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Abstract. Thermoplasmonics is a method for increasing temperature remotely 

using focused visible or infrared laser beams interacting with plasmonic 

nanoparticles. Here, local heating induced by mid-infrared quantum cascade 

laser illumination of vertical gold-coated nanoantenna arrays embedded into 

polymer layers is investigated by infrared nanospectroscopy and 

electromagnetic/thermal simulations. Nanoscale thermal hotspot images are 

obtained by a photothermal scanning probe microscopy technique with laser illumination wavelength tuned at 

the different plasmonic resonances of the arrays. Spectral analysis indicates that both Joule heating by the metal 

antennas and surface-enhanced infrared absorption (SEIRA) by the polymer molecules located in the apical 

hotspots of the antennas are responsible for thermoplasmonic resonances, i.e. for strong local temperature 

increase. At odds with more conventional planar nanoantennas, the vertical antenna structure enables thermal 

decoupling of the hotspot at the antenna apex from the heat sink constituted by the solid substrate. The 

temperature increase was evaluated by quantitative comparison of data obtained with the photothermal 

expansion technique to the results of electromagnetic/ thermal simulations. In the case of strong SEIRA by the 

C=O bond of poly-methylmethacrylate at 1730 cm
-1

, for focused mid-infrared laser power of about 20 mW, the 

evaluated order of magnitude of the nanoscale temperature increase is of 10 K. This result indicates that 

temperature increases of the order of hundreds of K may be attainable with full mid-infrared laser power tuned at 

specific molecule vibrational fingerprints. 

 

Keywords: plasmonics, nanoantennas, vibrational absorption, quantum cascade laser, atomic force microscope, 

surface-enhanced infrared absorption, photocatalyisis. 
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Introduction 

Thermoplasmonics has emerged as a new way of increasing temperature remotely by light beams
1,2

, exploiting 

the Joule heating effect at optical frequencies in metal nanoparticles
3-5

 and nanoantennas
6-8

. Thermoplasmonics 

has been explored up to now with two different aims: (i) to produce a strong, local temperature increase Δ� at 

the nanoscale, in close proximity of single plasmonic nanoparticles in which light excitation results in high local 

currents hence strong power dissipation in the metal
4-7, 9-13

; or (ii) to increase the efficiency of radiation heating 

processes in large volumes or surfaces filled with both target molecules to be heated and plasmonic 

nanostructures acting as mediators of electromagnetic (e.m.) energy absorption for the entire system (global 

Δ�)
3,8,12

. The application of thermoplasmonic concepts has been carried out mostly with plasmonic nanoparticles 

randomly dispersed in solutions
3,4

 or with single plasmonic antennas
6, 7

, however antenna arrays have also been 

considered
14

, because spatially coherent surface plasmon effects in periodic arrays may further enhance the 

absorption efficiency
15

. Remotely light-activated local or global temperature increases can be of extreme 

importance in e.g. catalysis
16,17

, medical therapy
13, 18

, material synthesis
10, 11

, magnetic assisted recording
6
, 

triggering of phase transitions
4,9

, and thermophoresis
19

. 

The transient electron temperature at the metal surface of antennas in the field-enhancement regions can be far 

higher than the steady-state metal lattice temperature
1
, leading to so-called hot electron effects such as electron 

tunneling emission
16,17,20

. Hot electron effects are distinct from Joule heating effect, although they may 

ultimately contribute to local and global heating. Following the pioneering work of Refs. 21-24, in this work we 

study a different path to thermoplasmonics based on e.m. energy dissipation by non-radiative decay of enhanced 

molecular dipole vibrations in the field-enhancement antenna hotspots. This mechanism of temperature increase 

is activated by laser illumination at substance-specific vibrational fingerprints in the mid-infrared (IR) range and 

belongs to the class of phenomena called surface-enhanced infrared absorption (SEIRA)
25,26

. In this work, we 

present nanoscale IR photothermal mapping of thermal hotspots in vertical antenna arrays embedded in polymer 

layers. In conjunction with e.m. and thermal simulations, the maps clearly show the existence of 

thermoplasmonic hotspots with strong temperature increase at the surface. Differently from thermoplasmonic 

systems operating in the near-IR and visible ranges, where dissipation in the metal is the only relevant heat 

source, in the mid-IR the contribution of molecular absorption can become important in determining the total 

temperature increase. In the context of mid-IR plasmonics, the novelty of our vertical antenna structures consists 

in the existence of an apical e.m. hotspot far from the solid substrate supporting the antennas, while in planar 

antenna structures all hotspots are very close to the substrate that operates as heat sink hence preventing the 

exploitation of the heat produced in the hotspots. Also, vertical antenna arrays feature high quality factor of the 
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resonances, which permits having spectrally distinct plasmonic resonance peaks that can be designed to overlap 

with different IR vibrations of molecules. 

Organic molecule vibrations typically occur at molecule-specific frequencies in the “IR fingerprint” range 1000-

2000 cm
-1

 (wavelengths between 5 and 10 µm), approximately covered by the tuning range of mid-IR external-

cavity tunable quantum cascade lasers (EC-QCLs)
27

 featuring power density high enough for thermoplasmonic 

applications. Indeed, temperature increase effects induced by mid-IR EC-QCL illumination have been recently 

exploited for applications such as mid-IR absorption nanospectroscopy of few molecules
28-30

, nonlinear optics in 

the mid-IR based on phase transitions of liquid crystals
31

, and mapping of both field-enhancement hotspots and 

currents in IR metamaterials
21-24, 32-33

. SEIRA has been long sought for in mid-IR plasmonic nanoantenna 

structures, however it has been elusive up to now due to Fano interference phenomena
34-40

 that can prevent IR 

absorption enhancement while providing scattering enhancement
41,42

. One way to observe true absorption 

enhancement phenomena is to look at thermoplasmonic effects instead of scattering enhancement. The present 

work on vertical nanoantenna structures constitutes a complete analysis of thermoplasmonic effects therein, not 

only caused by conventional Joule dissipation, where metal nanostructures are the sources of heat
1-8

, but also by 

SEIRA, where the molecules are the sources of heat
21-24

. 

Experimental Section 

The vertical antennas consist in protrusions made of photoresist polymer spin-coated on a silicon wafer and then 

hardened by exposure to a focused ion beam. The non-exposed part of the film is removed in acetone. The 

resulting protrusions have a diameter of ∼200 nm and a height H equal to the initial polymer film thickness. The 

fabrication process is entirely described in Ref. 43. The antenna arrays, including the flat silicon wafer surface, 

were coated conformally with a 80 nm thick evaporated gold film (thicker than 3 times the skin depth of gold in 

the mid-IR
44

), closing the access to the hollow cavity inside the protrusion and leading to a final gold-coated 

vertical rod antenna structure with diameter ���� ∼ 360 nm 
43,45

. The samples used in this work are square 

periodic arrays of vertical nanoantennas with H ranging from 2.2 to 2.7 µm and pitch P equal to 3.0, 3.5 or 4.0 

µm. After fabrication, the vertical antennas were embedded up to their top in a spin-coated polymer bilayer film, 

so as to allow their nanoscale investigation by atomic force microscopy (AFM). The entire body of the antennas 

was embedded in a weak IR-absorber polymer (AZ5214, spin-coating speed 1000 to 2000 rpm, final thickness 

3.1 to 2.1 µm). A thin layer of a strong IR-absorber polymer was spin-coated on top of the vertical antennas 

(PMMA 950k, 2% solids in ethyl-lactate, spin-coating speed 3000 to 2000 rpm, final thickness 100 to 400 nm), 

so as to fill the region where the apical antenna hotspots exist (i.e. those far away from the solid substrate acting 

as heat sink). 
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The mid-IR far-field response of the arrays is measured with a commercial Fourier-transform infrared (FTIR) 

spectrometer (Bruker IFS66v/S) coupled either to a home-made variable-angle reflection unit working with 

linearly-polarized radiation on large-area samples (about 1×2 mm
2
), or to a reflective microscope (Bruker 

Hyperion), where quasi-unpolarized radiation is focused with a Cassegrain objective (incidence angle range of 

10° to 30° with respect to the surface normal) onto a 70×70 µm	 spot at the sample surface. A gold mirror is 

used as reference to compute the absolute reflectance 
�,
��� and the extinction is calculated as	1 − 
�,
��� 

because transmission is zero, where the suffixes s and p refer to electric field polarization perpendicular and 

parallel to the incidence plane, respectively. Each spectrum is obtained as the average of 1024 interferometer 

scans at 4 cm
−1

 spectral resolution and the spectral range is 600 to 3000 cm
-1

. 

The nanoscale thermoplasmonic response of the system is investigated with an AFM operating in contact mode 

with the mechanical resonance-enhanced photothermal expansion technique (AFM-IR, Anasys Instruments 

NanoIR2 with top side illumination)
28-30

. The mid-IR light source is a tunable EC-QCL  (Daylight Solutions 

MIRcat-PX-B), with continuous wavelength (wavenumber) range of 5.5 to 9.1 µm (1900 to 1100 cm
-1

) and 

accordable laser power range from 1 to 500 mW. To achieve full illumination of the probe tip, the laser beam 

impinges on the sample with a 70° angle with respect to the surface normal in p-polarization, leading to a 

Gaussian focal spot with elliptical footprint (major/minor axis with measured Gaussian width of 24/10 µm, see 

Supporting Information n.2)
 
centered on the AFM probe tip. A laser power of 19 mW at 1730 cm

-1
 gives a laser 

power density in the focus of 1.7·10
7
 W/m

2
. The laser power varies within a factor of 3 in the tuning range of the 

EC-QCL. The AFM-IR photothermal expansion maps are obtained by monitoring the AFM probe cantilever 

deflection oscillations at the repetition rate of the EC-QCL, which is set to match the mechanical resonance of 

the cantilever (here, 220 kHz). The voltage scale ����� of the presented AFM-IR maps and spectra is the AFM 

position-sensitive photodetector signal component at the EC-QCL repetition rate of 220 kHz, measuring the 

laser-induced AFM cantilever deflection oscillations
30

. The AFM topography maps are simultaneously recorded 

from the dc component of the deflection signal. The laser pulse duration is 260 ns, the duty cycle is 6%. The 

spectral resolution is 2 cm
-1

. Uncoated silicon probe tips with slanted tip shaft (Nanosensors AdvancedTEC) 

were employed to avoid perturbation of nanoantenna fields (see Supporting Information n.1). 

The e.m. simulations were performed using the commercial software COMSOL Multiphysics. Calculations were 

carried out by placing the antennas (described by a Drude-Lorentz electric permittivity
44

) on a metal half-space 

and filling the other half-space with a background medium (refractive index 1.6) up to the antenna height and 

placing air (refractive index 1) elsewhere. An absorbing PMMA layer, 100 nm thick, was located between air 

and top antenna plane. The fabricated and experimentally characterized samples were modeled as infinite three-

dimensional arrays of antennas where Floquet periodic conditions were set in the planar directions to define the 

rectangular unit cells. Input radiation was accounted for by setting e.m. ports at the top surface of the modeled 
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domain, on the interior side of the perfect matching layer, setting an angle of incidence ����. The incident 

radiation was represented by a linearly polarized plane wave, the absorption and scattering spectra were 

obtained, and the field enhancement maps were then calculated at the plasmonic resonance frequencies  derived 

from the simulated spectra. 

 

Results and Discussion 

In Figure 1a-b SEM images of the samples before the polymer embedding procedure are shown. The antennas 

are constituted by gold-coated vertical cylinders protruding from a flat surface, also gold-coated. The 

geometrical parameters (height H and array pitch P) were chosen on the basis of previous work
45

 so as to overlap 

the plasmonic resonance frequencies in the mid-IR range with the molecular vibration frequencies of the two 

different polymers (AZ and PMMA) embedding the vertical antennas. As a further fine-tuning parameter for 

obtaining better frequency overlap, the vertical antennas were also fabricated with a tilt angle ����� = 10° or 20° 

with respect to the surface-normal direction. The tilt angle acts as a small perturbation of the plasmonic modes of 

the array, whose resonance frequency is mainly set by P and H and by the incidence angle ���� of the 

illuminating IR beam. In Figure 1c, the plasmonic mode structure of the bare samples is investigated by variable 

incidence-angle FTIR reflection spectroscopy. The p-polarized reflectivity Rp (radiation electric field partly 

parallel to the antenna axis) shows dips at plasmonic mode frequency, corresponding to extinction peaks, not 

seen in the s-polarized reflectivity Rs (radiation electric field orthogonal to the antenna axis). Starting form 

almost-normal incidence (���� = 10°), two modes appear in the Rp spectra, which we call bright modes at 

frequencies ��  and �	  almost independent on the incidence angle. At strongly non-normal incidence, a mode 

with angular dispersion appears, activated by asymmetry of the illumination direction. Therefore, we call this 

mode the asymmetric mode. The bright modes have an intrinsic dipole moment related to the antenna structure, 

while the asymmetric mode is a “spoof” surface plasmon mode related to the periodic array structure (see 

Supporting Information n.5). The vertical antenna arrays were then embedded in polymers and investigated by 

AFM-IR
28-30

, a technique suitable for mapping the local photothermal expansion in the nanoscale antenna 

hotspots (see an example in inset of Figure 1a)
21-24, 32-33, 46

. 

E.m. absorption maps and temperature maps have been determined by 3D numerical simulations, reported in 

Figures 1d-f for a typical resonance condition where both the plasmonic nanostructure and the top molecular 

layer (PMMA) separately present a maximum in the e.m. response. In Figure 1d, the e.m. absorption is plotted in 

logarithmic scale using the absorption !" of the same PMMA layer without antennas as reference value. It is 

clear that both the vibrational absorption of the PMMA molecules and the ohmic losses of the metal antenna can 

generate comparable amounts of heat. For the PMMA molecules located in the apical antenna hotspot, the 

absorption is locally enhanced by several orders of magnitude (SEIRA effect), as highlighted in Figure 1e, where 
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the same simulation of Figure 1d is presented with shifted color scale. In Figure 1f, the resulting temperature 

map is shown: due to combined effect of the large distance of the apical hotspot from the substrate heat sink and 

of high thermal conductivity of gold, the Δ� along the antenna shaft is much smaller than the Δ�#�$ of the 

PMMA molecules in the thermal hotspot, reaching up to Δ�#�$ % 20	K for 19 mW of laser illumination power 

at the C=O stretching vibration of PMMA. Air molecules in the vicinity of the thermal hotspot are also heated 

considerably, as already reported for vertical antenna arrays
8
. Elsewhere, Δ� is below 3 K. 

 

 

 

 

Figure 1.  a-b) Scanning electron micrographs 

of an array of vertical antennas, with 10° tilt 

angle in a) and with zero tilt angle in b). Insets 

of panel a) AFM topography and AFM-IR 

photothermal expansion image of a portion of 

the array embedded into a polymer bilayer. c) 

Variable incidence angle reflectance spectra of 

the antenna arrays. Plasmonic resonances 

appear in the p-polarized spectra covering the 

entire mid-IR vibrational absorption range of 

organic molecules.  d) E.m. simulations at ���� 

= 70°of the local electromagnetic absorption in 

a sample geometry giving a plasmonic 

resonance that matches the frequency of the 

strong C=O stretching vibration of PMMA.    

e) Same as d) but with different color scale, 

and map limited to the PMMA layer, to make 

SEIRA in the antenna hotspot more evident. f) 

Thermal simulations of the temperature 

reached by each point at the end of the mid 

infrared laser pulse for 19 mW of laser 

illumination power, using the absorption in d) 

as heat source. The air layer at the top of the 

cell and the Si substrate at the bottom are set as 

heat sinks at 293 K. 
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IR spectroscopy and nanoimaging data are reported in Figure 2 for sample sA with H = 2.7 µm. In Figure 2a, the 

FTIR extinction spectrum at ���� = 70° of the antenna array (violet curve) is shown together with the AFM-IR 

spectrum acquired by continuously tuning the EC-QCL wavelength with the probe tip position kept fixed on top 

of a single antenna (orange curve, also measured at ���� = 70°). Embedding the structure in the polymer bilayer 

results in a redshift of the resonances by a factor n approximately equal to the square root of the effective 

dielectric permittivity of the environment, so the FTIR extinction measured before embedding the antennas is 

plotted vs. the top axis ωvacuum = nω. Both scattering and absorption losses determine the  FTIR extinction 

spectrum, but only the absorption losses contribute to Δ� hence to the AFM-IR signal, because in general the 

e.m. energy of scattering losses is radiated away from the system. Indeed, it has been recognized that 

transmission/reflection spectroscopy is not suitable to isolate thermoplasmonic effects among other plasmonic 

field-enhancement effects
38

. Several techniques have then been developed to directly measure the 

thermoplasmonic ∆� at the nanoscale
7, 47-50

. AFM-IR measures the photothermal expansion of the material under 

a scanning probe tip, which ultimately depends on the absorption only
21-24, 28-30

. While AFM-IR is not always 

suitable to determine the absolute Δ� 
51

, it features nanoscale mapping resolution for imaging the local 

photoexpansion in plasmonic resonators beyond the diffraction limit 
21-24, 32, 33

. By scanning the probe tip at fixed 

laser wavelength on the surface of the embedding polymer layer, photoexpansion maps such as those in Figure 

2c can be acquired and then used to study heat fluxes at the nanoscale. 

Looking at the molecular absorption spectra of the embedding polymers reported in Figure 2b, AZ can be 

considered as a weak IR absorber, while PMMA is a well-known strong IR absorber at the three main molecule 

absorption bands around 1150-1250, 1450 and 1730 cm
-1

 corresponding to C-O-C stretching, C-H bending and 

C=O (carbonyl) stretching vibrations, respectively. Frequency overlap of the PMMA vibrations with the 

plasmonic modes of the vertical antenna arrays (a necessary requirement for SEIRA) is summarized in Figure 2 

Figure 2. a) FTIR extinction spectrum in p-polarization of 

sample sA without polymers measured at ���� = 70°, and 

AFM-IR spectrum with embedding polymers; the FTIR 

extinction is plotted vs. ωvacuum = nω with n = 1.3 (see text). 

b) Absorption coefficients of the embedding polymers 

PMMA and AZ measured by FTIR. c) Topography and 

AFM-IR maps of a single antenna of sample sA at the IR 

vibration frequencies indicated by the color dots in the spectra 

(green, 1250 cm-1, C-O-C stretching; black, 1450 cm-1, C-H 

bending; pink, 1730 cm-1, C=O stretching; red, 1850 cm-1 no 

vibrational fingerprint). The plasmonic mode at ω = 1850 cm-

1 generates heat only through the Joule effect, while the 

plasmonic mode at ω = 1200-1400 cm-1 generates heat by 

both the Joule effect and the SEIRA effect. At ω = 1450 cm-1 

and 1730 cm-1 heat is generated only via Beer-Lambert 

absorption by polymers. 
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by color dots. In Figure 2a, a strong thermoplasmonic peak is observed in the AFM-IR spectrum at 1850 cm
-1

 

(red dot), where there is no molecular vibration, and it is therefore attributed to Joule heating at the 2
nd

 bright 

plasmonic mode at �	 . The small offset between the peak frequency in 1 − 
(��� and that in the AFM-IR 

spectrum around 1850 cm
-1

 is due to the difference in resonance frequencies between far-field and near-field 

detection of the plasmonic antenna resonance
52

. Besides the bright mode peak at 1850 cm
-1

, in Figure 2a the 

asymmetric plasmonic mode is observed in the AFM-IR spectrum at 1250 cm
-1

 (green dot), with a clear 

counterpart in the corresponding 1 − 
(���. The peak at 1250 cm
-1

 also corresponds to the C-O-C stretching 

vibration of PMMA, leading to an increase of the molecular dipole absorption strength (SEIRA) if compared e.g. 

to the non-enhanced vibration at 1730 cm
-1

 (pink dot). Interestingly, in sample sA at 1250 cm
-1

 one directly 

observes the thermoplasmonic effect of SEIRA in the AFM-IR spectrum
21-24

, and not just its consequences in the 

reflection spectrum, typically resulting in asymmetric Fano lineshapes
26

. Note that the high quality factor of 

plasmonic resonances in vertical antenna arrays allows for the visualization of both modes separately in the same 

AFM-IR spectrum. 

The photothermal expansion maps at 1850 cm
-1

 (Joule heating only) and at 1250 cm
-1

 (both SEIRA and Joule 

heating) are reported in Figure 2c for sample sA: therein, nano-thermal hotspots are clearly detected
21-24, 32-33, 46

. 

In the control experiments at the molecular absorption frequencies of 1450 cm
-1

 and 1730 cm
-1

 (black and pink 

dots respectively), in the absence of plasmonic field enhancement the maps of Figure 2c do not show any 

thermal hotspot, because heat is generated everywhere on the sample surface by direct molecular absorption 

(Beer-Lambert). The thermal hotspots seen in the AFM-IR maps of Figure 2c at 1850 cm
-1

 and 1250 cm
-1

 display 

half-width half-maximum diameters around 600 nm. In vertical nanoantennas, the field-enhancement regions 

(i.e. the e.m. hotspots) are only slightly broader than ����	∼ 360 nm 
40,43,45

. The difference between the hotspot 

size measured with AFM-IR imaging (600 nm) and the e.m. hotspot size (< 400 nm) is to be attributed to the 

effect of thermal diffusion in polymers
28-30, 51

. 

In Figure 3a the FTIR extinction at different ���� is reported for sample sA and in Figure 3b the e.m. spectral 

simulations of the total absorption are shown for comparison. The two bright modes and the asymmetric mode 

are clearly seen in both spectroscopy and e.m. simulations. The bright modes can be straightforwardly identified 

as localized plasmon oscillations corresponding to 1
st
  and 2

nd
 order dipole resonances of the vertical rod, 

including the length doubling effect of the mirror dipole produced by the ground plane
45

 (see Supporting 

Information n. 4). In Figure 3c the angular dispersion of the mode frequency is reported for sample sA. The 

asymmetric mode frequency approximately follows the “spoof” surface plasmon dispersion law in the mid-IR 

for a square array ���� ≅ 2*+/-�1 + sin �� (green continuous line)
45

 where c is the light velocity 

implementing the effective dielectric permittivity factor n. All other samples were measured only at ���� % 20° 

in the microscope and at ���� = 70° in the AFM-IR. In Figure 3c, the fine tuning effect of the tilt angle can be 
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observed for samples sB and sD (see Table 1 for all geometrical parameters and resonance frequencies of all 

samples). Fine tuning of the plasmonic mode frequencies is crucial to obtain resonance with the different PMMA 

vibrations, indicated by dashed lines in Figure 3c. Sample sC has lower antenna height H = 2.2 µm than the other 

samples (H = 2.7 µm), therefore all resonances are blueshifted approximately by the height ratio, and the 

asymmetric mode resonates with the C=O stretching vibration of PMMA at 1730 cm
-1

. 

In Figure 3d and 3e the simulated field-enhancement maps for the asymmetric mode and the 2
nd

 bright mode of a 

structure with geometrical parameters identical to sample sA are reported for ���� = 70°, which is the 

illumination condition for the AFM-IR setup. The maps in Figure 3d and 3e confirm the existence of e.m. 

hotspots at the apex of the rod and of additional field enhancement regions along the shaft. More precisely, the 

highest field intensity is reached in a circumference corresponding to the apical rim of the antenna (see also 

Figure 5d). The molecules contained in these field enhancement regions undergo enhanced mid-IR absorption 

(SEIRA) contributing to generate a local ∆�, which is estimated here through the consequent photothermal 

expansion. 
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Sample H 

(µm) 
θtilt 

 

P 

(µm) 
ω1b  

(cm
-1

) 

ωasym 

(cm
-1

) 

ω2b  

(cm
-1

) 

sA 2.7  0° 4.0  780  1240  1820  

sB  2.7  10° 3.5  640  1350  1850  

sC 2.2  0° 3.5  1080  1730  2330  

sD 2.7  20° 3.0  450  1050  1700  

Table 1. Geometrical parameters and experimental plasmonic mode frequencies of the investigated samples. 

ω1b , ωasym , ω2b indicate the frequency of the 1
st

 bright, asymmetric and 2
nd

 bright plasmonic modes of 

embedded samples (experimental values obtained by FTIR microspectroscopy). 

 

Figure 3. Plasmonic modes of sample sA1 with H = 2.7 

µm and P = 4.0 µm. a) Experimental FTIR reflection data 

and b) simulated absorption spectra at different ����. The 

simulated spectrum for ���� = 70° is the average of 

spectra calculated for 60° 4 ���� 4 80° (see Supporting 

Information n. 3). c) Measured plasmonic mode frequency 

as a function of  ��6� for all samples. The green continuous 

line represents the expected dispersion of a “spoof” 

surface plasmon polariton. Blue symbols: 1st bright mode. 

Green symbols: asymmetric mode. Red symbols: 2nd 

bright mode. Note that sample sC has H = 2.2 µm, others 

have H = 2.7 µm. Dashed lines: frequencies of PMMA 

vibrations. Black circles indicate resonance of plasmonic 

modes with PMMA vibrations. The total angle ��6� 

approximately accounts for the quasi-dipole excitation 

pattern of the vertical antennas that select a specific 

illumination angle, relative to the vertical antenna axis, 

within the broad angular distribution of the optical 

objectives employed in the experiments. d), e) Simulated 

field enhancement maps for sample sA2, showing an 

apical hotspot for both asymmetric and bright plasmonic 

modes. 
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In Figure 4 a full set of experimental AFM-IR spectra and maps is shown for different samples: sB (control 

sample, plasmonic modes not resonant with molecular vibrations), sA (both SEIRA and Joule effect), sD (strong 

Joule effect) and sC (strong SEIRA effect). From left to right in Figure 4, one can see for each sample the AFM 

topography maps (sepia color scale), the corresponding AFM-IR maps (red-hot color scale), the AFM-IR spectra 

at two locations (one in the antenna hotspot, orange curve, and one outside the hotspot, red curve), and the 

sketch of the embedding polymer bilayer configuration with thickness values. In the control sample sB, in which 

thicker embedding layers were used in order to displace the PMMA molecules 400 nm away from the hotspot, 

the AFM-IR spectrum in the hotspot (orange curve) displays a peak at �	  = 1850 cm
-1

 originating from Joule 

heating by the 2
nd

 bright mode (first line of Figure 4). The asymmetric mode appears in the same curve as a 

small Joule heating peak at 1330 cm
-1

, due to the absence of strong IR vibrations in the AZ molecules. 

Comparing the relative intensity of the PMMA vibrations at 1150-1250, 1450 and 1730 cm
-1

 in sample sB, one 

sees that they are identical for both the orange and the red curve, and also that they match the ratio 2:1:2 

measured in the absence of plasmonic field enhancement (see Figure 2b for reference). In the AFM-IR spectra of 

samples sA, sD and sC, instead, the spatial overlap of the apical hotspot with the PMMA layer produces a 

Figure4. From left to right column: AFM topography map, AFM-IR photothermal expansion map, AFM-IR spectra in two 

different locations (outside and inside the hotspots) and sketch of the embedding polymer configuration. Data for four samples are 

reported in the four different rows (sample parameters reported in Table 1). The AFM-IR maps (red-hot color scale) are taken at 

different plasmonic mode frequency, as specified above each map. In the sketches on the right, the embedding polymer bilayer 

thicknesses are reported with the strengths and frequencies (in cm-1) of specific molecule vibrations enhanced by the asymmetric 

mode of each sample (green arrows in the spectral plots). 
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resonant coupling of the plasmonic modes with the strong molecular vibrations of PMMA. In the spectrum of 

sample sA, already discussed in Figure 2, a pure Joule heating peak related to the 2
nd

 bright mode is present 

around �	  = 1850 cm
-1

, where PMMA displays no vibrational absorption. The asymmetric mode of sA instead 

resonates with the PMMA vibration at 1250 cm
-1

: as a result, the peak intensity ratio in the orange curve of 

sample sA is approximately 4:2:2, indicating a two-fold enhancement of the peak at 1250 cm
-1

. In sample sD, the 

2
nd

 bright mode resonates with the PMMA vibration at 1730 cm
-1

 leading to an asymmetric Fano lineshape in the 

AFM-IR spectrum (see below), which prevents the definition of a peak intensity ratio. In sample sC, the bright 

modes lie outside the AFM-IR frequency range (see Table 1), while the asymmetric mode at 1730 cm
-1

 resonates 

with the C=O stretching vibration of PMMA, producing a remarkable seven-fold enhancement of the AFM-IR 

signal (peak intensity ratio is 2:1:14). Note that the normal PMMA peak intensity ratio of 2:1:2 is well 

reproduced not only in the control sample sB, but also in all spectra taken outside the antenna hotspots (red 

curves). The seemingly low spectral quality of AFM-IR data is due to poor adhesion of the top PMMA layer to 

the bottom AZ layer, and therefore this spectral quality is specific to the present sample structure and should not 

be regarded as the typical signal-to-noise ratio of the AFM-IR technique. 

The different situation that arises in sample sD deserves some more comment. Therein, the 2
nd

 bright mode is 

centered at 1700 cm
-1

 and partially overlaps with the strong vibration of PMMA at 1730 cm
-1

. As it is well 

known
34-40

, the resonance overlap leads to a characteristic Fano interference lineshape in the extinction spectra 

which, being a near-field interference phenomenon, has an absorptive counterpart that can be observed in the 

AFM-IR spectra
53

. In other words, the dip at 1755 cm
-1

 in Figure 4 (third line) is the result of destructive 

interference between the enhanced field of the plasmonic bright mode and the polarization field of the narrow 

PMMA vibration
42,54

. Apparently, these two fields reach a phase difference
 
close to * at 1755 cm

-1
 in sample sD. 

As a result, the molecule absorption is not efficiently enhanced in the antenna hotspot, and the total 

thermoplasmonic energy dissipation is even lower than in the absence of a molecular vibration. The bright mode 

lineshape is a quasi-continuum if compared to the narrow PMMA vibration, so the AFM-IR absorption lineshape 

could be reproduced by a Fano model taken from Ref. 40 (blue curve in third line of Figure 4). We recall that the 

occurrence of Fano interferences is the main reason why a true SEIRA phenomenon was seldom observed in 

mid-IR nanoantennas
34-40, 55

, and the concepts of surface enhanced infrared scattering (SEIRS) or of resonant 

SEIRA have been developed instead
26

. The quasi-Lorentzian lineshape seen in the case of SEIRA induced by the 

asymmetric mode (sample sC) can be interpreted within the same Fano resonance model as a weak coupling 

between antennas and molecules. In summary, Figure 4 shows that the strength of the antenna-molecule 

interaction and the relative heating contribution by Joule and SEIRA effects are specific to the given sample 

structure and to the related plasmonic mode structure. 
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We now turn to the quantitative determination of the Δ� in different locations of our samples at the SEIRA 

frequency ��789:. We focus on the structure of sample sC at two types of locations: points of the sample surface 

above the center of the antenna and points above the antenna rim where the e.m. hotspots are located, reaching a 

slightly higher local temperature �;<���789:� under laser illumination with power density 1.7·10
7
 W/m

2
 at 1730 

cm
-1

. The points at the surface of the embedding layer at a distance ∼P/2 from the antenna hotspot (red pixels in 

the AFM-IR maps of Figure 4), are subject to a much smaller global Δ� from the laboratory temperature of 293 

K to a slightly higher �∞���789:�. The dynamic thermal simulation of the temperature of such locations during 

the laser pulse are reported in Figure 5a for the structure of sample sC at the SEIRA frequency ��<=# = 1730 

cm
-1

 matching the strongest PMMA vibration, and in Figure 5b for a nonresonant structure (pitch P increased to 

5 µm). In Figure 5a, one obtains �;<���789:� = 305 K above the antenna rim at > =
?@AB

	
= 180	nm (where > is 

the distance from the antenna center along the illumination direction) or	CDEF�GHIJKL� = 12 K. Above the 

antenna center (red curve in Figure 5a), one observes very similar temporal dynamics but 	∆����789:� = 9	K.  

This is due both to the heat source (e.m. hotspots) being located at the antenna rim and to the thermal conduction 

through the metal antenna creating a minimum in the temperature increase at > = 0. Indeed, for the same reason 

an even higher Δ�#�$ % 20	K	is obtained for the PMMA molecules located 100 nm outside the antenna rim (see 

Figure 1f). From Figure 1f, one also sees that the global temperature increase far from the hotspot Δ�∞���789:� 

is below 3 K and therefore Δ�;<���789:� is significantly higher (four times higher than the global increase, as 

also derived from the quantitative analysis of the spectra in Figure 4). Figure 5a and 5b also demonstrate that the 

employed laser pulse duration of 260 ns and the much longer repetition time of ∼ 4.5 Qs result in a quasi-

equilibrium temperature being approximately reached after each laser pulse
30

, as required by the resonantly-

enhanced photothermal expansion version of AFM-IR used here 
56, 58

.  

Figure 5. a), b) Time dependence of the absorption at 

1730 cm-1 (dashed lines, right scales) representing the 

local heat source, and of the temperature (continuous 

lines, left scales). Red and blue lines refer to values 

above the antenna center and above the antenna rim 

respectively. In a) the thermal dynamics in the case 

of resonance between plasmon and vibrations is 

shown (structure similar to sample sC), while in b) 

the plasmonic resonance is slightly detuned by 

increasing the array pitch P = 3.5 µm to P = 5.0 µm. 

Note the different  scales in the two plots. c) Time 

dependence of the temperature above the antenna 

center with silicon spheres of varying radius located 

on top of the polymer layer, representing the 

scanning probe tip apex that generates weak e.m. and 

thermal perturbations. d) Field enhancement map at 

the antenna apex with a silicon sphere of radius 50 

nm is reported as an example. 
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Due to the large uncertainties related to the thermal material parameters employed in the simulations, we have 

used the experimental data to confirm the simulated value of Δ�;<���789:� in two different ways: (i) from an 

independent calibration of our instrument-sample configuration, fully reported in the Supporting Information n. 

7, in which the top PMMA layer of our embedded antenna structure is substituted by a different material 

(hydrogen-silsesquioxane, HSQ) displaying a temperature-dependent intensity of a specific vibrational 

absorption line
59

 working as a “local thermometer”; from the calibration plot in Figure S7, we calculate for 

sample sC a CDEF�GHIJKL� % RS ± U	V; and (ii) from the observed absolute value of �����	reported in the 

spectra of Figure 4, using the thermo-mechanical model for resonantly-enhanced photothermal expansion of Ref. 

30. By following the procedure of Ref. 30, the variation ∆W of the indentation depth W during each laser pulse 

(photoexpansion length) is considered as the main mechanism of impulse transfer from the material to the 

cantilever through the probe tip. The value of the cantilever deflection signal induced by photoexpansion ����� 

can then be used to calculate ∆�;<���789:� under the assumption that only the PMMA layer undergoes a 

significant	Δ�, and therefore it is the only portion of the sample that undergoes photothermal expansion, as 

indeed indicated by the thermal simulations (see Figure 1f). Further, we simplify the calculation by assuming a 

homogeneous Δ� for the layer contained in a cylinder extending between the antenna and the AFM tip apex, 

with height h = 100 nm and circular base radius equal to the thermal diffusion length around 300 nm as seen in 

both simulations and AFM-IR imaging (see maps in Figures 2 and 4)
28,29,51,56

. Details of the calculation and 

material parameters are reported in the Supporting Information n.6, but briefly, from the maximum experimental 

value of ����� ∼ 1.0 V and the measured mechanical quality factor of our AFM-IR cantilevers of 113, we obtain 

∆W ≃ 	4,7 ∙ 10Z��	m. Neglecting the thermal expansion of the gold-coated nanoantenna, which is justified for 

significant molecular heating at � = ��789:, and using a linear thermal expansion coefficient ℓ = 7 ⋅ 10\KZ� 

for PMMA, we obtain a local CDEF�GHIJKL� = C]/�^_� = 	S ± ` K, which just confirms the order of 

magnitude of the temperature increase obtained from the simulations of Figure 5 and the calibration with the 

HSQ layer. 

Finally, one may ask whether the presence of the AFM-IR probe affects the thermal dynamics and the obtained 

ΔT in the antenna hotspot. We recall that we have used uncoated silicon probe tips so as to reduce the e.m. 

interaction of the tip with the plasmonic resonances. In Figure 5c, we show the thermal simulations of the same 

structure of Figure 5a with a silicon sphere of varying radius added on top of the antenna, representing the AFM 

probe tip. The actual curvature radius of our probes is around 25 nm and their shape is that of a trigonal pyramid, 

so the silicon sphere only models the probe tip apex. In Figure 5d, the e.m. simulations are shown and indicate 

that the hotspot pattern is not significantly modified by the presence of a silicon probe tip (compare Figure 5d to 

Figure 3e). The absorption in silicon at 1730 cm
-1

 is negligible with respect to that of PMMA and gold. The Δ� 

inside the spheres is negligible for any considered sphere radius, because the thermal conduction link with the 

heated PMMA layer is reduced to air flow and to a very small contact point. This indicates that the Δ� of 
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PMMA does not depend on the presence of a silicon probe tip on top of it, and that the thermal expansion of the 

probe tip can be neglected in the calculations of ∆�;<. In Figure 5c, one also sees a slightly higher Δ� of the 

PMMA layer for larger spheres, despite the increase of the total heat capacity. The latter effect can be 

understood as an increase of the field enhancement in the nanogap between the antenna apex and the sphere with 

increasing scattering cross section of the sphere (related to the increasing sphere radius). Note that the probe tip 

was not included in the full e.m. and thermal simulations of Figure 1 and 5, however its effect is certainly 

included in the experimental calibration performed with the HSQ layer, which leads to similar values of 

Δ�;<���789:�. 

The fact that calibrations, simulations and calculations starting from ����� provide values of ∆�;< of the same 

order of magnitude around 10 K guarantees that the thermoplasmonic effect of the probe tip is a second-order 

correction, and that the vertical antenna structure could be employed outside the AFM-IR setup for 

thermoplasmonic applications, as already suggested in Ref. 8. The presented structures could then be exploited 

for laser-assisted catalysis of chemical reactions involving molecular species immobilized on the surface of the 

antennas
16, 17

 and also for efficient global heating of macroscopic sample surfaces with narrowband laser light at 

the mid-IR vibrational resonance of given molecules, employing continuous-wave QCLs. If compared to 

broadband mid-IR perfect absorbers, such as carbon black, nanoporous gold
40

, or metasurfaces
15,60,61

, the vertical 

antenna arrays presented in this work can be substance-selective when operated at mid-IR wavelengths for which 

SEIRA is dominant over Joule heating (see e.g. sample sC at 1730 cm
-1

). In general, the additional 

thermoplasmonic effect of SEIRA by molecules, beyond that of Joule heating by metals, occurs in the mid-IR 

when molecules with vibrational fingerprints resonant with plasmonic modes are present in the antenna hotspots, 

effectively producing a kind of “mid-IR chemical trigger” of  the thermoplasmonic Δ�. 

Conclusions 

We have measured the thermoplasmonic response in the mid-infrared of vertical antenna arrays embedded into 

polymer layers by using a scanning probe microscopy technique based on the photothermal expansion effect. We 

have investigated specific surface-enhanced infrared absorption (SEIRA) conditions in different arrays, in which 

the molecule vibrations resonate with the plasmonic modes of the antennas in the mid-infrared. Illumination was 

provided by a wavelength-tunable quantum cascade laser and resonance conditions between molecular 

absorption and plasmonic modes could be achieved thanks to the high quality factor of the plasmonic resonances 

featured by vertical antenna arrays. The vertical antennas were embedded in a polymer layer of thickness slightly 

larger than the antenna height so as to spatially overlap the apical antenna hotspot with the top polymer layer, 

thereby strongly reducing the thermal conduction link between the heated molecules and the substrate heat sink 

if compared to previous similar works on planar antenna structures. 
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The study of the photoexpansion spectra measured with the scanning probe tip positioned above the antenna 

apex has demonstrated plasmon-enhanced molecule vibration intensities that non-radiatively decay into heat. 

The absolute temperature increase in our experiment was estimated by thermal simulations, by an experimental 

calibration and by scanning probe sensitivity calculations to be in the range 7 K to 20 K with 19 mW of focused 

mid-infrared laser illumination at a wavelength of 5.8 µm (1730 cm
-1

). The perturbation of the antenna modes by 

the scanning probe tip is found to be minimal, therefore the antenna structures could be used independently for 

thermoplasmonic applications. Using focused beams from modern quantum cascade lasers at their maximum full 

emission power surpassing 1 W, it should be possible to reach local thermoplasmonic temperature increases of 

hundreds of Kelvin degrees by locating in the antenna hotspots specific molecules, whose mid-infrared 

vibrational fingerprints resonate with the plasmonic modes of the vertical antenna arrays. 
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The Supporting Information file contains figures and text on: 1. Experiments with gold-coated probe tips; 2. Evaluation of 

laser power density; 3. Simulated quality factor of the asymmetric mode; 4. Interpretation of the bright modes as linear 

dipole resonances; 5. Interpretation of asymmetric array modes as spoof surface plasmons; 6. Temperature increase 

evaluation at SEIRA condition; 7. Temperature increase calibration with the HSQ vibrational peak. 
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