy, Leipzig, Germany

Abstract

Landscape simulators are widely applied in landscape ecology for generating landscape patterns. These models can be
divided into two categories: pattern-based models that generate spatial patterns irrespective of the processes that shape
them, and process-based models that attempt to generate patterns based on the processes that shape them. The latter
often tend toward complexity in an attempt to obtain high predictive precision, but are rarely used for generic or
theoretical purposes. Here we show that a simple process-based simulator can generate a variety of spatial patterns
including realistic ones, typifying landscapes fragmented by anthropogenic activities. The model ‘‘G-RaFFe’’ generates roads
and fields to reproduce the processes in which forests are converted into arable lands. For a selected level of habitat cover,
three factors dominate its outcomes: the number of roads (accessibility), maximum field size (accounting for land ownership
patterns), and maximum field disconnection (which enables field to be detached from roads). We compared the
performance of G-RaFFe to three other models: Simmap (neutral model), Qrule (fractal-based) and Dinamica EGO (with 4
model versions differing in complexity). A PCA-based analysis indicated G-RaFFe and Dinamica version 4 (most complex) to
perform best in matching realistic spatial patterns, but an alternative analysis which considers model variability identified G-
RaFFe and Qrule as performing best. We also found model performance to be affected by habitat cover and the actual land-
uses, the latter reflecting on land ownership patterns. We suggest that simple process-based generators such as G-RaFFe
can be used to generate spatial patterns as templates for theoretical analyses, as well as for gaining better understanding of
the relation between spatial processes and patterns. We suggest caution in applying neutral or fractal-based approaches,
since spatial patterns that typify anthropogenic landscapes are often non-fractal in nature.
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Introduction

Landscape simulators are widely applied in landscape ecology

for generating virtual landscapes differing in structure and

composition [1–4]. Especially when combined with population

dynamics models, these landscapes serve as templates for

analyzing dispersal, connectivity, population dynamics, and

community processes in fragmented, patchy or heterogeneous

landscapes [5–7]. The power of such models lies in their flexibility

and their capacity to control for landscape structure and

composition in order to separate between attributes such as

habitat loss and fragmentation, that in reality are often strongly

interrelated [8,9].

We differentiate between two main approaches for generating

landscapes. The first is a pattern-based approach, which uses

mathematical algorithms to generate patterns regardless of the

underlying processes [5]. Also referred to as ‘‘neutral landscape

models’’ [1–3,10], such an approach is explicitly and deliberately

neutral to the biological and physical processes that shape spatial

patterns. The second is a process-based approach, which aims to

obtain certain spatial patterns as a result of hypothesized relevant

processes [11–13].
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Pattern-based models: simplicity as a basis to advance
theory

A simple map can be produced on the basis of a parameter p to

determine the proportion of habitat cover, preferably in combi-

nation with a second parameter H to determine the degree of

spatial autocorrelation or spatial cohesion. The most broadly used

landscape generators in ecological studies are those based on

algorithms derived from fractal geometry [3,5,13–19]. Among

these, Qrule [10,20] is particularly widely applied [2,4,19,21,22].

The power of these generators is their simplicity, combined with

relatively high success in capturing a variety of realistic landscape

patterns (e.g. [16]). Other pattern-oriented approaches exist as

well. For instance, Wiegand et al. [23] developed a model which

overlays a mix of Gaussian functions to create three-dimensional

surfaces differing in ‘ruggedness’ (spatial autocorrelation), and then

transecting them by horizontal planes to produce alternative

thresholds of habitat quality. Simmap [24] is another neutral

landscape model, which produces clustered patchy landscapes by

assigning neighboring cells to the cell with the highest local density

within a 363 neighborhood - an approach similar to Hiebeler [8],

which applies a modal filter as in digital image processing

techniques [24]. Another, newer generation of models attempts to

reproduce also the spatial patterns that typify agricultural areas

[25].

Process-based generators: a tendency toward specificity
Process-based landscape generators are typically guided by a

specific question, such as ‘‘what types of landscapes evolve given a

certain process or parameters?’’ For example, Dale & Pearson [26]

have shown that the ‘fishbone’ fragmentation pattern in the

Amazon forest in Brazil emerges when a landscape is transected by

roads, from which agricultural fields extend into the forest.

Similarly, using the DISPATCH program, Baker [27] demon-

strated that a set of decision rules for expansion of clear-cut

logging areas into forests can successfully reproduce observed

patterns of timber harvesting in subalpine forests in the USA.

More sophisticated ‘‘land use cover change’’ models (LUCC) such

as the ‘‘SLEUTH Urban Growth model’’ [28] and Dinamica EGO

[29] offer the means to gain further realism and precision, and to

reproduce a far broader range of spatial patterns. SLEUTH

couples a cellular automaton with GIS data in order to predict

urban expansion and associated expansion of agricultural lands for

food production, using four ‘‘growth rules’’ alongside the capacity

for learning (‘‘self modification’’). Dinamica EGO [29–31] is a grid-

based model originally developed to mimic deforestation processes

of small land-holders in the Amazon, but now used for a broad

variety of purposes. It applies aggregated functions to mimic land-

use changes by means of, e.g., transition matrices. Thus, Dinamica

can be considered as a model which includes features of both

pattern- and process-based landscape generator models. In a

simple version it could also be used as a classical landscape

generator, as in this study.

Lack of simple models to mimic real patterns
When examining a range of landscape generators, we found

pattern-based models to be simple and easy to implement, but

often failing to reproduce spatial patterns that we perceive as

typifying fragmented landscapes, such as stark boundaries between

natural habitats and human-dominated areas. Process-based

landscape generators seemed to produce highly realistic patterns

but seemed too complex for generic application (especially when

no input maps are available). The seeming lack of simple, process-

based landscape generators for general purposes surprised us

because one could speculate that a limited number of processes,

namely the expansion of settlements, fields, and roads, likely

dominate the spatial patterns of habitat loss and fragmentation in

many regions of the world [32–38]. Consequently, we anticipate

that process-based models could readily reproduce a wide range of

spatial patterns, and yet serve equally well for explorative, generic

purposes.

This study introduces a simple model that mimics the processes

in which roads penetrate into natural environments, and

landscapes are then transformed into agricultural fields (following

Dale & Pearson [26]). Our model, G-RaFFe, therefore Generates

Roads and Fields for reproducing Fragmentation effects (an

executable is available freely at www.ufz.de/index.

php?en = 21420). We delineate the model’s concept, structure

and parameters and then assess its performance by comparing its

outputs, based on six indices describing landscape configuration,

to 51 landscape maps from the Atlantic Forest in Brazil, Argentina

and Paraguay. These landscapes range from 5 to 95% forest cover,

and differ in fragmentation levels due to diverse land uses. We

employ a similar approach to assess the performance of Simmap

[8,24] (random landscape generator), Qrule as a commonly-used

fractal-based generator, and Dinamica [32], with which we

developed four model versions differing in the number of processes

and parameters included, from a pattern- to process-based

approach.

Methods

The G-RaFFe model: concept and processes
Three main parameters govern the general behavior and end

outcomes of our model: the desired habitat cover, the number of

roads transecting the landscape, and field size, which reflects finer-

scale determinants of the spatial structure. An additional

parameter, ‘maximum field disconnection’, determines whether

agricultural fields can be detached from roads or other fields, and

if so, to which distance.

The model starts with a landscape of 100% forest cover. It then

starts by generating roads, starting at any point along two of the

four landscape edges and traversing the landscape in straight lines

in one of three directions (straight, diagonally right or diagonally

left), converting the forest into ‘‘non-forest’’. Road lengths vary

randomly along a uniform distribution (ranging from 1 to the

diagonal landscape length). Roads are generated until the number

of roads meets the desired number, unless, in the process, forest

cover already reaches the target value determined by the user.

Roads are one cell in width (unless defined otherwise, see below).

Once all roads are generated, agricultural fields are extended from

them. This process entails a random movement of simulated

‘‘farmers’’, starting from any random point along the roads and

moving one cell at a time, through the converted landscape (road

or field), by choosing one of 8 neighboring cells at random. On

meeting a forest edge, a field would be extended into the forest

(unless the user defines that fields can be detached, in which case

several further steps may be allowed, away from the road or field,

before extending a new field). All fields have a quadratic shape

(equal length and height), the size of which is taken from a uniform

distribution between one and the maximum length determined by

the user. Fields extend from the initial point, which is the field

corner. Field expansion is a per-step process which may stop if the

potential converted cells are beyond the map extent, or if the

desired forest cover is reached. In the process, forest cells are

converted into ‘‘open’’, existing fields remain unchanged, but

roads are not overridden until the last simulation step because they

serve as seeds for field-creation and expansion. Finally, the eight
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cells surrounding the starting point are cleared of forest as well.

This final process is required because, otherwise, forest cells

remain uniformly scattered across the landscape. Forest cover is

recalculated at each cell conversion so as to halt the simulation at

the exact desired habitat cover.

Input parameters and landscape generation
The main input parameters for the model are the 1) map extent;

2) the desired habitat cover; 3) the number of roads; 4) the

maximum field size; and 5) maximum field disconnection, which

would determine the number of steps in which random walk can

be continued into the natural habitat before extending a new field.

Potential additional parameters are: road width (the default value

is 1); and the proportion of agricultural fields belonging to a second

field type (e.g. plantations). In addition, for the systematic

generation of landscapes along a continuum of habitat covers,

one may determine a fixed relation between the desired habitat

cover and the number of roads – to account for the fact that the

number of roads alters with habitat cover. Based on a preliminary

analysis, we identified an exponential relation between forest loss

and the number of roads. The user can therefore determine the

value of the parameters a and b in a function where the number of

roads = aNHCb, where HC is the desired habitat cover.

For all models assessed in this study, we tried to cover the full

range of spatial structures that can be generated by the model. We

generated multiple landscapes, 2566256 cells in size (hypothetical

cell size = 30630 m, based on Landsat images), with habitat cover

ranging systematically from 5% to 95% in increments of 5%. This

extent and resolution was chosen to enable comparison with real

landscape maps (see below).

For Simmap we varied the parameters p (the parameter that

controls the degree of fragmentation of the obtained patterns) and

m (minimum mapped unit = size of the smallest patch, determining

the typical patch size), with nine values of p and seven values of m

(see Table 1).

For Qrule, we altered H, the parameter which determines the

level of spatial autocorrelation in the landscape (0 being close to

random and 1 being completely clustered) systematically from 0 to

1 in increments of 0.05, resulting in 21 parameter values for each

habitat cover.

For Dinamica, we developed four model versions of increasing

complexity, where the simplest version (1) includes one process

with 4 parameters to create spatially-independent patches (thus

functioning like neutral pattern-based landscape generators),

version 2 includes two processes (patch creation and a spatial-

dependent patch expansion) with 8 parameters, and versions 3 and

4 include the same parameters and processes as versions 1 and 2,

but additionally utilize an input road map which is produced as a

first step using a built-in road constructor algorithm in Dinamica

(additional 4 parameters). For further details on the explored

parameters and processes for Dinamica, see Table 2 and Appendix

S1).

To characterize the impact of the different parameters of G-

RaFFe on spatial patterns, we used six parameter combinations for

the relations between the number of roads to habitat cover, five

maximum field size values, and four maximum field disconnection

values (Table 1).

For each parameter combination we generated 100 output

maps, yielding a total of 182,000 maps for G-RaFFe, 119,700 for

Simmap, and 39,900 for Qrule. Due to the larger number of

parameters in Dinamica, we generated 50 output maps per

parameter combination, resulting in 1,231,200 maps for version

1; 297,600 for version 2; 552,000 for version 3; and 1,623,800 for

version 4 (Appendix S1). To enhance comparability between

Simmap, Qrule and G-RaFFe in terms of the number of output maps

compared to real maps, we used only 91,200 maps from G-RaFFe

by selecting only two values of the parameter maximum field

disconnection (0 and 3). Thereby, we reduced potential biases in

performance which may emerge from differences in the number of

landscapes or parameter combinations. Due to the large number

of parameters in Dinamica, such a dilution procedure was not

feasible.

Landscape metrics
Many indices are available for describing landscape configura-

tion and composition, yet the majority of these indices are highly

correlated [9]. We chose six indices with low correlation, which

together depict attributes of the overall landscape structure, the

patches, and their spatial arrangement. These indices, calculated

with Fragstats [39], were: 1) the total number of patches, 2)

average patch size, 3) Largest Patch Index (LPI, expressed as a

proportion of the landscape), 4) Average Euclidean distance

between fragments, 5) Landscape Shape Index (LSI, calculated as

the total length of edge cells divided by the minimum edge length

possible if all cells were aggregated), and 6) Patch cohesion, an

index which describes the level of clustering of patches in the

landscape by calculating the perimeter-area ratio divided by the

shape index of patches, both of which are computed as means

weighted by patch area. This index was specifically designed for

predicting habitat connectivity [40,41]. We calculated the value of

Table 1. Input parameters explored by the models G-RaFFe, Qrule and Simmap.

Model G-RaFFe Simmap Qrule

Parameter Number of roads p H

Values (a,b = …)*
[0.2,4]; [0.25,0.45]; [0.3,5]; [0.45,5]; [0.75,5];
[1.2,5]

0.05, 0.1, 0.15, 0.2, 0.3, 0.45, 0.52, 0.56, 0.59 0,0.05,0.1… 1 (21 values)

Parameter Field Size m**

Values 5, 10, 15, 25, 40 1,2,4,8,16,32,64

Parameter Maximum field disconnection

Values 0,1,3,5***

Parameter values are provided for a given value of habitat cover.
*value of the formula y = a?xb to determine the relation between the number of roads and habitat cover.
**The parameter m is somewhat comparable to field size – see main text.
***values used only for exploring the impact of the parameter. For comparisons between models and real landscapes, we used only the parameter values 0 and 3.
doi:10.1371/journal.pone.0064968.t001
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each of the six metrics first for all of the real landscapes and then

for each of the landscapes generated by all models.

To characterize the behavior of G-RaFFe in terms of its acting

parameters, we performed multiple and partial regression analysis

to estimate how the number of roads, field size, maximum field

disconnection and the target habitat cover (as independent

variables) affect five of the landscape metrics (as dependent

variables): the number of patches, LPI, LSI, average patch area

and patch cohesion. To this end, we plotted the R2 of the multiple

regressions and the partial R2 of the explanatory variables. We

further evaluated the influence of model parameters on landscape

variability, by performing simple regression analysis between each

of the parameters. Here, we exclude field size and maximum field

disconnection because these parameters have a secondary

influence on the determination of landscape structure.

Real landscape maps as a template for analysis
We selected 51 landscape maps from the Atlantic forest in

Argentina, Paraguay and Brazil, ranging in forest cover from 5 to

95%, and covering a large range of spatial patterns due to

variations in land use and land ownership between regions and

countries (see Appendix S2). Landscapes were divided into three

categories according to the dominant land use (Zurita and Bellocq

2010): 1) Small farms: these are landscapes typical to the Northeast

of Misiones province in Argentina, where farm sizes usually range

from 5 to 200 hectares. Main crops are tobacco and corn (annual),

Yerba mate (Ilex paraguarensis, perennial) and small cattle pastures;

2) large farms: landscapes typical to southeastern Paraguay which

are dominated by cattle pastures and soy-bean fields, occurring on

large tracts owned by a small number of farmers; and 3) tree

plantations: typical especially to northwestern Misiones, Argen-

tina, where the main anthropogenic land uses include Pine

plantations as well as Eucalyptus and Araucaria plantations, usually

on large properties. The original maps, with a resolution of

30630 m, were obtained by classifying Landsat TM images using

an isodata, non-supervised algorithm with 20 classes, and then

grouping the resulting classes into native forest versus five main

land uses: annual crops, perennial crops, tree plantations, clear-

cuts, and cattle pastures. This was based on spectral signature,

IKONOS images, and field validation [42]. We cropped the

original landscape maps to a size of 2566256 cells, and clustered

all anthropogenic land uses into ‘forest’ and ‘non-forest’ for

comparison with the maps generated by the different models.

Comparisons between generated maps and real
landscapes

As a first measure of the performance of the different models,

we plotted the values of the six characterizing landscape indices

produced by each model against habitat cover, visually comparing

the range of model outputs with the range of values characterizing

the real landscapes. This served as a single-criterion evaluation of

performance. We then took two approaches for evaluation of

performances against all metrics simultaneously. The first was

based on a multivariate Principal Component Analysis (PCA), for

each of 19 forest categories (5–95% in increments of 5%),

including simultaneously both the real and simulated landscapes of

each of the models (Appendix S3). We used the six indices as

grouping variables, where each value represented the average of

100 generated maps for a given parameter combination. We then

measured the Euclidian distance between each real and simulated

landscape of the different models on the PCA bi-plot (using Axis I

and II of the ordination), assuming that shorter distances indicate

higher similarity of landscape structure between the simulated and

real landscapes. We selected the best possible fit for each model

(i.e., the single point among all parameter combinations which

produced the shortest Euclidian distance to the point representing

the real landscapes). For comparability between all models and an

intuitive measure of performance, we inverted and transformed all

Euclidian distances to a range of 0–1, 0 indicating low

performance (high Euclidian distance) and 1 indicating highest

performance (minimum Euclidian distance on the bi-plot).

The second analysis approach, which accounts also for the

variability of landscapes produced for a given parameter

combination, defines a matching of a given metric if the value of

a real landscape lies within the range of values generated for that

parameter combination (100 landscapes) – i.e., defining it as

statistically indistinguishable from the generated set of landscapes

[43,44]. We then searched for the parameter combination that

yielded the maximum number of simultaneously matching

landscape metrics among all combinations, and registered how

many metrics were matched and what model parameters yielded

that best match.

For both analysis approaches, we performed a Factorial

ANOVA using habitat cover categories (5–20%, 21–40%, 41–

60% and .60%) and model type as independent variables, and

model performance as the dependent variable. Thereby we

assessed how performance changes between models, habitat cover

categories, and the interaction between both.

Table 2. Processes and number of parameters included in the different model versions of Dinamica.

Process # Param. Dinamica Syntax Model versions

1 2 3 4

Transition probability 1 Transition within transition Matrix + + + +

Patch creation 3 Functor: Patcher* + + + +

Patch expansion 4 Functor: Expander 2 + 2 +

Road creation** 4 Functor: road constructor 2 2 + +

Additional param.*** 9 Weights of evidence, friction and attraction map w w w+ w+

The table delineates the processes included, number of parameters explored (# Param.), and how these were included in the different model versions of Dinamica. For
convenience of replicating these model versions, we provide the syntax for landscape generation. For a full list of parameters and further guidelines see Appendix S1.
*To activate patch creation processes go to the Dinamica function ‘‘Allocate Transitions’’.
**Road creation was performed prior to patch creation and expansion.
***weights of evidence (w) alone had a total of 7 parameters (see Appendix S1).
doi:10.1371/journal.pone.0064968.t002

The Power of Process-Based Landscape Generation

PLOS ONE | www.plosone.org 4 May 2013 | Volume 8 | Issue 5 | e64968



Finally, we explored the relation between anthropogenic land

use, landscape configuration, and the performance of each of the

landscape generators. To this end, we divided the real landscape

maps either according to forest cover or according to the most

dominant non-forest land use (tree plantations, small farms, or

large farms). To assess how dominant land use affects spatial

patterns we performed ANCOVA with the six landscape metrics

as dependent variables and dominant land uses as an independent

variable. Forest cover was included as a co-variable since

landscape metrics are highly dependent on it. To evaluate whether

land use also affects the performance of the models, we performed

a two-way ANOVA using landscape simulator and land use type

Figure 1. Strength of effect of G-RaFFe’s main parameters on landscape attributes. Multiple regression analysis and partial regression
analysis between model parameters (number of roads, field size and maximum field disconnection) and a) the Number of patches, b) Average patch
size, c) Largest Patch Index (LPI), d) Euclidian distance between patches, e) Landscape Shape Index (LSI), and f) patch cohesion.
doi:10.1371/journal.pone.0064968.g001
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as categorical variables, and model performance as the dependent

variable.

Results

Characterization of G-RaFFe’s behavior
Figure 1 and Table 3 depict the behavior of G-RaFFe in terms of

the strength of effect of each of its acting parameters (number of

roads, field size, and maximum disconnection) on spatial patterns

according to the six landscapes metrics. We found an overall

strong effect on the number of patches, LSI, LPI and cohesion

(R2.0.6, p,0.001 in all cases) and a medium influence on the

Euclidian distance between patches and the minimum patch area

(0.4,R2,0.6, p,0.001 in all cases). Partial regression analysis

indicated the number of roads as the main determinant of

landscape attributes whereas the influence of maximum field

disconnection was very small (Table 3). Maximum field size

influenced the number of patches and minimum patch area at

high values of habitat cover (Figure 1a and f), and the average

distance between fragments at low habitat cover (Figure 1e).

Comparative performance of the models
For a single-metric comparison between the models and the real

landscapes, we found that G-RaFFe produced landscapes that

engulfed the full range parameters of all real landscapes, with

values far beyond the range of the inspected real landscapes in

terms of the number of patches and patch cohesion, but only

slightly higher than the range of average distance between patches

(Figure 2). Qrule covered most of the range of real metric values,

but some real landscapes were beyond the range of generated ones

in terms of LPI and patch cohesion, or just at the edge of the range

in terms of LSI (Figure 3). Simmap covered the full range of

parameters for four metrics, but some real landscapes deviated

from the range of generated lands in terms of average patch size

and LPI (Figure 4). Additionally, values of the average patch

distance greatly exceeded the range of realistic distances. Dinamica,

at all model versions, produced a broad range of landscapes but

mostly with an exceeding number of patches, primarily due to

multiple single-cell patches remaining in the landscape. Conse-

quently, many real landscapes remained unmatched in terms of

the number of patches, average patch size and the largest patch

index (Figure 5 for version 4; see Appendix S1 for versions 1–3).

Multi-criteria evaluation of the models based on Principal

Component Analysis revealed that overall model performance

varied among simulators in terms of the capacity to reproduce

realistic spatial patterns (Factorial Two-way ANOVA,

F6,308 = 3.27, p,0.001), with G-RaFFe and Dinamica version 4

showing high and nearly similar performance, followed by Qrule,

Dinamica versions 3, 2 and 1, and finally Simmap with lowest

performance (Figure 6a). Dinamica’s performance hence increased

with complexity, yet with a stepwise increment between versions 3

and 4, namely, when roads served as a seed to patch expansion.

We found an interaction between simulator performance and

habitat cover, each model changing differently in performance

among habitat cover categories (Factorial Two-way ANOVA,

F18,308 = 1.67, p = 0.04) (Figure 6b). Specifically, all models

performed somewhat equally at habitat covers of 20–60%; G-

RaFFe and Dinamica 4 performed better at habitat cover .60%;

and Dinamica version 4, followed by G-RaFFe, had the best

performance at habitat cover ,20%.

Analysis based on the number of parameters fitting simulta-

neously verified that performance differed between models

(Factorial Two-way ANOVA, Model: F6,308 = 134.1, p,0.001)

but G-RaFFe was found to perform better than all other models,

followed by Qrule, Simmap, and finally Dinamica versions 4, 3, 1 and

2 (Figure 6c). Furthermore, a successful matching of all 6 metrics

was obtained by G-RaFFe for 41 of 51 landscapes (80.4%, with all

other maps matched by 5 metrics. Qrule fitted 48% (with scores

ranging from 2 to 6), Simmap 14% (ranging from 0 to 6), Dinamica

version 4 matched two (3.9%) and versions 1 and 2 fitted only one

(2%). We found again a significant interaction between model and

habitat cover (Factorial Two-way ANOVA, Interaction:

F18,308 = 3.34, p,0.001): Habitat cover had a minor effect on

the performance of G-RaFFe, but a significant effect on all other

models (Figure 6d). Particularly, Qrule had its best performance at

habitat cover ,20%, and Simmap at habitat cover .60%. For

Dinamica, the addition of an input road map enhanced the

performance of versions 3 and 4 at medium or high habitat cover

(.41%). At habitat cover ,20%, version 4 performed better than

all other Dinamica versions.

Relation between spatial patterns and real land uses
We found a significant relation between the dominant

anthropogenic land use and the spatial patterns of the investigated

real landscapes (Table 4). Landscapes comprising primarily of

small farms had a larger number of remaining forest patches

(independently of forest cover, ANCOVA), substantially lower

LPI, and higher LSI due to the irregular structure of farms and

forest patches. Landscapes dominated by tree plantations had a

small number of remaining forest patches, lower LSI but high LPI,

resulting from a regular spatial structure and the presence of

Table 3. Results of Multiple Regression to assess sources of model variability in G-RaFFe.

Parameter coefficients Forest cover Number of roads

Roads Field size F.Dis. Direction of effect R2 Direction of effect R2

Number of patches 0.51 0.16 20.17 Increase 0.92* Increase 0.85*

LPI 20.57 20.001 0.004 Decrease 0.98* Decrease 0.13*

LSI 0.61 0.17 20.11 Positive 0.99* Positive 0.83*

Area 20.3 20.09 0.16 Positive 0.99* Positive 0.83*

Euclidian distance 20.1 0.025 0.28 Positive 0.51* Positive 0.01

Cohesion 20.97 20.03 20.06 Decrease 0.97* Decrease 0.66*

We depict the parameter coefficients of the acting parameters Road, Field Size and Maximum Field Disconnection (F.Dis.) as well as the direction and strength of effect
of the two most important factors, namely forest cover and the number of roads.
* = P,0.05.
doi:10.1371/journal.pone.0064968.t003
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corridors (thus reducing the number of patches and increasing

edge length). Finally, landscapes dominated by large farms differed

from those with tree plantations in terms of LPI, and differed from

those with small farms in terms of the number of patches and LSI

– namely, forming irregular spatial patterns but with a small

number of patches (Table 4).

PCA-based analysis did not indicate an effect of these spatial

difference on model performance (Two-Way ANOVA;

F2,315 = 2.1, p = 0.11). However, assessment based on simulta-

neous matching of metrics found clear relations between model

performance and landscape characteristics (Two-Way ANOVA;

F2,315 = 9.4, p,0.001): Dinamica version 1 showed decreased

performance at landscapes dominated by small farms compared

to others, Qrule and Dinamica version 4 showed an increased

performance in landscapes dominated by large farms compared to

other landscape types, Dinamica version 3 showed decreased

performance in landscapes dominated by tree plantations. G-

RaFFe, however, did not show a significant change in performance

across land (Figure 7).

Finally, to illustrate the outcomes of G-RaFFe, Figure 8 depicts a

selection of eight real landscapes compared to eight landscapes

generated by the model, with the parameters identified as

producing the best match. A visual inspection of the maps

indicates a capability of generating spatial patterns that somewhat

Figure 2. Attributes of the landscapes generated by G-RaFFe. Generated landscape parameters are illustrated in colored circles, and compared
to 50 real landscape maps (full triangles) according to six explored landscape attributes, each against habitat cover: a) Number of patches, b) Average
patch size, c) Largest patch index, d) Average distance between patches, e) Landscape Shape Index, and (f) Patch cohesion. The colors represent the
effect of the number of roads, expressed by the combination of parameters (a,b) that determines the relation between habitat cover and the number
of roads. Overlaps between parameter outputs cannot be seen due to color dominance.
doi:10.1371/journal.pone.0064968.g002
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resemble real ones, but clear visual deviations do emerge: Large

fields produce overly straight structures (Figure 8f), the square

form of fields cannot form a parallel structure to diagonal roads

(which is mostly evident at high forest cover, Figure 8h), and

natural long elements such as rivers cannot be reproduced

(Figure 8h). For one of the selected landscapes, G-RaFFe performed

less successfully with only 5 matches (Figure 8e), yet for the same

landscape, all other models matched fewer metrics. Comparison to

Qrule and Simmap indicates that Qrule performed poorly for

landscapes that are characterized by sharp boundaries between

forest and non-forest (Figures 8d,e,g,h), and Simmap performed

poorly when landscapes had, for instance, high variability in patch

size (Figure 8a,b,e,f,g – for values see Appendix S3). For

illustrations of Dinamica’s output maps, see Appendix S1.

Discussion

This paper demonstrates the potential power of process-based

landscape simulators for various virtual landscape patterns, with

the benefit of reproducing spatial patterns that typify habitat loss

and fragmentation in rural, agricultural, and forestry-dominated

landscapes. When applying a set of parameters that are intuitive

and resemble realistic processes, users can easily control the spatial

attributes of the generated landscapes. Despite the simplicity of the

generator we introduced, its outputs covered a wider range of

spatial structures and performed better in matching realistic spatial

patterns compared to pattern-based models of somewhat similar

level of complexity. A Dinamica model version with somewhat same

processes performed equally well according to a PCA analysis, and

produced maps that seemed visually realistic (Appendix S1), but

Figure 3. Attributes of the landscapes generated by Qrule. Generated landscapes are illustrated in colored circles, and compared to 50 real
landscape maps as in Figure 2. Colors represent the varied value of the Hurst exponent (H), defining the clustering coefficient.
doi:10.1371/journal.pone.0064968.g003
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performed far more poorly with respect to matching criteria

despite a higher number of parameters (Table 2) and a much

larger number of landscapes produced and analyzed. This was

primarily because of the low variability produced by Dinamica for a

given parameter combination – something which may be desirable

when seeking high predictive power, but not necessarily when

seeking to maximize the range of generated spatial patterns.

Exploration and implementation of Dinamica also required high

effort in terms of resources, both in working time and technical

infrastructure. This was due to the non-trivial GUI, the lack of

immediate outputs, and a large number of parameters to explore.

Furthermore, model versions where roads and fields extended in

an iterative process (to mimic the expansion of a deforestation

frontier) performed very poorly (see Appendix S1). We do not

doubt that further calibration could yield better performance, but

this is beyond the scope and purpose of this paper as here we

attempted to inspect the performance of uninformed landscape

generators.

Model complexity and the use of input maps can clearly yield

high predictive power for specific case studies (examples for

Dinamica: [30,45,46]; SLEUTH: [12,47–50]), but at the cost of

data-hunger, long preparatory stage for parameterization and

calibration, and long calculation time. These findings suggest that

the efforts to support a broad range of options and capacities,

offered by a very strong software packages such as Dinamica, do not

support the simplicity which is wished for when generating

landscapes for explorative or theoretical purposes. Thus, a

powerful aspect of process-based generators remains overlooked,

Figure 4. Range of attributes of the landscapes generated by Simmap. Generated landscapes are illustrated in colored circles, and compared
to 50 real landscape maps as in Figure 2. Colors represent values of the parameter P, the parameter that controls the degree of fragmentation of the
obtained patterns.
doi:10.1371/journal.pone.0064968.g004
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namely their ability to mimic complex spatial patterns using

realistic processes that can be simple, intuitive, and easy to

communicate (see also [51]). An interesting result in this context is

the leap in performance of Dinamica from model version 3 to 4,

namely when incorporating both roads and road-related patch-

expansion. This result confirms the central role of roads, especially

as a starting point for agricultural expansion, in forming spatial

fragmentation patterns (see also [38,45,52]). Another important

lesson emerges from the fact that, unlike many other models, G-

RaFFe produces fields that are clean of natural habitat. That this

yielded high performance demonstrates the unique attribute of

human-dominated land-uses, namely, the rarity or absence of

natural features apart from those remaining along property

margins (see also [25] for purely agricultural lands). Similarly,

most pattern-based models for generating fragmented landscapes

tend to overlook the fact that human activities often result in a

non-random association of land-cover types [10], with sharp

contrast between patches of natural areas and neighboring, often

homogeneous anthropogenic land types [53]. Human-dominated

areas are also usually more clustered than the remaining natural

habitats, and structurally better connected through infrastructures

such as roads. In consequence, the spatial patterns of anthropo-

genic landscapes is inherently non-fractal [16]. We therefore

suggest great caution in the selection of neutral landscape models,

even if used for theoretical purposes, to ensure that the templates

used for analysis suit the spatial structures of the system in

question. In this, we reiterate Halley et al. [54] in calling for

Figure 5. Attributes of the landscapes generated by Dinamica (version 4). Generated landscapes are illustrated in colored circles, and
compared to 50 real landscape maps as in Figure 2. Results illustrate Dinamica in the most complex model version 4. Colors represent values of the
parameter patch generation parameter 3, the parameter that controls patch isometry. For model versions 1–3 see Appendix S1.
doi:10.1371/journal.pone.0064968.g005
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careful application of fractal approaches to patterns that may be

non-fractal.

The range of applicability of the approach
The relative performance of the different models clearly altered

with habitat cover and the dominating land-use type, yet G-RaFFe

seemed to perform equally well across fragmentation levels and

land-use types, and often better than the other tested models. This

predictive capacity was not anticipated a priori when developing

the model, or even when visually inspecting the output maps. Yet

we validated that our results are robust to the selection of metrics

or analysis approach. We therefore attribute them to the fact that

the models differ in capacities, weaknesses, and realms of potential

applicability. Likely, G-RaFFe is most suitable for reproducing the

spatial patterns typifying regions undergoing habitat loss and

fragmentation, or ‘marginal landscapes’ where human accessibility

is limited – namely, those landscapes that warrant particular

attention due to human pressures on biodiversity. On the other

hand, the model may be less suitable for investigating gradients

within natural or semi-natural environments, or for regions

already dominated by anthropogenic infrastructures, such as

urban areas dominated by agricultural fields with little or no

remaining natural areas. In such cases, we suggest using other

landscape generators (e.g. [5,10,22,23,25,29]).

Figure 6. Performance of the different models in terms of their capacity to match real landscape maps. A,b: Results based on a PCA-
based approach; c,d: based on the number of parameters that were simultaneously matched. Results are provided for overall model performance
(a,c) and separated according to habitat cover categories (b,d). Models are organized based on complexity and based on the processes included, from
left to right. Values reflect average values (6 SE). Din. V = Dinamica version.
doi:10.1371/journal.pone.0064968.g006

Table 4. Relation between dominant anthropogenic land use
and spatial pattern.

Tree plantations Large open areas Small farms F (p)

Number of
Patches

178a 284a 522b 5.8**

LPI 31.5a 22.3b 15.2b 3.9*

LSI 11.3a 19.3a 35.2b 12.5**

Area 232.9 71.1 153.5 2.3

Euclidian
distance

77.9 84.1 72.8 0.51

Cohesion 96.1 97.6 95.8 1.7

Values represent the average value of each landscape metric for a given
landscape type, significance marks the outcomes of ANCOVA with habitat cover
as a covariate (* = p,0.05, ** = P,0.01). Allocation into groups (a,b) is based on
Fisher’s post-hoc analysis.
doi:10.1371/journal.pone.0064968.t004
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Figure 7. Effect of dominant land-use type on landscape simulator performance. Values represent the average number of landscape
metrics that were simultaneously matched (6 SE). Din. V = Dinamica version.
doi:10.1371/journal.pone.0064968.g007

Figure 8. Examples of eight real landscape maps compared to corresponding landscapes generated by G-RaFFe. Depicted maps have a
forest cover of 5, 10, 19, 26, 27, 51, 65, and 90%. Each landscape is compared to a corresponding landscape map generated by G-RaFFe with the
parameters that were identified to provide the best match. Figure 8e (27% FC) was matched by G-RaFFe for only 5 metrics, and 3 for the other
models; d,e,g,h were poorly matched by Qrule (,5 metrics matched), while Simmap failed for maps a,b,e,f (matching = 0) and g. For maps d,g, and h
Simmap performed better than Qrule. For the parameters of the real and virtual landscapes see Appendix S2.
doi:10.1371/journal.pone.0064968.g008
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The scale and resolution of interest may affect model

performance and applicability as well, since some landscape

elements occur at some scales but not at others. For example,

forest gaps due to selective logging or natural processes [55,56] can

be visible only at fine resolution, and linear elements tend to

disappear when increasing map extent and reducing its resolution

– starting with hedge rows and small roads, followed by streams,

and even rivers are lost at coarser scales [57]. Accordingly, the

power and applicability of different landscape generators, the role

of their different parameters and their potential capacity to identify

spatial signatures of drivers, are likely scale-dependent [58].

Model versus reality: process-based models as potential
tools for learning

Complex socio-economic processes shape deforestation patterns

(or more generally, landscape structures), and these are poorly

known [10]. Thus far, advanced methods for analysis and

simulation have failed to rigorously link spatial patterns with

processes ([10], but see [59]). Mathematical approaches can

potentially generate such spatial patterns but are unlikely to

further our understanding of the processes that generate them.

Process-based approaches can therefore facilitate analyses of the

relation between processes and spatial patterns. For example, in

this study we found landscape accessibility (here, number of roads)

to determine the number of remaining forest patches and their size

(for empirical evidence of such a relation see, see e.g. [34,37]), and

was a major determinant of the Landscape Shape Index (LSI)

which represents the length of edges in a landscape. But ‘‘field

size’’ determined had an important effect of the spatial configu-

ration of patches, such as the average distance between patches. It

further determined the number of patches and their structure in

landscapes with high habitat cover (i.e., early fragmentation

stages).

We see particular value for studies aiming to a) maps and

quantify the number and spatial distribution of roads across

landscapes [38], as well as b) to gain better understanding of the

parameter ‘‘field size’’, which relates to patterns of land ownership

and management (and hence to socioeconomic factors). This is

shown by the matching between the dominant land use and the

corresponding field size that was found to best match them.

Further empirical evidence of such a relation was recently

provided by two case studies from Brazil [52,53].

Prospects for further model development
Some potential improvements of G-RaFFe warrant discussion

here. The addition of some parameters may enable model use for

further purposes, albeit with a potential loss of generality, or at

least of simplicity. Examples include:

1. Break the regularity of fields and the straightness of roads, to

yield a visually more realistic pattern (see Appendix S1 for

Dinamica results, and [27]). Fields can expand from a central

point outwards, whereas roads can be formed through a

correlated-random-walk and emerge from one another. Some

of these aspects are already included in a new model version of

G-RaFFe, and some are under construction. Nonetheless, we

will attempt to do so with a minimum number of parameters.

2. The spatial patterns produced in this study are mostly typical to

flat terrains. To allow the generation of landscapes that

resemble those of topographically more complex landscapes,

one can use real or mathematically-generated landscape

terrains (see e.g. [23]), in combination with a preference for

generating roads and fields on flat grounds or along elevation

isoclines (i.e., defining a ‘‘slope resistance’’ [28]).

3. Finally, one may wish to add corridors to the landscape

produced, e.g. to test their potential effects on functional

connectivity. G-RaFFe already offers this option using a sub-

module that forms several randomly placed stretches of natural

habitat (forests) on top of the road-transected map, prior to the

expansion of fields. Advantages of this procedure are that a) it

does not require a-priori knowledge of where patches are, but

instead mimics the presence of a physical barrier; b) it yields

relatively irregular corridors; and c) it enhances connectivity

without major alteration of the (visual) spatial structure from an

alternative map without corridors.

The G-RaFFe model has been used in some ecological

explorations [6], and current applications are on-going. The

model can be downloaded freely at www.ufz.de/index.

php?en = 21420. As with any other model, its use may give rise

to criticism and suggestions for improvement. We welcome all

comments or suggestions, as they will certainly contribute to the

development and application of the model.
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