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Abstract— This paper deals with a general Multi-Day Con-
tainer Drayage Problem (MDCDP) that consists in assigning 
trucks to container transportation orders during several days. 
To this aim, a Mixed Integer Linear Programming problem 
is formulated: the model describes real problems taking into 
account the orders to be planned for several days, the types 
of the containers and the rest periods of drivers. In order 
to address real scenarios, a heuristic algorithm based on 
the rolling horizon approach is proposed. Some randomly 
generated MDCDP instances validate the heuristic algorithm 
and a case study of real dimensions shows the effectiveness of 
the proposed solution technique.

I. INTRODUCTION

Container logistics has become of basic importance in the
last two decades and in turn the short distance container 
transportation, both from an initial consignee to a terminal 
(seaport or railway hub station) and from a terminal to a final 
receiver performed by trucks [1]. This door-to-door service 
is usually referred to as container drayage service and it is 
responsible for a significant portion of the total transportation 
cost [2].

The Container Drayage Problem (CDP) has the following 
basic elements: a fleet of trucks with different characteristics; 
a set of truck depots; a set of orders, i.e., requests of moving 
a container. CDP deals with three-location routes: the starting 
location where the container is picked up, the intermedi-
ate location where the container is loaded or unloaded, 
the destination location where the container is delivered. 
Furthermore, many additional conditions must be complied 
with, concerning the matching of container type with truck 
characteristics, the service hours regulations for drivers, and 
the need for them to return empty to the depot at the end 
of service (which can encompass a day, a week or different 
periods). The set of the above elements makes the CDP very 
complex, to the point that it could be impossible to satisfy 
all the given orders with a limited sized fleet of trucks. This 
is why in practice decision makers can delay some orders

(possibly paying a penalty) or even refuse some of them
(thus giving up the relative income).

Given such elements, the objective in the CDP problem
is to determine which truck performs which order while
maximizing the number of assigned orders and minimizing
a given generalized cost function, which takes into account
the number of delayed orders and the total distance travelled
by a truck without any container, in order to move from
the previous to the following order required locations (these
movements involve pure costs for the truck company which
are not covered by orders revenues).

Real-life scenarios in container drayage are very complex
and are widely studied in the scientific literature (see for
instance [1] for a review). However, in order to make the
problem tractable, most papers introduce simplifications with
respect to real-world scenarios. For example, [3] and [4]
consider a single-day planning horizon, imposing that all
the trucks return to their own depot at the end of each
working day. Moreover, [5] and [6] assume that there are
always enough trucks to perform all the container trans-
portation orders. Finally, few papers take into account the
restrictions on the drivers daily duty hours, i.e., the service
hours regulations [7]. From the evidence of the real case
studies [8], [9], modelling and solving real cases to take care
of all the particular requirements represent open problems
that need new solution techniques and approaches.

This paper deals with general CDPs in order to allow
practitioners and decision makers to plan real scenarios. The
aim is helping the container trucking company operators in
their daily operations of assigning container transportation
orders to the available fleet of trucks. To this aim, a Mixed
Integer Linear Programming (MILP) formulation for the
Multi-Day CDP (MDCDP) is presented: the model describes
real problems taking into account the orders to be planned for
several days, the types of the containers and the rest periods
of drivers. The resulting MILP model is very complex
and only instances of small dimensions can be solved in
reasonable time. Therefore, in order to address real scenarios,
a heuristic algorithm based on the rolling horizon approach
[10] is proposed. Moreover, in order to validate the heuristic
algorithm, some MDCDP randomly generated instances are
solved by both the heuristic algorithm and the MILP model.
The results show that the heuristic methodology is able to
find good solutions. Finally, a case study of real dimensions
shows the effectiveness of the presented solution technique.

The paper is organized as follows. Section II describes the
considered problem and presents the MILP model. Section
III presents the heuristic algorithm and Section IV discusses
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some computational results and a real case study. Finally,
Section V draws the conclusions.

II. PROBLEM STATEMENT

In this section we formalize the MDCDP problem: given
a heterogeneous and limited fleet of trucks and a set of
container transportation orders, the objective is to optimally
assign orders to trucks by maximizing the number of as-
signed orders and minimizing a generalized cost function,
which takes into account the total distance travelled without
any container and the number of delayed orders.

The drayage problem is addressed in a deterministic
framework, i.e., order and truck parameters are assumed to
be known at the beginning of the planning horizon.
Trucks: each truck is the association among a driver, a tractor
and a trailer, and can carry only certain types of containers.
Each truck has its own depot, where it has to return without
load by a defined ending time. Truck operations can be
performed from a defined starting time and initial position.
Moreover, each truck driver should respect a minimum rest
period each night.
Orders: each container transportation order is characterized
by the following issues: i) three location types that have to be
visited in sequence, i.e., the starting location (type A) where
the container is picked up, the intermediate location (type B)
where the container is loaded or unloaded, the destination
location (type C) where the container is delivered; ii) for
each location, hard (for location types A and C) or soft (for
location type B) time windows to be complied with; iii) the
type of container to be transported.

A. Time Indexed Formulation

In order to model the system, we present a MILP formu-
lation of the MDCDP based on a Time-Indexed Formulation
where the decision variables are the discrete-time instants in
which the operations are scheduled. The planning horizon
includes Q days and each day is discretized into K time pe-
riods, each lasting 1 time unit (t.u.). Therefore, the planning
horizon starts at time 1 and ends at time T =K ·Q.

1) Sets: The following sets are defined:
T ={t | t = 1, 2, . . . , T}: set of time periods;
Gi = {sleepmin + K · (i − 1), sleepmin + K · (i − 1) +
1, . . . , sleepmax + K · (i − 1)}, i ∈ {1, 2, . . . , Q − 1}: set
of time periods during which it is allowed to begin the night
rest, where sleepmin (respectively, sleepmax) is the earliest
time (latest time) at which the night rest can start every day;
R={c | c = 1, 2, . . . , R}: set of available trucks;
S = {v | v = 1, 2, . . . , S}: set of orders to be performed
during the planning horizon;
Ss={v | v = S+1, S+2, . . . , S+Ss}: set of dummy orders
(Ss in number) modelling the night rest;
S∗=S ∪ Ss: total set of orders;
E={e | e = 1, 2, . . . , E}: set of container typologies;
Λ={λ |λ = A,B,C}: set of the location types.

2) Trucks: The trucks c ∈ R are characterized by the
following parameters:
rce∈{0, 1}: rce=1 if c can carry a container of type e∈E ;

[tstartc , tendc ] ⊆ T : time interval during which truck c can
perform operations;
d�cv: time distance (in t.u.) between the starting position of c
and location of type A of order v∈S;
d��cv: time distance (in t.u.) between location of type C of
order v∈S and the depot of truck c.

3) Orders: Each order v ∈ S∗ is characterized by the
following parameters:
sve∈{0, 1}: sve=1 if the type of container to be transported
in order v is e∈E . If v∈Ss, then sve=0;
[tλLv , tλUv ] ⊆ T : time window during which operations at
location λ∈{A,C} for order v must be performed;
[tBL
v , tBU

v +δBv ] ⊆ T : time window during which operations
at location B for order v must be performed, with δBv
maximum delay admitted at location B;
τλv : if λ=A, then τAv = 0 for each v ∈ S∗. If λ=B, then
τBv is the time distance (in t.u.) between location type A and
location type B of v for v∈S, while τBv =0 for v∈Ss. If
λ=C, then τCv is the sum of τBv and the time distance (in
t.u.) between location type B and location type C of v for
v ∈S, while τCv is equal to the length of the night rest for
v∈Ss;
dvw: time distance (in t.u.) between location type C of order
v and location type A of order w∈S, with w �=v.

4) Decision variables: The following decision variables
{0, 1} are introduced:
xcv(t) for c∈R, v∈S∗, t∈T : xcv(t)=1 if v is assigned to
c, which moves from its current position at time t;
zcvw(t) for c ∈R, v, w ∈ S, v �=w, t ∈ T : zcvw(t) = 1 if c
performs order w at time t immediately after order v;
pcvw(t) for c ∈ R, v ∈ S, w ∈ Ss, t ∈ T : pcvw(t) = 1 if c
performs a night rest w at time t, after having started order
v;
yc(t) for c∈R, t∈T : yc(t)=1 if c begins the night rest at
time t;
lcv for c ∈ R, v ∈ S: lcv = 1 if c performs v arriving at
location type B during the time window (tBU

v , tBU
v +δBv ];

z�cv for c∈R, v∈S: z�cv=1 if c performs v from its starting
position;
z��cv for c∈R, v∈S: z��cv=1 if c performs v and goes to its
ending position.

The objectives of the model are the following: i) maximiz-
ing the total number of orders performed during the planning
horizon; ii) minimizing the total distance travelled by all
trucks without any load; iii) maximizing the number of on
time orders.

Hence, the following multi-objective MILP problem is
formulated:

max [f1,−f2,f3] (1)

where

f1 = (
∑
c∈R

∑
v∈S

∑
t∈T

xcv(t))/S (2)

f2 = (
∑
c∈R

∑
u∈S

∑
v∈S

∑
t∈T

zcuv(t)·duv +
∑
c∈R

∑
v∈S

z�cv·d�cv+
∑
c∈R

∑
v∈S

z��cv·d��cv +
∑
v∈S

τC
v )/

∑
v∈S

τC
v (3)
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f3 =
∑
c∈R

∑
v∈S

lcv/S (4)

s. t.: ∑
c∈R

∑
t∈T

xcv(t) ≤ 1 ∀v ∈ S, (5)

∑
t∈T

t·xcw(t)−
(
d�cv·z�cv+

∑
t∈T

(t+ τC
v )·xcv(t)+

∑
u∈S
u�=v

∑
t∈T

duv·zcuv(t) +
∑
u∈Ss

∑
t∈T

τC
u ·pcvu(t)

)
≥

(∑
t∈T

zcvw(t)− 1

)
·M ∀c ∈ R, v ∈ S, w ∈ S, (6)

∑
t∈T

t·xcw(t)−
∑
t∈T

t·xcv(t) ≥
(∑

t∈T
pcvw(t)− 1

)
·M

∀c ∈ R, v ∈ S, w ∈ Ss, (7)

tstartc ·z�cw +
∑
v∈S

∑
t∈T

t·zcvw(t) ≤
∑
t∈T

t·xcw(t) ≤

tend
c ·z�cw +

∑
v∈S

∑
t∈T

t·zcvw(t) ∀c ∈ R, w ∈ S, (8)

∑
v∈S

∑
t∈T

t·pcvw(t) =
∑
t∈T

t·xcw(t) ∀c ∈ R, w ∈ Ss, (9)

∑
w∈Ss

∑
t∈T

pcvw(t) ≤
∑
t∈T

xcv(t) ∀c ∈ R, v ∈ S, (10)

∑
c∈R

∑
w∈S
w �=v

∑
t∈T

zcvw(t) ≤ 1 ∀v ∈ S, (11)

∑
c∈R

∑
v∈S
v �=w

∑
t∈T

zcvw(t) ≤ 1 ∀w ∈ S, (12)

∑
c∈R

∑
w∈Ss

∑
t∈T

pcvw(t) ≤ 1 ∀v ∈ S, (13)

∑
t∈T

t≤tstart
c −1

xcv(t) = 0 ∀c ∈ R, v ∈ S∗, (14)

d��cw·z��cw +
∑
v∈S

∑
t∈T

(t+ τC
w + dvw)·zcvw(t)+

∑
u∈Ss

∑
t∈T

t≤tCU
w

τC
u ·pcwu(t) ≤ tend

c ∀c ∈ R, w ∈ S, (15)

tλLw ·
∑
t∈T

xcw(t) ≤ d�cw·z�cw +
∑
t∈T

(t+τλ
w)·xcw(t)+

∑
v∈S

∑
t∈T

dvw·zcvw(t) +
∑
u∈Ss

∑
t∈T

t≤tλU
w

τC
u ·pcwu(t) ≤ tλUw

∀w ∈ S, c ∈ R, λ ∈ {A,C}, (16)

tBL
w ·

∑
t∈T

xcw(t) ≤ d�cw·z�cw +
∑
t∈T

(t+τB
w )·xcw(t)+

∑
v∈S

∑
t∈T

dvw·zcvw(t) +
∑
u∈Ss

∑
t∈T

t≤tBU
w

τC
u ·pcwu(t) ≤

tBU
w + lcw·δBw ∀w ∈ S, c ∈ R, (17)

sve·
∑
t∈T

xcv(t) ≤ rce ∀e ∈ E , c ∈ R, v ∈ S, (18)

∑
t∈Gi

yc(t) = 1 ∀c ∈ R, i ∈ {1, 2, . . . , Q}, (19)

∑
t∈T \Gi

yc(t) = 0 ∀c ∈ R, i ∈ {1, 2, . . . , Q}, (20)

∑
t∈Gi+1

tstart
c ≤t≤tend

c

t·yc(t)−
∑
t∈Gi

tstart
c ≤t≤tend

c

t·yc(t) ≤ K

∀c ∈ R, i ∈ {1, . . . , Q−2}, (21)
∑
v∈Ss

t∈Gi

t·xcv(t) =
∑
t∈Gi

t·yc(t) ∀c ∈ R, i ∈ {1, . . . , Q}, (22)

∑
v∈S

z�cv ≤ 1 ∀c ∈ S, (23)

∑
v∈S

z��cv ≤ 1 ∀c ∈ S, (24)

xcv(t) ∈ {0, 1} ∀c ∈ R, v ∈ S∗, t ∈ T , (25)
zcvw(t) ∈ {0, 1} ∀c ∈ R, v ∈ S, w ∈ S, t ∈ T , (26)
pcvw(t) ∈ {0, 1} ∀c ∈ R, v ∈ S, w ∈ Ss, t ∈ T , (27)
yc(t) ∈ {0, 1} ∀c ∈ R, t ∈ T , (28)
lcv ∈ {0, 1} ∀c ∈ R, v ∈ S, (29)

z�cv ∈ {0, 1} ∀c ∈ R, v ∈ S, (30)

z��cv ∈ {0, 1} ∀c ∈ R, v ∈ S. (31)

The three terms of the objective function are normalized
as follows: f1 (2) is the fraction of assigned orders over the
total number of orders; f2 (3) is the fraction of the actual
distance travelled by all trucks over the total length of all
orders; f3 (4) is the fraction of on time orders over the total
number of orders.

Constraints (5) are the assignment uniqueness constraints
and ensure that each order is performed at most by one truck.

Constraints (6)-(13) are the orders sequencing constraints.
In particular, (6) ensure that, if order w ∈ S is performed
immediately after order v ∈ S, then order w can not start
before order v has been completed. On the other hand, since
a dummy order w∈Ss can interrupt the previous real order
v, constraints (7) guarantee that the starting time of w is
subsequent to the starting time of v. Note that in constraints
(6) and (7) M ∈N+ is a sufficiently large number. Moreover,
constraints (8) (constraints (9)) ensure that order w∈S (w∈
Ss) can be executed after order v∈S by truck c∈R if w is
effectively assigned to c. Constraints (10) impose that order
w∈Ss can follow a real order v∈S on truck c∈R if v is
effectively assigned to c. Finally, constraints (11) and (12)
guarantee that each order can have at most one successor and
one predecessor, respectively, while constraints (13) impose
that a real order can be followed by at most one night rest.

Constraints (14) and (15) are the truck availability con-
straints and impose that each truck c ∈ R can perform its
operations only during the defined time interval [tstartc , tendc ].

Constraints (16) are the time constraints at location types
A and C, respectively, while constraints (17) are the time
constraints at location type B.

Constraints (18) are the container type constraints.
Constraints (19)-(22) are the service hours constraints, i.e.,

they guarantee that each driver has a night rest of τCv t.u.,
with v ∈Ss, every day of the planning horizon (except the
last one).
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Finally, constraints (23) and (24) are the depot constraints
and impose that each truck leaves its starting position and
returns back to its depot at the end of the planning horizon.

Constraints (25)-(31) are the binary variables definitions.

III. THE ROLLING HORIZON HEURISTIC

The presented MILP formulation is suitable for instances
of small dimensions, but it requires huge computational ef-
forts for large-scale instances. Therefore, in order to address
real scenarios, a heuristic algorithm based on the rolling
horizon approach [10] and on the weighted sum method for
multi-objective optimization [11] is introduced.

In particular, a two-step problem decomposition is applied.
First, the MDCDP is decomposed into Q single-day Sub-

Problems SP q , q=1, 2,. . . ,Q. Each sub-problem SP q uses
the information about day q−1 to update the starting position
and time availability for each truck of the fleet, and the
information about day q+1 to minimize the overall distance
travelled without any load.

Second, each single-day problem SP q is in turn decom-
posed into a sequence of interdependent Assignment Prob-
lems AP qh, each dealing with the same type of containers
and similar required visit times at location B.

In addition, a single objective function is obtained as an
appropriately weighted sum of the conveniently normalized
three terms of the MDCDP objective function.

In order to describe AP qh, the following notation is
introduced:
Ih ⊂ T : set of time periods included in the planning horizon
of AP qh;
Sqh ⊂ S: set of orders to be assigned by AP qh;
Rqh ⊂ R: set of available trucks considered in AP qh.

Problem AP qh has the following binary decision vari-
ables:
xcv ∈ {0, 1} for c ∈ Rqh, v ∈ Sqh, with xcv = 1 if v is
assigned to c. Obviously, it holds xcv=

∑
t∈Ih

xcv(t).
Trucks and orders are characterized by the same parame-

ters defined for the MILP formulation: for each AP qh, the
same symbols used for MILP are retained with the qh apex
added. For instance, tstart,qhc ∈ T is the operations starting
time of truck c for AP qh.

Moreover, the following additional elements are intro-
duced:

• �, length of the night rest (in t.u.);
• dutymax, maximum daily working time (in t.u.) for each

truck according to the service hours regulations;
• dutyqhc for c ∈Rqh, residual working time (in t.u.) of

truck c according to the service hours regulations during
time intervals Ih;

• mqh
cv for c∈Rqh and v∈Sqh considers the information

about the future orders: it is used to penalise the
assignment of order v to truck c if location C of v
has low demand at day q+1 for the types of containers
that can be carried by truck c. In practice, this element
allows avoiding to send a truck where it is not required
the day after.

At this point, in order to formalize the AP qh we define a
generalized cost matrix O ∈ RRqh×Sqh

where each element
ocv is a cost that takes into account: i) the distance travelled
without any load; ii) the number of the not delayed orders;
iii) the time distance between the order location C and the
depot; iv) the information about the future orders.

More formally, the element ocv of O is defined as follows
(note that for the sake of simplicity we omit the apex qh in
the elements of O and in the weights pi, i = 1, 2, 3, 4):

oc,v=

⎧⎪⎪⎨
⎪⎪⎩

p1 ·d
′qh
cv + p2 ·lcv+

p3 ·d
′′qh
cv + p4 ·mqh

cv

if the assignment of v
to c is feasible

∞ otherwise.

(32)

The feasibility of the assignment of order v to truck c is
evaluated according to constraints (14)− (18) of the MILP.

Remark 1. The weights pi for i=1, ..., 4 can have different
values for different AP qh problems. In particular, p3 is
increased as q increases in order to foster the return to the
depot; p4 is increased with h since the information about
the future orders are more important for the last orders of
the day.

Each assignment problem AP qh is formulated as fol-
lows [12]:

min
�

c∈Rqh

v∈Sqh

ocv · xcv (33)

s.t. �
v∈Sqh

xcv=1 ∀c ∈ Rqh, (34)

�
c∈Rqh

xcv≤1 ∀v ∈ Sqh, (35)

xcv ∈ {0, 1} ∀c ∈ Rqh, v ∈ Sqh. (36)

The objective function (33) converts the multi-objective
function of the MILP formulation using the defined cost
matrix O. Constraints (34) impose that each truck performs
one order, while constraints (35) ensure that each order is
assigned at most to one truck. Finally, (36) are the binary
variable definitions.

Given the above premises, the MDCDP is addressed by
the Heuristic Algorithm 1. An iterative procedure based on
the solution of h interdependent assignment problems AP qh

is applied to solve each sub-problem SP q , q=1, 2, . . . , Q.
Starting from an initial value of h = 1, the procedure
solves a sequence of assignment problems AP qh with h=
1, 2, ... until all the orders to be performed in the day q are
considered. In particular, in order to address each assignment
problem AP qh three preliminary steps are performed.

First, the trucks parameters are initialized. If q=1 and h=
1 then the parameters are set to the same values considered
in the MILP formulation, i.e., starting time and position at
the beginning of the planning horizon (Step 3). If q>1 and
h=1 then the parameters are set on the basis of the solution
of problem SP q−1 (Step 3), i.e., the starting time of a truck
for day q is equal to the time at which it completes the last
order of day q − 1, considering also the night rest of length
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� t.u., the starting position is the location of type C of the
last order of day q − 1, while the residual working time
is set to its maximum possible value. Finally, if q > 1 and
h>1 then the parameters are set on the basis of the solution
of problem AP q(h−1) (Step 8), similarly to what done for
the parameters update between problem SP q−1 and SP q ,
with the exception of the residual working time, decreased
according to the duration of the order assigned to the truck
by AP q(h−1).

Second, the subset of orders for AP qh are determined
(Step 4).

Third, the generalized cost matrix O is constructed (Step
6).

The assignment process for the sub-problem SP q is
completed if all the orders of day q are analysed (Step 5).
The Heuristic Algorithm 1 ends when all the Q days of the
planning horizon of the MDCDP are considered (Step 10).

Algorithm 1 Heuristic Algorithm
1: Set q=1.
2: Set h=1.
3: Initialize trucks parameters. Set dutyqh

c = dutymax. If q=1
then Set tstart,qhc = tstartc , d

′qh
cv = d

′
cv else Set tstart,qhc

and d
′qh
cv on the basis of the solution of problem SP (q−1) and

considering the night rest (� t.u.). If information about orders
for day q+1 is available then initialize mqh

cv .
4: Determine the new set of orders to be assigned. Determine

Sqh on the basis of the type of container to be transported and
the time requested at location B. Determine Rqh accordingly.

5: Check if the assignment process for q is completed. If Sqh =
∅ then Go to 10.

6: Determine the generalized cost matrix. Set the weights pi,
i=1, 2, 3, 4, on the basis of the actual values of h and q (see
Remark 1) and determine O.

7: Solve the assignment problem AP qh.
8: Update the trucks parameters. Set tstart,qhc , d

′qh
cv , dutyqh

c on
the basis of the solution of AP qh. If information about orders
for day q+1 is available then update mqh

cv .
9: Set h=h+1 and Go to Step 4.

10: Check if the assignment process is completed. If q < Q
then Set q=q+1 and Go to Step 2 else END.

IV. COMPUTATIONAL RESULTS

The multi-objective MILP formulation is implemented by
introducing a lexicographic order among the objectives [13]:
first, assign as many orders as possible (f1), since in this
way revenues for the transportation company increase; then,
minimise the distance travelled by trucks from one order to
the following one (f2), since it implies costs (driving time,
fuel, etc.) with no revenues; finally, maximise the number
of orders on time (f3), since delays may sometimes imply
penalties.

The MILP formulation is implemented in C++ by using
ILOG Concert 2.9 and CPLEX 12.5, and the proposed
heuristic is implemented in the MATLAB software environ-
ment. The two algorithms run on a 3.3 GHz Intel i7 980X
with 24 GB of memory. The CPLEX code uses three threads
and the CPU time limit is 3600 seconds.

A. Random Data Set

The MILP formulation and the Heuristic Algorithm 1 are
tested on 18 randomly generated instances.

In all instances, Q=5 days are considered, with K=96
time periods per day. In particular, for each instance, the
number R of trucks and the number S of orders are fixed. In
addition, the remaining parameters are randomly generated
as follows: given a set of Italian geographical locations on the
street map, location types A, B and C are randomly selected;
the time window for location type B is randomly generated
between 7 a.m. and 5 p.m.; the time windows for location
types A and C are defined according to the time windows
for B; the maximum admitted delay at location B is 1 hour;
all the orders have the same type of container. Moreover, for
each truck, the following assumptions are considered: the
starting time is 4 a.m. of day q=1 and the ending time is 12
p.m. of day q = 5; the depot location is randomly selected
among a given list of geographical locations; all trucks can
carry all types of containers. Finally, the length of the night
rest is of 9 hours.

Table I shows the results obtained by both the MILP
model and the Heuristic Algorithm 1 for the 18 instances.
In particular, # identifies the instance, R is the number of
trucks and S is the number of orders. The values of the
objective functions f1, f2 and f3 are reported both for the
MILP model and Algorithm 1 (remind that f1 and f3 have
to be maximised and f2 minimised). The CPU time is shown
only for the MILP model since the computation time of the
heuristic algorithm is less than 5 seconds in all cases.

In 10 cases the MILP model reaches the time limit without
finding the optimal solution: in 7 of them (denoted by an
asterisk in the CPU time) a feasible solution is found and
the relative figures for f1, f2 and f3 are reported. The exact
model shows good behaviour with 2 trucks and up to 25
orders. On the contrary, with 3 trucks only 2 out of 10
instances are solved to optimality and for 5 of them a feasible
solution is provided. It is worth to point out that, for different
instances with the same number of trucks and orders, the
MILP model sometimes shows quite different behaviours:
for instance, case 3 is solved to optimality in slightly more
than 1 minute, while case 4 requires almost 20 minutes. This
behaviour is typical of NP-hard problems: in particular, huge
symmetry features characterise the considered model.

The Heuristic Algorithm 1 always shows a good be-
haviour: only in two cases the values of f1 obtained by
the heuristic are worse than the optimum; in one case it is
better than the feasible solution provided by the MILP. The
values of f2 determined by Algorithm 1 are generally near
the optimum, with a maximum increase of 5%. Summing up,
on the basis of the obtained results, the proposed heuristic
algorithm appears to be a good tool to manage real-sized
cases.

B. Real Case Study

A real case study is solved using Heuristic Algorithm1 by
considering a planning horizon of Q=5 days, K=1440 time
periods (the minute is considered as t.u.), R = 500 trucks,
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TABLE I
RESULTS OBTAINED FOR 18 RANDOMIZED DATA SETS

MILP model Algorithm 1
# R S CPU Time [s] f1 f2 f3 f1 f2 f3
1 2 15 19.88 0.93 1.35 0.93 0.93 1.36 1.00
2 2 15 512.13 0.87 1.50 0.87 0.87 1.57 0.93
3 2 20 67.39 0.85 1.42 0.90 0.80 1.44 1.00
4 2 20 1159.14 0.85 1.37 1.00 0.85 1.43 1.00
5 2 25 2363.96 0.80 1.22 0.96 0.80 1.28 0.96
6 2 25 348.82 0.84 1.38 0.92 0.80 1.36 1.00
7 2 30 3600.00* 0.77 1.27 1.00 0.77 1.26 0.97
8 2 30 3600.00* 0.77 1.29 0.97 0.77 1.24 0.90
9 3 15 3600.00* 1.00 1.46 0.93 1.00 1.48 1.00

10 3 15 957.28 1.00 1.38 1.00 1.00 1.45 1.00
11 3 20 3600.00* 1.00 1.33 0.85 1.00 1.37 1.00
12 3 20 301.616 0.95 1.35 1.00 0.95 1.35 1.00
13 3 25 3600.00* 1.00 1.43 0.96 1.00 1.45 1.00
14 3 25 3600.00* 0.96 1.35 1.00 0.96 1.37 1.00
15 3 30 3600.00* 0.87 1.35 0.80 0.93 1.41 0.97
16 3 30 3600.00 - - - 0.90 1.30 0.93
17 3 35 3600.00 - - - 0.83 1.32 0.94
18 3 35 3600.00 - - - 0.77 1.27 0.94

S=4000 orders and E = 6 container types. Location types
A, B and C are Italian geographical locations in an area of
about 41000 km2.

The truck-to-order assignments of a single day are com-
puted in less than 8 minutes. Note that for each sub-problem
SP q with q = 1, .., 5, it turns out that h ≤ 3, i.e., at most 3
assignment problems AP qh are solved.

Figure 1 depicts the values of the objective functions (2),
(3) and (4) defined in the MILP formulation and obtained
by Algorithm 1 for each single-day problem SP q with q=
1, 2, . . . , 5.

The results show that most of the orders are effectively
assigned, as highlighted by the high values of f1 (the fraction
of the assigned orders) in all the working days of the week.

f
1

f
2

f
3

Objective functions

0

0.2

0.4

0.6

0.8

1

1.2

0
.9

9

0
.9

9

0
.9

8

0
.9

5

0
.9

8

1
.0

1

1
.0

1

1
.0

1

1
.0

1

1
.0

2

0
.9

9

0
.9

8

0
.9

9

0
.9

9

0
.9

9

q=1 q=2 q=3 q=4 q=5

Fig. 1. Objective functions values in each single-day problem SP q .

On the other hand, values of f2 > 1 for q=1 and q=5
are due to the requirements of starting from and returning to
the depot.

Finally, the values of f3 (the fraction of on time orders)
point out that the possibility of delaying an order is effec-
tively exploited to improve f1.

V. CONCLUSIONS

This paper studies real Multi-Day Container Drayage
Problems (MDCDPs) that take into account many complex
features that are not considered together in the related
literature.

We model the MDCDP as a Mixed Integer Linear Pro-
gramming problem that turns out to be very complex and can
solve in reasonable time only instances of small dimensions.
Hence, a heuristic algorithm based on a rolling horizon ap-
proach. Some MDCDP randomly generated instances solved
by both the heuristic algorithm and the MILP model show
that the heuristic iterative procedure is able to find good
solutions in short time. Finally, we deal with a case study
of real dimensions and the results show the effectiveness of
the presented solution technique that allows to obtain good
performance indices.

Comparing the considered MDCDP with the drayage
problems faced in the literature, we simultaneously deal with
a number of different items, such as for instance: multi-day
planning horizon with orders extended over two consecutive
days and restrictions on the driver work hours ([3] and [4]
consider a single-day planning horizon only); limited size of
the truck fleet, which may force to refuse or to delay some
orders ([5] and [6] assume unlimited truck fleet).

Future research will study the stochastic aspects of the
orders and the use of the heuristic algorithm in the real time
environments.
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