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Abstract:

We have performed Hartree—Fock calculations of the electronic structure of N < 10 electrons in a quantum

dot modeled with a confining Gaussian potential well. We discuss the conditions for the stability of N bound
electrons in the system. We show that the most relevant parameter determining the number of bound
electrons is VyR?. Such a feature arises from widely valid scaling properties of the confining potential.
Gaussian Quantum dots having N = 2, 5, and 8 electrons are particularly stable in agreement with the
Hund rule. The shell structure becomes less and less noticeable as the well radius increases.
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1. Introduction

Modern semiconductor technology has allowed the fabri-
cation and manipulation of electrons confined within re-
gions of nanometer size having a plethora of shapes. The
possibility of tuning the shape, size, and number of bound
electrons of those nanostructures has raised a lot of inter-
est in the subject of confined low-dimensional few-electron
systems known as quantum dots (QDs) [1, 2] either for spe-
cific applications or for exploring new fundamental phe-
nomena at the quantum level [3-5]. At present, much
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work is being performed on optical investigations of single
and coupled dots as a first step towards solid-state-based
quantum communication and computing devices [6].

Quantum dots have also been termed “artificial atoms” be-
cause their electronic structure and properties resemble
those of natural atoms [7]. Electrons in quantum dots are
confined due to potential barriers in much the same way
as electrons in atoms are confined due to the Coulomb at-
traction of the nucleus. Further similarities arise because
electrons within quantum dots interact with each other
through Coulomb forces; their energy spectra present both
discrete and continuum states giving rise to binding and
dissociation processes, while transitions between them
give rise to emission and absorption of radiation.

Thus, it is justified, to some extent, to apply—mutatis
mutandis—methods of atomic or molecular physics to the
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study of these systems of electrons subjected to a given
confining potential. A spherically symmetric confining po-
tential can provide a model for semiconductor spherical
nanocrystals embedded within an insulator [8]. In the lit-
erature, calculations of the electronic structure and the
properties of QDs are often performed with a confining
harmonic-potential model. This can be justified on the
basis of a generalization of Kohn's theorem [9] satisfied
by such a potential and, approximately, verified by exper-
iments. A potential of this type allows the explanation
of the observed electronic shell structure, e.g., in small
clusters. Nevertheless, the infinite depth and range of a
parabolic potential is clearly unphysical: it can accom-
modate an infinite number of bound electrons, which pre-
cludes the consideration of binding and dissociation pro-
cesses.

Finite-range models have been also advocated, e.g., the
energy spectra of two- and three-electron systems in a
spherical potential well of finite depth was obtained vari-
ationally [10], and the unrestricted Hartree—Fock (UHF)
method was applied to the same model for the calcula-
tion of the electronic structure of systems having up to
20 electrons [11]. More recently, a UHF calculation of
ground state, chemical potential, and charging energies
of electrons in an infinite spherical potential well, with
and without magnetic field, has been reported [12]. How-
ever, the sharp discontinuity at the QD radius for such
a potential well is not completely satisfactory both from
a physical and a computational point of view, and some
interpolating potentials [13] as well as smoothly varying
potentials have been proposed [14-18]. Among them, the
Gaussian potential has received some attention and its
one- [19-22] and two-electron spectra [15-17] have been
calculated.

In self-assembled QDs, a small interdiffusion between the
dots and the surrounding materials is expected to produce
a significant change in the band structure and the optical
properties. Therefore, smooth potentials such as Gaussian
ones, could be useful, for instance, in qualitatively de-
scribing this type of effects [23]. Furthermore, it is partic-
ularly suitable for an atomic-like treatment, such as UHF
calculations. The Hartree—Fock method is one of the most
widely used methods for the calculation of the electronic
structure of atoms and molecules. Its usual implementa-
tion consists in the expansion of the unknown orbitals as a
linear combination in a given basis set. The method thus
determines self-consistently the energy eigenvalues and
the orbitals.

In the Hartree—Fock approach, the electron—electron cor-
relation is neglected. In Refs. [10, 11], a detailed study
was performed of the problem of correlation for many-
electron artificial atoms in a spherical QD with a finite

confinement potential. In those references, it was shown
that the Hartree—Fock and exact results are almost iden-
tical for QDs with small and intermediate radii, such as
those considered in the present work. On the other hand,
such a methodology is the starting point for a systematic
improvement in the treatment of correlation effects by, e.g.,
higher-order perturbation theory or multi-reference meth-
ods [24, 25).

In atomic problems, the most common basis sets are spher-
ical or Cartesian Gaussian functions because they provide
closed expressions for the matrix elements of the atomic
Hamiltonian. Such an advantage applies even more when
the confining potential is Gaussian itself. Hence, we take
in this work an atomic-like approach for the calculation
of the electronic structure of few-electron Gaussian quan-
tum dots. Such an approach shall be particularly ad-
vantageous when dealing with, e.g., systems of coupled
QDs, and also for the analysis of mixed systems, like
molecules coupled to QDs. Work along this line will
be published elsewhere. We also disregard strain effects
throughout this work, although they can be important in
self-assembled QDs [26]. This approximation would be
justified as long as the mismatch between the substrate
and QD lattice constants is small.

2. Theory

We consider a system of few electrons confined by a po-
tential assumed to be a spherically symmetric Gaussian
potential well of typical radius R and finite depth — Vg,
ie, V(r) = —Vyexp (—r?/2R?). It approaches a parabolic
behavior around its minimum while going smoothly to zero
at infinity. In Ref. [15], the parabolic approximation
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relates the frequency w of the harmonic oscillator to the
Gaussian exponent A = 1/2R?. The Schrddinger equation
for a system of N electrons confined within a Gaussian
well and interacting through Coulomb potentials is

h? ) e’
2m* Z Vit Z vin) + g 4rKepr;; ¢=Ed,
3)

where m* is the effective electron mass, and k = €/¢g
is the dielectric constant of the medium. We neglect the
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changes of the effective electron mass and the dielectric
constant at the QD boundary. By introducing the donor
Bohr radius ap = (km/m*)ag as the unit of length and the
donor Rydberg Rp = (m*/m«k?)Ry as the unit of energy,
Eq. (3) becomes

—ZVHZV(nHZ% b=ep (4

i<j

so the results can be easily transferred between different
materials by properly changing ap and Rp; for instance,
for a GaAs semiconductor QD, one has Rp = 6 meV and
ap =10 nm.

The existence of bound states in the system described by
Eq. (4) depends on the radius and depth of the Gaussian
potential. If both magnitudes are small enough, not even
a single electron can form a stable bound state. Some
physical insight on the stability of one- and few-electron
QDs can be gained from a simple variational estimate.
The discussion will also prove to provide a useful starting
point for the systematic construction of basis sets used in
the more complicated many-electron calculations reported
below. Let E((]N) be the ground-state energy of an N-
electron QD. Let us estimate variationally the ground state
energy of one electron in a Gaussian potential. Taking
into account that, around its center, the Gaussian potential
resembles a parabolic one, we propose a normalized s-
type Gaussian trial function of exponent a

@s(r) = (2a/m)*"* exp(—ar?). (5)

The ground state in the well becomes increasingly similar
to that of the harmonic oscillator when the well depth is
growing. The expectation value of the one-electron Hamil-
tonian then becomes

E(a) = 3a — Vo ( 2a )3/2, (6)

A+ 2a

where the first and second terms are the mean values of
the kinetic energy and the confining potential, respec-
tively. Minimization with respect to a, i.e., 0E(a)/da = 0,
gives

(A4 2a)® —8X°Via =0, (7)

which has to be solved numerically for given A and V.
Equation (7) has five roots but, typically, the one that min-
imizes E(a), is a positive number of order unity a = agy.
The other roots can be rejected on physical grounds: they
are either complex conjugate pairs, or real but negative,
or too close to zero, and the corresponding trial functions
therefore do not describe bound states. Thus, within this

variational approach, the energy of a single-electron QD
is
Ey’ = E(0p). (®)

On the other hand, the ground state of a two-electron
QD corresponds to one electron with spin +% and the
other with spin —1 interacting with each other through
the Coulomb interaction V.. = 2/r1,. Therefore,

E® =2E" 4+, 9)

where J is the energy shift of the one-electron levels due
to the Coulomb interaction between two Gaussian charge
densities

1 o
/=2 / loo(r) P—ls ()P d’r, = 4/ 221 (10)
ro J

The condition of stability of the two-electron QD dis-
cussed in Refs. [10, 11] and applied in Refs. [15, 17],
E((,Z) < E{", is equivalent to

EY < —J. (11)

We shall give a more thorough discussion of the conditions
for stability when we consider the results for few-electron
QDs.

The calculations reported in this work have considered
both one- and few-electron systems. The former were
used for benchmark purposes and provide a systematic
way for calibrating the method. A one-electron Gaussian
potential of Vo = 400Rp and A = 1 has been considered
by various authors for comparing methods proposed in the
literature. We also address such a case as our first cal-
culation to assess the accuracy of our methodology. The
first issue to be considered is the choice of a suitable
Cartesian Gaussian basis set {(p([i)}, (i=1,...,K), where

¢ = x"y"2" exp(—aur?), (12)

and ¢ = m+n+p is the angular momentum of the function.
Hereafter we use the spectroscopic notation s, p, d, ... for
¢=0,1,2,..., ie,

o'} = ol goly il ol ) (13)

The one-electron QDs were solved by direct diagonaliza-
tion of the Hamiltonian, while the many-electron systems
were treated with the UHF method. The calculations for a
given potential, i.e., for a given pair (Vp,A), were performed



Sergio S. Gomez, Rodolfo H. Romero

Table 1. Values of the parameters A and V; for the Gaussian po-
tentials studied. The radii of the quantum dots are given by
R = 1/v2A. The quantities aopt are the variationally opti-
mized exponents used to construct the basis sets.

A (a.u*) Vo (Rp) R (ap) aopi(ap?)
1.0 400 0.707 9.370 885
05 50 10 2183148
05 15 1.0 1.047 992

with the same basis sets, irrespective of the number of
electrons.

The prescription for the choice of the basis is based on the
previously discussed variational energy expression (6) and
the optimal exponent aq, defined by Eq. (7). The values of
Qopt for the three cases considered in this paper are listed
in Table 1. Those exponents were then used to generate
the basis functions with higher angular momentum, ie.,
we chose a; = @ = ag = ... = . This procedure can
be justified as long as the Gaussian potential is similar
to the parabolic potential, whose solutions are Hermite
polynomials multiplied by Gaussian functions with an ex-
ponent independent of the principal and anqular quantum
numbers n and ¢, which satisfies exactly the prescription
given above.

By including one Gaussian function with the optimized ex-
ponent in each angular-momentum block up to a maximum
value L, i.e., 0 < ¢ < L, the low-lying states are reason-
ably well reproduced as compared to previously reported
values. In particular, the ground-state energy is approx-
imately correct to within 1072Rp, as expected, because
of the variational procedure for obtaining the basis expo-
nents.

Generally, states having ¢ > L are missing or, if obtained,
have larger errors. This is also a consequence of the fact
that the low-lying states of the parabolic and Gaussian
potentials are alike, but those of high angular momentum
are not. Hence, to get a correct description of high-lying
excited states, functions with the corresponding angular
momentum ¢ have to be included. In atomic and molecu-
lar calculations, a useful procedure for enlarging the basis
set has been the so-called even-tempered criterion [27] by
which a basis set containing various functions of the same
angular momentum have their exponents in the same ra-

M )

tio, i.e, for a given ¢, the exponents a; ,...arein

|

) aéZ)’ C{?

the ratio aé””/a}” = const. In the limit of a large number
of functions, the basis set should become complete, inde-
pendently of the ratio chosen. We arbitrarily take a ratio
of two to enlarge every block of angular momentum in the
original basis set, thus including exponents a}i) = O(OM/Z"*1
(i=1,...,K) smaller than the optimized one. A value of
K = 4 has been enough to reach convergence in energy
to within 103Rp for all the calculations reported here. In
summary, the basis set used in all calculations consists
of aset {@!), @, ... @, . .}, withi=1,...,K =4 and
¢ < L =4, having 140 Cartesian Gaussian functions.

3. Results and discussion

3.1.  One-electron quantum dots

In Table 2, we have listed the energy eigenvalues cal-
culated for the potentials studied. The first potential,
Vo = 400, has been investigated previously [19-22] and
provides a measure for the precision of our calculations.
The first column refers to energies calculated by diago-
nalizing the matrix representation of the Hamiltonian af-
ter expansion in the basis set described above. The sec-
ond column corresponds to a numerical solution of the
Schrodinger equation by using Numerov's integration al-
gorithm [28], which we have implemented as an indepen-
dent verification for the basis-set expansion method. The
third column compares our results for the V5 = 400 po-
tential to previous calculations available in the literature;
in particular, the values from Ref. [20] are listed, which
are probably the most accurate results reported so far.
This potential has bound states with angular momenta as
high as ¢ = 7, which makes it difficult to reproduce with
a basis set having functions with ¢ = 0 through ¢ = 4
only. This is particularly apparent for the energies Exf
and £, having the largest errors. This effect of the in-
completeness of the basis set can be removed by adding
four extra functions for each ¢ value and symmetry with
5 < ¢ < 7, which amounts to a total of 360 basis func-
tions. The energies calculated with this enlarged basis
become E;; = —170.639Rp and Epy = —140.133Rp, in
good agreement with Ref. [20]. Nevertheless, the need for
these more demanding calculations may only arise when
those states are occupied or in the presence of perturba-
tions exciting such states.
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Table 2. Bound-state energies of the one-electron spherical Gaussian potentials (Vy, A) = (400, 1), (50,0.5), and (15, 0.5) calculated by diagonal-
ization of the Hamiltonian matrix and Numerov’s integration method. Energies are given in donor Rydberg units Rp and lengths in donor

Bohr radius ap, and dots stand for positive-energy states.

nt Vo=400 Rp V=50 Rp Vo=15 Rp
Diagon. Numerov Ref.[20] Diagon. Numerov Diagon. Numerov

1s -341.895 -341.892 -341.8952 -35.958 -35.958 -7.762 -7.762

1p -304.463 -304.463 -304.4628 -27.282 -27.282 -3.697 -3.698

2s -269.644 -269.640 -269.6445 -19.987 -19.987 -1.215 -1.215

1d -268.110 -268.111 -268.1107 -19.204 -19.204 -0439 -0.439

2p -235.446 -235.450 -235.4500 -13.109 -13.111

1f -232.849 -232.875 -232.8753 -11.780 -11.785

3s -203.983 -203.979 -203.9835 -7.800 -7.800

2d -202.427 -202.431 -202.4313 -7.009 -7.010

1g -198.700 -198.798 -198.7983 -5.111 -5122

3p -173.156 -173.244 -173.2443 -3173 -3179

2f -167.797 -170.639 -170.6393 -1.864 -1.876

4s -145372 -145.373 -1453779 -0598 -0.600

3d -143.741 -143.809 -143.8091
2g -138.045 -140.135 -140.1351

The case Vy = 50Rp shows a good agreement between
direct diagonalization and numerical integration implying
that both methods and the basis set used are accurate
enough. The scheme of levels obtained is in agreement
with that in Ref. [15]. The system Vy = 15Rp has not
been treated previously, and it provides a system having
just a few bound states. In this situation, the parabolic
approximation gives probably poor results.

It can also be seen from Table 2 that the energy of the
corresponding parabolic potential, hw = 2AVp/m =
5.48, 10, and 40 Rp, for Vy = 15, 50, and 400 Rp re-
spectively, represents approximately the energy difference
between the ground state and the first excited state. If
the potential were really parabolic, that energy difference
would be the same for every pair of consecutive states.
That is not the case for the Gaussian potential, i.e., the
higher the pair of states considered lie, the worse the ap-
proximation becomes, as already noted by other authors
[15, 17]. The basis sets optimized for these one-electron
calculations will now be used for few-electrons systems.

3.2. Few-electron quantum dots

The results of our Hartree—Fock calculations of the
ground-state energy of N-electron systems (N =
1,...,10), as a function of the QD radius, for Vy = 15Rp
(top panel) and Vo = 50Rp (bottom panel), are shown

(

in Fig. 1. This figure has features similar to those ob-
tained with a finite-depth square well [11]. For compar-
ison, we have also plotted (dashed lines) the variational
one- and two-electron energies E((,” and E((,Z), given by
Egs. (6) and(9), respectively.

The figure shows several critical radii R™ at which a
crossover between the E(()N) and E(()Nq) ground states oc-
curs. Thus, RéN) is the minimum radius to have N bound
electrons; for R > REN), the N-electron QD becomes
more stable than the (N — 1)-electron one. It should be
noted that at small enough radii no bound state exists.
At radii less than R = 0.43a (for Vo = 15Rp) and
R? =0.23ap (for R = 50Rp), only a single electron can
be bound, but for R > R we have Ef < E\". The radii
for N =1 and N = 2 are quite similar (Rﬁ” o~ Réz)). This
also occurs for R¥ ~ R ~ .~ R® and R? ~ R
Most of the general features of the stability of the N-
electron system can be understood considering the one-
electron energies. An electron confined within a well with
a typical size R will have a momentum of order A/R due to
the uncertainty principle; its kinetic energy is then of or-
der h?/2mR?, which approaches zero as R goes to infinity.
On the other hand, its potential energy —V; exp(—r?/2R?)
approaches the bottom of the well —V4. Then, in the limit
of large radius, the energy of the one-electron system goes
to —Vp and, since also the Coulomb interaction goes to
zero, the energy of the N-electron well approaches —N V4.
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Such a trend can be observed in Fig. 1.

0 \_l i ) At a given finite radius, however, the energies E(()N) are

5 N not equally spaced for successive N, because of the shell
structure of the energy levels in the potential well. This

10 } shell structure is even more strikingly revealed in the top
panel of Fig. 2, where the chemical potential p(N) is de-

15 ¢ picted as a function of the QD radius. The chemical poten-

tial represents the affinity of the well for binding an extra

2 20 electron. It is the equivalent of the ionization potential or
& the electron affinity in atomic physics. A grouping of the
k25 lines corresponding to the number of electrons occupying
the same one-electron level is clearly apparent. All curves

30 | decrease as R increases due to the fact that when the
electrons becomes less confined, the system approaches a

-35 classical behavior and it is easier to add a new electron. In

the bottom panel of Fig. 2, the charging energy, defined as

-40 the difference between the chemical potential of two sys-
tems differing in one electron, ie. Ei/;g, = p(N+1)—p(N),

45 = ' ' is depicted as a function of the number of electrons in the

0.5 1 L5 2 QD for three potential radii, namely, 0.8, 1.5 and 2ap.

R (ap) The charging energy gives a measure of the stability of

the system, the larger Euq,, the more stable the system.

50 i i i For N = 2,5, and 8 electrons, the system presents large

values of E g/, in correspondence with the number of elec-
trons needed for filling or half-filling a shell. The peak
heights also diminish as the QD radius increases. That
is, the charging energy as a function of N tends to be flat
because of the disappearance of the shell structure in this
classical limit.

As an illustration of the relation between the QD depth
and the critical radius, we have depicted, in Fig. 3, the
curves V, versus 1/R? for a QD of three interacting (up-
per curve) and non-interacting electrons (lower curve).
They are the locus of the points representing the mini-
mum QD radii for a given depth. Both curves are nearly
straight lines, thus showing that V,R? is approximately
constant. We shall show, in the following, that the varia-
tional energy of the one-electron Gaussian potential also
has such a property. By defining the dimensionless vari-
able x = 2a/A, the energy Ey(a) defined by Eq. (6) can
be written as

-350 : : : Y EN A Rl
01 | s 5 E(a) —/\[2)( zc(x+1) —2e(C),  (14)
R (ap) where C = V,R? and ¢ is the dimensionless energy de-

pending on C. On the other hand, the equation determin-
ing the optimal variational exponent can be written as

Figure 1. Ground-state energies E(()N) of N-electron Gaussian quan-
tum dots (N < 10) as a function of the dot radii for the de 3 X112
depths Vy = 15Rp (top) and Vy = 50Rp (bottom). The — == — 3C75/2 =0. (15)
cross-over of levels occurs when E(',N“) < E(()N’ at a criti- ox 2 (X + 1)
cal radius R™V, starting from approximately RY = 0.43ap . .
and R = 0.22ap, respectively. The equation £(C) = 0 represents the condition to have

at least one bound state, which clearly only depends on
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U (Rp)

E char (RD)

Figure 2. Chemical potential (top) and charging energy (bottom)
of the N-electron Gaussian potentials considered in this
work. The grouping of lines in the chemical potential  and
the peaks in the charging energy show the shell structure.

500 ——————
/
/
450 | .
// //
400 f -
350 | -
300 | ;
Q:Q
< 250 | -
>Q
200 f -
150 | ;
100 f -
50 -
/

10 20 30 40 50 60 70
1R (a}3)

Figure 3. Critical lines representing the relation between the poten-
tial depth Vy and 1/[R9']2, where RP’ is the minimal radius
to have three bound electrons in the system. The lower
curve represents the critical line for the non-interacting
problem and its fit to the straight line Vo = 6.3R~2. The
upper curve represents the critical UHF line. The dashed
line corresponds to the fit Vo = 7.4 + 9.0R 88,

VoR?. This equation and Eq. (15) are simultaneously sat-
isfied if x = 1/2 and C = 9V/3/8, i.e, a = A\J4 = 1/8R?
and VyR? = 1.95. Hence, for a given Vg, the minimal ra-
dius for having one bound electron is RM = \/T95/V, =
1.40/v/Vp.

This can be compared to the results we would obtain with
the truncated parabolic approximation of the Gaussian po-
tential, ie, V(r) = —Vo + mw?r?/2 if r < R, and zero
otherwise, with w given by Eq. (2). In such a case, the
condition for having at least one bound state is that the
zero-point energy becomes less than or equal to zero. The
critical radius is therefore determined by

3 3. [V
EV = —Vo+ Zhw=—Vo+ >h| —2
0 0¥ Qe = T I LR

=0. (16)
This gives explicitly VORC2 = 9/4 = 225, ie, Rﬁ” =
1.5/v/Vy, which is comparable to the relation obtained
above.
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If there were no interactions between the electrons, the
energy for allocating the second electron would be the
same, because both of them would occupy the one-electron
ground state, although with opposite spins. The Coulomb
interaction between the electron pair, however, modifies
such an energy by an amount J. Nevertheless, J is, for
small- and medium-size QDs, much smaller than the en-
ergy difference between the ground state and the first
excited one-electron states. Thus, the next critical ra-
dius R¥) is near to the first one R!". On the other hand,
the radius RY) includes the effects of both the electron—
electron interaction and the shell structure because the
third electron has to occupy the first excited one-electron
level. We can estimate this radius by using an argument
similar to the one above. The first excited state of the
harmonic oscillator is now (5/2)hw above the bottom of
the well, thus giving VoR? = 25/4 = 6.25. A fit of the plot
in Fig. 3 of the form Vo = a + bRY gives Vo = 6.30R2
for the non-interacting case, which compares fairly well
to the estimation from the truncated harmonic oscillator,
thus showing that the non-interacting picture is qualita-
tively correct. Nevertheless, the corresponding fit of the
UHF calculations gives a relation Vo = 7.4 +9.0R~"% as
a consequence of the Coulomb and exchange interactions.
Furthermore, the fact that VyR? determines the number of
bound electrons is a property shared by numerous types
of potentials. Let H be a Hamiltonian of the form

H=—V%—Vou(p), (17)

where the potential can be factored as a product of a typ-
ical energy —V; times a function u(p) of the dimension-
less variable p = r/R. This includes most of the types
of confining potential used in previous works, e.g., the
square well V(r) = —VW,0(1 — p), the parabolic poten-
tial V(r) = hw(r/R)? with R = V/h[2mw and, clearly, the
Gaussian potential. Expressing the Laplacian in terms of
p, we get

1
Al
which has energy eigenvalues €,(Vo, R) = €,(VoR?)/R?.

H=—[-V2-VoR%u(p)], (18)

Neglecting the electron—electron interaction, the condi-
tion for stability of an N-electron system is just €, < 0,
where n is the quantum number corresponding to the high-
est occupied state.
VoR? = C; giving rise to stability regions.

It is fulfilled for certain values of

Therefore, when the electron—electron interaction V,, can
be neglected, the plot of V{ versus 1/R? represents a phase
diagram consisting of regions delimited by straight lines
determining the various zones where N electrons can form
a bound state. The argument does not hold when V. is
not negligible, since the kinetic and the V.. term scale
differently with R.

Table 3. Electronic configuration and z projection of the total spin
Ms for the most stable UHF configurations of an N-electron
Gaussian potential of Vy = 50Rp, calculated in the present
work. The spin projections of the orbital are represented
by 1 and |, for +1/2 and -1/2, respectively. Spin indices
are omitted for closed-shell configurations. Hund’s Rule is
satisfied for all configurations shown.

N Ms Electronic Configuration

1 1)2 151
2.0 152
312 1521py
4 1 1s%1p3
5 32 1s%1p3
6 32 1s%1p1p]
7 12 1s%1p1p?
8 0 1521p®
9 12 15%1p52s;
10 0 1521p02s2

It is interesting to analyze how the electrons occupy the
UHF spin orbitals as they are added into the system.
Table 3 shows the most stable UHF configurations, for
a given N, along with the total spin projection Ms, for
Vo = 50Rp and R > Rﬁm). In all the calculations per-
formed, with N < 10, Hund'’s rule is satisfied, i.e., elec-
trons in the same shell maximize the projection of the total
electronic spin, in agreement with previous works. As an
example, we consider the UHF levels of a Vy = 15Rp well
of R = 1ap. Figure 4 shows how the scheme of levels
changes as the first three electrons are added to it. Panel
(b) shows the one-electron levels of the potential with a
single electron occupying the ground state 1s. When a
second electron is added to the system, the pair can form
a state with total spin projection Ms = 1 [panel (a)] or
Ms = 0 [panel (c)]. Panels (a) and (d) show the states
available for spins +% and —% drawn adjacent to each
other. The electron—electron repulsion shifts and splits
the one-electron levels through the Coulomb and exchange
interactions. In the Ms = 0 configuration, both electrons
can occupy the same orbital, while the Ms = 1 configu-
ration requires the second electron to occupy the higher
p; orbital, thus giving a higher total energy. The effect
of adding a third electron to the Ms = 0 configuration
is shown in panel (d). The 1s orbital shifts upwards and
splits into 1s; and 1s;, while the 1p; becomes stabilized.
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Figure 4, Scheme of the UHF levels for the Vy = 15Rp and R = 1ap
Gaussian well having one, two, and three bound electrons.
The notation 1 and | refers to the spin projections. In the
cases N = 2, Ms = 1 [panel (@) and N = 3, Ms = 1/2
[panel (d)], the states for spins 1 and | are drawn sepa-
rately.

4. Conclusions

In summary, we have calculated the electronic structure of
electrons confined in a Gaussian QD by using the UHF
method in its Pople and Nesbet form. We gave a sys-
tematic procedure for constructing the basis set for the
self-consistent calculations with a given precision from
the one-electron problem. The orbital energies provide
an insight of the occupancy of the levels and show the
fulfillment of the Hund rule in agreement with previous
results obtained with other models [11, 12].

Since the Gaussian potential has finite depth, binding and
dissociation processes can occur. The criterion for the sta-
bility of an N-electron system was already discussed in
Ref. [10] in terms of its energy E{") as compared to E{" ™"
The condition E(()N) < E(()an is equivalent, in UHF calcu-
lations, to the condition that the highest occupied molec-
ular orbital (HOMO) is bound, i.e., eqomo < 0; this is a
consequence of Koopman's theorem [25]. If the electron—
electron interaction can be neglected, the regions of the
(Vo, R) plane having N bound electrons are delimited by
the relation VyR? = const. This result has been proven to
be a widely valid feature resulting from the scaling prop-
erties of the confining potential.

Both the chemical potential and the charging energy show
a shell structure with peaks of stability at N = 2, 5,
and 8, corresponding to filled and half-filled shells. Both
magnitudes decrease as the confinement range increases.
The methodology applied to single QDs in this work, can
straightforwardly be transferred to the study of the elec-
tronic structure and properties of QDs arrays. It is also
suitable for considering correlation effects with standard
atomic methods. Work along such lines is currently in
progress.
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