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RESEARCH ARTICLE

Magneto-biostratigraphic constraints of the Eocene micrite–calciturbidite
transition in New Caledonia: tectonic implications
Edoardo Dallanave a, Claudia Agninib, Kristina M. Pascherd, Pierre Maurizotc, Valerian Bachtadsea,
Christopher J. Hollisd, Gerald R. Dickense, Julien Collotc and Edoardo Monesif

aDepartment of Earth and Environmental Science, Ludwig-Maximilians University, Munich, Germany; bDepartment of Geosciences,
University of Padova, Padova, Italy; cService de la Géologie de Nouvelle Calédonie, Direction de l’Industrie, des Mines et de l’Energie de
Nouvelle Calédonie, Nouméa, New Caledonia; dGNS Science, Lower Hutt, New Zealand; eDepartment of Earth, Environmental and Planetary
Sciences, Rice University, Houston, USA; fDepartment of Earth Sciences, University of Milan, Milano, Italy

ABSTRACT
We conducted an integrated magneto-biostratigraphic study of a 37 m-thick composite section
exposed at two sites near Nouméa (New Caledonia). The section contains a transition from
pelagic micrite to terrigenous-rich calciturbidites. This transition, observed regionally in
coeval records of New Caledonia, marks a shift from pelagic sedimentation on a stable
continental submarine plateau to turbidite deposition indicating development of a slope in a
convergent tectonic regime. The studied section spans magnetic polarity Chrons C22r to
C20r, calcareous nannofossil zones CNE5 to CNE10, and radiolarian zones RP9 to RP11 (49.5
to c. 44 Ma), and the micrite–turbidite transition occurred around 45.3 Ma (early middle
Eocene). This transition could be the onshore correlative of a regional switch from tectonic
extension to compression, which has been inferred from analysis of new seismic profiles
acquired for the Tasman–northern Zealandia area, and that has been interpreted as
precursor of the Tonga–Kermadec subduction initiation.
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Introduction

The southwest Pacific area (Figure 1A) has a complex
tectonic history, the timing and dynamics of which
remain incompletely resolved (Matthews et al., 2015).
At present, a series of north–south trending ridges and
basins are bordered to the east by the Tonga–
Kermadec arc, beneath which the Pacific Plate subducts
westward, and to the north by the Vanuatu–
Solomon subduction zone, with an opposite vergence.
The westernmost and largest basin, the Tasman Sea,
opened between the Late Cretaceous and the early
Eocene (c. 85–53 Ma; Gaina et al., 1998) and separates
the continent of Australia from northern Zealandia,
which comprises a large area of continental crust,
including Lord Howe Rise, Norfolk Ridge, part of New
Zealand and New Caledonia (Mortimer et al., 2017).
The early Eocene is also the time in which a shift to a
convergent tectonic regime is inferred from the rocks
exposed in New Caledonia, the only emerged part of
northern Norfolk Ridge (Cluzel et al., 2006, 2012a;
Maurizot, 2011; Maurizot and Cluzel, 2014). Grande
Terre (the main island of New Caledonia) represents
an Eocene subduction–obduction complex including
high pressure–low temperature (HP–LT) metamorphic
units, sedimentary and ophiolitic terranes thrust onto
the Norfolk Ridge basement (Cluzel et al., 2001, 2006;
Maurizot, 2011). The Eocene convergent tectonic

regime is not limited to northern Norfolk Ridge, but
appears to be widespread in the Tasman Sea area. This
is evident from seismic profiles in which pervasive
reverse faulting and folding of both oceanic and conti-
nental crust have been observed (Sutherland et al.,
2010, 2017).

The inception of Eocene convergence is also
recorded in sediments exposed on Grande Terre
(Figure 1B; Maurizot, 2011, 2013; Cluzel et al., 2012a;
Maurizot and Cluzel, 2014). A switch from pelagic
sedimentation on a stable submarine plateau to turbi-
dite deposition is inferred as deriving from the devel-
opment of a foreland basin resulting from subduction
initiation on the northern Norfolk Ridge (Maurizot,
2011; Maurizot and Cluzel, 2014).

Foraminiferal biostratigraphy, based on observations
of thin sections, has been used to infer that this lithofa-
cies switch occurred in the early Eocene (c. 50 Ma;
Maurizot, 2011, 2014; Maurizot and Cluzel, 2014).
However, an integrated biostratigraphic and magnetos-
tratigraphic study to better constrain the timing of the
switch from micrite to turbidite deposition has been
lacking. Here, we present a detailed stratigraphic study
of Eocene sedimentary rocks that crop out nearNouméa
(Figure 1C,D), using a combination of paleomagnetic
and microfossil analyses. Using this data, we calibrate
the age of the micrite–calciturbidite transition in
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southern New Caledonia to the geomagnetic polarity
timescale (GPTS; Ogg, 2012), and explore its relation-
ship to tectonic events in the wider southwest Pacific.

Geological setting

Zealandia represents a vestige of Gondwana that separated
from Australia and Antarctica in the Late Cretaceous with
the opening of the Tasman Sea (Hayes and Ringis, 1973;
Gaina et al., 1998; Sutherland, 1999; Mortimer et al.,
2017). Grande Terre is the main island of the New
Caledonia archipelago, the only emergent portion of
northern Norfolk Ridge (Figure 1A,B). The geology of
this island results from tectonic amalgamation of various
sedimentary, metamorphic and igneous terranes, ulti-
mately overthrusted by ultramafic rocks (Cluzel et al.,
2001, 2005, 2006, Cluzel et al., 2012a; Maurizot, 2011).
Different proxies constrain the timing of the Eocene con-
vergence inception. Subduction-related dikes that crosscut
fore-arc mantle peridotite indicate an age of 54 Ma for
subduction initiation (Cluzel et al., 2006), and a similar
age of c. 56 Ma has been recorded in high-temperature
amphibolite lenses locally cropping out at the base of
the ‘metamorphic sole’ (Cluzel et al., 2012b). The peak

metamorphism of eclogite and blueschists facies rocks
from the HP–LT complex is dated at 44 Ma (Spandler
et al., 2005), and its exhumation at 34 Ma (Baldwin
et al., 2007). Post-obduction granites that intruded both
basement and allochthonous ophiolitic units are dated
at 24–27 Ma (Paquette and Cluzel, 2007).

The Late Cretaceous–middle Eocene sedimentary
sequence exposed on Grande Terre consists of a fin-
ing-upwards succession of sediments. Basal sediments
are Late Cretaceous syn-rift conglomerates and coal-
bearing sandstones/siltstones (‘Formation a Charbon’)
with interlayered volcanic rocks. These are overlain by
post-rift fine-grained terrigenous mudstone of Late
Cretaceous age, overlain by black chert of latest Cretac-
eous age, and micritic limestone of Paleocene–Eocene
age. The micritic limestone was deposited at bathyal
depths in a terrigenous sediment-starved, fully oceanic
setting (Cluzel, 1998, Cluzel et al., 2012a; Maurizot,
2011; Maurizot and Cluzel, 2014). This post-rift
sequence records progressive deepening due to
regional thermal subsidence from the Late Cretaceous
to the early Eocene (Aitchison et al., 1995).

Themicritic limestone onGrande Terre is overlain by
predominantly pink-reddish clay-rich calciturbidites,

Figure 1. Present-day geological setting for New Caledonia and the described sections. A, Bathymetric and tectonic map of the
southwest Pacific area, including sites of International Ocean Discovery Program (IODP) Expedition 371 (Sutherland et al., 2016)
(Zealandia delimited by dashed line). B, Simplified geological and tectonic map of Grande Terre, New Caledonia (modified from
Maurizot and Vendé-Leclerc, 2009). C, The Nouméa peninsula indicating the study area. D, Geological map of the Denouel and
Ilôt Brun sections. The red dots indicate the sampling localities.
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indicating the reappearance of terrigenous supply. This
facies varies in thickness from a few metres to tens of
metres in the different localities, with significant lateral
variations throughout New Caledonia (Maurizot,
2011). The sand-sized particles in the calciturbidites
are dominated by planktic foraminiferal tests, and the
presence of selective sorting, grading, and parallel and
oblique microlaminations confirms the turbiditic origin
of the sediments (Maurizot, 2011). Thus, alternating
fine- and coarser-grained beds are inferred to represent
turbidites rather than an artefact of diagenesis (Arzani,
2006). The terrigenous fraction consists of Al-rich clay
minerals like illite (2–4% Al2O3), hematite (2–4%
Fe2O3) and silica (10–12% SiO2; Maurizot, 2011; Cluzel
et al., 2012a). The calciturbidite lies at the base of a coar-
sening upward sequence referred to as ‘Eocene Flysch’
(Gonord, 1967, 1977).

In the Nouméa Peninsula, the micrite–calciturbi-
dite transition is well exposed and easily accessible
in a composite section that crops out on both sides
of Baie de l’Orphelinat: Point Denouel (hereafter
referred as Denouel) and Ilôt Brun (Figure 1C,D
and Figure 2A). These two sections most likely
belong to a single large fragmented olistolith
enclosed in the late Eocene Flysch (Maurizot, 2011;
Cluzel et al., 2012a), as inferred by proximity and
stratigraphic continuity. The Denouel section con-
sists of 14 m of white micritic limestone, with sub-
horizontal faint metre-thick bedding, with chert
nodules at the base. The upper 4 m of the white
micritic limestone is exposed at the base of Ilôt

Brun section (Figure 2B,C), where it is overlain by
c. 4 m of well-bedded limestone with increasing ter-
rigenous content, and 15 m of thin-bedded (c. 10–
20 cm) pink to red terrigenous-rich calciturbidites
that dip 20–25° to the northeast.

Methods

Rock and paleomagnetism

A total of 65 oriented cores (2.5 cm of diameter) were
collected from the 37 m of composite section
(Table S1): 27 cores at Denouel and 38 at Ilôt Brun.
Samples were taken with a gasoline-powered drill and
oriented with a compass and clinometer.

From each core, we trimmed at least one c. 11 cm3

standard specimen for paleomagnetic analyses (two for
seven core samples from the Denouel section). To evalu-
ate the nature of the magnetic minerals, a representative
set of minicores (c. 0.5 cm3 each; four from Denouel and
six from Ilôt Brun) were subjected to stepwise isother-
mal remanent magnetisation (IRM) acquisition up to
2.4 T. Magnetic coercivity components were determined
following the cumulative log-Gaussian analysis pro-
cedure described by Kruiver et al. (2001). The maximum
unblocking temperature of the coercivity components
was then determined by means of stepwise thermal
demagnetisation of three orthogonal IRMs (TD-IRMs;
Lowrie, 1990) up to a maximum of 675 °C, where the
IRMs were imparted along the three axes using sub-
sequent fields of 2.4, 0.4 and 0.12 T.

Figure 2. Panorama view of A, Point Denouel and B, Ilôt Brun peninsula. The main stratigraphic features, including the boundary
between micrite and calciturbidite, the orientation of strata, minor sub-vertical faulting and the sampling track (red dotted line) are
shown in (B). C, Close-up view of the basal well-stratified calciturbidites at Ilôt Brun.
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To retrieve the vector components of the natural
remanent magnetisation (NRM), specimens obtained
from all cores were subjected to stepwise thermal
demagnetisation up to a maximum temperature of
650 °C, with initial steps of 50 °C reduced to 25 °C
from 400 °C. The NRM was measured after each step
with a 2-G Enterprises superconducting magnetometer
placed in a magnetically shielded room. Vector com-
ponents were isolated by visual inspection of vector
end-point demagnetisation diagrams (Zijderveld,
1967) and estimated using the principal component
analysis (PCA) of Kirschvink (1980). Average direc-
tions and associated 95% cone of confidence (α95)
were estimated using the spherical statistics of Fisher
(1953). Analyses have been performed using the free-
ware compiled by Jones (2002) and Tauxe et al. (2016).

Anisotropy of magnetic susceptibility (AMS) was
measured on seven sister specimens from Denouel
with an Agico KLY-3 Kappabridge. The AMS is
defined by a second rank symmetric tensor geometri-
cally represented by an ellipsoid with principal axes
k1≥ k2≥ k3. We calculated the AMS of each specimen
measuring the magnetic susceptibility in 15 different
positions, as proposed by Jelínek (1978). The tensor
can then be described using the mean susceptibility
(km), lineation and foliation (L, F), the shape factor
(T), and the corrected anisotropy degree (P′; Jelínek,
1981). To calculate the AMS associated with each
sample and the average tensor we used the freeware
Anisoft 4.2 (Chadima and Jelínek, 2008). All analyses
were conducted at the Laboratory of Paleomagnetism
of the Ludwig Maximilians University (Munich,
Germany) except for the AMS measurements, which
were carried out the Alpine Laboratory of Paleomag-
netism (Peveragno, Italy).

Calcareous nannofossils

Examination of calcareous nannofossil assemblages
was undertaken on 65 samples trimmed from the
oriented cores (Tables S2 and S3): 27 samples at
Denouel and 38 at Ilôt Brun. Smear slides were pre-
pared from rock fragments using standard procedures
(Bown and Young, 1998). Analyses were conducted
using a Zeiss transmitted light microscope at ×1250
magnification. Calcareous nannofossils were deter-
mined using taxonomy proposed by Aubry (1984,
1988, 1989, 1990, 1999), Perch-Nielsen (1985), Bown
(2005), and Agnini et al. (2014). The samples examined
have an average spacing of c. 65 cm, and preliminary
qualitative estimates of the abundance and preser-
vation state of calcareous nannofossil assemblages
were performed for all samples. The total abundance
was estimated using parameters proposed by Norris
et al. (2014). A qualitative estimate of preservation
was provided following Roth and Thierstein (1972)
and (Roth, 1983).

Calcareous nannofossil biostratigraphic results are
based on semi-quantitative counts of selected taxa per-
formed on 2 mm2 for samples from the Ilôt Brun sec-
tion and 3 mm2 of the same from the Denouel section.
All data were then normalised to 1 mm2 (modified
after Backman and Shackleton, 1983), so results have
internal consistency. The biostratigraphic schemes
adopted are those of Agnini et al. (2014) and (Martini,
1971), which are calibrated to geologic time scale of
Gradstein et al. (2012; GTS2012).

Radiolaria

A radiolarian study was undertaken on 51 samples col-
lected adjacent to cores for paleomagnetism (Table S4):
21 from Denouel and 30 from Ilôt Brun. Approxi-
mately 10–30 g of rock was crushed into 5 mm chips
and leached in dilute (10%) HCl until the reaction
ceased. The fine fraction residue was cleaned by gentle
heating in a solution of calgon and 10% H2O2 for
30 min. The residue was washed through a 63 µm
mesh and dried. Radiolarian occurrence was deter-
mined by examination with a stereo-microscope
and, of the 51 samples processed, 28 contained no radi-
olarian microfossils or only indeterminate debris
(Table S4).

The sample residues of the 23 samples that con-
tained radiolarians were processed and slides prepared
as described in Norris et al. (2014). Between one and
three slides were prepared for each sample, depending
on the amount of residue. All slides were scanned fully
using a Zeiss light microscope and counts of c. 150
radiolarians were undertaken. Radiolarians were deter-
mined using literature from low- to high-latitude taxo-
nomic studies (Pascher et al., 2015 and reference
therein; Table S5). Abundance was recorded as follows:
B (barren); R (rare), < 50 specimens on a strewn slide; F
(few), 50–100 per slide; C (common), 100–500 on a
slide; A (abundant), > 500 on a slide.

Assemblages were correlated to the low-latitude
radiolarian zones (RP) of Sanfilippo and Nigrini
(1998) as emended by Kamikuri et al. (2012). These
were calibrated to GTS2012 by Norris et al. (2014)
and some revisions to this calibration are made herein
(Table S6). Correlation with the southwest Pacific
zonation of Hollis (Hollis, 1997; Hollis et al., 1997,
2005) was also considered. All samples and residues
are stored in the National Paleontology Collection,
GNS Science, Avalon, Lower Hutt, New Zealand.

Results

Rock magnetic properties

The two lithologic units exhibit marked differences in
rock-magnetic behaviour. The pelagic micrite contains
a dominant (> 90% of saturation IRM) low coercivity
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phase with a B1/2 (the field at which half of the satur-
ation is reached) of 45 mT (Figure 3A). Associated
TD-IRMs shows that the intensity of the remanence

of this component decays to zero at 575 °C, approxi-
mately the maximum unblocking temperature of mag-
netite (Dunlop and Özdemir, 1997). Along with this
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micrite and turbidite facies; LAP, linear acquisition plot; GAP, gradient acquisition plot. In the LAP and GAP diagrams open squares
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major component, there exists a minor high coercivity
phase (B1/2 > 0.5 T). This is interpreted as goethite, a
secondary Fe-oxyhydroxide mineral commonly
formed at the expense of primary magnetite in carbon-
ate rocks (Van Der Voo and Torsvik, 2012).

The pink–red calciturbidites are characterised by
contrasting low (B1/2 = c. 40 mT) and high (B1/2 >
0.5 T) coercivity components (Figure 3A). The IRM
intensity of the low coercivity phase decreases to zero
at ≥ 600 °C, higher than expected for pure magnetite,
likely indicating some degree of oxidation. Both the
0.4 and 2.4 T branches of the TD-IRMs decay abruptly
to zero between 625 °C and 675 °C, in agreement with
the presence of well-formed hematite grains (Dunlop
and Özdemir, 1997). The large decrease of IRM
observed between c. 350 °C and 450 °C is interpreted
as deriving from the inversion of maghemite (γFe2O3)
to hematite (αFe2O3). Very similar TD-IRM curves
have been obtained from the Paleogene hemipelagic
red beds of the Belluno Basin (northeastern Italy; Dal-
lanave et al., 2010, 2012a, 2012b) and from the Plio-
Pleistocene marine sediments of the Rio Dell formation
(northern California; Kodama, 1982). In these two
cases, the maghemite–hematite transition has been
observed at slightly lower temperatures, approximately
between 300 °C and 400 °C. However, the temperature
of γFe2O3 to αFe2O3 inversion depends on factors like
grain size, degree of oxidation, and incorporation of
impurity ions into the lattice (Dunlop and Özdemir,
1997). Overall, rock magnetic data indicate magnetite
associated with minor goethite in the micritic lime-
stone, and hematite, associated with maghemite, in
the pink–red calciturbidite.

Paleomagnetism and magnetostratigraphy

As for rock-magnetic properties, vector end-point dia-
grams for the micrite and the turbidite samples behave
differently. Both are characterised by a magnetic
overprint component ‘A’ of the NRM, isolated up to
150–200 °C in micrite samples and up to 250 °C in cal-
citurbidite samples (Figure 3B–F). The ‘A’ overprint is

statistically directed north–northeast-up at both
Denouel and Ilôt Brun and it is largely influenced by
the recent geomagnetic field (Figure 3G).

In 14 specimens from the Denouel micrite, the ‘A’
overprint is followed by a mid-temperature ‘B’ com-
ponent isolated between 200 and 400 °C. For nine
specimens, it is possible to interpolate a line through
the demagnetisation points (Figure 3B); in the other
five specimens, the points follow a curved path better
interpolated by a plane (Figure 3C,D). We combined
planes and linear directions following the protocol of
McFadden and McElhinny (1988). The obtained
mean ‘B’ direction is pointing southeast-down
(Figure 3H; Table 1). At Ilôt Brun, between 200 °C
and 400 °C, the demagnetisation points are not organ-
ised in a coherent linear or curved path, but rather are
grouped in a restricted space (Figure 3E), hence the ‘B’
component could not be successfully isolated. From
400 °C to a maximum temperature of 600 °C micrite
samples show a characteristic remanent magnetisation
(ChRM) linearly decaying to zero (Figure 3B–E). The
maximum unblocking temperature ranging between
575 °C and 600 °C suggests magnetite as carrier of
the ChRM, in agreement with the rock-magnetic
analyses. The transition from micrite to pink–red
calciturbidite is accompanied by an increase in NRM
intensity (Figure 4). In the specimens from the calcitur-
bidites, the ChRM component has been isolated
straight after the ‘A’ overprint between 250 °C and
650 °C (Figure 3F). This temperature range indicates
hematite as the carrier of the magnetisation, as
expected from the rock-magnetic analyses.

The orientation of the ChRM directions at Denouel
and Ilôt Brun is different, and they are thus plotted sep-
arately. At Denouel directions are organised in two
modes steeply pointing northeast-up and southwest-
down and departing from antipodality by 15.6°
(Figure 3I, Table 1). Performing the statistical test pro-
posed by Watson (1983), the two distribution modes
result statistically antipodal (Vw= 4.3, Vcritical = 6.3;
see also Tauxe, 2010 for details on the method), passing
the reversal test with a class ‘C’ of McFadden and

Table 1. Average paleomagnetic directions from Denouel and Ilôt Brun.

N

Geographic coordinates Tilt-corrected coordinates

k α95 Dec Inc k α95 Dec Inc

DA 21 29.74 5.93 22.9 −22.4 29.74 5.93 22.9 −22.4
DB 14 20.55 8.64 130.9 40.4 20.55 8.64 130.9 40.4
DCN 13 7.95 14.99 75.2 −71.6 7.95 14.99 75.2 −71.6
DCR 11 12.23 12.92 207.4 85.2 12.23 12.92 207.4 85.2
DCNR 24 9.84 9.94 66.7 −78.6 9.84 9.94 66.7 −78.6
IBA 24 17.45 7.29 8.9 −39.8 17.45 7.29 349.3 −53.1
IBCN 7 7.21 22.09 26.2 −52.9 7.21 22.09 357.9 −70.3
IBCR 19 27.84 6.48 167.6 65.8 27.84 6.48 116.1 65.0
IBCNR 26 14.41 7.74 180.4 63.7 14.41 7.74 308.2 −68.3
Note: N = number of averaged components; k = precision parameter of Fisher (1953) for average paleomagnetic directions; α95 = 95% cone of confidence of
Fisher (1953) for average paleomagnetic directions; Dec, Inc = declination, inclination; DA, DB = paleomagnetic component ‘A’ and ‘B’ from Denouel; DCN,
DCR, DCNR = up-pointing, down-pointing, and all ChRM components (flipped to a common up-pointing polarity) from Denouel, respectively; IBA = paleo-
magnetic component ‘A’ from Ilôt Brun; IBCN, INCR, INCNR = same as ChRM directions from Denouel.
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McElhinny (1990). At the Ilôt Brun section the two
modes point steeply north-up and southeast-down,
departing from antipodality by 23° (Figure 3J,
Table 1). In this case, the Watson’s reversal test fails
(Vw= 7.7, Vcritical = 7.4), likely because of the high
level of noise of some demagnetisation paths, together
with the small number of north-up directions. We
minimised the bias between the two modes calculating
the average of all ChRM directions plotted on a com-
mon north-up pointing polarity.

For each ChRM direction we calculate the virtual
geomagnetic pole (VGP). We then used the latitude

of each VGP relative to the mean paleomagnetic

(north) pole to determine the magnetic polarity strati-

graphy (Lowrie and Alvarez, 1977). VGPs approaching

90°N and 90°S are interpreted as representing normal

and reverse magnetic polarity, respectively. Reversals

are located by averaging the position of two adjacent

samples with different polarities. At Denouel, above a

single reverse polarity sample, a normal polarity inter-

val spans the strata from 0.30 to 6.50 m, whereas the

overlying section is of reverse polarity (Figure 4). At

Ilôt Brun a single normal-reverse (upward) transition

is recorded at 4.98 m. Paleomagnetic data referred to

each sample are listed in Table S1.

Anisotropy of magnetic susceptibility

The shape and orientation of the AMS tensor helps to
determine possible strain on sedimentary rocks, which
may have affected the ChRM directions (Cogné and
Perroud, 1985; Lowrie et al., 1986; Jackson et al.,
1993; Parés et al., 1999). For compacted but unde-
formed sedimentary rocks, the AMS tensor is normally
oblate (k1 ≈ k2 >> k3), with the k3 axis perpendicular to
the bedding plane (Parés, 2015). However, the presence
of tectonic stress can significantly alter the AMS fabric
(Parés et al., 1999; Borradaile and Jackson, 2004). Ulti-
mately, when deformation is pervasive and cleavage is
visible in the field, the AMS tensor will assume an
oblate to prolate shape with the k3 axis parallel to the
shortening direction (Parés et al., 1999). We selected
seven specimens from Denouel because pelagic lime-
stones, compared with clay-rich turbidites, are less
affected by primary detrital fabric and can thus better
record the effect of any strain related to post-deposi-
tional processes (Martín-Hernández et al., 2004). The
AMS anisotropy degree P′ is systematically lower
than 1.1 (Table 2), typical of not strongly deformed
sediments (Cifelli et al., 2005). However, the average
tensor is clearly prolate in shape, indicating a lineated
magnetic fabric, as revealed by the L (=k1/k2) vs. F
(=k2/k3) diagram of Flinn (1962) (Figure 5(A)). The
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orientation of the AMS tensor of each sample and the
mean orientation of the axes (with 95% confidence
boundaries) are shown in Figure 5(B) (see also
Table 2). This AMS fabric is in agreement with the
presence of pressure solution cleavage, associate with
calcite-filled tension cracks, observed in the micritic
limestone, and generally with similar pressure solution
structures widespread in the Nouméa Peninsula.

Calcareous nannofossil biostratigraphy

Samples from both sections contain impoverished cal-
careous nannofossil assemblages of low diversity and
abundance. The preservation is generally moderate,
which means that specimens exhibit some etching,
recrystallisation or both, and primary morphological
features are somewhat altered. This could be due to
the tectonically induced pressure solution observed in
the rock. However, most samples contain some

nannofossils that can be identified to species level
(Plate A1). Identification of standard well-known nan-
nofossil biohorizons is complicated by low abundance
or an absence of marker species. Nevertheless, some
of the data, such as the stratigraphic ranges of index
species and the presence of auxiliary taxa, allow a rela-
tively well-defined framework that helps the corre-
lation of the magnetic polarity stratigraphy with the
GPTS. We avoid using these data to provide tie points
for the age model because they likely represent delayed
lowest occurrences or anticipated highest occurrence of
taxa. The only exception is the first appearance of Sphe-
nolithus cuniculus, which is used to approximate the
base of Zone CNE11 (see discussion below).

At Denouel, the total abundance of calcareous nan-
nofossils only occasionally exceeds 20 specimens/mm2

(Figure 6). The absence of Tribrachiatus orthostylus,
combined with the absence of Toweius spp., and the
presence of Reticulofenestra spp./Dictyococcites spp.,
Coccolithus crassus (up to 8.63 m) and Discoaster kuep-
peri indicates that the base of the section is within Zone
CNE5 (= Zone NP13). The presence of C. crassus and
D. kuepperi through most of the Denouel record, and
the presence of a single specimen ascribable to Nanno-
tetrina cristata (which defines the base of Zone CNE8;
Agnini et al., 2014) at 11.43 m, allows us to correlate
the section to undifferentiated Zones CNE5–CNE6–
CNE7 (Zone NP13 to NP14) to Zone CNE8 (Figure 6).
Unfortunately, the bases of Zones CNE6 and CNE7
cannot be identified because the key marker species
are extremely rare (a single specimen of Discoaster
lodoensis) or absent (D. sublodoensis).

For the Ilôt Brun section, calcareous nannofossil
abundance increases upward, reaching values >
100 specimens/mm2 (Figure 6). The presence of a
single specimen of short-range index species Chiasmo-
lithus gigas at 13.8 m (sample nob27) constrains
this overlying interval to Zones CNE10–CNE11 (=
Subzone NP15b). A lower datum, the Base Spheno-
lithus furcatolithoides morphotype A (8.50 m; sample
nob21; Figure 6) helps to refine the biostratigraphic
framework.

This datum occurs less than 20 kyr above the base of
Zone CNE10 (Agnini et al., 2014), and we therefore use

Table 2. Anisotropy of magnetic susceptibility (AMS) tensor parameters.
Name K (10−5 SI) L F P′ T k1 Dec k1 Inc K2 Dec k2 Inc k3 Dec k3 Inc

nou01 1.15 1.04 1.015 1.058 -0.441 76.3 37.4 178 14.8 285.6 48.8
nou03 1.47 1.063 1.007 1.078 -0.801 63.9 17.5 160.2 19 294.3 63.7
nou04 1.16 1.076 1.013 1.097 -0.701 51.9 9.5 286.1 74.1 144.1 12.7
nou05 1.07 1.082 1.005 1.098 -0.889 55.3 21.5 149.5 10.3 263.6 65.9
nou08 1.11 1.074 1.007 1.091 -0.819 56.9 32.4 151.8 7.8 253.7 56.4
nou09 1.23 1.069 1.007 1.085 -0.814 45.6 16.6 149.8 39.5 297.8 45.8
nou11 0.95 1.09 1.003 1.107 -0.926 33.0 12.6 294.6 33.2 140.8 53.8
nou* 1.16 1.071 1.008 1.088 -0.770 51.6 20.2 154.3 30.7 293.7 51.9

Standard deviation (K, L, F, P′′′′′, T) Confidence angles (k1, k2, k3)
nou* 0.162 0.016 0.004 0.016 0.162 13.6/6.6 25.2/13.5 25.2/6.1

Note: K = magnetic susceptibility, L = lineation, F = foliation, P′= corrected anisotropy degree, T = shape factor (Jelínek, 1981); k1, k2, k3 Dec and Inc = decli-
nation and inclination of the AMS tensor axes; nou*= average AMS tensor; confidence angles describe the ellipses around the average axis direction fol-
lowing the approach of Jelínek (1978); all angles are in degrees (°).
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Plate A1. Microphotographs of Eocene calcareous nannofossils from Denouel (1–15) and Ilôt Brun (16–30) sections (New Caledo-
nia). Scale bar, 5 μm. Denouel section: 1, Coccolithus pelagicus (Wallich, 1877) Schiller, 1930. Crossed nicols. Sample nou06. 2, Coc-
colithus crassus Bramlette & Sullivan, 1961. Crossed nicols. Sample nou06. 3, Ericsonia formosa (Kamptner, 1963) Haq 1971. Crossed
nicols. Sample nou06. 4, Toweius magnicrassus (Bukry, 1971) Romein, 1979. Crossed nicols. Sample nou06. 5, Girgisia gammation
(Bramlette & Sullivan, 1961) Varol, 1989. Crossed nicols. Sample nou06. 6, Reticulofenestra dictyoda (Deflandre in Deflandre & Fert,
1954) Stradner in Stradner & Edwards, 1968. Crossed nicols. Sample nou06. 7, Dictyococcites hesslandii Haq, 1971. Crossed nicols.
Sample nou06. 8, Sphenolithus moriformis (Bronnimann & Stradner, 1960) Bramlette and Wilcoxon, 1967. Crossed nicols. Sample
nou06. 9, Sphenolithus radians Delfandre in Grassé, 1952. Crossed nicols 0°. Sample nou06. 10, Sphenolithus radians Delfandre
in Grassé, 1952. Crossed nicols 45°. Sample nou06. 11, Zygrhablithus bijugatus (Deflandre in Deflandre & Fert, 1954) Deflandre,
1959. Crossed nicols. Sample nou06. 12, Discoaster kuepperi Stradner, 1959. Parallel light. Sample nou06. 13, Discoaster lodoensis
Bramlette & Riedel, 1954. Parallel light. Sample nou06. 14, Nannotetrina cristata (Martini, 1958) Perch-Nielsen, 1971. Parallel light.
Sample nou06. 15, Thoracosphaera heimii (Lohmann, 1920) Kamptner, 1944. Crossed nicols. Sample nou06. Ilôt Brun Section: 16,
Coccolithus eopelagicus (Bramlette & Riedel, 1954) Bramlette & Sullivan, 1961. Crossed nicols. Sample 208-1262A-15H-3,44. 17,
Chiasmolithus gigas (Bramlette & Sullivan 1961) Radomski 1968. Crossed nicols. Sample nob27. 18, Reticulofenestra minuta Roth,
1970. Crossed nicols. Sample nob27. 19, Reticulofenestra hillae Bukry & Percival, 1971. Crossed nicols Sample nob27. 20, Dictyococ-
cites aff. bisectus. Crossed nicols. Sample nob27. 21, Sphenolithus furcatolithoides (morph. A) Locker, 1967. Crossed nicols 0°. Sample
nob27. 22, Sphenolithus furcatolithoides (morph. A) Locker, 1967. Crossed nicols 45°. Sample nob27. 23, Sphenolithus furcatolithoides
(morph. A) Locker, 1967. Crossed nicols 0°. Sample nob27. 24, Sphenolithus furcatolithoides (morph. A) Locker, 1967. Crossed nicols
45°. Sample nob27. 25, Sphenolithus furcatolithoides (morph. A – Locker, 1967) transitional to Sphenolithus cuniculus (Bown, 2005)
Crossed nicols 0°. Sample nob31. 26, Sphenolithus furcatolithoides (morph. A – Locker, 1967) transitional to Sphenolithus cuniculus
(Bown, 2005) Crossed nicols 0°. Sample nob31. 27, Sphenolithus spiniger Bukry, 1971. Crossed nicols. Crossed nicols 0°. Sample
nob27. 28, Sphenolithus spiniger Bukry, 1971. Crossed nicols. Crossed nicols 45°. Sample nob27. 29, Zygrhablithus bijugatus (Defla-
ndre in Deflandre & Fert, 1954) Deflandre, 1959. Crossed nicols. Sample nob27. 30, Discoaster barbadiensis Tan, 1927. Parallel light.
Sample nob27.
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it to approximate the base of Zone CNE10 (= NP15b).
A single specimen ascribable to Sphenolithus cuniculus
is observed at 20.97 m (sample nob35) almost at the
same level where a decrease in abundance (sporadic
occurrence) of Sphenolithus furcatolithoides morpho-
type A is recorded. This isolated occurrence indicates
the proximity of the CNE10/CNE11 Zones transition
(mid-upper part of Subzone NP15b), where a sporadic
occurrence of S. cuniculus, preceding its common
occurrence, has been observed in other reference
records (see figure 13 in Agnini et al., 2014). In sum-
mary, the Ilôt Brun section spans from undifferentiated
Zones CNE8–CNE9 (upper part of Zone NP14–Sub-
zone NP15a) to CNE11 (Subzone NP15b).

Radiolarian biostratigraphy

Radiolarian preservation is moderate to poor in the
samples investigated. Radiolarian tests are recrystal-
lised and often broken or partly dissolved (e.g. pore-
frames are barely recognisable). Abundance varies
greatly through the composite section but shows an
overall antithetical pattern to nannofossil occurrence
(Figure 6). Samples with low nannofossil abundance
tend to be rich in radiolarians and vice versa. The radi-
olarian assemblages are moderately diverse and,
although lacking several primary index species, include

several species useful for biostratigraphy (Plate A2).
The assemblages are correlated to the Eocene zones
established by Riedel and Sanfilippo (1970) and Fore-
man (1973), codified by Sanfilippo and Nigrini
(1998), and emended in part by Riedel and Sanfilippo
(1978) and Kamikuri et al. (2012).

Samples from the lower part of the Denouel section
(2.20–4.21 m) contain rare to few radiolarians. How-
ever, they can be correlated to Zone RP9 (Phormocyrtis
striata striata Zone) based on the presence of second-
ary marker species Phormocyrtis striata striata (RP9–
RP14) and the absence of the primary marker species
for Zone RP10, Theocotyle cryptocephala. The primary
marker for Zone RP9, Theocorys anaclasta clasta, has
not been confidently identified in this study. The
presence of species such as Lychnocanium bellum
(RP8–RP19), Theocotyle nigriniae (RP8–RP12), Lamp-
tonium fabaeforme fabaeforme (RP7–RP12) and
Theocotylissa ficus (RP8–RP16) supports correlation
with RP9 (Figure 6, Table S6).

The upper Denouel section (4.51–13.65 m) contains
abundant radiolarians, except for one sample (4.85 m).
This interval (Figure 6) is correlated with Zones RP10
(Theocotyle cryptocephala Zone) and RP11 (Dictyo-
prora mongolfieri Zone). The base of RP10 is tenta-
tively placed at 4.51 m (sample nou11) at the lowest
occurrence of T. cryptocephala (Table S4). However,
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Plate A2. Photographic images of selected radiolarian species. All scale bars = 100 µm. 1–4, Bekoma? sp. A (1: nou05; 2: nou15A; 3:
SEM image nou15A; 4: SEM image nou24); 5–7, Calocycloma? sp. A (5: nou11; 6: nou15A; 7: SEM image nou24); 8, Calocycloma
castum (nou15A); 9, Calocycloma ampulla (SEM image nou24); 10, Lamptonium fabaeforme fabaeforme (SEM image nou24); 11,
Lithochytris archaea (SEM image nou24); 12, Lithochytris vespertilio (nob01); 13–14, Podocyrtis acalles (13: nou19; 14: nou21);
15–16, Podocyrtis acalles transitional form to P. sinuosa (15: nou21; 16: SEM image nou24); 17, Podocyrtis aphorma (SEM image
nou24); 18, Podocyrtis papalis (SEM image nou24); 19–20, Podocyrtis sinuosa early form (19–20: SEM images nou24); 21, Rhopa-
locanium ornatum (nou11); 22, Dictyoprora mongolfieri (nob04); 23–26, Theocotyle cryptocephala (23: nou11; 24: nou15A; 25:
nou20; 26: SEM image nou26); 27–28, Theocotyle nigriniae (27: nou09; 28: SEM image nou24); 29–30, Theocotylissa ficus (29:
nou09; 30: SEM image nou15A); 31, Thyrsocyrtis tensa (SEM image nou24); 32, Thyrsocyrtis hirsuta (SEM image nou24); 33, Periph-
aena tripyramis triangula (SEM image nou24); 34–35, Pseudostaurolonche khilmiliensis (34: SEM image nou15A; 35: nou15A).
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because the marker species is poorly preserved and
very rare, it is possible that the base of the RP10 is
lower in the section. Other useful markers, such as
Lithocyclia ocellus gr. and Theocotyle venezuelensis,
have not been identified in this study. The base of
RP11 is placed at 12.15 m (sample nou25) directly
above the highest occurrence of Lithochytris archaea
at 11.75 m (sample nou24). This is a well-defined
datum for the top of RP10 in this section, whereas
the primary marker for the base of RP11, Dictyoprora
mongolfieri, is very rare and with only two specimens
recorded higher in the succession. A secondary
datum for the base of RP11, the lowest occurrence of
Podocyrtis sinuosa, is also recorded at 11.75 m. Other
marker species for RP11, such as Podocyrtis dorus,
Zealithapium plegmacantha, Lamptonium fabaeforme
constrictum and Theocotyle conica, have not been
identified in this study.

The lower part of the Ilôt Brun section (0–1.78 m)
contains few to common radiolarians and several
species that are present in the Denouel section are
absent (e.g. Calocycloma castum, Theocotylissa ficus,
Theocotyle nigriniae, Lamptonium f. fabaeforme). The
presence of T. cryptocephala in sample nob01 (0.0 m)
indicates that the base of this section is in the lower
part of Zone RP11 because this species has its highest
occurrence near the base of the zone. The two overlying
samples (nob02 and nob03 at 0.23 m and 0.68 m,
respectively) in the lower part of the Ilôt Brun section
are correlated to Zone RP11 because the primary mar-
ker for the base of Zone RP12 (Thyrsocyrtis triacantha
Zone), Eusyringium lagena, is not observed. A possible
secondary marker for the base of Zone RP12,
R. ornatum, has an isolated, single occurrence at
4.51 m (sample nou11) and is found in two samples
of the Ilôt Brun section (nob04 and nob05 at 1.28 m
and 1.78 m, respectively; Figure 6). However, the base
of R. ornatum has been reported as early as lower
Zone RP10 (Sanfilippo and Blome, 2001) and is not
considered a reliable marker. The absence of several
other species with lowest occurrences in Zone RP12,
such as Thyrsocyrtis triacantha and Podocyrtis phyxis,
also supports correlation with Zone RP11. The rest of
the Ilôt Brun section (i.e. from c. 2.0 m up section) is
barren of radiolarians or contains only unidentifiable
fragments (Figure 6).

Based on our revised calibration of radiolarian data
(Table S6; after Norris et al. 2014), the following ages
can be applied to the radiolarian events and zone
boundaries described above: base RP10 (48.6 Ma)
and base RP11 (47.41 Ma). Neither the base of RP9
(50.05 Ma) nor the base of RP12 (45.24 Ma) have
been identified in the composite Denouel–Ilôt Brun
section.

This time interval has relatively few key data in the
southwest Pacific radiolarian zonation (Hollis et al.
2005) but can be broadly correlated with Zone RP10

[SP] (c. 50 to c. 45 Ma), based on the presence of
D. mongolfieri and the absence of E. lagena. The high-
est occurrence of P. aphorma is a secondary datum for
the base of this zone (Hollis et al., 2005). However, this
species occurs sporadically through the lower part of
the composite section, with its highest occurrence at
the base or the Ilôt Brun section (nob01). Because the
underlying samples lack Buryella tetradica, a distinctive
species in Zone RP9[SP], we suspect that this occur-
rence indicates that P. aphorma persisted longer in
this lower latitude setting than it did in southern south-
west Pacific (Hollis et al. 2005).

Discussion

Age of the composite section

The age model is based mainly on magnetostrati-
graphic tie points. Biostratigraphic data help to corre-
late the magnetic polarity reversals with the GPTS
and to refine the age model, for example in the upper
part of the Ilôt Brun section. In some cases, biostrati-
graphic data are inconsistent with the proposed age
model. For radiolarians, this is more likely due to rela-
tively poor calibration of events with the geological
time scale rather than representing true range exten-
sions in this section. For nannofossils, isolated occur-
rence of specimens ascribable to index species below
and above their established species range (Agnini
et al., 2014) represents the sporadic occurrence or the
uneven tail of distribution that sometimes occur before
or after the base or top datums. Specifically, in the case
of N. cristata, the presence of a single specimen in a
single sample is considered an unreliable datum.

Calcareous nannofossil biostratigraphy indicates
that the sediment deposited at Denouel and Ilôt Brun
spans calcareous nannofossil zones CNE5–CNE11
(NP13–NP15) of Agnini et al. (2014), or from the
late Ypresian through early Lutetian, with an age
range of 49.0–44.2 Ma (GTS2012). This age range is
supported by the radiolarian biostratigraphy, which
indicates that the composite record up to the basal
2 m of the Ilôt Brun section spans zones RP9–RP11
(50.5–45.3 Ma).

The top of Tribrachiatus orthostylus and the base of
Reticulofenestra spp./Dictyococcites spp. are known to
occur at the base of Chron C22r and in the upper
part of Chron C23n, respectively (Agnini et al., 2014;
Westerhold et al., 2017). Thus, the absence of
T. orthostylus and the presence of Reticulofenestra
spp./Dictyococcites spp. through the composite section
indicates that the basal reverse magnetic polarity inter-
val can be correlated to upper Chron C22r (Figure 6).
Similarly, the presence of Coccolithus crassus and Dis-
coaster kuepperi in the overlying part of the composite
section suggests the normal through reversed interval
correlates with Chrons C22n and C21r (Agnini et al.,
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2014). The base of Nannotetrina cristata at 11.43 m
supports this correlation, as this datum is found to
occur in the middle of Chron C21r (Molina et al.,
2011; Agnini et al., 2014). Based on these results, the
magnetic polarity sequence at Denouel is inferred to
extend from upper Chron C22r to C21r (Figure 6).

At Ilôt Brun, the presence of Sphenolithus spiniger
from 2.34 m and Sphenolithus furcatolithoides mor-
photype A from 8.50 m are key stratigraphic con-
straints. These data are known to occur within Chron
C21n and at the base of Chron C20r, respectively
(Agnini et al., 2014). Thus, the normal–reverse
sequence in this section is correlated to Chrons
C21n–C20r (Figure 6). This correlation is supported
by the presence of Sphenolithus cuniculus, the base of
which is commonly reported in the mid-upper part
of Chron C20r (Agnini et al., 2014), and is identified
here near the top of the section. The Ilôt Brun spans
from the upper part of Chron C21n to possibly most
of Chron C20r.

Origin of the natural remanent magnetisation

Spreading in the Tasman Sea, which separated north-
ern Zealandia from Australia, ended at magnetic
anomaly 24 (Hayes and Ringis, 1973; Gaina et al.,
1998), c. 53 Ma (Ogg, 2012). Thus, deposition of sedi-
ments at Denouel and Ilôt Brun occurred well after
Tasman seafloor spreading ceased. This allows us to
compare the paleomagnetic inclination of the ‘B’ and
‘ChRM’ components of the NRM from Denouel and
Ilôt Brun with the expected paleomagnetic inclination
calculated from the 50–10 Ma Australian synthetic
apparent polar wander path (Torsvik et al., 2012).
We use only the inclination because samples come
from two blocks that are detached from the basement,
and paleomagnetic declination are hence not
significant.

Component ‘B’ of the NRM from Denouel has a
single mode pointing southeast-down with a mean
inclination of 40.4°. The associated 95% cone of confi-
dence envelopes the expected inclinations calculated
from the 10, 20 and 30 Ma reference poles (respectively
42.5°, 45.8° and 50.2°; Figure 3G). In New Caledonia,
the last phases of obduction occurred at the end of
the Eocene (c. 34 Ma; Cluzel et al., 1998; Sevin et al.,
2012). Tectonic and orogenic events often promote
the formation of magnetic overprint (Kirscher et al.,
2013). Component ‘B’ thus may have acquired during
the last phases of the obduction under a reverse
(down-pointing) geomagnetic field.

The ChRM directions from Denouel, organised in
two modes statistically antipodal, have a mean incli-
nation of 78.6°, which is 26.5° steeper than the expected
inclination (53.1°) calculated averaging the 40 Ma and
50 Ma reference poles (Figure 3I). Primary depositional
processes that could have caused such paleomagnetic

steepening include slumping (Cronin et al., 2001;
Schwehr and Tauxe, 2003) or deposition of steeply
clinostratified strata. Both these options can be
excluded because the micritic limestones from Denouel
were deposited in pelagic conditions and no evidence
of slumping is visible in the field. It is more likely
that ChRM directions deviated during a compressional
phase related to the obduction. AMS prolate fabric and
field observation indicate the presence of strain,
derived by plastic deformation of the limestones during
tectonic stress. Reorientation of magnetic remanence
during plastic deformation is a long-known phenom-
enon, often described in terms of ‘nonmaterial line’
(Cogné and Perroud, 1985; Lowrie et al., 1986; Borra-
daile and Jackson, 2004). However, we contend that
the polarity reversals are primary and reliable. Labora-
tory experiments show that primary remanent magne-
tisation carried by magnetite survives up to greenschist
metamorphic facies (Till et al., 2010), well above any
pressure–temperature conditions experienced by the
Nouméa sediments. Furthermore, the directional
steepening appears to be pervasive and constant
throughout the section, deviating both up- and
down-pointing directions of a similar amount, as tested
by a positive reversal test.

Sediments from Ilôt Brun are characterised by simi-
lar behaviour. Here the mean direction has an incli-
nation of 68.3°, that is 16.2° steeper than the 52.1°
expected (Figure 3J). Here, steepening of the remanent
magnetisation is, however, less severe than at Denouel.
This is because the ChRM component is carried mainly
by detrital hematite. Because of the shape of the grains,
detrital hematite tends to acquire a magnetic rema-
nence characterised by (sometimes strong) inclination
shallowing of paleomagnetic directions (Tauxe and
Kent, 1984, 2004; Dallanave et al., 2009, 2012b;
Kirscher et al., 2014). This primary detrital fabric
may have buffered the effect of the subsequent tectonic
steepening of paleomagnetic directions. Also at Ilôt
Brun, the presence of a reversal and quasi-antipodal
ChRM directions gives us confidence in the primary
origin of the magnetisation and the reliability of the
magnetic polarity correlation. The stratigraphic conti-
nuity of the two blocks suggests that they belong to
the same original large olistolith (Maurizot, 2011).
However, the average ChRM declinations from the
two sections have an angular difference of c. 120°
(Figure 3I,J; Table 1). This implies that the two blocks
disconnected and rotated separately at some stage
during inclusion in the late Eocene sediments.

The micrite–turbidite transition

The age of the micrite–turbidite facies transition across
Grande Terre is crucial to understanding regional tec-
tonics. An estimate of the compacted sediment
accumulation rate (SAR) at Denouel can be made
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through linear interpolation of Chron C22n with the
GPTS (Figure 7). This results in a SAR of the Denouel
sediments of c. 8 m/Myr. By applying this correlation,
we observed some mismatch with the biostratigraphic
data. In particular, the base of N. cristata appears to
be younger in the Denouel section than in the reference
records. The first occurrence of this taxon is, however,
characterised by diachroneity (see, e.g. Agnini et al.,
2014 and Molina et al., 2011). Using this event as a
tie-point we would also expect the presence of the
C21r/C21n Chron boundary at the upper part of the
Denouel section, which is not the case. We thus con-
sider only the magnetic-polarity based estimation of
the SAR. Extending this SAR up to the Ilôt Brun
micrite and through the C21n/C20r Chron boundary
indicates that the increase of terrigenous input started
c. 45.6 Ma, and the micrite–turbidite boundary is dated
c. 45.3 Ma. This age model results also in a c. 1 Myr gap
(c. 47.5 Ma and 46.5 Ma) between the Denouel and Ilôt
Brun records, in agreement with the biostratigraphic
data. It is reasonable to assume an increase of the
SAR with the inception of the calciturbidite

sedimentation. Because there are no magnetic polarity
reversals in this part of the Ilôt Brun section, we esti-
mated the SAR using the presence of S. cuniculus,
resulting in a value of 10.2 m/Myr (Figure 7). This bio-
horizon is, however, defined by a single sample, and the
estimate SAR may not be particularly reliable.

Implications for regional tectonic evolution

The calciturbidites described here are inferred to have
formed within an accretionary complex during sub-
duction within the South Loyalty Basin (Maurizot,
2011, 2013; Cluzel et al., 2012a; Maurizot and Cluzel,
2014). The shift from pelagic to turbiditic sedimen-
tation requires the formation of a slope sufficient to
sustain sediment flow (Meiburg and Kneller, 2010).
Furthermore, the clay and magnetic mineral assem-
blage within the calciturbidites indicates that emerged
land was a source of part of the terrigenous input,
suggesting considerable uplift (i.e. form bathyal depth
to sea surface). Illite clays in the terrigenous fraction
likely derived from weathering of uplifted sedimentary
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rocks (Islam et al., 2002; Schaetzl and Anderson, 2005).
In addition to the presence of clay, the mineralogical
association maghemite + hematite indicates subaerial
weathering. It is part of the ferrihydrite → maghemite
→ hematite pathway that is normally found in soils
forming under tropical or subtropical conditions,
characterised by a long dry season (Torrent et al.,
2006; Schwertmann, 2008).

What triggered the uplift? The early and middle
Eocene was a time of complex reorganisation in the
kinematics of the Pacific Plate circuit. This is revealed
by the bend in the Emperor–Hawaii seamount chain
between c. 50 and 47–42 Ma (Sharp and Clague,
2006; Tarduno et al., 2009), which is broadly coeval
with the Pacific–Farallon spreading ridge rearrange-
ment (c. 53–47 Ma; Caress et al., 1988; Madsen et al.,
2006), as well as the cessation of Tasman Sea spreading
at magnetic anomaly 24 (c. 53 Ma; Gaina et al., 1998).

Among the different scenarios outlined for the tec-
tonic evolution of the southwest Pacific (see Matthews
et al., 2015 for a review), Steinberger et al. (2004) pro-
posed the persistence of a passive margin between the
Lord Howe Rise and the Pacific plate until c. 45 Ma,
when subduction is envisaged to have started. Plate
motion reconstructions using different plate circuits
suggest little to no relative motion between the Lord
Howe Rise and the Pacific Plate between c. 74 Ma
and c. 55 Ma (Matthews et al., 2015). However, subduc-
tion can occur even in the absence of convergence
(Doglioni et al., 2006). A clear signature of regional
widespread Eocene convergent deformation, reverse
faulting and uplift has been detected by seismic reflec-
tors across the Tasman area, and has been labelled the
‘Tectonic event of the Cenozoic in the Tasman area’
(TECTA; Sutherland et al., 2017). This compressive
phase started directly after 53–48 Ma and is followed
by a deep (< 1 km) subsidence at c. 37 Ma (Collot
et al., 2008). It has been interpreted to be the precursor
of the subduction initiation of the Pacific Plate beneath
the Tonga-Kermadec arc (Sutherland et al., 2017).

Geological data from New Caledonia are in good
agreement with the timing of the Pacific circuit reor-
ganisation. The radiometric age of 56 Ma for the
onset of convergence obtained from pre-obduction
dikes in the ophiolites of New Caledonia (Cluzel
et al., 2006) is coeval with the cessation of Tasman
Sea spreading. In this context, the uplift inferred
from the Nouméa record may be linked to the
inclusion of the Norfolk Ridge in the bulge zone of
the east-plunging subduction of the South Loyalty
Basin beneath the North Loyalty Basin crust (Maurizot,
2011; Cluzel et al., 2012a). Alternatively, the uplift
could be a consequence of widespread convergence
related to the TECTA event. However, results from a
single section do not allow ruling out other processes
causing uplift and the steepening of submarine slopes
needed for the generation of calciturbidites (e.g.

normal faulting, dynamic topography). Further inte-
grated stratigraphic studies to determine the timing
of a similar switch in sedimentary regime in northern
New Caledonia will help establish if the shift to turbi-
ditic sedimentation is due to a southward migration
of the east-plunging Loyalty subduction or to the syn-
chronous regional large-scale uplift associated with the
TECTA event.

Possible influence of Eocene climate changes

The onset of calciturbidite deposition at c. 45.3 Ma lies
within a long-term phase of climatic cooling that begins
with the termination of the early Eocene climatic opti-
mum (EECO) at 48–49 Ma and concludes with ice-
sheet expansion in the earliest Oligocene at c. 34 Ma
(Zachos et al., 2008). There is some evidence for a sig-
nificant cooling step in the early middle Eocene associ-
ated with a 20–40 m fall in sea level (Pekar et al., 2005).
However, a glacioeustatic event of this magnitude is
unlikely to have been the sole cause for a switch from
pelagic to turbiditic sedimentation in a bathyal setting.

Conclusions

We identified a series of five magnetic polarity zones in
the composite Denouel and Ilôt Brun section. Calcar-
eous nannofossil and radiolarian biostratigraphies
indicate that the section spans, respectively, Zones
CNE5–CNE10 (Agnini et al., 2014) and RP9–RP11
(Sanfilippo and Nigrini, 1998). These biostratigraphic
results allow us to correlate the magnetic polarity
zones with Chrons C22r to C20r and infer an age
range of 49.5 to c. 44.2 Ma for the composite section.
This is the first time that a magneto-biochronology
has been successfully applied in an onshore Cenozoic
section in New Caledonia.

A shift from pelagic micritic limestone to calciturbi-
dites, which contain continental weathering products,
suggests uplift, emergence and development of a
slope of sufficient gradient to allow the development
of turbidity currents. This transition occurred 45.3
Ma and is inferred to correspond with the inception
of compressive deformation in New Caledonia, which
is consistent with other evidence for convergence caus-
ing the stacking of Nappes onto the Norfolk Ridge
between 54 Ma and 34 Ma.

Our analysis is limited to a single section and may
not be representative of the entire northern Zealandia.
Integrated stratigraphic study of other records from
New Caledonia will help to test tectonic models for
the region (Sutherland et al., 2010, 2017, Maurizot,
2011; Cluzel et al., 2012a).

Because much of this region is under the sea, ocean
drilling is needed to gauge the full extent and timing of
Eocene compressive deformation revealed by the seis-
mic profiles acquired in the Tasman area. This is a
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primary aim of IODP Expedition 371 (27 July to 26
September 2017, Figure 1A; Sutherland et al., 2016).
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