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Abstract. A new approach to topology optimization is presented that is based on the mini-
mization of the input/output transfer function H∞ norm. Additionally, by properly selecting
input and output vector, the approach is recognized to minimize an entirely new definition of
frequency–based dynamic compliance. The method is applied to viscoelastic systems in plane
strain conditions that are investigated by using the Arnold–Winther finite–element resorting to
a generalized solid phenomenological model. Preliminary indications on how to address the
actual manufacturability of the optimal specimen are eventually outlined.
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1 INTRODUCTION

Research on topology optimization of dynamic response dates back to the nineties and was
at that time mostly intended as eigenvalue optimization [1] within a general max–min strategy
that aims at maximizing the lowest eigenvalues and the like. The maximization of single and
multiple eigenfrequencies and relevant band–gaps for vibrating structures is addressed in [2]
whereas a similar problem for Euler–Bernoulli beams has been proposed in [3]. More recently
methods for the optimal design of forced beams and continua in dynamic regime have been pre-
sented that may be roughly grouped into two main categories: approaches that make use of the
dynamic compliance concept, see [4],[5] and [6] among others, and frequency domain methods
that are investigated in [7], [8] and [9] just to mention a few.
Focus of this paper is on the proposal of a new frequency–based topology optimization strategy
for dynamic structures that aims at the minimization of the input/output transfer function H∞–
norm. The distinctive feature of the proposed approach is that it seems to represent the natural
extension to dynamics of by now classical methods for static topology optimization, [10]. Fur-
thermore, by a proper selection of system input and output vectors, a new concept of frequency–
domain compliance for dynamic systems is gathered and ready for topology optimization. Cru-
cial for the success of the proposed methodology is the development of a semi–analytic formula
for computing the gradient of theH∞ norm with respect to the design parameter vector (element
densities) that represents an extension of the formula presented in [11]. The proposed topology
optimization strategy is quite general and may be actually applied to any kind of dynamical
system in state–space (or equivalently transfer–function) form such as standard elastic systems
whose state–space vector encompasses displacements and velocities. However, for this paper
sake a new class of linear 2D viscoelastic systems is considered along the path suggested in
[12] that uses a weak–symmetry stress finite–element as opposed to what is done herein where
the truly–element proposed in [13] is adopted. By using velocities (instead of displacements)
as kinematic variables, the state vector of the resulting dynamical system includes velocities
themselves and stresses and this makes the numerical analysis peculiar with respect to more
classical elastic idealizations. The same class of viscoelastic systems was investigated in [14]
wherein the the focus of the design was on stress–constraints and incompressibility.
Eventually, a few considerations on the extensions needed by the formulation to comply with
additive manufacturing requirements are highlighted, mainly following the general framework
proposed by Sigmund and coworkers in [15] and [16]. As to optimal design of viscoelastic
materials exhibiting extreme properties, reference is made to [17]. Numerical investigations on
minimum compliance problems are presented and discussed to validate the general framework.

2 A NEWH∞-NORM FRAMEWORK FOR TOPOLOGY OPTIMIZATION

2.1 (Descriptor) state space (D)SS and transfer function TF repsentations

The class of dynamical systems to be investigated herein may be given the time domain
descriptor state-space format {

Eẋ = Ax + Bw
z = Cx

, (1)

or Laplace domain, transfer–function representation

Z = G(s)W , where: G(s) = C(sE −A)−1B, (2)
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where x, z and w are the state, output and load vectors respectively, E is (an extended version
of) the mass matrix, A is the structural state matrix, B a topological matrix distributing the
loads to the degrees–of–freedom, C the output matrix that basically selects the components of
the state vector whose response need be optimized, and Z and W the Laplace transforms of z
andw, respectively. It is assumed that matricesE andA depend on a design-variable vector p,
i.e. in explicit form one writes

E = E(p), A = A(p). (3)

2.2 H∞ norm definition and physical meaning

A systematic exposition of the H∞ norm concept is beyond the scopes of this paper and
reference is made to [18] for a in-depth treatment including applications to robust control of
uncertain dynamical systems. The transfer–function representation of Equation 2 is referred
to but all the reasoning applies to the state–space form of Equation 1 as well. To start with
we consider the simpler case of a single–input/single–output system (that may be however be
characterized by a multidimensional state vector x). The H∞ norm of a single–input/single–
output (SISO) linear system with given transfer functionG(s) is defined as the peak gain of the
frequency response, i.e.

||G||∞ = sup
ω
|G(iω)|. (4)

Recalling that |G(iω)| is the factor by which the amplitude of a sinusoidal input with angular
frequency ω is magnified by the system, it is seen that the H∞ norm is a measure of the largest
factor by which any sinusoid is magnified by the system. In this respect the H∞ norm of a
dynamical system represents the natural extension to dynamics of static response measures in
that it gives the analyst the maximum system response all over the frequency range in the spirit
of Fourier analysis. Switching now to multi–input/multi–output (MIMO) systems, theH∞ norm
is the peak gain across all input/output channels. For an n×m transfer function matrixG(s), a
natural way to achieve this is to introduce the maximum gain of G(iω) at the frequency ω. Let
b = [v1, . . . , vm]T ∈ Cm be a complex–valued vector with Euclidean norm

||b||2 =
(
|v1|2 + · · ·+ |vm|2

)1/2
. (5)

The maximum gain ofG at frequency ω may be written as

||G(iω)|| = max
b

{
||G(iω)b||2
||b||2

: b 6= 0, b ∈ Cm

}
= max

b
{||G(iω)b||2 : ||b||2 = 1, b ∈ Cm}.

(6)

Finally, the H∞ norm of the transfer function matrixG(s) is defined as

||G||∞ = sup
ω
||G(iω)||. (7)

One may further show that the matrix norm ||G(iω)|| is equal to the maximum singular value
σ(G(iω)) of the matrixG(iω). Therefore, the H∞ norm may also be written as

||G||∞ = sup
ω
σ(G(iω)). (8)
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A few approaches for computing the H∞–norm of a dynamical system are available in the
literature, see e.g. [18], whose analysis is beyond the scopes of this paper. It suffices here
to say that a few methods have been tested within the MATLAB [19] based code developed
for the numerical simulations to be presented next that displayed comparable performance in
terms of accuracy and speed. The MATLAB functions getPeakGain and hinfnorm have
been actually used that, for a given dynamical system saved in descriptor state-space (dss) or
transfer–function (tf) formats, return its H∞ norm and the frequency ω at which the peak gain
takes place that are needed for the computation of the relevant gradient vector ∂||G||∞

∂p
.

2.3 The abstract topology optimization problem

The abstract topology optimization problem dealt with hereinafter may therefore be written
as 

min
p
F (p) = ||G(iω,p)||∞

s.t. G(iω,p) = C(iωE(p)−A(p))−1B
V (p) ≤ Vmax

0 ≤ p ≤ 1

(9)

where 93 is a global volume constraint and 94 is the usual limitation on the element densities p.
As to practical topology optimization problems that fit the above framework the following are
worth mentioning:

1. minimization of the displacement response at selected points of the structure. With ref-
erence to Equation 12, this may be achieved by selecting a Boolean C matrix whose
unitary entries are such that the product Cx extracts from the state vector x those only
components of the response the designer wants to be minimized;

2. minimization of the stress response at selected points of the structure. When using a
mixed finite element approximation method, the goal is achieved with the very same
technique as for displacement response since stresses σ belong to the state vector x as
well. Furthermore, when a mixed finite element approach is adopted the output vector
z may include both displacements and stresses so as to end up with an optimal structure
with respect to kinematic and static quantities at the same time;

3. minimization of (a new concept of) dynamic compliance. Dynamic compliance has re-
cently received much attention by the engineering community [5]. The classical static
concept of compliance is typically extended to dynamics by choosing an objective func-
tions that is the integral average over a finite time interval of the product of the loads
times dual (in virtual work sense) displacements. In the spirit of the proposed approach,
a new concept of dynamic compliance is introduced herein that is suitable for numerical
investigations. Reference is again made to Equation 12 that provides the system output
vector in the form z = Cx. By considering a single–output system (in which case C is
a single–line vector) whose entries are the load intensities Fi positioned at the same en-
tries as the dual displacements ui, one gets a single–output of type z = Cx =

∑
i Fiui,

i.e. the system dynamic compliance C . By this selection of matrix C one may then get
a topologically optimal structure that minimizes the system compliance over the entire
frequency range of the acting loads.
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2.4 Computing the gradient
∂||G(iω,p)||∞

∂p

Computing the H∞–norm sensitivity of a transfer function matrix with respect to a plant pa-
rameter may be shown to be quite an hard task that, at least in principle, may be accomplished
via a finite–difference approximation as long as the system does not depend on too many param-
eters, as is unfortunately the case for a structure undergoing topology optimization. To make
the optimization procedure feasible, a fast and reliable semi–analytical approach is therefore
necessary for the numerical procedure to convergence (herein we use the Method of Moving
Asymptotes [20]). Not many algorithms are available in the literature and [11] seems to repre-
sent the only contribution on this delicate subject. First of all, the transfer function matrix in
Equation (2) is re-written by posing s = jω, i.e.

G(iω,p) = C (iωE(p)−A(p))−1B. (10)

If now M (p) is any differentiable and invertible matrix, a basic result in matrix differential
calculus allows one to write

∂M−1

∂pj
= −M−1∂M

∂pj
M−1, (11)

that, once applied to (iωE(p)−A(p))−1 in Equation 10, gives

∂G(iω,p)

∂pj
= −C (iωE −A)−1

[
iω
∂E(p)

∂pj
− ∂A(p)

∂pj

]
(iωE −A)−1B . (12)

A singular value decomposition ofG need then be computed that reads

Gk×m = UΣV H (13)

where H denotes the conjugate transpose, and U and V are unitary matrices, i.e. UHU = I ,
V HV = I . The diagonal elements of Σ are called singular values ofGwhereas column vectors
U i ∈ U and V i ∈ V are respectively called left and right singular vectors of G associated to
the singular value σi ∈ Σ:

Σ = diag(σ1, σ2, . . . , σ`), singular values , ` = min(k,m)
U = unitary matrix of left singular vectors
V = unitary matrix of right singular vectors

(14)

The main result arrived at in [11] (actually in the case of standard state–space system for
which E ≡ I) is a rigorous proof of the sensitivity formula that may be shown to be written as

∂||G(iω;p)||∞
∂pi

∣∣∣∣
p=p0

= Real
[
UH

1

∂G(iω,p0)

∂pi
V 1

]
, (15)

where ω is the frequency at which the peak value of the transfer function matrix G is experi-
enced, i.e. the one where the H∞ norm is actually computed.
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2.5 Computational issues on theH∞ norm and its gradient

The computation of the H∞ norm of a complex (MIMO) system with a massive state–vector
x is quite a complicated task that is object of active research by the control community. De-
pending on the complexity of the system, the computation of the H∞ norm may require from
several minutes to half an hour as order of magnitude. However, within a topology optimization
session having the H∞ norm as objective function, one needs to compute the H∞ norm (and
the peak frequency) of a sequence of systems, say Gn(iω,pn) and typically the difference of
the (2)norm of two consecutive design parameters pn and pn+1 is quite small and (under the
obvious hypothesis of continuity with respect to the parameters) such is therefore the difference
between the H∞ norm of the consecutive systems Gn(iω,pn) and Gn+1(iω,pn+1) as well as
that of the peak frequencies ωn and ωn+1. This suggests the following continuation method that
allows a dramatic reduction of the CPU time needed to compute the H∞ norm:

1. For the first two iterations, i.e. n = 1, 2, compute the exact H∞ norms ||G1(iω,p1)||∞,
||G2(iω,p2)||∞ and the relevant peak frequencies ω1 and ω2, e.g. using the resident
Matlab functions getPeakGain or hinfnorm [19];

2. for each subsequent iteration n > 2, set ∆ωn+1 = ωn − ωn−1 and consider the frequency
interval centered on ωn given as In+1 = (ωn− κ∆ωn+1, ωn + κ∆ωn+1), where κ governs
the amplitude of In+1 (κ = 5 has been used in the simulations after a quick trial–and–error
procedure);

3. Sample In+1 with a regular grid of points (50 points are used in the computations to be
presented next) and compute the frequency response of the system for all such points
in the frequency domain. This amounts to a forward dynamic computation that may be
accomplished using the Matlab function freqresp that is far quicker than the actual
computation of ||Gn+1(iω,pn+1)||∞;

4. set ||Gn+1(iω,pn+1)||∞ equal to the maximum over all the sampled points of the absolute
value of the frequency responses returned by freqresp.

It may be useful to check the procedure approximately once every 50 iterations by computing
exactly the H∞ norm and evaluate whether the approximate strategy is stable or not (in the
numerical computations to be presented next, the continuation strategy proposed has proven to
be always stable).

As for the computation of the H∞–norm gradient, reference is made to [21] where a com-
parison between the CPU time needed to get a finite–difference approximation versus using
Equation 15 is performed showing that Equation 15 allows for a CPU time reduction of approx-
imately three orders of magnitude.

3 THE VISCOELASTIC BIDIMENSIONAL SYSTEM UNDER OPTIMIZATION

3.1 Strong form

The viscoelastic model originally introduced in [12] is considered that is based on a stress–
additive decomposition as in Figure 1.
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Figure 1: Standard solid phenomenological model

As usual when adopting Hellinger–Reissner variational principles, compliance tensors relat-
ing strains to stresses are introduced that allow one to write

A0

E

σ̇
0

+ A0

V

σ
0

= ε(v)

A1

E

σ̇
1

= ε(v)
(16)

whereA0

E

andA0

V

are the elastic and viscous compliance tensors of the viscoelastic component,

A1

E

is the elastic compliance tensor that is in parallel with the viscoelastic one and v is the

velocity field. Hereinafter plane strain conditions shall be considered allowing one to write
each compliance tensor in matrix form as

A0,1
E,V =

1 + ν

E0,1
E,V (p)

 1− ν −ν 0
−ν 1− ν 0
0 0 1

 , (17)

where, as usual in topology optimization of isotropic structures, it is assumed that the Young
modulus only depends on the material density p. One should notice that a stress–velocity for-
mulation is being used that presents several advantages over more classical stress–displacement
approaches, including the ease with which dynamic effects may be considered in the analysis.
Therefore, compatibility relations are written in terms of strain velocities as

ε(v) = ∇sv =
1

2

(
∇v +∇vT

)
, (18)

whereas the dynamic equilibrium reads

−ρv̇ + div σ = −ρg. (19)

3.2 Truly–mixed formulation discretized with the Arnold–Winther finite element

By observing that the total stress σ may be additively decomposed as σ = σ
0

+ σ
1
, the

continuous variational formulation of the problem at hand may be obtained by eliminating the
strain tensor ε in Equations 16 and 18, testing the resulting equation by two virtual stress fields
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τ
0
, τ

1
, and the equilibrium equation 19 by a virtual velocity field w, so as to write:

Find (σ
0
, σ

1
, v) ∈ H(div,Ω)×H(div,Ω)× L2(Ω) such that

〈A0

E

σ̇
0
, τ

0
〉 + 〈A0

V

σ
0
, τ

0
〉 + 〈v, div τ

0
〉 = 0

〈A1

E

σ̇
1
, τ

1
〉 + 〈v, div τ

1
〉 = 0

−〈ρv̇, w〉 + 〈div σ
0
, w〉 + 〈div σ

1
, w〉 = 〈ρg, w〉

(20)

∀τ
0
∈ H(div,Ω), ∀τ

1
∈ H(div,Ω), ∀w ∈ L2(Ω).

In more compact form, one may rewrite the governing system in Equation 20 in matrix-vector
notation as usual within the framework of mixed methods, i.e. A0

E(p) 0 0
0 A1

E(p) 0
0 0 −M(p)

 ˙ σ0

σ1

v

+

 A0
V (p) 0 BT

0 0 BT

B B 0

 σ0

σ1

v

 =

 0
0
ρg

 (21)

The triangular Arnold-Winther finite element used in this paper is the lowest–order of the
family of finite elements introduced in the pioneering paper [13]. Figure 2 shows the relevant
degrees of freedom that may be listed as follows. As to the stresses, one should notice that the
symmetry of the stress tensor is imposed strongly so that the components to be approximated
are σ11, σ22, σ12 and one ends up with 24 degrees of freedom:

- the 3 components of the stress tensor σ11, σ22, σ12 at each vertex of the triangle (9 dofs);

- the moments of order zero and one of the traction vector σ · n along each edge of the
triangle (12 dofs);

- the average of the the components of the stress tensor over the triangle, i.e.
∫
T
σ11,

∫
T
σ22,∫

T
σ12, (3 dofs).

As to the velocity vector v, a standard element–wise linear globally discontinuous approxima-
tion is adopted.

3.3 Recovering the state–space and transfer function formats

The state–space or transfer–function format of Equations 1 or 2 may be recovered by intro-
ducing the state vector

x =

 σ0

σ1

v

 , (22)

and the structural matrices

E(p) =

 A0
E(p) 0 0
0 A1

E(p) 0
0 0 −M(p)

 , A(p) = −

 A0
V (p) 0 BT

0 0 BT

B B 0

 . (23)
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Figure 2: Arnold-Winther DOFS

As to the loading term Bw, an explicit formulation should be derived on a case by case basis
but a sufficiently general possibility is to pose

w =

 0
0
ρg

 , B =

 0 0 0
0 0 0
0 0 I

 . (24)

As to the dependence of stiffness and mass density on the design variables, as usual in topol-
ogy optimization, each element is given a (mathematical) density p ∈ [0, 1] that is used within
a SIMP approach [10] so as the following interpolations are considered

E(p) = Emin + pq(Efull − Emin) (25)
ρ(p) = ρmin + p(ρfull − ρmin),

where the exponent q is set equal to 3 as usual and Equation 251 applies to elastic and viscous
phases of the material described by the standard model in Figure 1.

4 ADDRESSING THE MANUFACTURABILITY ISSUE

Manufacturability of the designed specimen is addressed via the three–field density approach
for which reference is made to [15] for a comprehensive exposition and [16] for the physical
meaning of the three involved densities within standard micro/nano lithography manufacturing
processes. Many similarities of these approaches may be found with the findings of Guest and
co–workers, see [22] for single–phase projection and [23] for multiple phase projection. The
three density fields entering the formulation originate a chain like density transformation that
reads [15]

p p̃ ̂̃p, (26)

where p is the bounded mathematical density, p̃(p) is the filtered density typically obtained from
p by a convolution–type filter (to avoid checkerboarding among other undesirable effects) and̂̃p is the projected density that allows to remove grey regions that unavoidably affect the filtered
density p̃ and to impose a minimum length scale to the specimen to be designed and possibly
manufactured.
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4.1 Density and Heaviside projection filters

A density filter is first used to switch from the mathematical density p to the intermediate
density p̃e of the generic element e that reads

p̃e =
1∑

i∈Ne

Hei

∑
i∈Ne

Heipi, (27)

where Ne is the set of all elements whose center–to-center distance ∆(e, i) from element e is
less than the prescribed filter radius rmin and the weighting factor Hei is defined as

Hei = max(0, rmin −∆(e, i)). (28)

For this paper sake only the solid phase is then projected. To this goal, the Heaviside projection
filter ̂̃p(p̃) =

{
1 if p̃ > 0
0 if p̃ = 0

(29)

is relaxed to gain differentiability and the following filter is actually used [22, 15]

̂̃p = 1− e−βp̃ + p̃e−β, (30)

where β = 0 means no filtering and for β →∞ the Heaviside filter is recovered. As suggested
in [23, 24], a continuation method is actually implemented that starts with a low value of β that
is increased along with the iterations to impose the Heaviside filtering conditions on the final
design.

4.2 The modified topology optimization problem

After the mathematical density p is filtered (p̃) and projected (̂̃p), the (formally) new H∞
topology optimization problem reads

min
p
F (p) = ||G(iω,p)||∞

s.t. G(iω,p) = C(iωE(p)−A(p))−1B

V
(̂̃p) ≤ Vmax

0 ≤ p ≤ 1

(31)

The sensitivity of the H∞ norm with respect to the design densities ̂̃p is computed using the
formula in Equation 15 whereas the chain rule is used to compute gradients with respect to the
initial mathematical densities p, i.e.

∂F

∂p
=
∂F

∂̂̃p ∂
̂̃p
∂p̃

∂p̃

∂p
, (32)

where
∂p̃e
∂pj

=
1∑

i∈Ne

Hei

Hej,
∂̂̃pe
∂p̃e

= βe−βp̃e + e−β. (33)
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4.3 Assessing the quality of the design

The quality of the design should be assessed with respect to the following two parameters:

1. the first one is of course the value of the objective function to be minimized, i.e. the H∞
norm for this paper sake;

2. secondly, to check the effectiveness of the proposed strategy to cope with manufactura-
bility issues, the following gray indicator shall be evaluated [15]

M =

N∑
i=1

4̂̃p(1− ̂̃p)
N

, (34)

where N is the dimension of vector ̂̃p, i.e. the number of elements, and the lower M the
better.

5 Numerical study

The bidimensional structure Figure 3 in plane strain conditions is considered with physi-
cal properties as in Table 1. A Single-Input Single-Output (SISO) realization is investigated
imposing that the two loads FA and FB are acting simultaneously with the same (normalized)
intensity whereas by properly choosing the topological matrixC (Equation 1), the output vector
z (Equation 1) is given as

z = C = FAvA + FBvB, (35)

i.e. the the output represents the (time derivative of the) dynamic compliance exploited all over
the frequency range thanks to the H∞–norm concept.

Figure 3: The bidimensional structure under optimization

Due to the symmetry of the system, only the left half is investigated by using 96× 48 square
cells further subdivided into 4 Arnold–Winther finite elements each. As to the overall volume
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E0
E [Mpa] E0

V [MPa s] E1
E [MPa] ρ0 [kg/m3]

2 0.2 2 10

Table 1: Material properties of the adopted viscoelastic material

constraint, the maximum volume Vmax is set to 40% of the total volume. As to the continuation
method to update the value of the parameter β characterizing the projection filter (Equation 30),
an initial value β = 2 is considered and doubled then every 25 iterations.

Figure 4 shows the MMA performance toward the minimization of ||G(iω,p)||∞. Two
issues are worth mentioning at this regard:

• the overall convergence path is not monotonic and remarkable oscillations take place for
iterations between the 20th and the 40th;

• when the value of β is updated the objective function decreases for that very same it-
eration than increases and a decreasing path shows up until β is further updated. Such
(smaller) oscillatory behavior should not be attributed to the MMA algorithm but to a vol-
ume constraint violation due to the fact that the projection filter is not volume–preserving.
This violation could be prevented by a proper scaling of the filter but for this paper sake
it was chosen to use the projection filter as is, and let the MMA algorithm take care of the
volume constraint.

Figure 4: MMA convergence path
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Figure 5 shows the optimal topology for the problem at hand (the right part was drawn by
symmetry with respect to the mid vertical axis). Basically no grey regions were experienced
and the grey indicator in Equation 34 was found to be 0.0075 and no sharp corners show up
as to the solid phase. As to the void phase, no remedy was implemented but the adoption of a
multiple phase projection strategy in the spirit of [23] is currently under development.

Figure 5: Optimal structure at convergence

Figure 6 shows a comparison between the frequency response functions for the initial uni-
form structure and the optimal topology at convergence. The peak gain, i.e. ||C ||∞, is reduced
to about one fifth of its initial value as one may also check by looking at Figure 4 that should
be considered quite a remarkable performance.

Figure 6: Frequency response functions - Optimal vs initial uniform structure
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6 CONCLUSIONS

A new approach to topology optimization of dynamical systems has been introduced that is
based on the minimization of theH∞ norm of the input/output transfer function. The framework
is abstract enough to include multiple loads as well as multi–output objectives with basically no
modifications. Such generality is also enjoyed by the specific dynamical systems object of op-
timization as long as its governing equations fit a (descriptor) state–space or transfer–function
format. For this paper sake a viscoelastic bi–dimensional system in plane strain conditions has
been considered obeying a viscoelastic constitutive law and the truly–mixed Arnold–Winther
finite element has been used for the spatial discretization. Eventually, the issue of manufactura-
bility of the design has been addressed using the three–field density representation approach
[15, 22]. Extensions to more complex geometries and load conditions are currently under de-
velopment that include three–dimensional systems and multiple–phase filtering techniques [23].
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