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Minimum lap time simulations are especially important in the design, optimisation and setup
of race vehicles. Such problems usually come in different flavours, e.g. quasi-steady state
models vs full dynamic models and pre-defined (fixed) trajectory problems vs free trajectory
problems. This work is focused on full dynamic models with free trajectory. Practical solution
techniques include direct methods (i.e. solution of an NLP problem, widespread approach)
and indirect method (i.e. based on Pontryagins principle, less common, yet quite efficient
in some cases). In this contribution the performance of the direct and indirect methods are
compared in a number of vehicle related problems.

Keywords: Optimal control, lap-time, direct methods, indirect methods, NLP, OCP, car
simulation

1. Introduction

In the last decades the applications developed for minimum lap time problems have
become a tool widely used to improve the performance of race vehicles. Minimum lap
time problems not only are of great practical interest to help design, optimise and setup
a vehicle for maximum performance but they also are a challenging theoretical and
numerical problems. Early attempts to solve minimum lap time problems date back to
the late 50’s [1]. Later in the 80’s authors of [2] simulated a section of the Formula One
Circuit Paul Ricard in southern France using a quasi-steady state optimization routine
to compute the optimal controls. Since then, many improvements have been introduced
for solving minimum lap time problems with several authors proposing and developing
different solving techniques and new theoretical and numerically efficient algorithms also
supported by the increase of the cpu performance. Among all the methods that have been
used until now, the ones that showed the best capabilities falls into four major categories:
quasi-steady state, optimal control based, driver model based and evolutionary algorithm
based simulations.

In the quasi-steady state (QSS) approach, the racing line is provided as input and it
is divided into segments in which the vehicle is considered to be in stationary conditions
except for few state variables such as the speed along the racing line. The curvature radius
is then calculated for each segment and the vehicle is assumed to have zero longitudinal
acceleration in those points where the curvature has a local maximum (at the corner
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apex); thus the maximum vehicle speed can be calculated in correspondence of such
points. Then, the vehicle speed is reconstructed backward and forward on the basis
of the maximum g-g envelope. Examples of this method can be found in [3–8]. This
method has shown both good robustness and fast computation times, together with
the capability to use complex vehicle multibody models; however most of the transient
behaviours is neglected (e.g. tyre loads dynamics, yaw dynamics and suspension damper
effects) and the results obtained are less accurate when compared with other minimum
time techniques. An extended iterative steady-state approach was presented [9] to include
some of these effects, e.g. the suspension damping effects. Despite the additional benefits
compared to standard QSS method a comparison with optimal transient solution is not
given.

The second family of minimum lap time methods falls into the optimal control problem
(OCP) theory, which are also called transient-optimal control to distinguish them from
quasi steady state simulations [5, 10, 11]. The general idea behind this approach is
to translate the minimum lap time problem into an optimal control problem, where
the dynamic equations of motion become constraints of the optimisation process. The
methods for solving optimal control problems can be mainly grouped into three main
categories: dynamic programming (DP), indirect optimal control, direct optimal control.
A comprehensive summary of optimal control approaches and numerical solution methods
can be found in [12–14].

To the best of the authors’ knowledge, despite the theoretical advantages of the Dy-
namic Programming, such as handling discrete/continuous variables and guarantee the
global optimum, none minimum lap time application has been solved with this method in
the literature. The main reason is that it suffers from the curse of dimensionality even with
relatively small vehicle models [14, 15]. To mitigate the limitations of DP the Differential
Dynamic Programming (DDP) was introduced that solves a sequence of quadratic sub-
problems obtained from the quadratic approximations of the objective function around
a reference trajectory [16, 17]. The DDP was further developed by many other authors
to handle highly non linear dynamics subject to state and control constrains. The Hy-
brid DDP is currently the state of art of DDP algorithm that combines DDP with some
well-proven nonlinear mathematical programming techniques and was successfully used
to solve a large scale spacecraft trajectory optimisation problem [18, 19]. Even if still in
the early stage of development, it is a promising method thanks to its robustness and
large convergence radius, yet it has not been applied to challenging minimum lap time
problems.

Indirect methods for optimal control problems rely on the Pontryagin Maximum Prin-
ciple [20], which gives the necessary conditions for optimality. Such conditions render
themselves as a set of ordinary differential equations with both initial and final bound-
ary conditions, i.e. a so called two-points boundary value problem (TPBVP), coupled
with a minimisation problem to derive the optimal control law. Various numerical tech-
niques can be used to solve such a problem. Early examples of application of indirect
optimal control theory to minimum lap time simulations are reported in [21, 22]. Since
the late 90’s various other works have used this approach both for motorbike lap time
simulations [23, 24] and car lap time simulations [25–29]. The TPBVP is solved both
using single or multiple shooting (only controls are discretized) or with full collocation
(i.e. states and controls are discretized).

Direct methods translate the optimal control problem into a discrete constrained
minimisation problem (i.e. direct transcription) also known as nonlinear programming
problem (NLP). Similar to indirect methods, various numerical schemes can be used
to discretize controls only (i.e. sequential discretization or collocation) or controls and
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states (i.e. full discretization or collocation). Direct methods can also differ based on how
the NLP is solved, e.g. using interior point algorithms, active set, sequential quadratic
programming (SQP), etc. Among the sequential discretization methods, direct multiple
shooting method (also known as parallel shooting method) emerged as the most efficient
because it is less affected by high sensitivities and naturally renders itself for parallelisa-
tion [30]. In [31] it was successfully applied to minimum time problem with gear choice
using using MUSCOD-II software [32] and with a partial outer convexification to handle
discrete variables.

Methods based on direct full collocation are largely diffused in the community be-
cause the resulting NLP can be easily solved thanks to the availability of IPOPT [33],
a robust and efficient interior point algorithm. The approaches mainly differ from the
discretization method but IPOPT is the solver used by all of them, e.g. [34] used La-
grange Polynomials to discretize both control and states, [35] used a trapezoidal inte-
gration scheme to convert the optimal control problem into a NLP problem by means of
ICLOCS toolbox [36], various minimum lap time problems were formulated with a direct
orthogonal collocation method based on Radau pseudo-spectral scheme by means of the
software package GPOPS-II [37], which proved to be effective to illustrate the impact
of optimal usage of energy recovery systems on fuel consumption saving [38] and the im-
pact of aero-suspension interactions and adjustments on the lap-time performance of the
car [39]. Direct methods have rarely been applied to motorbike models; to the authors’
knowledge, the only relevant work is [40] where a full lap was simulated with a relatively
complex motorbike model. However, he did not optimised at once the trajectory and the
controls but a path following algorithm was used to make the motorbike follow a given
trajectory.

Many authors proposed various alternative techniques in order to increase the ro-
bustness and to reduce the computational burden due to the size of the NLP resulting
from long circuit/test course. One of these are the moving horizon techniques, which
decompose the global optimal control problem into a sequence of local optimal control
problems over a finite horizon (i.e. preview length) that is moving forward in time [11, 41–
46] and satisfies appropriate continuity conditions. Optimisation of the preview length is
necessary to guarantee for finding the global problem optimum. Additionally, this tech-
nique cannot be directly used when optimisation of global variables is required. Another
proposed idea splits the problem into trajectory planning and tracking. Trajectory plan-
ning is usually solved as an optimisation problem on a simplified vehicle model and the
tracking task is performed with a driver model (or controller) that guides the full vehi-
cle along the pre-calculated trajectory. Examples are [47] that uses a direct collocation
method for the trajectory planning; [48] that combines geometrical trajectory and speed
profile optimisation with a simple driver model; [49] where the planning is based on a g-g
diagram that reproduces the driver capabilities; [50] that relies on the indirect method
for the trajectory planning; [51] where the tracking task is based on the decomposition
of longitudinal and transverse dynamics; [52–55] that uses Model Predictive Control to
implement the tracking task. However, all these approaches, despite their ability to be
used in combination with complex vehicle models, should be considered as sub-optimal
solutions since the driver model influences the lap time obtained.

Finally, evolutionary approaches, such as genetic algorithms, are the alternative nu-
merical algorithms, for the solution of direct sequential optimal control, compared to
derivative based NLP solvers. A recent application to minimum lap time problem is
reported in [56],[57]. The procedure that leads to the lap time minimisation is the follow-
ing: for a given control history defined as piecewise linear, the equations of motion are
integrated, resulting in a certain manoeuvring time; then the genetic algorithm optimises
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the control values at given number of knots in unknown time positions and the equations
of motions are integrated with the new controls to evaluate the cost and the constraints.
The genetic algorithm thus selects the control variations that brought to an improve-
ment of the performance and the process is iterated again in a manner very similar to a
single shooting methods. This approach demonstrated to be able to handle very complex
vehicle models, however it also resulted to be significantly slow: the computation of a
manoeuvre over two turns takes approximately one day to execute and the control law
shape is derived from experimental data.

As final a remark of the literature review above, authors think it is worth it investigat-
ing benefits and limitations of optimal control methods for minimum lap time problems
that exhibit the following characteristics:

• they possibility cope with non trivial vehicle models,e.g. several dof (> 5−7) including
highly non-linear tyre model and aerodynamics interaction;

• they can provide simultaneous optimisation of the racing line and the controls;
• they have the ability to compute a simulation in a reasonable amount of time (e.g. less

than few hours);
• they are sufficiently robust to variations on initial guess.

According to the literature review and to the authors knowledge and experience, three
approaches emerged as the most effective to solve minimum lap time problems.

Following the historical development, the first method is an indirect approach imple-
mented by the software Pins (formerly known as XOptima), which is described in [23].
It has been used since the late 90’s and the most representative minimum lap time re-
sults achieved with Pins are presented in [23, 24, 58] for motorbike applications, and in
[25, 26] for cars. The second method is a direct multiple shooting method implemented
using the software MUSCOD-II and whose most successful result is in [31]. The last and
most recent method is based on direct optimal control with full direct transcription via
pseudo-spectral collocation and it is represented by the software GPOPS-II, [37]. It was
released quite recently in the 2013 and its state of the art applications in this topic is
described in [38, 59].

As far as we are concerned, in the literature, there are no comparisons of the accuracy
of the solution and numerical performance on minimum lap time problems among these
methods. This gave the motivation for this work to compare the most promising opti-
mal control approaches on the same optimal control problems, in order to highlight the
similarities and the differences, and possibly understand which one is more indicated for
a particular purpose. Unfortunately MUSCOD-II is not available and for this reason the
work only focuses on the comparison of Pins and GPOPS-II software as representative
of state of art methods of indirect and direct approach respectively.

In section 2, Pins and GPOPS-II and their approach are briefly presented, then in
section 3 they are tested against three vehicle optimal control problems. The compari-
son will focus on the solution accuracy, robustness with respect to guess perturbations,
constraints enforcement and parameter sensitivity. Finally in section 4, the results are
summarised and the software performance discussed.

2. Minimum time manoeuvring OCP

In general, a minimum lap time problem can be formulated as a constrained optimisation
process where the mathematical model of the vehicle is described by a set of differential
equations f(x, ẋ,u,β, t) = 0 where x is the set of state variables, u is the set of control
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variables, β the set of vehicle parameters, and t is the independent variable, e.g. time. A
general optimal control problem (OCP) is stated as follows

Minimize: Φ(x(ti),x(tf ),β) +

∫ tf

ti

L(x,u,β, t) dt (1a)

subject to: f(x, ẋ,u,β, t) = 0 (1b)

ψmin ≤ ψ (x,u,β, t) ≤ ψmax (1c)

qmin ≤
∫ tf

ti

Q(x,u,β, t) ≤ qmax (1d)

bmin ≤ b (x(ti),x(tf ),β) ≤ bmax (1e)

where (1e) are the initial and/or final boundary conditions, (1d) are integral constraints,
(1c) is the set of algebraic inequalities or path constraints (e.g. track borders, engine
power, tyre adherence, etc.) that may also include equality constraints when both bounds
are coincident. Additionally, (1b) can be described by a system of ordinary differential
equations or in a more general form by a system of differential algebraic constraints
(DAEs) that is differential equations coupled with a set of algebraic equations that make
some state variable dependent from the others. DAEs are quite common for multibody
system such as complex vehicle models.

The OCP defined in (1) is quite general and may not fit the implementation of various
software for solving optimal control problems. This is also the case for the software
(Pins, GPOPS-II) that we have selected for comparison. In these cases some problem
reformulations of the OCP problem may be required.Thus next sub-sections 2.1, 2.2
briefly describe the two software with key features and limitations.

2.1. OCP: formulation and solution with PINS

Pins is a collection of libraries and programs mainly developed to symbolically formu-
late and numerically solve Optimal Control Problems (OCPs) for non linear dynamical
systems described by differential equations. Pins implements an indirect method with
penalties and barriers to handle generic mixed state and control constraints. The optimal
controls are explicitly derived using the Pontryagin Maximum Principle, which is done
formally building a map that computes the controls as a function of state and co-state.
The map is solved analytically whenever the problem makes it possible, otherwise a nu-
merical procedure is used to obtain controls and their derivatives with respect to the
states and co-states. The resulting Two-Points-Boundary-Value-Problem (TPBVP) is
approximated with finite difference (based on midpoint quadrature) to give a non-linear
algebraic system of equations, which is solved with a dumped Newton Affine Algorithm
specifically developed to exploit the Bordered Almost Block Diagonal (BABD) structure
of the jacobian [60]. Pins makes uses of the Maple c© symbolic engine, via the XOptima
package, to symbolically formulate the optimal control problem, automatically gener-
ate the equations of necessary conditions of optimality and the corresponding analytical
jacobians, and finally translate into C++ code. The generated code can be, if neces-
sary, further manipulated by the user and compiled and linked with libraries contained
in MechatronixToolKit by the program pins, in order to produce a stand alone
program or a callable library that can be used in custom code for different purposes
(including real time applications). The MechatronixToolKit is a collection of C++
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libraries of classes such as Non Linear system solvers, Boundary Value Problem Solvers,
ODE-DAE solvers. The library is also complemented with utility classes such as vehi-
cle components (e.g. tyre models, internal combustion engine models, etc), 2D-3D road
models, splines and various interfaces to other languages such as Mruby and Lua and
MATLAB c©/Simulink.

The OCP formulation in Pins is:

A(x,β, t)ẋ = f̃ (x,u,β, t) (2)

where A is a square matrix that cannot depend on the controls. Multibody and vehicle
dynamic equations can always be written in this form. In practice, the main difference
between (1b) and (2) is that the latter assumes that the problem is linear in the velocities.
This is an advantage compared to the majority of OCP solvers that require the differential
equations to be in the explicit form ẋ = f(x, u, β, t) where inversion of matrix A may be
necessary as also found in almost all text books [61].
Pins does not directly handle integral constraints but they can be added to the problem

by converting the integral constraints into differential constraints introducing additional
states with proper boundary conditions.
Pins treats inequalities (1c) augmenting the target function (1a) with a weighted sum

of penalty or barrier functions P (ψ(x,u,β, t)) for each inequality. The function P is
designed to be continuously differentiable of class C3 in such a way that it evaluates
nearly zero (i.e. ε) when ψ is at a distance h from bound. It then grows to 1 at the
bound then pretty linearly to infinity out of the bound for the penalty and to infinite
at the bound for barrier. Clearly barrier does not allow to break the bound. Parameters
h and ε are used respectively to define when the penalty starts to increase the cost and
how much.

The main limitation of Pins is the fact that cannot directly handle DAEs of index
greater equal 1. For what concerns index-1 algebraic constrains only those linear in
the algebraic variables can be used. For DAEs with index of higher order reduction
techniques and penalisation terms in the cost function (1a) to avoid constraint drift are
necessary [13].

Since Pins implements an indirect method [61] it has to solve the necessary conditions
of optimality which are described by a pure TPBVP since penalty are also used to enforce
constraints on controls. The TPBVP consists of a set of nx differential equations for the
states x, nx adjoint equations for the lagrange multipliers λ, nu algebraic equations for
the optimal controls u and 2nx+nb equations for the boundary conditions. The controls
are formally solved either symbolically or numerically as a function of the states x and
Lagrange multipliers λ. The TPBVP is discretised using a finite difference trapezoidal
scheme and the resulting large set of algebraic equations is solved with a dumped Newton
Affine scheme that exploits the Jacobian block diagonal structure [23],[62].

Summarising, the key points of Pins approach for the solution of the indirect optimal
control problem are:

• dynamic equations (1b) can be given in implicit form, but it has to be linear in the
state derivatives;

• inequality constraints (1c) are treated with penalty/barrier functions (constrained
problem converted in equivalent unconstrained problem)

• only index-1 algebraic constraints linear in the algebraic variable can be handled di-
rectly

• the controls are formally solved analytically, if an explicit analytic solution is not
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available numerical methods are used
• states are discretized on the mesh points while controls are assumed constants on cells

and thus the TP-BVP problem is solved as a large set of algebraic equations roughly
of dimension (2nx + nu)N + 2nx + nb where N is the number of mesh points.

• solution is obtained using custom nonlinear system numerical solver

Further details can be found in [23],[62].

2.2. OCP: formulation and solution with GPOPS-II

GPOPS-II is a MATLAB c© software intended to solve general optimal control problems
for non linear dynamical systems described by differential-algebraic equations. GPOPS-
II implements a direct full collocation approach by means of pseudo spectral method.
The continuous-time optimal control problem is approximated using a new class of a
variable-order Legendre-Gauss-Radau quadrature orthogonal collocation polynomials re-
sulting into a sparse nonlinear programming problem (NLP). This NLP is then solved
using either the NLP solver IPOPT or the NLP solver SNOPT. A distinguishing feature
is the adaptive mesh refinement method that determines the number of mesh intervals
and the degree of the approximating polynomial within each mesh interval to achieve
a specified accuracy. To achieve this GPOPS-II performs an a-posteriori solution error
estimation and refine the mesh in those mesh segments where the error is higher than
a certain threshold; this process is then repeated until all mesh interval satisfy the de-
sired error threshold. Adopting the variable order for each mesh interval and the mesh
refinement GPOPS-II is able to achieve high accuracy limiting the use of resources by
putting refining only where it is necessary. By means of the free MATLAB c© package
ADIGATOR [63] symbolic gradients and jacobians could also be generated.

As for the general formulation of the OCP described by (1) GPOPS-II fits the defini-
tion with pretty much the same except it requires the dynamic equations (1b) to be in
explicit form:

ẋ = f̂ (x,u,β, t) (3)

In general, vehicle dynamic equations can often be reduced to the explicit form. How-
ever, it may not be possible when the model complexity increase, which is the case of
advanced motorcycle models, e.g. [24, 58, 64]). For some problems the implicit form is
more robust and the solver converge faster to solution [65]. Since GPOPS-II naturally
treats algebraic equations of index 1 the implicit formulation can be also implemented at
the cost of doubling the problem dimension adding n additional states y and n additional
algebraic path constraints as follows

ẋ = y (4)

0 = f̃ (x,u,β, t)−A(x,β, t)y (5)

GPOPS-II approximate both states and controls using multiple-interval Legendre-
Gauss-Radau quadrature orthogonal collocation method that transcribes the OCP into
a NLP of dimension roughly of nx(N

(k) + 1) +nuN
(k) for each k = 1 . . .K intervals. The

structure of the jacobians and hessian are sparse matrices that do not show any spe-
cific structure that can be exploited by the NLP solver. Additionally, since GPOPS-II
uses IPOPT as NL solver internally the problem is augmented to handle the equality
constraints via lagrange multipliers. This is transparent from the user perspective but
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has an effect on the computational performance point of view. Additionally, IPOPT, be-
ing an interior point method, uses barrier functions to treat inequality constraints [33].
However, it adopts several automatic strategies to adapts the barrier weights during
algorithm convergence to satisfy the inequalities with the higer accuracy possible .

Summarising, the key points of GPOPS-II in the direct solution of the OCP are:

• dynamic equations (1b) must be in explicit form if one does not want to double the
dynamic system dimension;

• algebraic constraints index-1 can be used
• automatic mesh refinement algorithm available
• automatic differentiation is available via Adigator to generate the necessary gradients,

hessian and jacobians
• the solution is obtained using NLP solver IPOPT that implements a robust and quite

fast interior point algorithm.

Further details on the software can be found in [37].

3. Test bench examples for vehicle optimal control problems

In this section the two software previously presented, Pins and GPOPS-II, are tested
on three test bench vehicle optimal control problems. The first case of study deals with a
simple motorcycle model; it has been chosen because the exact solution can be mathemat-
ically derived, thus it can be used for comparison with numerically calculated solutions.
The second test benchmark consists in the reconstruction of a race circuit from experi-
mental data; since this OCP does not include any path constraints, it leads to the same
minimisation problem both through the indirect and direct approach. For this reason this
problem has been chosen to test the robustness of Pins and GPOPS-II with respect to
perturbations in the guess. Finally, the third and last test problem consists in a minimum
lap time problem of a relatively simple, yet effective, car model; this represents a typical
utilisation scenario for the studied software. The constraint enforcement, sensitivity to
parameter variations and robustness to guess perturbations will be studied.

3.1. Basic two-wheeled minimum manoeuvre

The first optimal control problem consists in the minimum manoeuvre time of a basic
motorcycle model, that has to be moved from the upright configuration (zero roll angle)
to a leaned configuration (non-zero one) in the minimum time. The assumptions are that
the tyres have zero slip, the suspensions are fixed and the speed is constant. Under these
circumstances the model has one degree of freedom only, the roll angle, see Ch. 6 of [66].

The motorcycle model has two state variables, the roll angle φ and the roll rate φdot,
and one input, the steering angle δ. The related first order differential equations are

φ̇ = φdot, Ixxφ̇dot = mh

(
gφ− V 2

L
δ

)
(6)

where m is the total (vehicle plus rider) mass, Ixx the roll moment of inertia about
line joining the two tyre contact points, h the distance height of the centre of mass
from ground, L is the wheelbase and g is the gravity. Equation (6) can be conveniently
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Table 1. Motorcycle problem dataset

variable value description

g 9.806 [m/s2] gravity
V 11 [m/s] speed
m 273 [kg] total mass
L 1.443 [m] wheelbase
Ix 70.79 [kgm2] roll inertia moment
δmax 20◦ max steer angle
φf 20◦ final roll angle
tgf 1 [s] guess on final time

φg φf t/t
g
f guess on roll angle

rewritten in order to highlight the independent model parameters:

φ̇dot =
mgh

Ixx

(
φ− V 2

gL
δ

)
≡ A (φ−Bδ) where A =

mgh

Ixx
B =

V 2

gL
(7)

The minimum time to roll problem can be formulated as follows:

minimize
tf≥t0

tf

subject to ODEs: φ̇ = φdot, φ̇dot = A (φ−Bδ)

and constraints: |δ|≤ δmax, φ(t0) = 0, φ(tf ) = φf ,

φdot(t0) = 0, φ(tf )dot = 0

(8)

The analytical solution is obtained using the PMP [66]:

tf =
1√
A

( ln(w)− ln(1 + f)), δ = sign(φf ) δmax ×

{
+1 0 ≤ t < t∗

−1 t∗ ≤ t ≤ tf
(9)

where

f = − |φf |
Bδmax

, w = 1− f − f2

2
+

√
f(f + 4)(f2 − 4)

2
, t∗ =

ln(1 + w)− ln(2)

ln(w)− ln(1 + f)
(10)

Finally, the solution exists only if f > −1 and w is real w > −1 which imply f ∈ (−1, 0]
and:

|φf |< δmaxB (11)

It is worth noting that a positive steer angle δ corresponds to a positive roll angle φ in
steady state conditions, while the bike is performing a right or clockwise turn.

3.1.1. Solution analysis

The numerical solution obtained using the motorcycle dataset of table 1 (A = 42.92s−1

and B = 8.551). The theoretical minimum time with the data used in this work is
tf = 1.072369× 10−1s.

The solution given by the two solvers on a mesh with 100 discretisation points is shown
in figure 1. Settings used for GPOPS-II are reported in table 2. It is noted that Pins uses
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Figure 1. The control δ and roll rate φ̇ are shown as function of the roll angle φ. The solutions provided by Pins

and GPOPS-II are shown together with the exact one. Blue circles represent Pins discretisation points, red crosses

GPOPS-II ones.

an equally spaced grid while GPOPS-II puts the discretisation points at the Legendre-
Gauss-Radau points [67], according to to the LGR method therein implemented. Figure 1
highlights the bang-bang behaviour of the control δ, which switches from −δmax (steer
opposite to the direction of turning) to +δmax (steer in the direction of turning) at a
time equal to t∗ ≈ 0.47tf ≈ 5× 10−2s. Both solvers require one mesh interval to capture
the complete change in the control; for this reason, GPOPS-II takes three discretisation
points to capture the control switch1, while Pins takes only two. The roll rate in figure 1
shows an apex in correspondence of t∗, as consequence of the change in the control.

The accuracy of the target value tf provided by the two solvers is shown in figure 2
as a function of the number of discretisation points used. The error presents an wavy
trend, which, at a first glance, may appear quite strange, as one would expect that the
higher is the number of discretisation points the more accurate is the solution. Taking
into consideration that the control δ has a bang-bang behaviour, the accuracy of the
target value tf strictly depends on the ability of the integration scheme to capture the
discontinuity of the solution. In particular, the capability of the integration scheme to
capture the control discontinuity depends on the distance d∗ of the exact switching time t∗

from the nearest mesh point: the higher d∗ is, the less accurately the control discontinuity
is captured. The distance d∗ is shown as function of the number of discretisation points
in the bottom plot of figure 2. It is evident that the wavy trend of the target error is
exactly the same of the distance d∗, thus the accuracy of the solution is dominated by
the capability to capture the discontinuity of the δ control at t∗.

In order to better analyse the accuracy of the solution, the previous analysis has been
re-performed using a large and fixed number of discretisation points near the switching
time t∗. More precisely, 104 fixed discretisation points has been used in the interval
0.46tf ≤ t ≤ 0.48tf , while only the number of discretisation points N in the rest of the
domain has been changed. The results obtained are presented in figure 3: GPOPS-II
shows a steep decrease of the target error, and even with few points ≈ 10 it reaches a

1Collocation points captures accurately smooth functions, but discontinuities in non-smooth solutions can be captured

only at mesh interval boundaries.
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Figure 2. The relative error to the exact final time tf (top plot) and the distance d∗ of the time switching instant

t∗ from the nearest discretisation points (bottom plot) are shown as function of the number of discretisation points.

The two plots suggest that the solution accuracy is dominated by the capability to capture the bang-bang trend in the

control δ.
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Figure 3. The relative error to the exact final time tf is shown as function of the number of discretisation points used

in the intervals t ≤ 0.46tf and t ≥ 0.48tf . In the interval 0.46tf ≤ t ≤ 0.48tf , 104 fixed discretisation points have

been used. It can be noted that the straight lines fitting the error trends have a slope which is in agreement with the

integration accuracy order of the two solvers.

relative error of only 10−6. The fitting highlights an accuracy, which goes as ≈ N−4.8.
For a number of mesh points approximately greater than 10, the solution error does not
decrease further and remains stuck at ≈ 10−6 even at N = 103. Pins differently presents
a less rapid decrease of the solution error ≈ N−2, but increasing the number of mesh
points it reaches a lower error; with N ≈ 104 its error is ≈ 10−10. Numeric noise does
not allow Pins to go below such error.
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Table 2. GPOPS-II settings

variable value

minimum collocation points 2
maximum collocation points 2

IPOPT tolerance 10−8

method RPM-Differentiation
scaling automatic-bounds

linear solver ma57 [68]

The authors increased the number of mesh point in the interval 0.46tf ≤ t ≤ 0.48tf (up
to 105) and even tuned GPOPS-II parameters (e.g. using auto mesh refinement and/or
lowering IPOPT tolerances, and/or imposing a mesh point at the switching point t = t∗)
in order to achieve a better accuracy for the GPOPS-II solution. However, the best
accuracy obtained was always not lower than ≈ 10−7. Moreover, when trying to increase
the solution accuracy in GPOPS-IIusing a very fine mesh (either with fixed points
or using the automatic mesh refinement), the solution so obtained suffered of control
oscillations near the switching point t = t∗, as shown in figure 4. It is opinion of the
authors that if the controls could be analytically solved (as it is done in Pins) these
oscillations may be reduced and the accuracy of the solution increased. However this
cannot be done in GPOPS-II since the Lagrange multipliers are not available when the
evaluation of the first order equations is performed.

5.025 5.03 5.035 5.04 5.045 5.05 5.055 5.06

-1

-0.5

0

0.5

1

Theoretical
GPOPS

Figure 4. Detail of GPOPS-II solution control near the switching point t∗. The solution is calculated on a fine mesh

(mesh tolerance error ≤ 10−11. The control is affected by noticeable oscillations that prevent the solution final time

accuracy to be less then 10−7.

This case of study shows that GPOPS-II uses a better integration scheme that allows
to achieve a good accuracy (relative to Pins) when the solution is smooth and few
discretisation points are used. On the other side Pins demonstrates to be more accurate
with a relative large number of discretisation points and to be able to get closer to the
exact solution.

3.2. Track reconstruction

The second OCP test consists in the reconstruction of a circuit from experimental data.
In lap time simulations it is common to use a curvilinear abscissa approach [28, 69, 70]
to track the vehicle position along the circuit. Thus the knowledge of the track geometry
is fundamental for such purpose. The road geometry is given as the road orientation
matrix R (or, equivalently, the road curvatures) and the road width rw as a function of

12
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the travelled space, i.e. the centre-line curvilinear abscissa s. The 3D coordinates of the
track borders can be used to extract such informations.

Following the approach presented in [28], the road can be described by means
of seven variables: the three coordinates of the road centre-line position C(s) =
[x(s), y(s), z(s)]T , together with the three angles determining the orientation matrix
R(s) = R(θ(s), σ(s), β(s)) and one additional variable for the road width rw(s). The
orientation matrix R is given by three successive rotations. Among the different alterna-
tives, in this work the z − y − x convention is employed, i.e. first a rotation of an angle
θ about z axis, then of an angle σ about y axis, and then of an angle β about x axis:

R = Rz(θ(s))Ry(σ(s))Rx(β(s)) (12)

where θ is the track heading, σ is the road slope, β is the banking and Rx, Ry, Rz are
three rotation matrices:

Rx(x) =

1 0 0
0 cos(x) − sin(x)
0 sin(x) cos(x)

 , Ry(x) =

cos(x) 0 − sin(x)
0 1 0

sin(x) 0 cos(x)


Rz(x) =

cos(x) − sin(x) 0
sin(x) cos(x) 0

0 0 1


(13)

An effective approach to reconstruct the road geometry C, R, rw from a 3D map of
the circuit is presented in [71] where the track reconstruction process is translated into
an optimal control problem, whose output are the functions x(s), y(s), z(s), θ(s), σ(s),
β(s) and rw(s) that best matches the known 3D map of the circuit. More precisely, the
procedure can be summarised as follows:

• given the 3D map of the circuit, the coordinates of the road left (xl0(ζ0), yl0(ζ0), zl0(ζ0))
and right borders (xr0(ζ0), yr0(ζ0), zr0(ζ0)) are extracted as a function of the estimated
curvilinear abscissa ζ0;

• the calculated road angles θ, σ, β, the road width rw and the curvilinear abscissa ζ
are those such that the resulting road left (xl, yl, zl) and right (xr, yr, zr) borders
minimize the squared error from the known road data (xl0, yl0, zl0, xr0, yr0, zr0).

This corresponds to an optimal control problem, where the target to minimise is the
error between the road borders and the reference borders obtained from the 3D map.
The states of the OCP are the variables determining the road position, orientation and
width, the controls are the rate of change of the road orientation and width:

minimize
u

∫ max(ζ0)

0

S(x) + wuU(u) dζ0

subject to:
dx

dζ0
= f(x,u)

(14)

where

uT =[uθ, uσ, uβ, uw, us]

xT =[θ, σ, β, θ̂, σ̂, β̂, rw, x, y, z, ζ]

13
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Figure 5. Overview of the 3D Mugello circuit.

f(x,u) =[θ̂, σ̂, β̂, uθ, uσ, uβ, uw, cos θ cosσ(1 + us),

sin θ cosσ(1 + us), − sinσ(1 + us), 1 + us]

U(uθ, uσ, uβ, uw, us) =

(
uθ
σθ

)2

+

(
uσ
σσ

)2

+

(
uβ
σβ

)2

+

(
uw
σw

)2

+

(
us
σs

)2

S(x) = (xr − xr0)2 + (yr − yr0)2 + (zr − zr0)2

+ (xl − xl0)2 + (yl − yl0)2 + (zl − zl0)2

xr =x+ (rw/2)(cos θ sinσ sinβ − sin θ cosβ)

yr =y + (rw/2)(sin θ sinσ sinβ − cos θ cosβ)

zr =z + (rw/2) cosσ sinβ

xl =x− (rw/2)(cos θ sinσ sinβ − sin θ cosβ)

yl =y − (rw/2)(sin θ sinσ sinβ − cos θ cosβ)

zl =z − (rw/2) cosσ sinβ

This formulation allows to remove the noise affecting the input data (3D road map) by
weighting the controls in the target function: the greater wu is, the more the controls
are penalised and the more the output data is filtered. That the optimal problem in (12)
can be easily modified to obtain a simpler problem to reconstruct 2D flat tracks: the
only modifications that are required are the removal of the variables related to the road
elevation (σ, β, σ̂, β̂ and z) and the removal of the related controls (uσ, uβ).

The optimal control problem (12) is in the form of an constrained least-square problem,
where the constraints are originated by the first-order equations dx

dζ0
= f(x,u). No path

(state) constraints are added to the OCP formulation (12), therefore the actual OCP
solved by Pins and GPOPS-II is exactly the same (even if on slightly different meshes).

3.2.1. Solution analysis

Pins and GPOPS-II have been tested on the reconstruction problem of four different
circuits, two three-dimensional and two two-dimensional: Adria (Italy, 2D), Montmelo
(Spain, 2D), Imola (Italy, 3D) and Mugello (Italy, 3D). The numeric dataset used to feed
equations (14) are reported in table 3; GPOPS-II settings are the same of the previous
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Figure 6. Detail of the RACC chicane of Montmelo circuit. In the top image, the road border reconstructed by Pins
and GPOPS-II well matches the experimental data (purple dots) and not difference between the two solvers can be

noticed by eye. The resulting road curvature (centre and bottom plots) shows that the difference between the two

solutions is of approximately 1%.

Table 3. Parameters used in the track reconstruction

problem.

variable value

wu 1
σθ 7.0× 10−3

σσ 2.4× 10−5

σβ 2.4× 10−5

σw 0.32
σs 0.20

example (see table 2). A mesh grid size of 1 meter has been used for all the four tracks2.

Figure 5 gives an overview of the reconstructed Mugello circuit, where the elevation
variations along the track are noticeable. The detail of the RACC chicane of Montmelo
circuit is shown in figure 6. The reconstructed road borders (blue line for Pins, yellow for
GPOPS-II) well matches the reference points (purple dots), moreover there is no notice-
able difference in the solution provided by the two solvers. The resulting road curvature
(bottom plot) highlights that the difference between the two solutions is approximately
of the 1%.

The difference between the solutions obtained with the two solvers are relatively very

2It means that one mesh point per meter has been used in Pins, and one mesh interval every two meters, with two

collocation points per mesh interval have been used in GPOPS-II.
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Table 4. Summary of the maximum error from the reference track borders

and the root mean square error for each circuit.

Circuit Pins GPOPS-II Pins -GPOPS-II ratio

Maximum error

Adria 2.02× 100 2.01× 100 1.00× 100

Montmelo 1.50× 100 1.54× 100 9.69× 10−1

Mugello 9.01× 10−1 8.59× 10−1 1.05× 100

Imola 8.99× 10−1 8.93× 10−1 1.01× 100

Rms error

Adria 4.01× 10−3 4.00× 10−3 1.00× 100

Montmelo 2.51× 10−3 2.55× 10−3 9.87× 10−1

Mugello 1.79× 10−3 1.78× 10−3 1.00× 100

Imola 1.93× 10−3 1.92× 10−3 1.00× 100

Table 5. Variable relative noise amplitudes used to gen-

erate the noisy guesses for the track reconstruction prob-

lem. Units are those of SI.

variable x, y, z rw θ, σ, β θ̂, σ̂, β̂
relative amplitude 5 1 π/10 0

small (up to ≈ 1%) and they are due to the different integration scheme adopted. Indeed,
as previously said, in the track reconstruction problem there are no path constraints,
which means that no penalty terms are used in the indirect approach OCP formulation.
Therefore, the minimisation problem obtained through the indirect and direct approach
is exactly the same. The detail of the difference between the solutions provided by the
two solvers is reported in table 4: for each circuit, the maximum error from the reference
track borders and the root mean square of such error is calculated. Differences in the
solutions are due to the different integration scheme.

Since the minimisation problem arising from the track reconstruction problem is ex-
actly the same for Pins and GPOPS-II, it has been chosen as a test case for the ro-
bustness of the solver with respect to perturbation of the initial guess. The robustness
has been tested through the following procedure:

(1) A reference guess is first generated both for the states xref and controls uref . The
reference guess is characterised by the following state initialisation: xref

r = xr0, yref
r =

yr0, zref
r = zr0, xref

l = xl0, yref
l = yl0, zref

l = zl0, θref = θ0 and κref = dθ0/dζ0. All other
variables and controls are set to zero (i.e. uref = 0);

(2) for each state variable x, a relative noise amplitude, name ax, is chosen. The relative
noise amplitudes used are reported in table 5.

(3) for each state variable x, its guess x(g) is given by the sum of the reference guess
xref and a noisy term. The noisy term is the product of the relative noise amplitude
ax with a global noise variable ξ and a random variable rx: x

(g) = xref + axξrx.
The global noise variable ξ is the same for all state variables, moreover the random
variable rx is uniformly distributed in the interval [−1, 1] and sampled on each mesh
point;

(4) the global noise amplitude ξ is varied from 0 to 1.5 by step of 0.1, and ten different
guesses are generated for each value of ξ, for a total of 150 different guesses;

(5) the track reconstruction problem is then solved both with Pins and GPOPS-II
using the noisy guesses. A maximum limit of 500 iterations is used; if the solver does
not manage to solve the problem within this iteration limit, it is considered to fail.
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Figure 7. Robustness of the solvers with respect to noisy guess. The number of iterations required to compute the

solution are plotted versus the relative noise amplitude. An iteration limit of 500 iterations has been chosen for both

solvers. Points located at an ordinate of 500 iterations refer to non-converged problems.

The above described procedure has been repeated for each circuit. The results obtained
are reported in figure 7, where the number of iterations required to solve the problem
is shown as function of the noise global amplitude ξ. A number of iterations equal to
the iteration limit (500) indicates the solver has not succeeded in finding the solution.
The results highlight different trends for the 2D and 3D circuits. In 2D circuits (Adria
and Montmelo) GPOPS-II is more robust and manages to solve the problem with all
guesses, even at ξ = 1.5. A certain variance is observed in the number of iterations
required to calculate the solutions for a given ξ, from approximately 20 iterations to
100. Pins fails to solve the problem for a noise amplitude grater than ξ > 1; however,
for ξ ≤ 1 it is able to calculate the solution in few iterations (≈ 6). The variance in
the number of iterations for Pins is noticeably lower than that of GPOPS-II. In 3D
circuits, Pins shows almost the same behaviour as with 2D circuits. GPOPS-II on the
contrary presents a noticeably higher variability: while sometimes it still manages to
solve the problem at ξ = 1.5, other times it fails even with a low relative noise (ξ ≈ 0.6).
On overall Pins demonstrates a more consistent behaviour, and GPOPS-II manages to
handle guesses with an high noise but sometimes fails even with low-noise guesses. The
greater robustness of GPOPS-II to less accurate guesses is probably due to the IPOPT
initialisation procedure, and the heuristic therein used, to estimate the initial values for
the lagrange multipliers. On the contrary the current release of Pins does not implement
any of such a procedure and sets the lagrange initial values to zero. As a general result
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that authors have drawn there is that the lagrange multiplier initialization is crucial for
the robustness of both direct and indirect optimal control solvers.

3.3. Lap time simulation

The last OCP test that is analysed is the minimum lap time simulation of a racing GT
car on the Adria International Raceway.

The simulation is performed with the well known 3-dof car model, which comprises
quasi steady state load transfers and load-dependent tyre adherence. Such car model is
selected beause it can be found on most classic vehicle dynamics books, e.g. [72–76].
Moreover similar models have been extensively used for optimal control minimum lap
time simulations, e.g. in [35, 38, 39, 77] and with the addition of the wheel spin dynamics
in [10, 11, 46, 78]. The indirect and direct methods here presented have been used for
minimum lap time simulations and validation also with significantly more complex car
models [29, 39]. However, the authors decided to keep the model relatively simple to
let other researchers easily reproduce the reported results. The choice is in line with
the main purpose of this work to compare the performance of the two different OCP
methods, rather than computing accurate lap time simulations with the most complex
car model available.

The three degrees of freedom of the car chassis are: the speed V , the sideslip angle
λ and the yaw rate Ω. The car position along the circuit is tracked by means of three
variables: the curvilinear abscissa s, the lateral displacement from the road centre line
n and the heading angle α w.r.t. the road centre line. The first order equations for the
above mentioned six variables are:

ṡ =
V cos(α− λ)

1− nκ
ṅ = V sin(α− λ)

α̇ = Ω− κV cos(α− λ)

1− nκ
MΩV λ+MV̇ = Srr + Srl + Sfr + Sfl − δ(Ffr + Ffl)−D

M(ΩV − V̇ λ− V λ̇) = δ(Sfr + Sfl) + Frr + Frl + Ffr + Ffl

IzΩ̇ = a(Ffr + Ffl)− b(Frr + Frl) + tw(−Srr + Srl − Sfr + Sfl)

(16)

where M is the car mass, Sij is the tyre longitudinal force where i = f, r indicates the
front or rear tyre, and j = r, l indicates the right or left side, Fij is the tyre lateral force,
δ is the steering angle, D is the drag force, Iz is the yaw inertia moment, a and b are
respectively the distance of the front and rear axle form the centre of gravity and tw is
the car half width. In equations (16) the simplifications cos ξ ≈ 1 and sin ξ ≈ ξ have been
adopted for the sideslip λ and steering δ angles.

The drag force D is proportional to the square of the speed:

D =
1

2
ρCaV

2 (17)

where ρ is the air density, Ca is the drag coefficient.
Tyre lateral forces are computed from slip angles, while longitudinal forces are com-

18



May 17, 2018 Vehicle System Dynamics dir˙vs˙indir

puted from a single control ux, which is related to the normalized thrust:

Sfl = Sfr =
Mg

2
f−(ux)β, Srl = Srr =

Mg

2
(f+(ux) + f−(ux)(1− β)),

Fij = NijKλλij

(18)

where f+ and f− return respectively the positive and negative part of the argument, β
is the front braking bias, Nij is the tyre load, λij is the tyre sideslip angle and Kλ the
tyre sideslip stiffness. Tyre saturation related to adherence limitations is accounted for
using a load dependent friction ellipse – see section 3.3.1 – this makes the tyre model
effectively nonlinear although approximate. The tyre sideslip angles are given by the
following expression:

λrr = λ+
Ω(b+ λtw)

V
λfr = λ+ δ − Ω(a− λtw)

V

λrl = λ+
Ω(b− λtw)

V
λfr = λ+ δ − Ω(a+ λtw)

V

(19)

The tyre loads Nij depend on the delayed vehicle longitudinal ax and lateral ay acceler-
ations:

Nrr =
Mg

2

a

a+ b
+
Mg

4

(
axh

a+ b
− ay(1− χ)

h

tw

)
Nfr =

Mg

2

b

a+ b
+
Mg

4

(
− axh

a+ b
− ayχ

h

tw

)
Nrl =

Mg

2

a

a+ b
+
Mg

4

(
axh

a+ b
+ ay(1− χ)

h

tw

)
Nfl =

Mg

2

b

a+ b
+
Mg

4

(
− axh

a+ b
+ ayχ

h

tw

)
(20)

where χ is the roll stiffness. The longitudinal ax and lateral ay accelerations follow the
actual vehicle accelerations with a low band pass filter of time constant τax and τay in
order to simulate the suspension load transfer lag:

τax ȧx + ax = V̇ + ΩV λ τay ȧy + ay = ΩV − ˙(V λ) (21)

Summarising, the state space model comprises eight dof (V, λ,Ω, s, n, α, ax, ay), with
the corresponding eight first order equations (16), (21) and two controls (ux, δ).

3.3.1. OCP constraints

The minimum lap time problem includes some constraints, which ensures that the power
used is less than the a maximum threshold, that the car never exceeds the track bound-
aries, and that the tyre forces are less than the tyre maximum adherence. Such constraints
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Table 6. Car dataset used for the minimum lap time problem.

variable value units description

M 1184 kg total mass
p 2.76 m wheelbase
b 1.404 m wheelbase to front axis distance
b 1.356 m wheelbase to rear axis distance
tw 0.807 m half track width
h 0.4 m CoM height from ground
Iz 1775 kgm2 yaw inertia moment
β 0.62 - braking bias
χ 0.5 - roll stiffness
ρ 1.2 kg/m3 air density

CdA 0.88 m2 drag coefficient
µx0 1.68 - tyre longitudinal adherence
µy0 1.68 - tyre lateral adherence
Kµ -0.5 - tyre adherence variation with load
Kλ 44 - tyre lateral stiffness
τay 0.2 s lateral load transfer time constant
τax 0.2 s longitudinal load transfer time constant
Pmax 215 kW maximum power

can be expressed as follows:

cp =
V (Srr + Srl)

Pmax
≤ 1 cn =

n

nmax
≤ 1 cn =

−n
−nmax

≤ 1

ctij =

(
Sij

Nijµxij

)2

+

(
Fij

Nijµ
y
ij

)2

≤ 1 i = f, r j = r, l

(22)

where Pmax is the engine maximum power, nmax is the maximum lateral displacement
which is equal to half of the road width rw minus half of the car width nmax = rw/2− tw.
µxij and µyij are respectively the tyre longitudinal and lateral adherence, which depend
on the tyre loads:

µxij = µx0 +Kµ
Nij

N0ij

µyij = µy0 +Kµ
Nij

N0ij

i = f, r j = r, l (23)

where N0ij is the tyre load in static conditions and Kµ is constant factor. The numerical
data used to feed the car model is reported in table 6.

3.3.2. Solution analysis

The above described car model has been used to simulate the lap time of a GT car on
the Adria International Raceway. A mesh with 1 discretisation point per meter has been
used3. The lap time calculated by Pins and GPOPS-II are respectively 75.721s and
75.429s, with a relative difference of the approximately 0.3%.

The simulated speed profile is shown in figure 8; the speed difference between the
two solutions is always less than 3km/h. In general, Pins simulated speed is higher
than GPOPS-II one in the middle of the turns but it is lower in the straights and in
the first part of the braking manoeuvres. The reason can be found in the use of the
penalties, which in general do not allow to reach the control exact limits producing less
braking/tractive forces. As a consequence the optimal solution found try to compensates
maximising the speed in each corner looking for a slightly larger curvature radius.

3In GPOPS-II one mesh interval every two meters and two collocation points per mesh interval have been used.
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Figure 8. Simulated speed profile and speed difference (Pins minus GPOPS-II) along Adria circuit; the difference

between the two solvers is always less than 3km/h. In general, Pins simulated speed is higher than GPOPS-II one in

the middle of the turns but it is lower in the straights and in the first part of the braking manoeuvre.

PINS
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Figure 9. Simulated optimal trajectory along Adria circuit. The most significant trajectory difference is in the two

intervals comprised between the red and green circles.

The effect of the use of the penalties emerges when the optimal trajectories are com-
pared (see figure 9). The two solutions show a good agreement along all the circuit,
except in the two straights track sections comprised between the red circles (the first)
and between the green ones (the second). The difference in the trajectory is more evident
in the car lateral displacement n from the road centre line, which is reported in the top
plot of figure 10. In the two mentioned track sections it is evident that Pins trajectory
moves towards the road centre line, while GPOPS-II remains close to the track border
in the two straights. In other words Pins tends to reduce the penalty (associated to the
road border constraints, see (22)) by moving to the road centre line. It is opinion of
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the authors that this effect is probably evident in these two sections because there this
manoeuvre affects only marginally the lap time.
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Figure 10. In the top figure, the lateral displacement n from the road centre line is shown. The trajectory differences

in the two straight sections comprised between the red and green circles are noticeable. The bottom plot focuses on the

road borders constraint enforcement |cn| (22) (|cn|= 1 is the constraint limit). It can be noted that, while GPOPS-II

solution arrives at a constraint value |cn|= 1, Pins one does not go beyond |cn|= 0.995.

The bottom plot of figure 10 shows the enforcement of the road borders constraint cn
(see (22)). It is possible to notice that, while GPOPS-II solution almost touches the road
borders (|cn|= 1), Pins one does not go beyond |cn|= 0.995. The same behaviour can
be observed also in the other OCP constraints: the maximum power limit and the tyre
adherence limit. The former constraint is shown in figure 11; the bottom plot highlights
that Pins solution uses up to ≈ 99% of the maximum power, while GPOPS-II one uses
up to 100% (at least to machine precision). Moreover, similar conclusions can be stated
for the tyre engagement constraints ctij (22), which are reported in figure 12; in this case,
Pins solution arrives up to ≈ 99.7% of the maximum value.

The fact that Pins solution does not reach the exact constraints bounds (track width,
engine power, tyre adherence) is a consequence of the penalty approach used by indirect
methods. However even IPOPT, that is based on an Interior Point algorithm, uses a
similar penalty approach [33]. The main difference between Pins and IPOPT is that
the latter implements an algorithm that automatically sharpens the penalties in order
to better satisfy the constraints, while in the former the penalties can be fine-tuned
only manually. Since in Pins this is achieved with a continuation procedure, it usually
requires longer computational time and diminishes the robustness to convergence using
a non optimal tuning strategy. The values that have been used are, according to authors’
opinion, the best compromise between constraint enforcement, robustness of the solver
and low computational times.

At the beginning of this section it has been stated that Pins simulated lap time is
approximately 0.3s higher than GPOPS-II one, then the results showed that this dif-
ference can be attributed to the lower engine power and tyre engagement usage of Pins
solution. While 0.3s may seem a consistent discrepancy from an engineering point of
view, it should be remembered that the absolute performance resulting from lap time
simulations is not of primary importance because it depends on some parameters that
are difficult to measure, first of all the friction between tyres and asphalt. Usually, the
numeric dataset used to feed the mathematical model is tuned so as to make the sim-
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Figure 11. The power used (Srr + Srl)V is shown in the top plot; the two solutions present almost identical trends

and both get close to the maximum power limit. The bottom plot focuses on the power-limit-constraint enforcement

cp (22) (cp = 1 is the constraint limit). It is possible to notice that, while GPOPS-IIarrives at |cp|= 1, Pins arrives

up to cp ≈ 99%.
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Figure 12. The tyre engagement ctij (22) of the four wheels are shown as function of the curvilinear abscissa. Again,

GPOPS-IIsolution touches the constraint limit, while Pins arrives up to the ≈ 99.7% of the maximum value.

ulated car performance match the telemetry data. Only after this calibration process is
performed, the model is used for simulations and optimisation. Therefore, in lap time
simulations the sensitivity to model parameter variations is much more important than
the absolute lap time.

The sensitivity of the two solver has been compared on the optimisation of the braking
bias β and roll stiffness χ. Simulations have been performed varying the braking bias
and the roll stiffness respectively in the range [0.55, 0.68] and [0.63, 0.8]; the lap times
differences between Pins and GPOPS-II solutions are shown in figure 13. One may
note that, while the difference in the simulated lap time varies in the range [0.29s, 0.32s],
the location of the best lap time does not differs relevantly between the two solvers. In
particular Pins minimum lap time is achieved with a braking bias of β = 0.595 and a
roll stiffness of χ = 0.741 (with an accuracy of 0.001 both for β and χ), while GPOPS-II
minimum lap time is obtained for the same value of the rolling stiffness but for a braking
bias slightly higher, β = 0.597. This discrepancy in the location of optimum value of
the parameters is mainly due to two different causes. The first is the different simulated
performance: since Pins solution uses slightly less engine power and tyre adherence, this
results in a different car dynamics and thus optimal braking bias and roll stiffness. The
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Figure 13. The difference of the simulated lap time (Pins minus GPOPS-II) is shown as function of the braking bias

β (x-axis) and roll stiffness χ (y-axis). The location of the best lap time is also shown. The right plot focuses on a

smaller range of the variables β and χ in order to better highlight the differences in the location of the best lap time.

The best lap time time for the Pins ”enhanced” and GPOPS-II ”regularized” models are also shown.

second cause is the control regularisation induced by the control penalties4 that makes
the controls’ solution to be smoother, thus modifying again the simulated car dynamics.
In order to verify that the different location of the best lap time is due to these two
causes, the Pins model has been modified by increasing the engine maximum power and
the tyre adherence and by augmenting the track width, so as to make the constraints
actually reach their physical limits. In particular, the engine maximum power has been
increased by a 1.015 factor, the tyre adherence by 1.004, and the track width by 1.01, in
accordance with the distance from the constraints boundaries highlighted in figures 10,
11 and 12. This model, referred to as Pins ”enhanced” model, shows a best lap time for
β = 0.596 and χ = 0.74, thus it is located closer to GPOPS-II minimum lap time but
differences are still present. Finally GPOPS-II model has been regularised by adding a
small regularisation term proportional (1 × 102) to the square of the controls into the
Lagrange target; this model is referred to as GPOPS-II ”regularised”. The regularisation
is not exactly the same as that of Pins, yet tries to mimic it. The optimum parameters
for the GPOPS-II regularised model are β = 0.596 and χ = 0.738, as shown in the
right plot in figure 13. These results shows that the car design optimisations performed
by Pins and GPOPS-II are in agreement if the same car performance is simulated and
similar regularisation is adopted.

The robustness of the two methods with respect to perturbation of the initial guess
has been studied with the same procedure described in section 3.2.1. Differently from
section 3.2.1, the minimum lap time OCP includes constraints that are treated with
different approaches by direct and indirect methods. The reference (i.e. without noise)
guess is characterised by a non-zero guess speed V0 = 30kph, while all the other variables
are left to zero. The noise relative amplitudes ax for each state variable are reported in
table 7, and the noise global amplitude ξ spans from 0 to 1 by steps of 0.1. Moreover, the
speed V is forced to be greater than 1m/s: when the noised speed results to be less than
such threshold, it is set to 1m/s. This allows to avoid numerical singularities in the first
order equations, which can not be made explicit ODE in the curvilinear abscissa domain
s when V = 0. The solver iterations limit is now increased to 103 since the problem is
more difficult to solve.

4Control penalties are used in the indirect approach to keep the controls bounded.
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Table 7. Variable relative amplitudes used to generate the noisy guesses

for the minimum lap time problem. Units are those of SI.

variable n α V λ Ω ax ay ux δ
relative amplitude 7 0.6 60 0.05 1 10 15 1 0.15

0 0.2 0.4 0.6 0.8 1
0
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Figure 14. Robustness of the solvers with respect to noisy guess. The number of iterations required to compute the

solution are plotted versus the relative noise amplitude. An iteration limit of 103 iterations has been chosen for both

solvers. Points located at an ordinate of 103 iterations refer to non-converged problems.

The results obtained are summarised in figure 14, and are significantly different from
those of the reconstruction problem in section 3.2.1. Even with a low noise amplitude
ξ = 0.1 Pins fails to find the solution most of the times, and from ξ = 0.3 it is never
successful. GPOPS-II, like in section 3.2.1, shows a more variable behaviour and for all
values of ξ it sometimes manages to find the solution, sometimes it fails. None of the
two solvers appear to be robust with respect to the added noise. It is opinion of the
authors that the high failure rate highlighted by Pins is consequence of the constraints
violation in the provided guess. When starting from a noisy guess, Pins showed very
high residual since the first iterations and then it straggle to find a feasible (i.e. with
low residual) region. High values for the residual (≈ 106) are due to high penalty values
(i.e. constraints violation), which make the problem highly ill conditioned and difficult
to solve. Differently IPOPT, the NLP solver used for GPOPS-II, implements a feature
that project the current state into the constraint-feasible region, thus even if the guess
violates the constraints it automatically project it into a feasible region [33]. It is opinion
of the authors that this is the main advantage that makes GPOPS-II more robust than
Pins with respect to less accurate initial guesses. Finally, it should be noted that the
use of more complex car models is likely to decrease the robustness of both solvers to
initial guesses; the procedure here described could be likewise used to assess the resulting
robustness.

4. Result discussion and note on performance

The results presented in the previous section, and in particular those of the basic mo-
torcycle problem, confirmed that GPOPS-II implements a more accurate integration
scheme (Gaussian in GPOPS-II, trapezoidal in Pins) that is able to provide a signifi-
cantly higher accuracy than Pins using relatively few mesh points. Despite this, Pins is
able to reach the absolute highest accuracy when using an higher number of mesh points.

Moreover GPOPS-II demonstrated to better handle perturbations (i.e. noise) in the
guess, in particular when constraints are present in the OCP. Indeed, while Pins showed
similar robustness results in the track reconstruction problem, it largely under performed
in the minimum lap time one. It is opinion of the authors that this is mainly due to the
robustness of IPOPT that implements a mechanism that project the variables into the
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Table 8. Solution computing times measured on a desktop computer equipped with an Intel

Xeon E3-1270 v5 processor with 32GB of ram, running on Ubuntu 16.04. GPOPS-II has

always been used with IPOPT as NLP solver and the ma57 linear solver[68]. Pins turns out

to be significantly faster than GPOPS-II in most of the problems.

Problem Number of Pins GPOPS-II GPOPS-II to
mesh points time [s] time [s] Pins time ratio

Motorcycle basic 100 0.2 0.9 4.5
Motorcycle basic 5000 7 2 0.3
Adria 2D 2719 (1 per meter) 0.1 9 90
Montmelo 2D 4650 (1 per meter) 0.1 11 110
Mugello 3D 5244 (1 per meter) 0.5 60 120
Imola 3D 4906 (1 per meter) 0.5 35 70
Car model 2719 (1 per meter) 6 50 8
Car model 54380 (20 per meter) 96 932 10
Car model 543800 (200 per meter) 1184 10180 8.5

feasible region, and adopts a reliable initialisation of the Lagrange multipliers. On the
contrary, Pins uses a zero guess for the Lagrange multipliers, moreover, if the guess
violates the constraints, it suffers of ill-conditioning due to the high penalty values (since
constraints are not projected into a feasible region like in IPOPT).

In the minimum time problem, the constraint enforcement analysis showed that Pins
solution does not reach the exact constraints boundaries (as GPOPS-II does). In par-
ticular, its solution did not make full usage of the track width, engine power and tyre
adherence. This behaviour is a direct consequence of the lack of automatic tuning of the
penalty weights and parameters during the convergence to the solution.

Finally, when tested on a typical utilisation scenario (i.e. optimisation of car design
parameters) the two software provided similar outcomes. In particular, the location of
the optimal braking bias and roll stiffness given by Pins and GPOPS-II were very close,
with relative differences of the order of 10−3. The small differences could be explained
by the slightly different simulated car dynamics due to different constraint usage and
regularisation.

In all previous test problems nothing has been stated about the solver performance
related to the time required to compute the solution. A comparison of such performance
for the two algorithm is not an easy task because the two solvers are developed with
different programming languages. Pins is entirely written in C++ and, even if it uses
a Ruby interpreter to setup the problem data, the solution algorithm and the problem
function evaluation are computed by compiled code. GPOPS-II instead is developed as
a MATLAB c© library, but uses a compiled NLP solver (in this work a compiled version
of IPOPT has been used). Thus, function evaluation is done at MATLAB c© level (even
if the user may compile the functions into mex files) while the NLP solution is calculated
by compiled code. Thus a comparison of the solvers performance is not really meaningful
to compare the efficiency of the algorithms, but it is certainly interesting from a practical
(i.e. user) point of view. In the test problem analysed in this work, it has been noticed
that Pins is generally significantly faster than GPOPS-II; the measured computing
times are reported in table 8.

5. Conclusions

In this work indirect and direct optimal control methods have been compared on three
test problems related to vehicle optimal control problems. Numerical solvers Pins and
GPOPS-II have been chosen respectively as representative for the indirect and direct
approach since they are the software most used in literature for this purpose. The results
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showed that each software has advantages and disadvantages compared to the other. In
particular, Pins excelled in computational time and absolute accuracy, while GPOPS-II
resulted to be more robust and, when using coarse meshes, even more accurate. More-
over, from a user point of view, GPOPS-II may seem more user-friendly since it does
not require any fine-tuning of the inequality constraints, which are automatically man-
aged by the NLP solver. Pins instead requires the user to properly adjust the penalty
parameters in order to achieve the best performance. While this is slightly time con-
suming, it offer a deeper control on the solution strategy and allows the user to choose
whether to prefer fast solution computing or accurate constraint enforcement. However,
from a general perspective, we can say that initialisation phase of the optimal control
problems plays a major role in solver robustness. On overall results showed that indirect
and direct methods on overall have a similar behaviour when dealing with minimum lap
time problems; most of the observed differences between the two solvers can be explained
with different numerical implementation features rather than with intrinsic differences of
indirect and direct methods. Such implementation features include: integration scheme,
multiplier initialisation, penalty tuning algorithm, projection of the state into feasible
region.
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