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Abstract
In recent years, a fluid dynamics phenomenon has been observed that shows
interesting analogies with several quantum mechanical ones. Under specific
experimental conditions, a liquid droplet released on a vibrating liquid persists
in jumping, forming a localized wave-particle, and its behaviour resembles
that of a de Broglie wave-particle. In this paper we discuss a simplified model
for this phenomenon and the results of numerical fluid dynamics simulations
implemented on the basis of the model. In spite of the relevant simplifying
assumptions of our approach, we observe that a wave-droplet coupling is
obtained and the droplet travels at nearly constant velocity, as it is observed in
experiments. This suggests that the model describes the basic features of the
phenomenon well, and that the simulation could be used to introduce under-
graduate students to the study of quantum mechanics.

Keywords: physics education, fluid dynamics, modelling, simulation, walking
droplet

(Some figures may appear in colour only in the online journal)

1. Introduction

An interesting fluid dynamics phenomenon has recently been observed by Y. Couder and co-
workers [1]. They have shown that in an appropriate range of parameters, an oil droplet
deposited on a vertically vibrating bath of the same liquid can bounce indefinitely and
generate a wave in the liquid, which is strongly coupled with the droplet. The vibrating tank
acts as an energy reservoir and pump, as shown in figure 1.

This phenomenon has raised some interest, as the occurrence of a persistently jumping
solid body on a vibrating rigid surface is expected, but a similar occurrence when the body is
a liquid droplet falling from a small height on a vibrating viscous liquid is less obvious.
Moreover, with regard to the specific values of the physical parameters characterising the
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Figure 1. Diagram of the ‘walking droplet’ experimental apparatus.

phenomenon, both the wave and the droplet move at the same constant horizontal velocity.
For this reason, this phenomenon has been called ‘the walking droplet’.

In order to observe this peculiar behaviour, it is fundamental that the amplitude of the
liquid vibration be very close to (actually slightly below) the Faraday instability threshold [1].
The phenomenon of the Faraday instability is well known. To explain this, let us consider a
viscous liquid, subjected to vertical oscillations of a given amplitude. At low values of
vibration amplitude, the fluid remains quiescent, but above the Faraday instability threshold,
whose value depends on the frequency of the oscillations, which in turn depends on the
surface tension, the viscosity and density of the liquid, the layer becomes unstable to a field of
Faraday waves [2]. The frequencies of the resulting waves are quantized, as they are integer
multiples of half the driving frequency [3]. Although higher harmonics may be excited for the
silicone oils used in the walker system, the most unstable waves are subharmonic, with half
the frequency of the vibrational force imposed [3].

The need to be slightly below the Faraday instability threshold is due to the fact that, in
this condition, vertical oscillation of the liquid bath preconditions it for a monochromatic
wave field that can be generated by particle impact [3]. Only in proximity of the droplet—
liquid collision zone are waves produced.

The walking droplet phenomenon is currently being studied by several researchers, partly
because it highlights features previously thought to be peculiar to the quantum realm [3-6].
This suggests it might be a good idea to discuss some peculiar characteristics of this
phenomenon to introduce undergraduate students to some basic concepts of quantum
mechanics, such as the de Broglie idea of wave-particle coupling that occurs on atomic and
subatomic scales.

Setting up a ‘walking droplet’ experiment and considering the related problems and
configurations does not need to be expensive or technically complicated, at least if accurate
control of parameters is not required. Harris et al [7] presented an interesting example of a
low-cost experimental apparatus that could be useful as a high school physics classroom
demonstration, especially in a school laboratory. However, precision experiments require
careful levelling and control of the vibrational forces [3]. Any variation from level non-
uniform vibration, or spurious resonance, results in a spatial dependence of the Faraday
threshold. The walker dynamics and statistics are highly sensitive to all the system para-
meters: drop size, fluid properties, and forcing. Consequently, repeatable experiments require
the simultaneous control and documentation of each.
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In this case, a computer-based simulation can help the teacher and/or the students to
overcome the difficulties of the experiment and still satisfactorily study the phenomenon. For
example, a simulation describing a single walking droplet could be used to introduce the
students to the discrete energy levels of a quantum harmonic oscillator, or two interacting
walking droplets could introduce them to the idea of electron-proton interaction in the
hydrogen atom. Moreover, simulations with different boundary conditions can reproduce
interesting quantum-like effects, like single-particle diffraction, tunnelling, quantised orbits
and orbital level splitting [5, 6]. However, these quantum analogies still need to be analyzed
in-depth (some as those regarding the double-slit experiments even have been recently
contested [8, 9]) and they will not be the focus of this paper. Instead, it will describe a model
and some simulation results showing the basic characteristics of the walking droplet
phenomenon and also deals with its pedagogical presentation in high schools and under-
graduate physics courses.

In the last decade, many research papers [10—13] have discussed theoretical models with
the aim of studying the walking droplet phenomenon using computer-based simulations. They
solve the Navier—Stokes equations for the liquid bath [12], including the effect of the droplet
on the liquid by an ad-hoc pressure or treating the droplet as a rigid sphere [13], by using
numerical methods. These methods can be very efficient, allowing results to be obtained in a
short time. For instance, the method discussed by Durey and Milewski [13] is apparently 50
times faster than the experiment itself. However, to date, all these approaches have only
allowed unbounded fluid domains to be considered [13] and are therefore unable to model the
interaction with submerged obstacles, such as slits and barriers, when phenomena like dif-
fraction, interference patterns and tunnelling are being studied. Two other theoretical models,
very different to the one shown in this paper, have recently taken into account bounded fluid
domain. The model developed by Faria [14] captures some important features of the walker-
topography interactions not with boundaries but with regions where the wave speeds changes.
Another 1D model developed by Nachbin et al [15] explores the dynamics and statistics of
tunnelling and walker motion in a confined domain.

Our simulation uses Lagrangian numerical fluid dynamics methods, as these methods are
more suitable than Eulerian ones when it is necessary to deal with waves deforming a liquid
surface [16]. We use a smoothed particles hydrodynamics (SPH) numerical method’ [17, 18]
to simulate the motion of the liquid in the tank. The droplet is simulated by a deformable
sphere made up of a small group of points that interact each other and with the discrete
particles that make up the liquid by ad-hoc forces, as described below. In order not to have to
deal an excessive number of particles to simulate, we do not currently introduce other par-
ticles representing air into the simulation, and to mimic the droplet-air interaction we use
some simple ad-hoc physical models, as described below. The simulation starts by setting up
a small container of viscous liquid, which extends along the X-axis and contains a ‘slice’ of
liquid that vibrates along the Z-axis (vertical axis), close to the Faraday resonance frequency.
A ‘droplet’ is released along Z on the surface of the liquid, and, with some simplifying
assumptions, the dynamics of the droplet and the liquid bath can be visualised and studied.

The characteristics of our model, as we will show below, allow bounded fluid domains to
be dealt with quite easily, like for instance the walls of the tank which contains the liquid. In
our opinion, the possibility of obtaining results that are in good agreement with the exper-
imental ones, by using a simulation with small number of particles, is also an added value of
our approach, as it can be implemented without special computational resources.

' SPH is a method for obtaining approximate numerical solutions to the equations of fluid dynamics by replacing the
fluid with a set of particles [17].
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2. The physical model

In order to model the walking droplet phenomenon the following relevant aspects must be
taken into account:

* the oscillation amplitude of the liquid, which must be close to the Faraday instability
threshold;

* the viscosity of the liquid needed to stabilize the dynamics;

* the presence of an ‘air cushion’, which produces a bouncing force;

* the surface tension of the liquid and of the droplet, to enhance the bouncing force caused
by the air.

Specific values of the vibration frequency and amplitude, and of the droplet size, produce
a coupling of the droplet and the wave, which move synchronously. In our approach, the
droplet is made up of a small group of ‘points’, held together by an appropriate small range
force, which has an effect similar to surface tension. It interacts with the particles of the liquid
with an ad-hoc force, as it is described below. A liquid such as oil is considered incom-
pressible for many fluid dynamics problems but, in this study, we consider it slightly com-
pressible because better suited to SPH numerical method [17], and we model its pressure

Poc [ P

by using the Tait equation[17], P = ;

— 1], where the sound speed c¢( is chosen

0
10 times greater than the maximum speed that a fluid particle can assume. In this way the

speed of sound is large enough for the density fluctuation to be negligible [17]. So, in our case
co = 10+/2ad, where d is the height of the liquid ‘slice’ and a is the typical acceleration of the
SPH particles.

The kinematic viscosity of the liquid is simulated on the basis of the values of an
‘artificial viscosity’ [17], typically used in basic SPH algorithms. Artificial viscosity is also
used to avoid instabilities in the simulation and only during compression of volumes. The
walls of the container are built by using a stratum of fixed particles.

2.1. The droplet surface tension

The SPH method models the surface tension of a liquid by means of appropriate mathematical
interpolation criteria for the boundaries [19, 20]. Obviously, this approach requires a suffi-
cient number of interpolating points to accurately calculate the curvature of the surface of the
liquid and all the related derivatives.

In the phenomenon that we want to study, the interaction between the liquid and the droplet
is certainly mediated by the air cushion above the liquid, but we decided to avoid the com-
plexities of the two fluid treatment (liquid-air) and adopted a simpler, ad-hoc strategy. The liquid
in the container has been treated with standard SPH methods, while the droplet has been con-
sidered as a set of points, whose mutual interactions provide the surface tension and give to the
droplet an internal dynamics. The interaction between the droplet and the liquid is modelled by
using another kind of force acting between each droplet point and the SPH particles of the liquid.

Figure 2 shows a diagram of the interactions between each pair of points in the droplet and
between the droplet and the particles in the liquid. It is worth noting that the SPH particles are
partially overlapped, as the SPH numerical method requires in order to work correctly” [17].

2 The equations of motion of these particles in the liquid are determined by the continuum equations of fluid
dynamics with interpolation from the particles, which, therefore, have to be partially overlapping.
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Figure 2. Schematic view of the interactions between the droplet points and between
the droplet points and the SPH particles in the liquid bath. The interactions between the
SPH particles are not shown.

In our model, an elastic-like force, 7;;, is exerted between each pair of droplet points,

i and j. It is given by the following expression:

= T; ri,'_(sdrm fi,'

Tj=— 0 [t/ “drop |74 1)
k ) .,
Nirop drop Tij

where 04,p is the initial distance between the droplet points, r;; is the distance between two
droplet points, i and j, at the generic time ¢, and 7y, is the total number of points that make
up the droplet. This value actually sets out the droplet size. T} is the intensity factor given by
Ty = O.ICO2 P28, where ¢ is the speed of sound in the liquid, py is the density of the liquid,
and s is the scaling size of the repulsive droplet—liquid force, which is described below. This
force allows droplet deformations and produces a fictitious tension, whose value is not
compared with the real one in this study.

2.2. The ‘air force’

The interaction between the droplet points and the SPH particles of the liquid in the container
is described by a repulsive force, which, as discussed above, should have the role of the air
pressure. Therefore, it should increase as the droplet-liquid distance decreases. We tested a
variety of functions and found that the one that gives the best simulation results is the

following:
(T Y 7
;= Fpe (f ) [Q] )

ri,j

2
with Fy = D002 The scaling size of the repulsive droplet-liquid force, s, can be freely

Ndrop

chosen, but it has to be of the order of magnitude of the initial SPH particle separation 6. Fy is
divided by ng,,, so that the force depends only on the size of the droplet and is independent
from the number of points that make up the droplet. This force allows us to avoid the two-
phase fluid (air-liquid) treatment and it is exerted between each point in the droplet and each
nearby liquid SPH particle. It goes to zero when the distance 7; ; is much larger than the liquid
particle separation s = 0, and it is switched off once and for all if the droplet interacts with a
number of liquid particles for a time interval greater than the stability time [21, 22]. This last
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condition is needed to simulate the coalescence effect of the droplet. It merges into the liquid
and the simulation stops.

It is worth noting that, in a range of the parameter space in which the presence of air can
be neglected, the droplet-liquid interface behaves like a linear spring during droplet impact,
as shown in [10]. Although this kind of force has the big advantage of an easy mathematical
form, it could not be the best choice when one wants to simulate the walking droplet
dynamics in a wide range of the space parameter.

3. Governing equation

The fluid governing equations, written in a Lagrangian framework are the mass conservation
law:

dp -
—=—pV -1 3
o p (3)
and Newton’s second law:
dii 1=
& —VP+gV)+a @
dt 0
where 4 = 3 + i -V is the total time derivative operator, i is the velocity of a fluid

element, P is the pressure in the fluid, p is the density, a is the local acceleration (i.e. the
acceleration of a fluid elements at their positions) due to the interaction between the droplet
and the fluid elements and g is the gravitational acceleration.

Since we choose to work in the frame of reference of the container, the body and the
inertial forces act on both the liquid and the droplet. Therefore, the gravitational acceleration
is multiplied by the factor V() = 1 — £ sin(2nft), where £ is a dimensionless parameter
whose value is equal to the ratio between the maximum value of the acceleration of the
container and the gravitational acceleration and f is the vibration frequency. The maximum
amplitude of the vibration is Z;,x = e obtained by integrating V(f) over time and
assuming that the initial position and velocity of the container are 0.

Each droplet point moves according to the equation:

dii;
— =5V - = 5
8 . Q)

where m; is the mass of the point i and

Ndrop Nspy

R = Z 7_},,‘ + Z Fi,l~ (6)
j=1 =1

Here i refers to any droplet’s point and ngpg is the number of liquid particles interacting
with the droplet. 7;; and £, are given by equations (1) and (2), respectively. We compute the
motion of each point that makes up the droplet and not the motion of the droplet center of
mass. R; is the total force on the droplet point i. This force mimics the behaviour of air and
the tension forces. To conserve the momentum, the SPH liquid particles interacting with the
droplet points are subjected to opposite air forces, so we also add to each k SPH particle the
reaction force —Y "+ F; .. Consequently, the @ term of equation (4) for the k-th SPH particle

S g

is given by @, = %
k
The computational cost for the droplet-liquid interaction is proportional t0 14y, * Nspws
where ngpy = %, and Ly and L, are the dimensions of the container. To reduce the
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Figure 3. Points that make up the droplet (blue full circles) and the SPH particles (blue
empty circles) of liquid bath. The dashed orange and the black lines represent the
droplet trajectory above the liquid surface during its back and forth motion in the
container. The horizontal axis represents a portion of the container.

computational cost, the interaction between points and SPH particles of the liquid in the
container can be limited to the liquid surface SPH particles, which is nearly %

4. Simulation results

We implemented our model by using a Fortran code and performed several simulations for
different parameter values, such as the container sizes, the number of droplet points and so on.
The particles were set up in equilateral triangles with sides of equal length to the initial
distance of the particles, forming a regular array. Typically, the number of neighbours around
each particle ranges from 12 to 30, so the criteria for good calculation of the derivatives are
well satisfied. The resulting total number of particles ranges from a few thousands to 20,000.

The number of droplet points sets out the size of the drop and the degree of information
we want to have on its internal dynamics. In our simulation tests it ranges from 4 to 40. These
two values indicatively define an interval within which the compromise between having
circular droplets (the minimum value) and having simulation times that are not too long (the
maximum value) is taken into account. We tested our simulation for different vibration
frequencies, but we will only discuss the f = 66.7 Hz case here, which is more suitable for a
comparison with experimental data coming from the literature. The dimensions of the con-
tainer that we simulate are Ly = 0.1 m, and L, = 0.005 m. § = 0.00024 m, s = 0.00025 m
and kinematic viscosity v = 4.15 - 10~° m?/s. The reference sound speed is 20 m/s and the
time duration of the simulations is about 10 s.

Figure 3 shows the SPH particles (empty blue circles)’ and the droplet points (full
blue circles). The figure refers to a case with vibration amplitude £ = 4.75 and a drop made of
12 points. In this case the droplet ‘walks’ at a constant velocity and the black lines and the
dashed orange lines represent the droplet trajectory above the surface of the liquid during its
back and forth motion in the container.

3 In this case the high number of SPH particles do not allow them to represent overlapping.
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Figure 4. Points that make up the droplet (black full circles) and SPH particles (blue
empty circles) of liquid bath are shown. The grey dotted line represents the droplet
trajectory above the surface of the liquid. The horizontal axis represents a portion of the
container.

Figure 4 shows the simulation results when ¢ is equal to 3. The drop (made of nine
points) does not move along the container, but after a short movement along X, it persists in
oscillating in the same position.

Figure 5 shows the simulation result obtained £ = 3.5 and a droplet made of nine points.
The velocities of the droplet points and of the particles in the liquid bath are represented by
using different colours. These highlight the presence of waves in the liquid bath, showing a
velocity field whose values are significantly different from zero only close to the droplet.

Figure 6 shows the uy and the scaled u; velocity component of the droplet versus time for
the same conditions as the previous one. It refers to a view in a short temporal window of the
data (0.495-0.7 s). The graph grid is set at 0.015 s intervals. The horizontal velocity is nearly
constant; the spikes are due to the ‘impact’ of the droplet with the liquid surface and denote
the synchronisation effect between the droplet and the wave in the liquid bath [12]. Double
period bouncing is clearly represented. Its trend is very similar to the experimental one
obtained by Milewski [12]. This result is relevant, as it can occur only in a restricted, fine-
tuned range of the parameter values [12].

Figure 7 shows the motion states of the droplet for various values of { and ng,, (i.e.
the ‘droplet size’). All the other simulation parameters are equal to the ones previously used.
The symbols (blue points, red stars, etc) allow us to identify zones on the graph in which the
droplet motion states are different. In the ‘Walking’ state (W-graph zone identified by red
stars) the droplet continuously moves (‘walks’) along the X-axis and bounces above the
liquid. In the ‘Walking-NotWalking’ state (WNW-violet triangles) the droplet still bounces
above the liquid, but alternates between walking at a constant speed and time intervals in
which it does not walk. The larger £ is, the smaller is the time interval in which the droplet
does not walk. In the ‘Disturbed walking’ state (DW-black diamonds) the Faraday instability
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Figure 5. Points that make up the droplet and SPH particles of liquid bath are shown. u,
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Figure 6. The droplet uy (red crosses) and u (black dots, values divided by a factor of 10)

velocity components versus time.

threshold has been exceeded. The droplet still bounces and walks, but its horizontal motion is
disturbed. In the ‘Delayed-Walking’ state (W*-green triangles) the droplet starts walking after
a short time interval. In the ‘Bouncing’ state (B-blue crosses) the droplet only bounces above
the liquid and does not move horizontally. Finally, in the ‘Coalescing’ state (C-yellow
squares) the droplet coalesces. For instance, looking at figure 7 it is clear that a droplet made
of 12 particles subjected to ¢ = 4.5 vibration amplitude definitely walks, while the same
droplet simply bounces when £ = 3.5. It should also be pointed out that the trend of the
amplitude values ¢ for which the droplet coalesces is similar to the experimental one [23].
The behaviour of the droplet also depends on other parameters, like the kinematic
viscosity, v, of the liquid. Figure 8 shows the results of a simulation for a fixed ny,,, value
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Figure 7. Behaviour of the droplet for f = 66.7 Hz and kinematic viscosity of the
liquid, v = 4.15 - 1076 mz/s at different values of ng.,, and & Each point in the
graph represents a state of the droplet obtained for different simulations parameters. In
the key B stands for the ‘Bouncing’ state, W for ‘Walking’, DW for ‘Disturbed
Walking’, WNW for ‘Walking-NotWalking’, ‘W** for ‘Delayed-Walking’ and finally
C for ‘Coalescing’.
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Figure 8. Behaviour of the droplet for f = 66.7 Hz and ng,,, = 12 at different values of
kinematic viscosity v and vibration amplitude £. Each point in the graph represents a
state of the droplet obtained with different simulations parameters.

and different v and £. For example, when £ is 4.5, the droplet simply bounces above the
liquid for v greater than 4.15 - 10~° m?/s, while at v = 2.1 - 10~° m?/s the walking of the
droplet is disturbed because the Faraday instability threshold has been exceeded. At
v =1.0-10"° m?/s the liquid’s instability is so high that bouncing and walking by the
droplet along the X-axis are both prevented. In this case, after a few cycles the simulation

stops.
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5. Conclusions

In this paper we have presented a very simple model of the walking droplet phenomenon. We
have shown that with a numerical simulation based on this model and an SPH Lagrangian
code it is possible to reproduce the basic aspects of this phenomenon. For instance, when the
wave-droplet coupling is well established, the droplet has a horizontal velocity whose average
is constant as it is shown in the experimental results.

We have studied the droplet behaviour in relation to some fundamental quantities, such
as the vibration amplitude, the liquid viscosity and the droplet size, qualitatively comparing it
with that shown experimentally and founding a good agreement.

High school and undergraduate students can explore the phenomenon by ‘playing’ with
our simulation, adjusting some fundamental quantities by using the simulation parameters. In
this way teachers and students can be able to build some graphs like those shown in figures 6
and 7 by using our simulation as a ‘tool’ for analysing and discussing the droplet behaviour in
several different conditions.

Our study of the phenomenon does not explicitly take into account the presence of air
particles between the droplet and the liquid, or the 3D nature of the phenomenon itself. A
more realistic reproduction of the experimental results, like the ones obtained by Couder et al
[4] and Milewski [12], could be obtained by setting up a simulation that takes into account the
parameters above considered better. Work is in progress to find a way of carrying out a
simulation in which the container is fully extended in the X-Y plane and the interaction
between the droplet and the surrounding air is dealt with by taking into account the presence
of air particles instead of an ad-hoc air force.
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