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CHAPTER 1 
 

                        ADENOSINE AND CANCER 

 

Adenosine is a nucleoside composed of a molecule of adenine attached to a ribose sugar 

molecule (ribofuranose) via a β-N9-glycosidic bond (Figure 1). 

 

 

 

 

 

 

 

 

 

 

Figure 1 – Chemical structure of Adenosine 

 

Adenosine is a primordial signaling molecule present in every cell of the human body 

that mediates its physiological functions by interacting with 4 subtypes of G-protein-

coupled receptors, termed A1, A2A, A2B, and A3. These receptors are widely distributed 

throughout the body. A2A and A2B receptors are coupled to adenylate cyclase activity, 

and their stimulation increases the intracellular cyclic adenosine monophosphate 

(cAMP) concentration while A1 and A3 receptor stimulation decreases cAMP 

concentration and raises intracellular Ca2+ 
levels by a pathway involving phospholipase 

C (PLC) activation (Abbracchio et al., 1995; Fredholm et al., 2001a). Adenosine effects 

are widespread and pleiotropic. The cellular response to this autacoid strictly depends 

on the expression of the different adenosine receptor subtypes, which can be 

coexpressed by the same cell and serve as active modulators in signal transduction. 

Understanding the interactions between them could provide critical information for 

determining the mechanism involved in cellular survival. Adenosine receptors have 
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been actively studied as potential therapeutic targets in several disorders such as 

Parkinson’s disease, schizophrenia, analgesia, and ischemia. Adenosine has been shown 

to be a crucial factor in determining the cell progression pathway, either in the apoptotic 

or in the cytostatic state (Spychala, 2000). At present, however, few therapeutic 

candidates in the fight against cancer are available from the ‘‘adenosinergic system.’’ 

 

 

1.1  Introduction  

One of the difficulties in treating most of the common cancers (colon, lung, breast, 

prostate, etc.) is that they form solid tumors. The individual cancer cells, being different 

from normal cells, form a tissue mass that behaves in a radically different way from 

normal tissues in the body. This is because the major cell population (the cancer cells) 

has grown in a way that is out of step with all of the other cells that would normally 

form a supportive network. In particular, the growth of the cancer is not coordinated 

with the development of a proper blood supply. The vascular net, work of a tumor, is 

usually inadequate, the blood vessels are often too few in number, the network is 

improperly branched, and their calibre is not well controlled. This means that the blood 

supply is inadequate. Consequently, most solid tumors do not receive sufficient oxygen 

and the cells are hypoxic. Specifically, hypoxia is conducive to adenine nucleotide 

breakdown, which is responsible for the adenosine release (Vaupel et al., 1989, 2001). 

As a consequence, adenosine accumulates to high levels in hypoxic tissues. In 

particular, it is recognized that significant levels of adenosine are found in the 

extracellular fluid of solid tumors (Blay et al., 1997), suggesting a role of adenosine in 

tumor growth. Adenosine, released from hypoxic tissue, is thought to be an angiogenic 

factor that links altered cellular metabolism, caused by oxygen deprivation, to 

compensatory angiogenesis. Angiogenesis (or neovascularization) begins with the 

migration of endothelial cells, originating from capillaries, into the tissue being 

vascularized. Adenosine has been reported to stimulate or inhibit the release of 

angiogenic factors depending on the cell type examined (Burnstock, 2002; Feoktistov et 

al., 2002). On one hand, adenosine is known to cause the synthesis of vascular 

endothelial growth factor (VEGF) (Grant et al., 1999) and increases the proliferation of 

endothelial cells obtained from the aorta (Van Daele et al., 1992), coronary vessels, and 

retina (human retinal endothelial cells, HREC) (Burnstock, 2002). In particular, 
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adenosine has been shown to induce the DNA synthesis in cultures of human umbilical 

vein endothelial cells (HUVEC) (Ethier et al., 1993; Rathbone et al., 1992a,b; Sexl et 

al., 1995, 1997; Ethier & Dobson, 1997). Furthermore, adenosine has been shown to 

stimulate canine retinal microvascular endothelial cell migration and tube formation 

(Lutty et al., 1998; Lutty & McLeod, 2003). On the contrary, adenosine has been 

reported to inhibit growth of human aortic smooth muscle cells (Dubey et al., 1998a, 

1998b), cardiac fibroblasts (Dubey et al., 2001), and vascular smooth muscle cells 

(Dubey et al., 2000).  

An increase in proliferation, unless repaired or balanced by an increase in apoptosis, 

results in hyperproliferative disease and cancer. Apoptosis, also called programmed cell 

death, progresses through a series of well-regulated morphological and biochemical 

phases, including chromatin condensation (Kerr et al., 1994) and caspase activation 

(Hale et al., 1996; Leist & Jaattela, 2001). Failure to undergo apoptosis has been 

implicated in pathological situations, including tumor development (King & Cidlowski, 

1995).  

Adenosine promotes wound healing (keratinocytes proliferation) and mediates 

angiogenesis (endothelial cell proliferation) in response to tissue injury (Montesinos et 

al., 2002), but it has been implicated in the induction of apoptosis in several cell types 

such as rat brain astroglial cells (Ceruti et al., 1997), human thymocytes (Szondy, 

1994), rat microglia cells (Schubert et al., 2000), arterial smooth muscle cells (Peyot et 

al., 2000), pulmonary artery endothelial cells (Dawicki et al., 1997), and sympathetic 

neurons (Wakade et al., 2001). Concerning the nervous system-derived cells, adenosine 

has been demonstrated to protect damaged neuronal cells against cell death (Ongini et 

al., 1997).  

In the human leukemia HL60, human melanoma A375, and human astrocytoma cells, 

adenosine at millimolar concentrations caused apoptosis. It seems likely that apoptosis 

is mediated by the intracellular actions of adenosine rather than through surface 

receptors (Tanaka et al., 1994; Abbracchio et al., 2001; Merighi et al., 2002a). It has 

been argued that the effect of high adenosine concentration might be subsequent to 

uptake of adenosine by the cell and intracellular accumulation of AMP, leading to 

caspase activation (Schrier et al., 2001).  

Other in vitro studies have shown that adenosine exerts inhibitory effects on tumor cell 

growth. In human epidermoid carcinoma A431 cells, adenosine evoked a biphasic 

response in which a concentration of 10 µM produced inhibition of colony formation; 
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however, at concentrations up to 100 µM, this inhibition was progressively reversed 

(Tey et al., 1992). Moreover, adenosine inhibited Nb2-11C lymphoma cell proliferation 

at concentrations of 5 – 25 µM and induced in a dose-dependent manner an arrest of the 

cells in the G0/G1 phase of the cell cycle and indeed a decrease in the telomeric signal, 

thus suggesting a cytostatic rather than an apoptotic effect (Fishman et al., 2000a, 

2000b, 2001). Adenosine has been shown to interfere with the proliferation of many cell 

types: its introduction at micromolar concentrations to cultures of tumor proliferating 

cells, e.g., lymphoma, prostate carcinoma, or leukemia cells, markedly inhibited their 

proliferation whilst stimulated the proliferation of normal cells, such as bone marrow 

cells or fibroblasts (Fishman et al., 1998; Fishman et al., 2000a, 2000b). Exogenous and 

endogenous adenosine has been shown to inhibit both collagen production and cellular 

hypertrophy induced by fetal calf serum (Dubey et al., 1998a, 1998b). In many cases, 

tumor-induced immune suppression is mediated by soluble inhibition factors or 

cytokines elaborated by the tumor cells. Extracellular fluid of solid carcinomas contains 

immunosuppressive concentrations of adenosine, suggesting that this autacoid 

constitutes an important local immunosuppressant within the microenvironment of solid 

tumors. 

Antigen-presenting cells such as dendritic cells and macrophages are specialized to 

activate naive T-lymphocytes and initiate primary immune responses. Adenosine 

inhibits interleukin- 12 (IL-12) and tumor necrosis factor-α (TNF-α) production in 

dendritic cells and in macrophages impairing T-cell priming (Hasko et al., 2000, 2002; 

Panther et al., 2001) and suppressing the anticancer immune response. Furthermore, 

adenosine impairs the induction and expansion of cytotoxic T-lymphocytes and the 

antitumor activity of natural killer cells (Williams et al., 1997a, 1997b; Hoskin et al., 

2002). 

In vivo studies have shown that adenosine exerts a profound inhibitory effect on the 

induction of mouse cytotoxic T-cells, without substantially affecting T-cell viability 

(Hoskin et al., 1994, 2002). In vitro studies confirmed that adenosine had profound 

effects on immune cells and has been implicated in the intrathymic apoptotic deletion of 

T-cells during development (Barbieri et al., 1998). Furthermore, the spontaneous 

proliferation of thymocytes after 20–25 hours of culture was significantly increased by 

the presence of adenosine deaminase (ADA), the enzyme that removes extracellular 

adenosine from the culture medium (Sandberg, 1983). In addition, in murine bone 

marrow-derived macrophages, adenosine inhibited macrophage colony stimulating 
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factor-dependent proliferation (Xaus et al., 1999).  

Adenosine sustains a complex role in the immune system activity, because when given 

to mice pretreated with cyclophosphamide it demonstrated a myeloprotective effect by 

restoring the number of white blood cells and the percentage of neutrophils as compared 

with normal values. Furthermore, it has been demonstrated that the elevation of the 

extracellular adenosine concentrations induced a radioprotective effect in mice by the 

stimulation of hematopoiesis in the bone marrow and the spleen (Pospisil et al., 1995, 

1998). In support of this myelostimulatory role, it has been demonstrated that adenosine 

enhances cycling of the hematopoietic progenitor cells (Pospisil et al., 2001).  

In conclusion, adenosine can drive neovasculogenesis and immune system activity, thus 

affecting regional tumor control. Interactions between adenosine signaling for 

proliferation and cell death also occur (Jacobson et al., 1999). The ability of adenosine 

to specifically inhibit tumor cell growth in vitro and in vivo suggests that the activation 

and/ or blockade of the pathways downstream of adenosine receptors may contribute to 

tumor development. Furthermore, the extracellular adenosine concentration may be a 

crucial factor in determining the cell progression pathway, either in the apoptotic or in 

the cytostatic state.  

 
 
Adenosine receptors and cancer  

A1 adenosine receptors  

The role of A1 adenosine receptors in tumor development is unknown and debatable. A1  

receptors have been associated to carcinogenesis by previous investigations where the 

expression of this receptor has been demonstrated by reverse transcription-polymerase 

chain reaction (RT-PCR) in colorectal adenocarcinomas and peritoneal colon tissues 

(Khoo et al., 1996). A1 receptors have been detected also in the human leukemia Jurkat 

and human melanoma A375 cell lines (Gessi et al., 2001; Merighi et al., 2001).  

A1 adenosine receptors can be coupled to different pertussis toxin-sensitive G proteins, 

which mediate inhibition of adenylate cyclase and regulate calcium and potassium 

channels, as well as inositol phosphate metabolism (Fredholm et al., 2001). A1 and A2A 

adenosine receptors can be found presynaptically and modulate neurotransmitter 

release. Presynaptic A1 adenosine receptors are the prototype of GPCRs, the stimulation 

of which decreases the probability of neurotransmitter release. The main mechanism of 

A1 receptor-mediated inhibition of exocytosis is a direct inhibitory effect on voltage-
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dependent Ca2+ channels (Moore et al., 2003). Recent studies suggest an anti-

inflammatory role for chronic A1 receptor activation by high levels of adenosine in the 

lung, a surprising and important finding in light of the fact that A1 receptor antagonists 

are being investigated as a potential treatment for asthma (Sun et al. 2005) 

Recently, it was reported that A1 receptors act as antiapoptotic and prosurvival 

mediators protecting human proximal tubular cells from the direct cytotoxic effect of 

H2O2 (Lee& Emala, 2002). After exposure to H2O2, intracellular ATP decreases 

significantly and the A1 receptor activation may attenuate this component of cellular 

injury. Furthermore, A1 receptors promote ethanol activation of PI3K/Akt pathway in 

cultured HUVEC, exerting an antiapoptotic activity (Liu et al., 2002). In contrast, 

adenosine-induced apoptosis in primary cultured rat astrocytes and in C6 glial cells was 

not sustained by A1  receptors (Appel et al., 2001; Di Iorio et al., 2002). Similarly, it has 

been recently demonstrated that adenosine-induced alteration of cell proliferation and 

cell death was not mediated by A1 receptors expressed in A375 human melanoma cells 

(Merighi et al., 2002a). Even considering that the negative results may be due to low A1  

receptor expression and/or uncoupling with Gi proteins, the absence of a proapoptotic or 

deleterious effect of A1 stimulation does not exclude the idea that A1 can play a role in 

carcinogenesis and tumor development. In particular, cisplatin, a widely used 

antineoplastic agent, up-regulates the A1 receptor in the rat kidney (Bhat et al., 2002). 

However, antagonists of A1 receptor exerted opposite effects reducing (Bhat et  al., 

2002) and exacerbating (Heidemann et al., 1989; Knight et al., 1991) cisplatin-induced 

nephrotoxicity. In the light of this, A1 receptors could act by exerting an antiapoptotic 

and prosurvival activity on normal cell survival under critical environment. Moreover, 

in an experimental approach using an A1 receptor deficient mouse as a tumor host, the 

importance of the microglial cells for mediating the A1 receptor anticancer effect is 

highlighted (Synowitz et al. 2006). Metalloproteinase MMP-9 and MMP-12 are 

significantly elevated in A1 adenosine receptor-deficient mice (Tsutsui et al. 2004). 

Indeed, MMPs play an important role in glioblastoma progression and, as was recently 

demonstrated, the expression of MMPs by microglia has an impact on tumor growth 

(Markovic et al. 2005). Matrix degradation by MMPs is an important prerequisite for 

glioblastoma invasion (Rao 2003). A1 receptor activation on microglia/macrophages 

inhibits not only the production of cytokines like interleukin-1β but also matrix MMPs 

like MMP-12 (Tsutsui et al. 2004). Further studies are necessary to corroborate an 

active prosurvival function of A1 receptors and their involvement with tumors.  
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A2A adenosine receptors  

A2A adenosine receptors have been found on cell membranes of different human tumor 

cells: SH-SY5Y neuroblastoma, NG108-15 neuroblastoma ×
 
glioma hybrid, U937 

monocytic lymphoma, Jurkat T-cell leukemia, A375 melanoma, and A431 epidermoid 

cells (Tey et al., 1992; Van der Ploeg et al., 1996; Mundell & Kelly, 1998; Gessi et al., 

2001; Mayne et al., 2001; Merighi et al., 2001; Hillion et al., 2002). However, the 

possible physiological role ascribed to A2A adenosine receptors in cytoprotection (i.e., 

protection against apoptosis and toxic insults) remains to be evaluated.  

It has to be remarked that A2A receptors contribute significantly to the antiischemic 

action of adenosine. The evidence for this comes from studies performed on the rat 

PC12 cell line used as a model for evaluating adenosine effect that has been attributed 

to the endogenous A2A receptor.  

Stimulation of the A2A adenosine receptors counteracts the inhibition of neurite 

outgrowth due to MAPK blockade (Cheng et al., 2002). Stimulation of the A2A 

adenosine receptor alone also activates the Ras/Raf-1/MEK/ERK signaling through 

PKA-dependent and PKA-independent pathways via Src- and Sos- mediated 

mechanisms, respectively (Schulte and Fredholm, 2003). Interestingly, 

phosphorylation/activation of CREB has been shown to compete with nuclear factor-κB 

(NFκB) p65 for an important co-factor, CBP. Phosphorylated CREB was therefore 

proposed to mediate the anti-inflammatory effect of the A2A adenosine receptor and 

inhibition of NFκB by A2A adenosine receptor activation during acute inflammation in 

vivo was demonstrated (Fredholm et al., 2007). 

Treatment with an adenosine A2A agonist results in a reduction in neuronal apoptosis 

and a decrease in spinal cord reperfusion inflammatory stress during rabbit spinal cord 

reperfusion (Cassada et al., 2001). It is possible to achieve infarct reduction with 

adenosine, inhibiting apoptosis. A recent study suggested that inhibition of apoptosis by 

adenosine at reperfusion involves the alterations in antiapoptotic Bcl-2 and proapoptotic 

Bax proteins and neutrophil accumulation, primarily mediated by an adenosine A2A 

receptor (Zhao et al., 2001).  

Despite this antiapoptotic role on normal tissue, A2A receptors on T-cell surface may 

play immunosuppressive role in conditions leading to an increase of adenosine 

concentrations, as found in large solid tumors where hypoxic conditions are known to 

cause accumulation of extracellular adenosine, which in turn could inhibit incoming 

antitumor cytotoxic T-lymphocytes from destroying the tumor (Koshiba et al., 1997). 
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Adenosine derivatives may induce apoptosis of human peripheral blood mononuclear 

cells through an A2A-like extracellular membrane receptor (Barbieri et al., 1998). At the 

same time, however, activation of adenosine A2A receptor has been shown to delay 

apoptosis in human neutrophils (Walker et al., 1997) and promote cell death of human 

melanoma cells (Merighi et al., 2002a). In contrast, adenosine-induced apoptosis in 

primary cultures of rat astrocytes and in C6 glial cells is not sustained by A2A receptors 

(Appel et al., 2001). Further evidences from in vivo studies suggest that blockade of 

A2A provides neuroprotection and moreover supports the view that A2A stimulation is 

detrimental in neurons and thymocytes (Ongini & Schubert, 1998; Apasov et al., 2000). 

Conversely, theophylline has an immunomodulatory action on neutrophil apoptosis via 

a mechanism involving A2A antagonism that increases granulocyte apoptosis (Yasui et 

al., 2000). The seminal observations of Ohta and Sitkovsky (2001) clearly established a 

role for the A2A adenosine receptors in protecting host tissue from destruction by 

overexuberant immune responses. Considering that the tumor microenvironment 

contains relatively high levels of extracellular adenosine, data is emerging to support the 

hypothesis that tumor-derived adenosine is one mechanism by which tumors evade 

immune destruction (Blay et al. 1997; Ohta et al. 2006). 

The immunosuppressive role and the ability to protect against ischemia suggests that 

A2A receptor activation improves hypoxic tumor cell survival and immunoescaping. 

Furthermore, adenosine promotes wound healing and mediates angiogenesis in response 

to tissue injury via occupancy of A2A receptors (Montesinos et al., 1997, 2002). 

Recently, synergistic up-regulation of VEGF expression in murine macrophages by 

adenosine A2A receptor agonists and endotoxin was reported (Leibovich et al., 2002). 

A2A receptors stimulate endothelial and melanoma cell proliferation (Sexl et al., 1995, 

1997; Merighi et al., 2002a). The results presented above provide further evidence for 

an active role of A2A receptors in tumor growth.  

A2A receptors have been shown to increase erythropoietin production in hepatocellular 

carcinoma cells (Hep3B) in culture and in vivo in rats and in mice under normoxic and 

hypoxic conditions (Nagashima & Karasawa, 1996; Fisher & Brookins, 2001). The 

discrepancy of A2A effects between different cellular systems is attractive. Most likely, 

A2A effects are linked to cell-specific factors or to the different role exerted by a similar 

signaling pathway downstream A2A receptor in different cell types.  

Further studies are needed to verify if A2A adenosine receptors are crucially involved in 

both positive and negative regulation of cell survival depending upon the cell type, 
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degree of receptor activation, and/or coupling to different transduction mechanisms.  

 
A2B adenosine receptors  

The A2B adenosine receptor properties are still to be fully clarified. The distribution of 

the gene transcript indicates that the A2B receptor is expressed in many tissues. At 

present, it is clear that the receptor is activated only at exceptionally high concentrations 

of adenosine, i.e., under pathophysiological rather than physiological conditions 

(Fredholm et al., 2001b). Recent studies have demonstrated that extracellular adenosine 

induces apoptosis of human arterial smooth muscle cells via A2B receptor, involving a 

cAMP-dependent pathway (Peyot et al., 2000). On the contrary, adenosine prevents the 

death of mesencephalic dopaminergic neurons by a mechanism that seems to involve 

A2B receptor stimulation (Michel et al., 1999). However, in this study, it was not 

excluded that the activation of an intracellular signaling pathway occurs in target cells 

without receptor mediation. Functional A2B adenosine receptors have been found in 

fibroblasts and various vascular beds, hematopoietic cells, mast cells, myocardial cells, 

intestinal epithelial and muscle cells, retinal pigment epithelium, endothelium, and 

neurosecretory (Gessi et al., 2005). Although activation of adenyl cyclase is arguably an 

important signaling mechanism for A2B adenosine receptors, this is not necessarily the 

case for A2B adenosine receptors, as other intracellular signaling pathways have been 

found to be functionally coupled to these receptors in addition to adenyl cyclase. In fact 

activation of A2B adenosine receptors can increase phospholipase C in human mast cells 

and in mouse bone marrow-derived mast cells. A2B adenosine receptor activation also 

elevates inositol triphosphate (IP3) levels, indicating this receptor can couple also to 

Gq-proteins. A2B adenosine receptors have been implicated in the regulation of mast 

cells secretion and gene expression, intestinal function, neurosecretion, vascular tone 

and in particular asthma (Varani et al., 2005). Although the A3 adenosine receptor 

subtype is involved in the release of angiogenic factors, in some cases the A2B 

adenosine receptor also seems to be responsible for the release of a certain subset of 

cytokines (Feoktistov et al. 2003; Merighi et al. 2007). A2B adenosine receptors are 

expressed in human microvascular endothelial cells, where they play a role in the 

regulation of the expression of angiogenic factors like vascular endothelial growth 

factor (VEGF), IL-8, and basic fibroblast growth factor (bFGF) (Feoktistov et al. 

2002).Adenosine activates the A2B adenosine receptor in HREC, which may lead to 
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neovascularization by a mechanism involving increased angiogenic growth factor 

expression (Grant et al., 1999). In regard to this, A2B adenosine receptor inhibition may 

offer a way to inhibit retinal angiogenesis and provide a novel therapeutic approach to 

the treatment of diseases associated with aberrant neovascularization, such as diabetic 

and prematurity retinopathy (Grant et al., 2001).  

Adenosine causes inhibition of cardiac fibroblasts growth and of aortic and vascular 

smooth muscle cells by the activation of A2B adenosine receptors (Dubey et al., 1998a, 

1998b, 1999, 2000, 2001) while increases the proliferation of rat arterial endothelial 

cells via A2B receptors (Dubey et al., 2002). Furthermore, exogenous and endogenous 

adenosine inhibits both collagen production and cellular hypertrophy induced by fetal 

calf serum, and this is most likely via the activation of A2B receptors (Dubey et al., 

1999). Thus, considering these facts, A2B adenosine receptors may play a critical role in 

regulating cardiac remodelling associated with cardiac fibroblast proliferation. 

Pharmacological or molecular biological activation of A2B adenosine receptors may 

prevent cardiac remodelling associated with hypertension, myocardial infarction, and 

myocardial reperfusion injury after ischemia.  It is interesting to note that in contrast to 

smooth muscle cells A2B receptors induce growth of endothelial cells (Grant et al., 

1999).  

We excluded a role for A2B in the adenosine-induced proliferation of human melanoma 

cells (Merighi et al., 2002a). However, further studies are needed to assess the effect of 

A2B stimulation in cancer cell development, proliferation, and diffusion. Moreover, data 

demonstrating A2B receptor-mediated modulation of neovascularization may have 

interesting implications in the identification of novel drugs that may be utilized to 

increase endogenous protection against tumors.  

 
 
A3 adenosine receptors  

The A3 adenosine receptor is the only adenosine subtype which was cloned before its 

pharmacological identification. It was originally isolated as an orphan receptor from rat 

testis, having 40% sequence homology with canine A1 and A2A subtypes (Meyerhof et 

al., 1991) and was identical with the A3 adenosine receptor later cloned from rat 

striatum (Zhou et al., 1992). Homologs of the rat striatal A3 adenosine receptor have 

been cloned from sheep and human, revealing large interspecies differences in A3 

adenosine receptor structure. Recently equine A3 adenosine receptor has been cloned 
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and pharmacologically characterized. Sequencing of the cDNA indicated that it has a 

high degree of sequence similarity with that of other mammalian A3 adenosine receptor 

transcripts, including human and sheep (Brandon et al., 2006).  Adenosine A3 receptors 

have been shown to couple to classical or G protein dependent second-messenger 

pathways through activation of both Gi family and Gq family G proteins (Palmer et al. 

1995; Merighi et al. 2003; Haskó and Cronstein 2004). Therefore, A3 receptor 

stimulation inhibits adenylyl cyclase, resulting in a reduction of intracellular cAMP 

levels (Zhou et al. 1992; Varani et al. 2000). Furthermore, the abilities of recombinant 

A3 receptors in transfected CHO cells (hCHO-A3) to inhibit cAMP accumulation and 

endogenous A3 receptors in rat basophilic leukemia cells (RBL-2H3; a cultured mast 

cell line) to stimulate PLC are abolished by pretreatment with pertussis toxin (Zhou et 

al. 1992; Ali et al.1990). This is consistent with a functional coupling of this receptor to 

Gi family G proteins. Furthermore, adenosine A3 receptor signaling can increase 

phosphatidylinositol-specific phospholipase C (PLC) activity (Abbracchio et al. 1995; 

Ali et al.1990; Ramkumar et al. 1993) and cause Ca2+ to be released from intracellular 

stores (Fossetta et al. 2003; Shneyvays et al. 2004, 2005; Englert et al. 2002; Gessi et 

al.2001, 2002; Merighi et al. 2001). Presumably, the pertussis toxin-sensitive A3 

receptor-stimulated increase in inositol 1,4,5-triphosphate production in RBL-2H3 cells 

is due to increased levels of dissociated Gi-derived bg-subunits activating 

phosphatidylinositol-specific phospholipase C-b isoforms, an interaction that has been 

demonstrated both in intact cells (Hawes et al. 1994) and with purified components 

(Hepler et al. 1993). However, in experiments using the rat A3 receptor stably expressed 

in a CHO cell line a functional interaction with G-proteins belonging to the Gq/11 

family was demonstrated. Although derived from experiments using a heterologous 

expression system, this result suggests that at least in some instances the A3 receptor 

mediated activation of PLC has a pertussis toxin-insensitive element (Iredale and Hill 

1993; Palmer et al. 1995). Perhaps consistent with this finding was the observation that 

inosine produced an increase in cytosolic calcium in hepatocytes. This effect could be 

blocked using an A3 selective antagonist, but was independent of a decrease in cAMP 

levels (Guinzberg et al. 2006). Recently, it has been shown that the A3 receptor signals 

via PLC-b2/b3 to achieve its protective effect on skeletal muscle (Zheng et al. 2007). 

Because of their selective tissue distribution and the development of specific A3 

adenosine receptor agonists and antagonists for them, A3 adenosine receptors have 

recently attracted considerable interest as novel drug targets. 
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Recent data demonstrated that activation of A3 adenosine receptor is crucial for 

cardioprotection during and following ischemia–reperfusion and it has been suggested 

that a consistent part of the cardioprotective effects exerted by adenosine, once largely 

attributed to the A1 receptor, may now be in part ascribed to A3 adenosine receptor 

activation (Headrick & Peart, 2005). Even though there is a low expression of A3 

adenosine receptor in myocardial tissue, a number of studies have demonstrated that 

acute treatment with agonists induced protective “anti-ischemic” effects (Auchampach 

et al., 1997a; Tracey et al., 1997; Thourani et al., 1999a; Ge et al., 2006; Xu et al., 

2006). The molecular mechanism of A3 adenosine receptor cardioprotection has been 

attributed to regulation of mitochondrial (mito) KATP channels (Thourani et al., 1999b; 

Shneyvays et al., 2004; Peart & Headrick, 2007). In addition Shneyvays et al. (2005) 

demonstrated that in cultured rat myocytes Cl-IB-MECA delayed the dissipation of the 

mitochondrial membrane potential (∆ψ) and decreased the elevated intracellular 

calcium concentrations induced by hypoxia. These effects prevented irreversible 

cardiomyocyte damage and confirmed previous results showing that A3 adenosine 

receptor activation protected cardiomyocytes treated with doxorubicin via inhibition of 

calcium overload and prevented cardiomyocyte death during incubation in high 

extracellular calcium concentrations (Shneyvays et al., 2001, 2004). As for the timing of 

cardioprotection, some studies have indicated that protection occurred post-ischemia, 

through inhibition of neutrophil-induced reperfusion injury or inhibition of myocyte 

apoptotic cell death (Jordan et al., 1999; Maddock et al., 2002), while others found that 

preischemic A3 activation was effective and necessary for cardioprotection (Thourani et 

al., 1999a). Auchampach et al. demonstrated that A3 agonism was able to trigger an 

anti-infarct response with either pre- or postischemic treatment (Auchampach et al., 

2003). Moreover, it has been reported that A3 adenosine receptor activation is able to 

mimic or induce myocardial preconditioning, meaning that transient stimulation of the 

A3 before induction of ischemia leads to both an early and a delayed protection (Peart & 

Headrick, 2007). 

It has been demonstrated that A3 adenosine receptor triggers a prosurvival signal on 

human melanoma cells and that blockade of A3 receptors by selective antagonists 

induces deleterious consequences (Merighi et al., 2002a). Despite the prosurvival and 

antiapoptotic role of A3 adenosine receptor, different authors have shown that at the 

same time low concentrations of the A3 receptor agonists have protective effects while, 

in contrast, high concentrations of the agonists for A3 receptor can induce apoptosis. 
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Exposure of various cell types to different A3 receptor agonists showed inhibition of cell 

proliferation in a dose-dependent manner, thus suggesting a cytostatic rather than 

apoptotic effect, mediated through A3 adenosine receptors (Fishman et al., 1998, 2000b; 

Brambilla et al., 2000; Merighi et al., 2002a). In three different experimental tumor 

models in mice, including syngeneic (B16-F10 melanoma in C57Bl/6J mice) and 

xenograft models (HCT-116 human colon carcinoma and PC3 human prostate 

carcinoma in nude mice), A3 receptor agonists, IB-MECA and Cl-IBMECA, inhibited 

tumor growth when administered orally (Fishman et al., 2002a). IB–MECA enhanced 

the cytotoxic effect of chemotherapy when tested in 1-(4,5-dimethylthiazol-2-yl)-3,5-

diphenylformazan thiazolyl (MTT) and colony formation assays. A combined treatment 

of 5-flurouracil plus IB–MECA yielded higher growth inhibition of HCT-116 human 

colon carcinoma cells in comparison to the chemotherapy alone (Bar-Yehuda et al. 

2005). In particular, A3 receptor agonists exhibited a myelostimulatory effect both in 

vitro and in vivo, by inducing G-CSF production, which led to a stimulatory effect on 

bone marrow cells (Fishman et al., 2000a).  

The interest in the elucidation of A3 receptor involvement in inflammation is attested by 

the large amount of experimental work carried out in cells of the immune system and in 

a variety of inflammatory conditions. However, as in the SNC or in the cardiovascular 

system the A3 receptor subtype appears to have a complex or “enigmatic” role, as both 

proinflammatory and antiinflammatory effects have been demonstrated. One of the first 

evidence for a role of A3 receptor in increasing inflammation derived by studies in mast 

cells where it was found that its activation was responsible for release of allergic 

mediators (Ramkumar et al., 1993; Fozard et al., 1996). In addition, it has been reported 

that A3 receptor mRNA was higher in lung tissue of patients with airway inflammation 

and that A3 receptor activation mediates rapid inflammatory cell influx into the lungs of 

sensitized guinea pigs (Walker et al., 1997; Spruntulis & Broadley, 2001). It has been 

reported that A3 receptor activation in RBL-2H3 mast cells inhibits apoptosis and may 

have a profound effect on survival of inflammatory cells expressing A3 receptors in 

inflamed tissues, thus contributing to inflammatory cell expansion (Gao et al., 2001). 

Moreover, antigen-dependent degranulation of bone marrow-derived mast cells was 

found to be mediated by A3 receptor (Reeves et al., 1997), and the ability of Cl-IB-

MECA to potentiate antigen-dependent mast cells degranulation was lost by using mice 

lacking A3 receptor, suggesting a role for antagonists as antiasthmatic agents (Salvatore 

et al., 2000). 
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The double role of A3 agonists on tumor and normal cells is very interesting. These 

receptors inhibit the growth of various tumor cells while promote the proliferation of 

bone marrow cells (Ohana et al., 2001; Merighi et al., 2002a).  

In a set of experiments conducted by Gessi et al., low-concentration (100 nM) of Cl–

IB–MECA stimulated the proliferation of some cancer cell lines such as Caco-2, DLD1, 

and HT29 human colon carcinoma cell line (Gessi et al. 2007). 

A3 adenosine receptor stimulation is able to impair cancer cell proliferation and shows 

an intriguingly myeloprotective effect, increasing bone marrow proliferation. Even if 

the stimulation induces antiapoptotic signals in cancer and normal cells, A3 adenosine 

receptor agonists represent an attractive opportunity to develop new combined 

anticancer therapy with conventional chemotherapeutic drugs. 
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    Table 1. Effects mediated by A1 adenosine receptors  

Cell  
type/tissue 

Animal species Effect References 

    

Cardiomyocytes Rat Inhibition of cell death Safran et al., 2001 

Cervical lymphocytes Rat Inhibition of proliferation 
Colquhoun & Newsholme, 

1997 

MOLT 4 leukaemia cell line Human Inhibition of proliferation 
Colquhoun & Newsholme, 

1997 

T47D breast tumor cell line Human Inhibition of proliferation 
Colquhoun & Newsholme, 

1997 

Hs578T breast tumor cell line Human Inhibition of proliferation 
Colquhoun & Newsholme, 

1997 

MCF-7 breast tumor cell line Human Inhibition of proliferation 
Colquhoun & Newsholme, 

1997 

HUVEC, umbilical vein endothelial 
cells 

Human Antiapoptotic Liu et al., 2002 

Kidney Rat Increase of cisplatin-induced 
nephrotoxicity 

 

Heidemann et al., 1989;  
Knight et al., 1991 

Kidney 
 
 

Microglial cells 
 

Microglia/macrophages 
 

Rat 
 

 
              Rat   
 
           Mouse                                                          

Reduction of cisplatin-induced  
nephrotoxicity 

 
Anti-cancer effect 

 
Inhibition of cytokines and MMP-

12 

Bhat et al., 2002 
 
 

Synowitz et al., 2006 
 

Tsutsui et al., 2004 

HK-2 proximal tubular cell line 
(kidney) 

 
Human Antiapoptotic, prosurvival Lee & Emala, 2002 

A2058 melanoma cell line Human Increase of chemotaxis Woodhouse et al., 1998 

TM4 Sertoli-like cell line Mouse Inhibition of proliferation Shaban et al., 1995 
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          Table 2. Effects mediated by A2A adenosine receptors  

 
 

      
 
 
 

      Cell 
type/tissue  

Animal 
species  

           Effect  References  

       
Spinal cord  Rabbit  Reduction of 

apoptosis 
 

Cassada et 
al., 2001 

Neurons  Gerbil, 
rat  

Increase of ischemic 
injury 

Ongini & 
Schubert, 

1998 

Granulocyte  Human  
Reduction of 

apoptosis 
Yasui et al., 

2000 

Macrophages  Mouse  Up-regulation of 
VEGF expression 

 

Leibovich et 
al., 2002 

Macrophages, 
T cells and 
dendritic cells        

Human Limitation to the 
effector cell function 

Naganuma et 
al., 2006 

    

A375 
melanoma 
cell line 

Human  

Increase of cell 
death, stimulation of  

cell proliferation 
 

Merighi et 
al., 2002a, 

2002b 

Skin Mouse  
Increase of wound 

healing and 
angiogenesis 

Montesinos 
et al., 1997, 

2002 
HUVEC, 
umbilical 

vein 
endothelial 

cells 

Human  
Stimulation of cell 

proliferation 
Sexl et al., 
1995, 1997 

Thymocytes  Mouse  
Induction of cell      

death 
Apasov et 
al., 2000 

Liver Rat  

Reduction of 
ischemia-reperfusion 

injury 
 

Harada et al., 
2000 

Blood Rat  

Increase of 
erythropoietin 

production 
 

Nagashima 
& Karasawa, 

1996 

Blood Mouse  

Increase of 
erythropoietin 

production 
 

Fisher & 
Brookins, 

2001 

Hep3B cell  
line 

 
Human  

Increase of 
erythropoietin 

production 
 

Fisher & 
Brookins, 

2001 
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         Table 3. Effects mediated by A2B adenosine receptors  
 

 
 
 

Cell 
type/tissue 

Animal 
species  Effect References 

 
Bone marrow- 

derived 
macrophages 

 

Mouse 
Inhibition of 
proliferation 

Xaus et al., 
1999 

HMEC-1, 
microvascular 

endothelial 
cells 

 

Human 
Modulation of 
expression of 

angiogenic factor 

Feoktistov 
et al., 2002 

HUVEC, 
umbilical vein 

endothelial 
cells 

Human 
Modulation of 
expression of 

angiogenic factor 

Feoktistov 
et al., 2002 

HREC, retinal 
endothelial 

cells 
Human 

Neovascularization, 
increase of  

proliferation, increase 
of angiogenic growth 

factor expression 

Grant et al., 
1999, 2001 

Cardiac 
fibroblasts 

Rat Inhibition of growth 
Dubey et al., 

2001 

Aortic smooth 
muscle cells 

Human Inhibition of growth Dubey et al., 
1998a, 
1998b 

Vascular 
smooth muscle 

cells 
 

Rat Inhibition of growth Dubey et al., 
1999, 2000 

Arterial 
smooth muscle 

cells 
 

Human 
Induction of 

apoptosis 
Peyot et al., 

2000 

Arterial 
endothelial 

cells 
 

Rat, 
porcine 

Stimulation of cell 
proliferation 

Dubey et al., 
2002 

Mesencephalic 
dopaminergic 

neurons 

Rat  
Reduction of cell 

death 

Michel et 
al., 1999 

U373 
astrocytoma 

cell line 
Human 

 
Increase of 

interleukin-6 mRNA 
and protein synthesis 

 

Fiebich et 
al., 1996 
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         Table 4. Effects mediated by A3 adenosine receptors 
 

 

       Cell 
type/tissue  

Animal 
species  

Effect References  

Astrocytes Rat  
Induction of cell 

death 
Abbracchio 
et al., 1998 

Astrocytoma Human  
Changes in 

cytoskeleton 

Abbracchio 
et al., 1997, 

2001 

Forebrain Gerbil  
Neuroprotective 

action 
Von Lubitz et 

al., 2001 

Cardiac 
myocytes 

Rat  
Induction of 

apoptosis 

Shneyvays et 
al., 1998, 

2000 

Cardiac 
myocytes 

Rabbit  Cardioprotection 
Liu et al., 

1994 

Cardiac 
myocytes 

Rat  

Reduction of 
doxorubicin-

induced  
cardiotoxicity 

 

Shneyvays et 
al., 2001, 

2002 

Cardiac 
myocytes 

Rat  Cardioprotection Safran et al., 
2001 

Cardiac 
myocytes 

Rabbit  Cardioprotection 
Tracey et al., 

1998 

Heart Mouse  Cardioprotection Cross et al., 
2002 

2H3 basophilic 
leukemia mast 

cells 

Rat  Reduction of 
apoptosis 

Gao et al., 
2001 

PBMC Human  
Induction of cell 

death 
Barbieri et 
al., 1998 

U937 and 
HL60 myeloid 
and lymphoid 

cell lines 

Human  
Induction of cell 

death 
Kohno et al., 

1996; 

K562 leukemia 
cell line 

Human  
Inhibition of 
proliferation 

Fishman et 
al., 2002a 

Nb2-11C 
lymphoma cell 

line 
 

Rat  
Inhibition of 
proliferation 

Fishman et 
al., 2000b 

Yac-1 
lymphoma cell 

line 
 

MCF-7, MDA-
MB468 breast 
 
 
U87MG, A172 
glioblastoma 
 
 
HT29, Caco2, 
DLD1 colon 
 

Mouse  
 
 
 
Human  
 
 
 
Human 
 
 
 
Human           

Inhibition of 
proliferation 

 
 

Inhibition of tumor 
cell growth 

 
 

Expression of HIF-
1α and hypoxic cell 

survival 
 

Inhibition of cAMP, 
stimulation of cell 

proliferation, VEGF 
and HIF-1α 

Fishman et 
al., 2002a  

 
                Panjehpour 

& Karami-
Tehrani, 

2004 
 

Merighi et 
al., 2006, 
2007a,b 

 
Gessi et al., 

2007; 
Merighi et 
al., 2007b 
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Adenosine-sustained ways that could prime tumor development  
 

A schematic diagram illustrating possible signaling pathways via A1, A2A, A2B, and A3 

adenosine receptor stimulation is shown in Figures 2 and 3. 

 
 
 

 
 
 

Figure 2. Schematic diagram illustrating possible signaling pathways via A1 and A2B adenosine receptor 

stimulation. AC: adenylate cyclase; CHO: Chinese hamster ovary cells; DDT1MF-2: hamster vas 

deferens smooth muscle cells; ERK1/2: extracellular signal-regulated kinases 1 and 2; HEK-293: human 

embryonic kidney cells; HMC: human mast cells; HREC: human retinal endothelial cells; JNK: c-Jun N-

terminal kinase; MAPK: mitogen-activated protein kinases; PI3K: phosphoinositide 3-kinase; PKB: 

protein  kinase B; PKC: protein kinase C; PLC: phospholipase C; p38: p38 MAP kinase.  
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Figure 3. Schematic diagram illustrating possible signaling pathways viaA2A and A3 adenosine receptor 

stimulation. AC: adenylate cyclase; CHO: Chinese hamster ovary cells; ERK1/2: extracellular signal-

regulated kinases1 and2; HEK-293: human embryonic kidney cells; JNK: c-Jun N- terminal kinase; 

MEK-1/2: MAP kinase kinases 1 and 2; PC12: pheochromocytoma cell line; PI3K: phosphoinositide 3-

kinase; PKA: protein kinase A; PKB: protein kinase B; PKC: protein kinase C; PLC: phospholipase C; 

PLD: phospholipase D; p21: smallG protein, p21(ras); rap 1: small G protein rap1; U937: monocytic 

lymphoma cell line. 

 
Two potential interesting mechanisms of signal transduction by the adenosine A1 

receptor have been investigated: the mitogen-activated protein kinase (MAPK) family 

and the protein kinase B, also known as Akt/PKB. The MAPK family consists of the 

p42/p44 MAPK and the stress-activated protein kinases, c-Jun N-terminal kinase (JNK), 

and p38 MAPK. Adenosine A1 receptors expressed in Chinese hamster ovary (CHO) 

cells can activate extracellular signal-regulated kinase (ERK) 1/2 at physiologically 

relevant concentrations of the endogenous agonist (Schulte & Fredholm, 2000). This 

activation is sensitive to the phosphoinositol-3-kinase (PI3K) inhibitors wortmannin and 

LY294002 (Dickenson et al., 1998). In particular, the adenosine A1 receptor agonist N
6
-

cyclopentyladenosine stimulated p42/p44 MAPK and p38 MAPK phosphorylation in 

the hamster vas deferens smooth muscle (DDT1MF-2) cells in a time-and 

concentration-dependent manner. No increase in JNK phosphorylation was observed 

following adenosine A1 receptor activation (Robinson & Dickenson, 2001). 
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Furthermore, A1 adenosine receptor stimulation in the DDT1MF-2 cells increases 

protein kinaseB (PKB) phosphorylation througha PTX-and PI-3Ksensitive pathway 

(Germack & Dickenson, 2000). Recently, it has been suggested that the A1 receptor-

mediated signal transduction pathway results in the activation of PKB also in the rat 

hippocampus in vitro and in vivo (Gervitz et al., 2002). The ability of A1 receptors to 

activate ERK and PKB downstream may explain the antiapoptotic and prosurvival 

activity of A1 agonist. 

A2A receptor activation may not only stimulate but also inhibit ERK phosphorylation. 

Activation of guinea pig A2A receptors expressed in CHO cells inhibited thrombin-

induced ERK1/2 activation (Hirano et al., 1996). In PC12 cells, activation of 

endogenously expressed A2A receptors inhibits nerve growth factor (NGF)-induced 

ERK1/2 phosphorylation (Arslan et al., 1997). On the other hand, the A2A receptor can 

lead to ERK1/2 activation in the absence of NGF (Arslan & Fredholm, 2000). 

In CHO and HEK293 cells heterologously transfected with the human A2A receptor, the 

capacity to activate MAP kinase via at least two signaling pathways was shown to be 

dependent on two distinct small G proteins, namely rap1 and p21 (ras) (Seidel et al., 

1999).  

Importantly, it has been demonstrated that the stimulation of A2A receptors has a 

protective mechanism, enhancing protein kinase A (PKA) activity and activating novel 

protein kinase C isozymes in PC12 cells and thus preventing apoptosis in serum-

deprived cells (Huang et al., 2001). In particular, a serine-threonine phosphatase appears 

to act downstream of the PKA to facilitate survival of serum-starved cells upon A2A 

receptor stimulation. In addition, the selective A2A receptor agonist 2-[ p-(2-

carboxyethyl)-phenethyl-amino]-5’-N-ethyl-carboxamidoadenosine (CGS 21680) 

reversed the DNA fragmentation and cell death induced by serum deprivation and also 

significantly reduced phosphorylation of the stress-activated kinases JNK1 and JNK2, 

which are implicated in apoptosis (Huang et al., 2001). In this cell system, although 

MAPK was activated by stimulation of A2A receptors, blocking the MAPK pathway did 

not alter A2A receptor-mediated protection against apoptosis. In addition, in human 

neutrophils, A2A receptor stimulation delayed  apoptosis, presumably via a PKA-

dependent mechanism (Walker et al., 1997). Furthermore, recently, it has been shown 

that adenosine by A2A stimulation might protect cells against hypoxia via PKA-

sustained signaling (Kobayashi et al., 1998; Kobayashi & Millhorn, 1999).  

Activation of A2A receptors in U937 cells inhibited TNF-α production (Mayne et al., 
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2001). In particular, there is the possibility that adenosine may inhibit nuclear factor-kB 

(NF-kB)-mediated TNF-α gene transcription in monocytes by increasing cAMP levels 

via A2A receptor stimulation (Harada et al., 2000), thus supporting the idea of a 

protective role for A2A receptor, which is able to delete the negative effects of  TNF-α in 

intracerebral hemorrhage. Characterizing these mechanisms could prove helpful in 

formulating realistic and effective strategies of therapeutic intervention.  

Despite the prosurvival and antiapoptotic signaling pathways, A2A receptor stimulation 

leads also to impaired vitality and induces cell death. Different molecular mediators are 

surely involved in different cell lines that may have promising effect on the modulation 

of tumor cell viability.  

It seems possible that A2B receptors may play a very important role in cell proliferation 

and/or differentiation. These effects are demonstrated in vascular smooth muscle cell 

growth, where adenosine is antiproliferative by activating A2B receptors coupled to 

inhibition of MAP kinase activity (Dubey et al., 2000). On the contrary, the adenosine 

A2B receptor is peculiar in that it can activate ERK1/2 (Gao et al., 1999), JNK, and p38 

(Feoktistov et al., 1999) in other different cell systems. Activation of the ERK and p38 

MAPK pathways is an essential step in adenosine A2B receptor-dependent stimulation of 

interleukin-8 (IL-8) production in human mast cells (HMC-1). Adenosine also has a 

synergistic effect with VEGF on retinal endothelial cell migration and capillary 

morphogenesis in vitro (Lutty et al., 1998). What is interesting is that proliferation, 

migration, and ERK activation in HREC cells are mediated through A2B adenosine 

receptor stimulation (Grant et al., 2001). 

One of the different mechanisms through which A3 adenosine receptors are able to 

inhibit cell proliferation was found to involve inhibition of telomerase activity and a cell 

cycle arrest in the G0/G1 phase, leading to a cytostatic effect (Fishman et al., 1998, 

2000; Brambilla et al., 2000). Furthermore, it has been demonstrated that the antigrowth 

signal exerted by A3 receptors blocks cells into G1 late cell cycle phase (Merighi et al., 

2002a). In addition, recent studies have indicated that the ability of the A3 agonist, N6-

(3-iodobenzyl)adenosine-5'-N-methyluronamide (IBMECA), to decrease the levels of 

PKA, a downstream effector of cAMP, and PKB/Akt in melanoma cells results in the 

down-regulation of the Wnt signaling pathway. This pathway is generally active during 

embryogenesis and tumorigenesis to increase cell cycle progression and cell 

proliferation (Fishman et al., 2002b).  

In contrast, there is evidence that A3 adenosine receptor activation triggers 
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phosphorylation of PKB/Akt, protecting rat basophilic leukemia 2H3 mast cells from 

apoptosis by a pathway involving the βγ subunits of Gi and phosphoinositide 3-kinase 

(PI3K)-b. This process is blocked by pertussis toxin and wortmannin (Gao et al., 2001). 

It has been demonstrated that A3 receptors are involved in the control of cytoskeletal 

rearrangement (Abbracchio et al., 2001) and in the intracellular distribution of the 

antiapoptotic protein Bcl-XL (Abbracchio et al., 1997), which are events that may be at 

the basis of cell survival modulation by this receptor. Concerning the cardioprotective 

effects, A3 receptors appear to be coupled via Rho A in the activation of phospholipase 

D (Lee et al., 2001).  

Physiological concentrations of adenosine have been demonstrated to cause an increase 

in phosphorylation of ERK1/2 after 5 min in CHO cells transfected with any one of the 

four adenosine receptors. Levels of adenosine reached during ischemia (3 µM) induce a 

more pronounced, but still transient, activation of ERK1/2. Thus, all the human 

adenosine receptors transfected into CHO cells are able to activate ERK1/2 at 

physiologically relevant concentrations of the endogenous agonist. In particular, it has 

been established that activation of human A3 receptors expressed in CHO cells 

stimulates a rapid, transient increase in MAPK activity. Both 5’-N-ethyl-

carboxamidoadenosine (NECA) and the endogenous agonist (adenosine) lead to a time-

and dose-dependent increase in ERK1/2 phosphorylation, at concentrations as low as  

10 –30 nM (Schulte&Fredholm, 2000). Furthermore, recently, it has been shown that 

MAPK activation is involved in A3 receptor regulation, both contributing to direct 

phosphorylation and controlling G protein-coupled receptor (GPCR) kinase protein 

membrane translocation, which are involved in GPCR phosphorylation. Thus, an active 

MAPK pathway appears to be essential for A3 receptor phosphorylation, 

desensitization, and internalization (Trincavelli et al., 2002). On the contrary, we have 

recently demonstrated that in the human melanoma A375 cell line A3 antagonists are 

able to improve MEK activity: these results emphasize the role of A3 as inhibitors of 

ERK activation (Merighi et al., 2002a). In agreement to what reported by Fishman et al. 

(2002b), in melanoma murine cells, we have found that N6-(3-iodobenzyl)2-

chloroadenosine-5'-N-methyluronamide (Cl-IB-MECA) was unable to activate ERK 

phosphorylation. Finally, A3 adenosine receptor agonists, due to their high 

bioavailability, are good agents to combat cancer because they exert chemoprotective 

effects (cardioprotective and neuroprotective) on normal tissues. Further knowledge 

about protective mechanisms evoked by adenosine receptor stimulation and/or blockade 
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may help to facilitate the clinical application of adenosine receptor agonists and/or 

antagonists in the treatment of tumor disorders. 

 

        A3 receptor as a tumor cell marker 

The possibility that adenosine plays a role in the progression of cancer has aroused 

considerable interest for several years (Merighi et al., 2004; Fishman et al., 2002; Bar-

Yehuda et al., 2001). Since the observation that adenosine could be detected in the 

interstitial fluid surrounding a carcinoma (Blay et al., 1997), numerous reports have 

shown the effects and the possible mechanism of action of this nucleoside on tumor cell 

growth (Ohana et al., 2002; Merighi et al., 2001; Barry et al., 2000). Several studies 

seem to indicate an emerging role for the A3 receptor as a good candidate for the 

identification of tumor cells (Gessi et al., 2001a; Merighi et al., 2002; Suh et al., 2001; 

Gessi et al., 2001b). In more recent studies, a comparison between A3 adenosine 

receptor expression in tumor vs. adjacent and relevant normal tissues supported the 

assumption that the receptor is upregulated in different types of malignancies. Recently, 

A3 receptor in solid tumors was analyzed, leading to robust findings showing 

overexpression of the A3 receptor in tumor tissues vs. low expression in the adjacent 

normal tissues. Furthermore, there is substantial evidence showing that A3 adenosine 

receptor expression level is directly correlated  to disease severity (Gessi et al. 2004; 

Madi et al. 2004). Low A3 receptor mRNA expression level was reported as a general  

characteristic of various normal cell types (Auchampach et al., 1997), whereas in tumor 

cell lines such as melanoma, lymphoma, pineal gland, colon, and prostate carcinoma 

prominent receptor level was recorded (Ohana et al., 2003; Fishman et al., 2003; Madi 

et al., 2003; Gessi et al., 2001; Merighi et al., 2001; Suh et al. 2001, Trincavelli et al., 

2002). In a recent study, Bar-Yehuda et al. showed that A3 receptor mRNA expression 

is upregulated in HCC tissues in comparison to adjacent normal tissues (Bar-Yehuda et 

al., 2008). Remarkably, upregulation of A3 adenosine receptor was also noted in 

peripheral blood mononuclear cells (PBMCs) derived from the HCC patients compared 

to healthy subjects. These results further show that A3 receptor in PBMCs reflect 

receptor status in the remote tumor tissue (Bar-Yehuda et al., 2008). Moreover, the high 

expression level of the A3 receptor was directly correlated to overexpression of NF-κB, 

a transcription factor for the A3 receptor.  



29 
 

Dixon et al. detected A3 receptor message only in the testis tissue using in situ 

hybridization, but found widespread distribution after amplification of the message 

using PCR. Carre et al. examined A3 receptor expression in nonpigmented ciliary 

epithelial cells and found that to establish identity of the A3 receptor message, two 

rounds of PCR amplifications were needed, suggesting that the message is present in 

low copy number. Atkinson et al. studied expression of A3 receptor by Northern blot 

analysis in 35 different human normal tissues. This study revealed that hA3 receptor is 

widely expressed at low to moderate levels. Most abundant levels were found in a 

number of discrete loci in the central nervous system with low expression in spleen and 

small intestine. A recent study (Madi et al., 2004) shows that a high A3 receptor mRNA 

expression level is found in colon and breast tumor tissues in comparison with the 

normal adjacent and normal relevant tissue derived from healthy subjects. Remarkably, 

a higher mRNA expression level was detected in the regional lymph node metastases in 

comparison with the primary tumor tissue. In addition, a high A3 mRNA receptor level 

was also detected in other solid tumors including melanoma, colon, breast, renal, 

ovarian, small cell lung, and prostate carcinoma.  This is the first study in which it was 

compared side by side A3 receptor expression level in tumor versus normal tissue, 

demonstrating that the message is higher in the malignant tissue. A support for this 

finding came from a search conducted in different sources of database, showing a 2.3-

fold increase in the expression of A3 adenosine receptor  in human colon adenoma 

versus normal colon tissue using microarray analysis (Princeton University database). A 

search in the CGAP (The Cancer Genome Anatomy project; SAGE Genie; Virtual 

Northern Legend) based on serial analysis of gene expression revealed that A3 receptor 

was abundant in brain, kidney, lung, germ cells, placenta, and retina but brain, lung, and 

pancreatic tumors expressed more A3 receptor in the malignant than the normal relevant 

tissues. A search in Expression Viewer (HUGO-Gene Nomenclature 

Committee/CleanEX) based on expressed sequence tags revealed that the relative 

expression for A3 receptor was 1.6-fold higher in all of the cancer tissues compared with 

normal tissues. A summary of A3 receptor expression from the various database 

searches is presented in Fig. 4. 
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                                                                                           Madi et al., 2004 

Figure 4. A3 adenosine receptor expression in tumor versus normal relevant tissue based on (A) 

expressed sequence tags (expression viewer, HUGO-Gene Nomenclature Committee/CleanEx); (B) 

microarray analysis, Princeton University database; (C) serial analysis of gene expression, the Cancer 

Genome Anatomy Project. 

 

Interestingly, tumor and normal cells respond differentially to activation of A3 receptor 

by a synthetic agonist. Inhibition of tumor cell growth both in vitro and in vivo was 

observed in melanoma, colon, and prostate carcinoma (Fishman et al., 2002; Ohana et 

al., 2003; Fishman et al., 2003; Madi et al., 2003; Fishman et al., 2001). On the other 

hand, the proliferation of normal cells such as murine or human bone marrow was 

stimulated on cell activation with an A3 receptor agonist (Ohana et al., 2001; Bar-

Yehuda et al., 2002). This differential effect may be explained by the high versus low 

A3 receptor expression level in tumor and normal cells, respectively. The association 

between A3 receptor expression level and functionality was discussed earlier. Black et 

al. transfected the A3 receptor gene in cardiomyocytes and tested the effect of gene 

dosage on protection against ischemia. Interestingly, gene overexpression reversed the 

protective effect demonstrating that the level of receptor expression plays a role in 

determining cell response to receptor activation. Dougherty et al.  found that increased 

expression of the A3 receptor adenosine receptor in cardiac myocytes caused an 

enhanced cardioprotective effect by improving the myocyte sensitivity to the 

endogenous adenosine, which, in turn, induces the protective effect. Dhalla et al. 
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suggested that an agonist is more efficacious or potent where the receptor number is 

high. Thus, receptor expression is cell type specific and reflects the response to a given 

agonist.Several studies have compared receptor expression profiles in tissues and 

peripheral blood cells from normal and pathological conditions and found a positive 

association or trend (Brodde et al., 1987; Varani et al., 1999; Varani et al., 2002).  In 

light of these results, we therefore propose that A3 protein could be required during all 

stages of cancer development, with a major role in cancer aggressiveness and it may 

raises the possibility of identifying a diagnostic and prognostic cancer index since the 

observations performed in peripheral circulating blood cells. Interestingly A3 receptor 

expression of circulating blood cells normalizes after surgical treatment. The high A3 

receptor expression in neoplastic cells may be attributed to high adenosine level in the 

microenvironment of the tumor, released by necrotic or hypoxic cells. During 

homeostasis, the physiological levels of adenosine do not reach the concentrations 

needed to activate A3 receptor. A3 receptor has the lowest affinity to the natural ligand 

adenosine, which is 1 µM (Schulte and Fredholm, 2002). Therefore, it may be 

suggested that the elevation in the extracellular adenosine concentration may trigger 

more receptor expression by the tumor cells. In addition, it may happen that in tumor 

cells, overexpression of transcription factors, responsible for A3 receptor expression, 

takes place, resulting in up-regulation of receptor mRNA and protein levels. To 

conclude, high mRNA and protein A3 receptor expression level was detected in various 

tumor cell types, classifying this Gi protein receptor to the family of other receptors, 

such as the epidermal growth factor, and suggesting it as both diagnostic and therapeutic 

target.  
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AIM OF THE THESIS 

 

The possibility that adenosine plays a role in the progression of cancer has aroused 

considerable interest for several years. Since the observation that adenosine could be 

detected in the interstitial fluid surrounding a carcinoma numerous reports have shown 

the effects and the possible mechanism of action of this nucleoside on tumor cell 

growth. Adenosine modulates a variety of cellular functions via occupancy of four cell 

surface G-protein-coupled receptors, named A1, A2A, A2B and A3. In particular, 

adenosine was found to exert its effects on cell proliferation, clone formation ability, 

UV resistance, and cell death mainly through the A3 subtype, which is highly expressed 

in tumor cells. Furthermore, adenosine also plays a role in the promotion of 

angiogenesis. The aim of this thesis is to clarify the A3 receptor role and the signal 

transduction pathways in two different human tumor cell lines, the colon cell line HT29 

and the melanoma cell line A375.  

The studies have been performed in hypoxia, present in most solid tumors, which 

regulates the levels of adenosine by inhibiting enzymes involved in the destruction of 

adenosine and simultaneously increasing the activity of enzymes charged with the 

generation of adenosine. In fact, adenosine accumulates to high levels in hypoxic tissue 

as a result of ATP breakdown suggesting a role in the extracellular response to hypoxia. 

In the first study I analyzed the role of adenosine in hypoxic colon carcinoma cells, in 

particular its ability to regulate the expression of Hypoxia-Inducible Factor-1α (HIF-1α) 

and Vascular Endothelial Growth Factor (VEGF) through the A3 receptor stimulation, 

and Interleukin-8 (IL-8) through the stimulation of A2B receptor. HIF-1 is one of the 

master regulators that orchestrate the cellular responses to hypoxia. It is a heterodimer 

composed of an inducibly expressed HIF-1α subunit and a constitutively expressed 

HIF-1β subunit. VEGF (also known as VEGF-A, but commonly referred to simply as 

VEGF) plays an important role in angiogenesis. As its name suggests, VEGF stimulates 

vascular endothelial cell growth, survival, and proliferation and it has been shown to 

facilitate survival of existing vessels, contribute to vascular abnormalities (eg, 

tortuousness and hyperpermeability) that may impede effective delivery of antitumor 

compounds, and stimulate new vessel growth. IL-8 is a chemokine produced by 

macrophages and other cell types such as epithelial cells and has been shown recently to 

contribute to human cancer progression through its potential functions as a mitogenic, 

angiogenic, and motogenic factor. I specifically studied the role of adenosine treating 
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the cells with specific agonists and antagonists of the adenosine receptors. In particular, 

I evaluated the role of caffeine, which is a methylxantine antagonist of adenosine 

receptors, in the regulation of HIF-1α, VEGF and IL-8 expression induced by selective 

adenosine agonists and I provided the possible signaling pathways involved, which 

include Akt, MEK and p38 MAPK. It has been shown that HIF-1α overexpression, 

either as a result of intratumoral hypoxia or genetic alterations, activates the 

transcription of genes, the protein products of which contribute to the basement 

membrane invasion of colon cancer cells. So I analyzed the role of caffeine on the 

migration ability mediated by the adenosine receptor agonists in the tumor colon cancer 

cells and on the migration of Human Umbilical Vein Endothelial Cells (HUVECs). 

I then evaluated  the action of two chemotherapeutic drugs, etoposide and doxorubicin, 

in the treatment of the melanoma. The aggressive nature of human melanomas is related 

to several abnormalities in growth factors, cytokines, and their receptor expression. For 

example, metastatic melanoma cells constitutively secrete IL-8, whereas nonmetastatic 

cells produce low to negligible levels of IL-8. It has been shown that this cytokine is an 

important mediator of immunological and inflammatory reactions, which is produced by 

a variety of different cell types, including melanoma cells. In addition to IL-8, 

aggressive melanoma cells secrete VEGF, and the hypoxic induction of VEGF is 

mediated by HIF-1. I analyzed the modulation of IL-8 and the production of VEGF in 

the human melanoma cell line A375, and I showed the influence of the adenosinergic 

signaling on the chemotherapeutic drug effects providing also a possible signaling 

pathway involved.  
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CHAPTER  2 
 

ADENOSINE METABOLISM IN HYPOXIA AND 
HYPOXIA INDUCIBLE FACTOR-1 

 
 
2.1  Adenosine production and consumption 

The major pathway for adenosine formation in most tissues is stepwise 

dephosphorylation of ATP. Adenosine accumulates in the heart and other tissues when 

oxygen demand exceeds oxygen supply, e.g., during exercise, vascular deficiencies, and 

other conditions associated with tissue hypoxia/ischemia and/or increased ATP turnover 

(Deussen et al.,1991; Imai et al., 1964, Sparks et al., 1986). An increase in ATP 

turnover in tissues with relatively high metabolic rates may increase AMP levels and 

subsequently also adenosine levels independent of hypoxia (Arch et al., 1978; Kroll et 

al., 1993; Mo et al., 2001; Wagner et al., 1994), i.e., tissues with high metabolic rates 

are expected to have high adenosine concentrations even under normoxic conditions, as 

discussed later.  

At least four enzymes and a membrane carrier are involved in controlling the interstitial 

adenosine concentration, as shown in Fig.1. Adenosine is produced by 

dephosphorylation of AMP and hydrolysis of S-adenosylhomocysteine (SAH). The 

hydrolysis of SAH to adenosine (and homocysteine) by SAH hydrolase is thought to be 

a constitutive pathway that contributes marginally to adenosine production (Kroll et al., 

1993; Wagner et al., 1994). Dephosphorylation of AMP is the major source of 

adenosine under hypoxic/ ischemic conditions: this reaction occurs intracellularly by 

cytosolic-5’-nucleotidase and extracellularly by cd73/ecto-5’-nucleotidase. The relative 

contribution of the cytosolic and ecto pathways for adenosine production has been the 

subject of much debate (Borst et al., 1991; Deussen et al., 1999; Headrick et al., 1992; 

Ledoux et al., 2003; Ala-Newby et al., 2003; Schutz et al., 1981); however, recent 

studies in mice show that targeted disruption of cd73/ecto-5’-nucleotidase can modulate 

basal coronary vascular tone as well as other adenosine-mediated events, suggesting an 

important role for adenosine produced extracellularly (Koszalka et al., 2004;). This 

latter finding is consistent with the notion that physiologically significant amounts of 

adenosine are produced extracellularly by cardiomyocytes (Deussen et al., 2000; 

Deussen et al., 1999) and skeletal muscle fibers (Lynge et al., 2001) and that both cell 
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types are a sink rather than a source for adenosine. Histochemical and/or functional 

studies have demonstrated the existence of ecto-5’-nucleotidase on many different cell 

types including cardiomyocytes (Rubio et al., 1973) skeletal muscle fibers (Hellsten et 

al., 1999), Muller cells of the retina (Lutty et al., 2000), astrocytes (Zimmermann H., 

1996), various cell types in the kidney (Le Hir et al., 1993), and fibroblasts (Le Hir et 

al., 1993; Mlodzik et al., 1995; Schmid et al., 1994). Two enzymes can utilize adenosine 

and thus decrease its concentration. Adenosine is either deaminated to form inosine via 

adenosine deaminase or rephosphorylated into AMP via adenosine kinase, using ATP as 

the phosphate donor. The nucleoside transporter shown in Fig. 1 represents a 

bidirectional equilibrative nucleoside transporter (ENT1) that translocates adenosine 

down its concentration gradient by facilitated diffusion (Baldwin et al.,2004; Cass et al., 

1999).  

 

 

Fig. 1. Metabolic pathways for adenosine (Ado) production and consumption in intracellular and         

extracellular fluids. SAH, S-adenosylhomocysteine; 5’N, ecto-5’-nucleotidase.  

 

 Regulation of adenosine metabolism under hypoxic conditions 

 
The adenosine concentration in interstitial fluids might be expected to increase when 1) 

the activities of adenosine-producing enzymes (nucleotidases) are increased, 2) the 

activities of adenosine-utilizing enzymes (adenosine kinase, adenosine deaminase) are 

decreased, 3) the availability of the primary substrate for adenosine formation (AMP) is 

increased, and/or 4) ENT is inhibited.  

AMP hydrolysis via nucleotidase is the dominant pathway for adenosine production 

under normoxic conditions, and more than 90% of the adenosine produced under 

normoxic conditions is thought to be rephosphorylated to AMP via adenosine kinase 
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(this is called the salvage pathway) (Arch et al., 1978; Kroll et al., 1993; Wagner et al., 

1994). Because of the large flux through this AMP-adenosine substrate cycle, small 

changes in the activities of adenosine kinase or nucleotidase can produce large changes 

in adenosine concentration. For example, Gu and associates (Gu et al., 2000) have 

shown that pharmacological inhibition of adenosine kinase can raise adenosine levels 

sufficiently to induce VEGF mRNA and protein expression in rat myocardial myoblasts. 

Modulation of adenosine deaminase activity, on the other hand, is expected to have a 

minimal effect on adenosine concentration under basal conditions because the 

Michaelis-Menten constant of the deaminase is far greater compared with that of the 

kinase (Arch et al., 1978).  

Recent studies indicate that exposing cells to a hypoxic environment can increase the 

activity of nucleotidase and decrease the activity of adenosine kinase, thereby causing a 

net increase in the production of adenosine and hence an increase in the interstitial 

adenosine concentration (Linden et al., 2001). Decking and associates (Decking et al., 

1997) perfused isolated guinea pig hearts with hypoxic perfusate and used a 

mathematical model to determine that hypoxia decreased adenosine kinase activity to 

6% of basal levels. Although the mechanism by which hypoxia inhibits adenosine 

kinase activity is poorly understood, studies by Gorman et al. (Gorman et al., 1997) 

indicate that cytosolic levels of inorganic phosphate achieved under hypoxic conditions 

in the heart are capable of inhibiting adenosine kinase activity. Other studies (Ledoux et 

al., 2003) have shown that exposing aortic ECs to an anoxic environment (0% oxygen, 

18 h) induced a twofold increase in cd73/ ecto-5’-nucleotidase activity and increased 

cell surface expression of the enzyme but had no effect on its synthesis. The hypoxic 

induction of cd73/ ecto-5’-nucleotidase activity can also occur in the ischemic heart 

(Minamino et al., 1996) and brain (Braun et al., 1997) of intact animals, possibly by 

way of a hypoxia inducible factor-1 (HIF-1)-dependent regulatory pathway 

(Synnestvedt et al., 2002). Hypoxia can also downregulate the gene expression of a 

dipyridamole-sensitive ENT (mENT1) in mouse cardiomyocytes and thereby decrease 

[
3
H]adenosine uptake by cells (Chaudary et al., 2004). The hydrolysis of SAH to 

adenosine (and homocysteine) by SAH hydrolase is probably not upregulated under 

hypoxic conditions (Deussen et al., 1989; Kobayashi et al., 2000; Wagner et al., 1994).  

Hypoxia not only regulates the activity of enzymes and transporters but may also 

increase the availability of the primary substrate for adenosine, AMP. Hellsten and 

associates (Hellsten et al., 1998) found that knee extensor exercise in humans increased 
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interstitial AMP levels by ~20-fold. Others (Mo et al., 2001) have confirmed that 

muscle contraction can increase interstitial AMP levels in perfused dog skeletal muscle; 

however, interstitial levels of AMP did not increase when resting muscles were perfused 

under hypoxic conditions. Using NMR spectroscopy, Pucar and associates (Pucar et al., 

2004) showed that hypoxia induced a 2.5-fold increase in AMP levels in the 

Langendorff-perfused rat heart. Also, Kuzmin and associates (Kuzmin et al., 1998) 

found that ischemia increased interstitial ATP levels by ~10-fold in the Langendorff-

perfused rat heart and that adenine nucleotides were sequentially dephosphorylated in 

the interstitial space by a chain of separate ectoenzymes. Therefore, it appears that 

hypoxia/ischemia can increase AMP levels in the interstitial fluid.  

Hypoxic modulation of nucleoside transporters and enzymes of adenosine metabolism 

may require hours to days for full adaptation. Kobayashi and associates (Chaudary et 

al., 2004) found that prolonged exposure (but not acute exposure) of rat 

pheochromocytoma (PC12) cells to a hypoxic environment (5% oxygen, 48 h) caused 

the cells to shift toward an adenosine-producing phenotype. The adaptations consisted 

of decreased gene expression of the rENT1/nucleoside transporter, downregulation of 

adenosine-metabolizing enzymes (adenosine kinase, adenosine deaminase), and 

upregulation of adenosine-producing enzymes (cytosolic and cd73/ecto-5’-

nucleotidase). It is likely that prolonged exposure to a hypoxic environment will prove 

necessary to determine the quantitative importance of adenosine in the angiogenesis 

process.  
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2.2  Hypoxia Inducible Factor-1 
 
One of the main early cellular events evoked upon exposure to hypoxia is activation of 

HIF-1, a key heterodimeric transcription factor. In reduced oxygen conditions, HIF-1 

binds to hypoxia-responsive elements (HREs) and induces transcription of various 

target genes involved in tumor angiogenesis, invasion, cell survival, and glucose 

metabolism. The concept of a transcription factor being activated in limiting oxygen 

conditions was put forth in 1992 to explain upregulation of erythropoietin (Epo), a 

hormone stimulating red blood cell production in response to hypoxia (Semenza and 

Wang, 1992). HIF-1α and HIF-1β were identified as proteins that contain a basic helix-

loop-helix and a Per/ARNT/Sim (PAS) domain and were determined to be responsible 

for hypoxic induction of Epo. These subunits must associate to form the active HIF 

heterodimer responsible for transcriptional activation (Wang et al., 1995). HIF-1β is the 

aryl hydrocarbon receptor nuclear translocator (ARNT) and is constitutively expressed. 

ARNT2 and ARNT3 are highly homologous proteins to ARNT, and all three are 

implicated in forming dimers with the various HIF- subunits (Maynard and Ohh, 2004). 

HIF-1 has two closely related homologs, HIF-2 and HIF-3. HIF-2 (also known as 

endothelial PAS domain protein, or EPAS1) is 48% identical to HIF-1, is induced by 

hypoxia, and binds to HIF-1 to activate transcription of hypoxia-responsive genes (Tian 

et al., 1997). HIF-3 appears to be a dominant negative regulator of HIF, as it dimerizes 

with HIF-1β to generate a transcriptionally inactive heterodimer. Knockout mice 

homozygously deleted for HIF-1 exhibit embryonic lethality, dying at postcoitus day 10 

with gross abnormalities in cardiac development and vasculature, underscoring the 

importance of HIF-1 in vascular development (Kline et al., 2002). Mice lacking HIF-2 

die mid-gestation and show defects of cardiac development and reduced catecholamine 

levels (Tian et al., 1998). In normoxic conditions, HIF-1 is expressed ubiquitously at 

low levels in all organs, and HIF-2 is most abundantly expressed in the lung, followed 

by the heart, brain, liver, and various other organs. Despite their similarities in 

mediating transcriptional responses to hypoxia, HIF-1 and HIF-2 have distinct, 

nonredundant functions (reviewed in Semenza [2004]).  
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Regulation of HIF-1αααα protein stability under hypoxia  

In response to changes in oxygen availability, mammalian cells launch a host of 

responses, most of which are mediated by HIF. Regulation of HIF by partial oxygen 

pressure is orchestrated by many molecular players that affect HIF-1/2 protein stability 

or the ability of these proteins to bind to cofactors essential for transcriptional activity. 

In normoxia, HIF  subunits carrying an oxygen-dependent degradation (ODD) domain 

are highly labile proteins that are rapidly ubiquitinated and degraded by the proteasome 

(Crews, 1998). This ubiquitination is mediated by the von Hippel-Lindau protein 

(pVHL), the recognition component of an E3 ubiquitin ligase (Semenza, 2002). 

Mutations in the VHL gene result in the autosomal dominant von Hippel-Lindau 

syndrome that is characterized by the presence of highly vascularized tumors 

overexpressing vascular endothelial growth factor (VEGF) (Kaelin, 2002). The 

recognition of HIF-1/2 by pVHL is augmented by hydroxylation of two proline residues 

(P402 and P564) within the ODD domain by specific prolyl hydroxylases (PHD1, 

PHD2, PHD3) (Bruick and McKnight, 2001; Epstein et al., 2001). The PHDs are iron-

dependent enzymes also requiring oxygen, 2-oxoglutarate, and ascorbate for activity. 

The catalytic activity of all three PHDs is reduced in hypoxia, with their respective rates 

of catalysis in normoxia being PHD2  PHD3  PHD1 (Tuckerman et al., 2004). In 

hypoxia, PHD1 and PHD3 are rapidly degraded by the proteasome pathway, which adds 

another layer of control to the system (Nakayama et al., 2004). On the contrary, PHD2 

levels are upregulated by HIF-1 in hypoxic conditions and may be a mechanism to 

rapidly stop hypoxic signaling upon tissue reoxygenation (Metzen et al., 2004). 

Overexpression of any of the three PHDs destabilizes HIF-1 protein in COS-1 cells 

(Tuckerman et al., 2004). On the contrary, short interfering RNA studies have 

demonstrated that specific silencing of only PHD2 and not PHD1 or PHD3 in a battery 

of immortalized human cell lines and primary cell cultures led to increased HIF 

stability, which suggests that PHD2 may be the only physiologically relevant 

hydroxylase involved in HIF regulation (Berra et al., 2003). This dilemma may be 

explained if the contribution of each isoform to HIF hydroxylation depends on its 

relative abundance in a given cell type and a given culture condition, and if all three 

function in a nonredundant fashion (Appelhoff et al., 2004). Clearly, transgenic and 

knockout studies currently ongoing will help verify this assumption. The arrest 

defective 1 protein (ARD1) is an acetyl-transferase that acetylates HIF-1 at Lys532 
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within the ODD domain. ARD1 stimulates HIF-1–pVHL association, ubiquitination, 

and subsequent proteasomal degradation (Jeong et al., 2002). Unlike HIF-1 

hydroxylation, the acetylation reaction itself is not thought to be an oxygen-dependent 

process. However, the level of HIF acetylation is still influenced by hypoxia, as ARD1 

mRNA levels are reduced in hypoxia (Jeong et al., 2002). Thus, ARD1-mediated 

acetylation adds to the regulation of HIF-1 protein stability in response to oxygenation.  

Small ubiquitin-like modifier-1 (SUMO-1) is an 18-kDa protein that shares 18% 

identity with ubiquitin and uses an ubiquitin-like conjugation system to affect protein 

localization. In certain circumstances, sumoylation may counter the effects of 

ubiquitination (Seeler and Dejean, 2003). SUMO-1 has been shown to co-localize and 

interact with HIF-1 in response to hypoxia in neurons and cardiomyocytes (Shao et al., 

2004). SUMO-1 induces sumoylation of HIF-1 at Lys391/Lys477, leading to its 

stabilization and increased transcriptional activity (Shao et al., 2004). Given that HIF-1 

activation increases VEGF expression and that VEGF is a survival factor for neurons, 

this sumoylation may have a neuroprotective function in the CNS (Wang et al., 2004). 

 

 

Figure 1. Factors affecting HIF-1 protein stability. PHD-mediated hydroxylations and ARD-mediated 

acetylation of specifi c residues within HIF-1 increase its affinity for pVHL, which leads to its 

ubiquitination (Ub) and degradation by the proteasomal pathway under normoxia (solid arrows). PHD1, 

2, and 3 have a reduced catalytic activity in the absence of oxygen. Further, PHD1 and 3 and ARD have 
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reduced levels in hypoxia (dashed arrows), adding another level of control. SUMO-1-mediated 

sumoylation in hypoxia leads to HIF-1 stabilization (S) and activation, causing transactivation of specific 

downstream target genes. PHD2 is induced by HIF, which indicates a negative feedback loop. 

 

Signaling pathways affecting HIF-1α regulation  

Hypoxia-inducible factor can be activated by physiological or pathological activation of 

growth factor and cell adhesion pathways (Fig. 2). Growth-factor-induced activation of 

receptor tyrosine kinases (RTKs) leads to HIF1- stabilization and activation. Upon 

ligand binding, these receptors dimerize and autophosphorylate, which leads to their 

activation. Activated RTKs interact with p85, the regulatory subunit of 

phosphatidylinositol 3-kinase (PI3K), which leads to its activation. PI3K is a lipid 

kinase that generates the signaling molecule phosphatidylinositol 3,4,5-triphosphate by 

phosphorylating its precursor phosphatidylinositol 4,5-biphosphate. Activated PI3K 

triggers a phosphorylation cascade that results in the phosphorylation/activation of 

AKT, a serine/ threonine kinase that promotes antiapoptotic and pro-survival responses 

of a cell (Newton, 2004). Activation of AKT has been shown to lead to an increase in 

HIF-1 protein translation by the AKT/FRAP/mTOR pathway (Fig. 2) (Laughner et al., 

2001; Zhong et al., 2000). Inhibition of this pathway using LY294002, a selective 

inhibitor of PI3K, and with rapamycin, a selective inhibitor of mTOR, a downstream 

target of AKT, causes a reduction in HIF-1 amount and activity (Blancher et al., 2001).  

Induction of HIF by growth factor receptors such as epidermal growth factor receptor 

(EGFR) or Her 2 (neu) is blocked by inhibitors of PI3K (LY294002 and wortmannin), 

which indicates the requirement of the PI3K pathway (Zhong et al., 2000). Activated 

RTKs also signal through the MAPK pathway, and phosphorylated p38 and 

extracellular-signal-regulated kinase 1/2 (ERK1/2) can further phosphorylate and 

activate HIF-1 (Wang et al., 2004b). Inhibition of ERK activity leads to inhibition of 

HIF activity without affecting HIF stabilization (Hur et al., 2001).  

In addition to growth factor–mediated RTK activation, the PI3K/AKT pathway is also 

activated by extracellular matrix (ECM) adhesion mediated by integrins (Friedrich et 

al., 2004). Integrin ligation causes an activation of the integrin-linked kinase (ILK) 

leading to increased HIF-1, as well as increased VEGF production by the 

PI3K/AKT/FRAP/mTOR pathway (Tan et al., 2004). Increased activity of integrin-

linked kinase has been reported in gliomas (Obara et al., 2004). Additionally, activation 
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of PI3K/AKT also leads to an increase in steady-state concentrations of heat shock 

proteins 90 and 70, both of which interact with and stabilize HIF-1 (Zhou et al., 2004).  

 
 
 

 
            

 

Figure 2. Molecular signals affecting HIF-1 regulation. Induction of Ras, PI3K, and AKT 

phosphorylation mediated by RTK activation or integrin ligation leads to increased HIF-1 by modulating 

its stability and increased translation by the PI3K/AKT/mTOR pathway. TP53 negatively modulates this 

process by inducing MDM2, which can ubiquitinate and lead to HIF-1 degradation by the proteasome 

pathway. 
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Hypoxic regulation of angiogenesis: Angiopoietin-2 and VEGF  

 
Growth factors and hypoxia converge in the regulation of key angiogenic genes. The 

cellular expansion of tumors progressively distances cells from the vasculature, and thus 

from oxygen and nutrients. Tumor cells, like growing embryonic cells, send out signals 

that initiate the formation of new blood vessels. This adaptive process, termed 

angiogenesis, is a general feature of every tissue; however, it is often exacerbated in 

solid tumors. Thus, new tumor vessels showing structural malformations, chaotic blood 

flow and local regions of hypoxia might nonetheless prevail. Although many molecules 

and receptors have been characterized in this biological process, at least two factors 

seem critical for initiating vessel sprouting. These are VEGF-A
 
and Ang-2 (Ferrara et 

al., 1996 e 2003), which are two receptor ligands expressed and secreted in response to 

hypoxia. VEGF-A is expressed in most cells, and attracts and guides sprouting 

neovessels into oxygen-depleted regions of the tumor mass (Carmeliet, 2003; Gerhardt, 

2003).
 
Endothelial cells situated at the tip of the sprouts sense and navigate through the 

environment using long filopodia that are rich in VEGF receptor-2 (VEGFR-2) 

(Gerhardt et al, 2003). Thus, migration of the tip cells is guided by a graded distribution 

of VEGF-A, particularly the long spliced forms that are retained in the extracellular 

matrix. Although in hypoxia the binding of HIF to the vegf  promoter is a key 

determinant in its expression, two other major transcriptional controls are mediated 

through the Ras–ERK and PI(3)K–AKT pathways (Rak, et al., 2000; Pages et al., 2005) 

(Fig. 3). VEGF-A messenger RNA is upregulated by the ERK pathway through the 

phosphorylation of the transcription factor Sp1 and its recruitment to the proximal 

region of the vegf promoter (Milanini-Mongiat et al., 2002) (Fig. 3). This regulation is 

independent of hypoxic stress and reflects the intensity of growth-factor stimulation or 

oncogenic signals. Transcriptional activation also occurs through ERK-induced 

phosphorylation of HIF-1α (Richard et al.,1999) and the coactivator p300, which might 

improve the accessibility of RNA polymerase II to the vegf promoter. Other levels of 

regulation of VEGF-A occur, including the stabilization of the mRNA through the 

stress-activated kinase p38 (Pages et al., 2000), and translation by means of internal 

ribosome entry site (IRES) sequences present in 5´ non-coding regions of VEGF-A 

(Huez et al., 1998) and HIF-1α mRNAs (Lan et al., 2002), which are two important 

attributes for translation of VEGF-A under nutrient deprivation. This is another point of 

convergence between growth factors and hypoxia signaling at the level of translation. 
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As a ‘survival’ cytokine, VEGF-A is translated under conditions where the cell’s 

general translational machinery is turned off. The second molecule induced by hypoxia 

is Ang-2, a receptor ligand restricted to endothelial cells (Ferrara et al., 1996; Lang et 

al., 2002) that allows vessel remodelling by antagonizing the related molecule Ang-1. 

As shown in Fig. 3, Ang-1, through Tie-2 receptor tyrosine kinase signaling and 

platelet-derived growth factor-B (PDGF-B) action, induces pericyte recruitment 

(Lindblom et al., 2003) and maturation of blood capillaries. These capillary endothelial 

cells are rendered quiescent through the activation of the Notch pathway (Noseda et al., 

2004), thus becoming unresponsive to VEGF-A action, unless Ang-2 is also secreted, 

leading to vessel destabilization. Ang-2 is a natural Ang-1 antagonist, which displaces 

Ang-1 from its receptor thus arresting Tie-2 signaling. Therefore Ang-2 secretion from 

Weibel–Palade bodies (Fiedler et al., 2004) is a critical, and perhaps limiting, step in 

angiogenesis permitting vessel remodelling upon VEGF-A action. It is remarkable that 

this angiogenic ‘couple’ VEGF-A and Ang-2  is expressed under hypoxic control when 

and where nutrients are needed. However, the precise mechanism of regulation of Ang-

2 expression in hypoxia remains to be defined.  
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Figure 3. a, Control of vascular endothelial growth factor-A (VEGF-A) expression. VEGF-A expression 

is controlled at three levels: transcription, messenger RNA stability and translation. The Ras–MEK–

extracellular signal-regulated kinase (ERK) pathway stimulates transcription through phosphorylation of 

the transcription factors Sp1 and hypoxia-inducible factor-1α (HIF-1α) subunit, and their recruitment to 

the vegf promoter. The transcription factor activator protein-1 (AP-1) might also modulate vegf  

transcription. HIF-1 is a heterodimer of a hypoxia-stabilized and activated α-subunit and an oxygen-

insensitive β-subunit. VEGF-A mRNA is stabilized through the stress-activated kinase p38, and the 

translation of VEGF-A is ensured under hypoxic and nutrient-depleted conditions by means of internal 

ribosome entry site (IRES) sequences. Under these energy-reduced conditions, classic cap-dependent 

translation is inhibited. b, VEGF-A and angiopoietin-2 (Ang-2) are two angiogenic factors induced by 

hypoxia. Blood capillaries are maintained in a mature and dormant state through the recruitment of 

pericytes (PC) through platelet-derived growth factor-B (PDGF-B) and the signaling of the endothelial 

receptor Tie-2 upon Ang-1 binding. In addition, activation of the Notch pathway through cyclin D/Cdk4 

and retinoblastoma protein (pRb) phosphorylation contributes to the quiescence of endothelial cells. Ang-

2 is an antagonist ligand for Tie-2 in endothelial cells and, like VEGF-A, is induced under low oxygen 

conditions through the HIF. The initiation of sprouting angiogenesis requires the destabilization of 

capillaries. This action is mediated by Ang-2, thereby blocking Tie-2 signaling and allowing VEGF-A-

induced cell migration and division. MAPK, mitogen-activated protein kinase.  
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CHAPTER  3 
 
 

A3 ADENOSINE RECEPTOR AND REGULATION OF 

INTRACELLULAR PATHWAYS 

 

3.1  The A3 Receptor and the Mitogen-Activated Protein Kinases 
(MAPKs) Signal Transduction Cascade 

 
 

GPCRs are critical players in converting extracellular stimuli into intracellular signals. 

Nowadays, as intracellular signaling is revealed as being an increasingly complex 

network, the ability of GPCRs to stimulate the regulatory pathways of the Mitogen 

activated kinases (MAPKs) illustrates their influence on cell growth and differentiation. 

The well-conserved and diverse protein family of MAPKs consists of three main 

groups: the extracellular signal-regulated kinases (ERKs), the c-Jun N-terminal kinases 

(JNKs) and the p38 kinases. ERKs are mainly stimulated by growth factors, while JNKs 

and p38 MAPK are more responsive to cellular stress and cytokines. Following this first 

classification, other kinases have been included into the MAPK family based on 

structural similarity (Miyata and Nishida 1999). MAPKs modulate the activities of 

various proteins including other protein kinases and transcription factors. Practically all 

GPCRs are capable of activating one or more MAPKs (Luttrell 2008). The adenosine 

A3 receptor has been shown to be no exception (Schulte and Fredholm 2003). There is 

considerable evidence for adenosine A3 receptor-mediated effects on mitogenesis. 

Accordingly, the functional signaling of the adenosine A3 receptor to MAPKs has been 

demonstrated in a multitude of different cellular models. The first example of A3 

receptor-mediated activation of ERK1/2 and the modulation of mitogenesis was 

described in human foetal astrocytes (Neary et al. 1998). This study made use of both an 

unselective adenosine receptor agonist (NECA) and a more selective agonist (IB-

MECA) to demonstrate the selectivity of this effect towards the A3 receptor. In addition, 

treatment with the inhibitor bisindolmalemide (Ro-318220) blocked this effect 

suggesting a role of PKC in this pathway. Subsequent and more detailed studies were 

performed in CHO cells stably expressing the adenosine A3 receptor. One such study by 

Schulte and Fredholm demonstrated that physiological concentrations of adenosine (10–
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100 nM) caused a transient increase in phosphorylation of ERK1/2 that peaked after 5 

min in CHO cells transfected with any one of the four adenosine receptors (Schulte and 

Fredholm, 2000). Furthermore levels of adenosine reached during ischemia (3 mM) 

induce a more pronounced, but still transient, activation of ERK1/2. Thus, human A3 

adenosine receptors transfected into CHO cells are able to activate ERK1/2 at 

physiologically relevant concentrations of the endogenous agonist (Schulte and 

Fredholm 2000). It is perhaps useful at this point to highlight a potential caveat 

associated with some inhibitors of intracellular signaling when used to investigate the 

signal transduction pathways of adenosine receptors. Many such inhibitors, including 

genistein, chelerthrine and SQ22536 act at the ATP binding site of kinases or adenylate 

cyclase, respectively (Schulte and Fredholm 2002a). Perhaps not surprisingly then, 

these compounds were shown to have an affinity for A1, A2A and A3 adenosine 

receptors at concentrations commonly used to examine cellular signaling. However, 

with the judicious use of inhibitors, A3 receptor signaling to ERK1/2 in CHO cells was 

shown to be dependent on βγ release from PTX-sensitive G proteins, PI3K, Ras and 

MEK (Schulte and Fredholm 2002b). In the same study ERK1/2 phosphorylation was 

shown to be independent of Ca2+, PKC and c-SRC. Importantly, there are several 

examples of ERK1/2 phosphorylation mediated by endogenously expressed adenosine 

A3 receptors. The agonist Cl-IB-MECA, by selectively stimulating the A3 receptor in 

both primary mouse microglia cells and in the N13 microglia cell line, induces a 

biphasic phosphorylation of ERK1/2 (Hammarberg et al. 2003). In addition, functional 

A3 receptors activating ERK1/2 have been also described in colon carcinoma and 

glioblastoma cells (Hammarberg et al. 2003; Merighi et al. 2006, 2007a). Interestingly, 

in the human melanoma A375 cell line it has been demonstrated that A3 receptor 

stimulation was unable to activate ERK phosphorylation while the A3 antagonists are 

able to improve MEKs activity (Merighi et al. 2002). Similar results were obtained in 

melanoma murine cells (Fishman et al. 2002). Furthermore, it has been demonstrated 

that stimulation of adenosine A3 receptors inhibits A375 melanoma cell proliferation by 

the impairment of ERK kinase activation (Merighi et al. 2005a). Such a discrepancy 

may be due to the presence of different signaling pathways in different cell lines. As 

discussed later, in the case of the A375 melanoma cell line this result may be due to 

crosstalk between the PI3K/AKT pathway and the ERK1/2 pathway. MAPKs activation 

has been linked to the regulation of the adenosine A3 receptor expressed in CHO cells. 

This study demonstrated that inhibition of agonist-mediated MAPK activation 
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prevented both homologous A3 receptor desensitization and internalization by impairing 

phosphorylation. Furthermore, inhibition of MAPK by PD98059 prevented G protein-

coupled receptor kinase (GRK2) translocation, suggesting that this kinase is a target for 

the A3 receptor-mediated MAPK cascade. These results suggested that the MAPK 

cascade is involved in A3 receptor regulation by a feedback mechanism that controls 

GRK2 activity and receptor phosphorylation. (Trincavelli et al. 2002). 

Importantly, the activation of MAPKs have been implicated in ischemia/reperfusion 

injury. In particular it has been postulated that whereas ERK1/2 exerts a cytoprotective 

effect and is involved in cell proliferation, transformation and differentiation, p38 and 

JNK promote cell injury and death. Matot and co-workers observed an increase in 

phosphorylated JNK, p38, and ERK1/2 levels in lung tissue at the end of reperfusion 

compared with non-ischaemic control lung tissue. Interestingly, pretreatment with A3 

agonists upregulated phosphorylated ERK1/2 levels but did not modify phosphorylated 

JNK and p38 levels (Matot et al. 2006). 

This pretreatment was associated with a marked improvement in lung injury and 

attenuation of apoptosis after reperfusion. Furthermore, ERK1/2 are also involved in 

cardiac hypertrophy and can play a protective role in ischaemic myocardium (Michel et 

al. 2001). Interestingly, A3 receptor activation in rat cardiomyocytes has been 

demonstrated to increase ERK1/2 phosphorylation by involving Gi/o proteins, PKC and 

tyrosine kinase dependent and -independent pathways. It has been found that Cl-IB-

MECA produced a biphasic effect on cAMP accumulation with a stimulatory action 

starting at a concentration of 3 nM. This activity was triggered through PLC/PKC and 

not via direct Gs coupling (Germack and Dickenson 2004). Besides ERK1/2, there is 

experimental evidence that adenosine A3 receptors also activate p38 MAPKs in hCHO-

A3 cells (Hammarberg et al. 2004). Furthermore, it has been demonstrated that A3 

receptor stimulation is able to increase p38 phosphorylation in human hypoxic 

melanoma, glioblastoma and colon carcinoma cells (Merighi et al. 2005b, 2006, 2007a). 

In the current literature on A3 receptor signaling, nothing has been reported on JNK 

activation by A3 receptor stimulation. 
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3.2  The A3 Receptor and the Phosphatidylinositol 3-Kinase/Protein 
Kinase B/Nuclear Factor-kB (PI3-K/AKT/NF-kB) Signal Transduction 
Cascade 
 
A3 receptors have been associated with the PI3K/Akt pathway (Merighi et al. 2003). 

Active Akt causes a variety of biological effects, including suppression of apoptosis by 

phosphorylation and inactivation of several targets along pro-apoptotic pathways 

(Vivanco and Sawyers 2002). In particular, activated Akt is able to phosphorylate a 

variety of downstream substrates, for example the pro-apoptotic molecule Bad, caspase-

9, the forkhead family transcription factors, I-κ (a kinase that regulates the NF-kB 

transcription factor) and Raf. 

There is evidence that A3 adenosine receptor activation triggers phosphorylation of 

PKB/Akt, protecting rat basophilic leukemia 2H3 mast cells from apoptosis by a 

pathway involving the bg subunits of Gi and PI3K-b (Gao et al. 2001). More recently, it 

has been demonstrated that A3 receptors trigger increases in Akt phosphorylation in rat 

cardiomyocytes via a Gi/Go-protein and tyrosine kinase-dependent pathway (Germack 

et al. 2004). In human melanoma A375 cells it has been shown that A3 adenosine 

receptor stimulation results in PI3K-dependent phosphorylation of Akt. In particular, it 

has been demonstrated that serum-deprived A375 melanoma cells had no basal Akt 

phosphorylation whereas the A3 receptor agonist Cl-IB-MECA treatment resulted in the 

phosphorylation of Akt at the Ser 573 phosphorylation site. Furthermore, it has been 

shown that the antiproliferative effect of Cl-IB-MECA is mediated by a PLC-PI3K-Akt 

signaling pathway (Merighi et al. 2005a). Resveratrol preconditions the heart through 

activation of adenosine A3 receptors protecting the heart through a cAMP response 

element-binding (CREB)-dependent Bcl-2 pathway in addition to an Akt-Bcl-2 pathway 

(Das et al. 2005a, b). 

In lipopolysaccharide (LPS)-treated BV2 microglial cells A3 receptor activation 

suppresses tumor necrosis factor-α (TNF-α) production by inhibiting PI3K/Akt and NF-

kB activation (Lee et al. 2006). Furthermore, it has been reported that in mouse RAW 

264.7 cells the A3 receptor inhibits LPS-stimulated TNF-α release by reducing calcium-

dependent activation of NF-κB and ERK1/2 (Martin et al. 2006). 

According to these results, it has been demonstrated that A3 receptor agonists exert 

significant anti-rheumatic effects in different autoimmune arthritis models by 

suppression of TNF-α production (Baharav et al. 2005). The molecular mechanism 

involved in the inhibitory effect of IB-MECA on adjuvant-induced arthritis included 
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receptor down-regulation and deregulation of the PI3K-NF-κB signaling pathway 

(Fishman et al. 2006; Madi et al. 2007). On the contrary, it has been reported that 

activation of the A3 receptor protects against ischemia/reperfusion injury in the heart 

through activation of NF-κB (Zhao and Kukreja 2002). 

Solid tumors contain hypoxic cells that are resistant to chemotherapies such as with 

taxanes. Paclitaxel, the most widely studied taxane has been shown not to be highly 

active against newly diagnosed or recurrent glioblastoma multiforme – the most 

common subtype of malignant brain tumor. Interestingly, activation of PI3KAkt-pBad 

(a pro-apoptotic member of the Bcl-2 family) by A3 receptor stimulation has been 

recently demonstrated in human glioblastoma multiforme cells. This signaling pathway 

is responsible for an adenosine-mediated inhibition of paclitaxel induced apoptosis in 

hypoxic conditions (Merighi et al. 2007b). Further studies indicate that A3 receptor 

activation, by interfering with PKB/Akt, can decrease interleukin-12 production in 

human monocytes (Hasko et al. 1998; la Sala et al. 2005). It has been demonstrated that 

protein kinase A (PKA) and PKB/Akt phosphorylate and inactivate glycogen synthase 

kinase 3b (GSK-3b), a serine/threonine kinase acting as a key element in the Wnt 

signaling pathway (Fishman et al. 2002). 

Activation of the A3 receptor by the agonist IB-MECA is able to decrease the levels of 

PKA, a downstream effector of cAMP, and of the phosphorylated form of PKB/ Akt in 

melanoma and in hepatocellular carcinoma cells (Fishman et al. 2002; Bar-Yehuda et al. 

2008). This implies the deregulation of the Wnt signaling pathway, generally active 

during embryogenesis and tumorigenesis to increase cell cycle progression and cell 

proliferation. Similar results were observed in synoviocytes from rheumatoid arthritis 

patients and in adjuvant-induced arthritis rats (Ochaion et al. 2008). In particular, it has 

been shown that a decrease in the expression levels of PKB/Akt, IκB kinase (IKK), I 

kappa B (IκB), NF-κB and tumor necrosis factor alpha (TNF-α) in a rat experimental 

model of adjuvant-induced arthritis (AIA). In addition, the expression levels of GSK-

3β, β-catenin, and poly(ADP-ribose)polymerase (PARP), known to control the level and 

activity of NF-κB, were downregulated upon treatment with an A3 receptor agonist 

(Ochaion et al. 2008). 
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3.3 Crosstalk between MAPK and PI3K/Akt signaling pathway and 
modulation by A3 receptor  
 
Crosstalk between the PI3K and the Raf/MEK/ERK pathways has been reported on 

multiple levels, with some research stating that PI3K activity is essential for induction 

of Raf/MEK/ERK activity (Vivanco and Sawyers 2002; Sebolt-Leopold and Herrera 

2004). Additional studies suggest that the PI3K pathway enhances and/or synergizes 

with Raf/MEK/ERK signaling to provide a more robust signal through the lower 

components of the MAPK cascade (i.e. ERK). However, there is conflicting evidence 

that states that Akt is able to phosphorylate Raf, thereby efficiently abrogating Raf 

activity on downstream substrates (Rommel et al. 1999; Guan et al. 2000; Reusch et al. 

2001; Moelling et al. 2002; Zimmermann and Moelling 1999). 

In melanoma cells Akt phosphorylation mediated by the A3 agonist Cl-IBMECA 

induced Raf phosphorylation at an inhibitory phosphorylation site on Ser 259. As a 

consequence, Cl-IB MECA inactivated Raf inducing a cross talk between ERK1/2 and 

Akt pathways in these cells (Merighi et al. 2005a). Ras-Raf-MEK-ERK pathway is 

normally activated by A3 receptor stimulation as is the PI3K-Akt route. It is clear that 

these apparently separate routes should actually interact. A3 receptor stimulation inhibits 

the proliferation of melanoma cells partly by a PLC-sensitive mechanism. Pretreatment 

of cells with a PLC-g inhibitor strongly abrogated the Cl-IB-MECA effect on cell 

proliferation and on ERK1/2 phosphorylation, suggesting a critical role for PLC-g in A3 

receptor signaling. Furthermore, pretreatment of A375 cells with a PI3K inhibitor and 

an Akt inhibitor impaired Cl-IB-MECA-induced inhibition of cell proliferation and the 

effects of A3 receptor stimulation on Raf, MEK1/2 and ERK1/2 phosphorylation. These 

data suggest that the A3 adenosine receptor signals through a pathway including PI3K-

Akt. On the contrary, Ras was not activated. These results confirm that in A375 cells A3 

receptors decrease MEK1/2-ERK1/2 phosphorylation and cell proliferation via the 

inhibition of Raf, by a PI3K-Akt pathway without affecting Ras (Merighi et al. 2005a). 

 

3.4  The A3 Receptor and the Hypoxia-Inducible Factor 1 (HIF-1) 
 
Over the last several years, HIF-1 has emerged as an attractive target for cancer therapy. 

It is a heterodimer composed of an inducibly expressed HIF-1α subunit and a 

constitutively expressed HIF-1β subunit. Overexpression of HIF-1α protein has been 

reported in several human cancers, where it has been positively associated with tumor 
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progression, treatment failure, and poor survival (Giaccia et al. 2003; Semenza 2003). 

HIF-1 is a potent activator of angiogenesis and invasion through its upregulation of 

target genes critical for these functions (Carmeliet et al. 1998; Kung et al. 2000; 

Ratcliffe et al. 2000). Such genes share the presence of hypoxia response elements 

(HRE), which contain binding sites for HIF-1 (Semenza 2003). Therefore, since HIF-1α 

expression and activity appear central to tumor growth and progression, HIF-1 

inhibition is an attractive anticancer target (Semenza 2003). Knowledge of the 

mechanisms of action of all the actors in the hypoxic pathway is thus becoming a 

priority in identifying new agents capable of specifically targeting HIF-1. However, 

there are few choices that are currently available for direct and specific inhibition of 

HIF-1α. Much attention is being paid to develop new HIF-1-targeting agents. The 

success of these efforts will result in a new chemotherapeutic drug class which 

hopefully will improve the prognoses of many cancer patients. Thus far, no 

pharmaceutical has been identified that directly regulates the activity of a human 

transcription factor. Selection of the most appropriate point of therapeutic intervention 

to modulate HIF-1 activity is also an important factor in pharmaceutical development. 

In this respect, HIF-1 modulation by adenosine, increased in hypoxia (Blay et al. 1997), 

appears to be an attractive target for selective inhibition of the HIF-1 system in tumor 

hypoxic cells, without inhibition of any of the other essential HIF-1 pathways in normal 

cells. In particular, HIF-1 accumulation has been detected upon A3 receptor stimulation 

in hypoxic melanoma, glioblastoma and colon carcinoma cells (Merighi et al. 2005b, 

2006, 2007a). Furthermore, in tumor hypoxic cells, A3 receptor activation increases 

vascular endothelial growth factor, VEGF, via the HIF-1 pathway revealing the 

functional relevance of A3 receptor-mediated HIF-1 accumulation. The pathways 

involved are Akt, MEK and p38 MAPK, activated by the A3 receptor which is able, 

through this signaling, to enhance HIF-1α and VEGF protein expression in tumor 

hypoxic cells (Merighi et al. 2005b, 2006, 2007a).  
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Fig. 1 Schematic representation of  second  messengers and intracellular signaling 
pathways mediated by A3 receptor stimulation 
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 CHAPTER 4 

 

A3 ADENOSINE RECEPTOR AND COLON CANCER 

CELLS 

 

Depending on the extracellular concentration, expression of different adenosine 

receptors subtypes and the signal transduction mechanisms activated following the 

binding of specific agonists, adenosine has been shown to modulate cell proliferation, 

differentiation and apoptosis in tumoral cells (Fishman et al., 2000; Merighi et al., 2002; 

Mujoomdar et al., 2003, 2004). A large body of literature attributed pro or anti 

mitogenic effects to A1 and A2A adenosine receptors (Merighi et al., 2003a). However, 

the development of potent A3 agonists and selective antagonists revealed that the A3 

subtype plays a pivotal role in the adenosine-induced modulation of tumor cell 

proliferation (Bar-Yehuda et al., 2001; Merighi et al., 2005a). Indeed, contrasting results 

have been reported about the effects mediated through the A3 receptors activation; it 

seems that it profoundly affects cell survival, by promoting cell protection or cell death 

depending upon the cell type and/or agonist concentration (Jacobson, 1998; Merighi et 

al., 2003a). In support of the A3 receptor involvement in tumors, it has initially been 

shown that A3 receptors appeared highly expressed on the cell surface of tumor cells 

(Gessi et al., 2001, 2002; Merighi et al., 2001; Suh et al., 2001) and recently it has been 

reported that the overexpression is confirmed also in human colon tumor tissues (Gessi 

et al., 2004; Madi et al., 2004). Colorectal cancer is the third leading cause of cancer 

deaths in the United States. Despite major advances in uncovering the basic biochemical 

and genetic alterations involved in the development and progression of colorectal 

cancers, treatment of this disease still relies predominantly on surgical resection. 

Moreover, patient prognosis is determined primarily by the stage of disease at the time 

of diagnosis (Hellmich et al., 2000). The effects of adenosine in epithelial colon cell 

proliferation have been investigated in the past with controversial results and without 

considering the presence of A3 subtype (Lelievre et al., 1998a,b; Barry and Lind, 2000; 

Mujoomdar et al., 2003; Fishman et al., 2004). However, after the introduction of more 

selective ligands as new tools to identify adenosine receptors (Baraldi and Borea, 2000; 

Jacobson and Gao, 2006), several actions of adenosine should be reconsidered. 
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Recently, it has been demonstrated that A3 receptors are overexpressed in colon cancer 

tissues obtained from patients undergoing surgery in comparison to normal mucosa 

(Gessi et al., 2004), in agreement to Madi et al. (2004). Our group  investigated the 

presence of the A3 adenosine receptor on human colon cancer cells to evaluate the 

functional effect of this receptor on colon cancer cell biology. However as adenosine 

receptors are often coexpressed on a single cell (Fredholm et al., 2001) it was important 

to investigate the presence of the other adenosine subtypes. This is relevant in view of 

the evaluation of adenosine-mediated effects, and to see whether colon cancer cells 

reflect a similar pattern of expression of human tumors. The presence of all adenosine 

receptors mRNAs in both tissues and colon cancer cells was detected, by means of real 

time RT-PCR studies, with the A2B being the more express in comparison to A1, A2A, 

and A3 subtypes. However as this result is not predictive of the presence of adenosine 

receptors in the membrane surface due to posttranscriptional events, to quantify exactly 

the density of A1, A2A, A2B, and A3 adenosine receptor protein, saturation studies by 

using selective antagonist radioligands were performed. The results showed that the 

density of A1, A2A, and A2B was quite low if compared with that of the A3 subtypes. 

Similar results were obtained in colon cells suggesting for the first time that the pattern 

of expression of adenosine receptors is very similar in colon cancer tissues and colon 

carcinoma cell lines and that the A3 subtype is the most abundant adenosine receptor 

present in both. Due to the discrepance between mRNA and binding data, protein levels 

were also evaluated by Western blotting experiments obtaining analogous results. This 

supports the emerging evidence that mRNA expression patterns are necessary but are by 

themselves insufficient for the quantitative description of biological systems. This 

evidence includes discoveries of posttranscriptional mechanisms controlling the protein 

translation rate or the half-lives of specific proteins or mRNAs (Gygi et al., 1999; Audic 

and Hartley, 2004; Weinzierl et al., 2007). Starting from the observation that adenosine 

could be detected in the interstitial fluid surrounding a carcinoma (Blay et al., 1997), a 

growing body of literature indicates that, depending upon the experimental conditions, 

adenosine may be either toxic and inhibit cell growth or alternatively stimulate cellular 

proliferation (Merighi et al., 2003a). Therefore in order to ascertain the potential effects 

of this nucleoside on colon carcinoma, our group chose human colon cancer cell lines at 

different degrees of differentiation such as Caco2, DLD1 and HT29 showing a well, 

intermediate and low differentiated aspect, respectively. Interestingly, binding 

experiments revealed a differential expression of adenosine receptors in these cell lines 
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(A1 and A3 in Caco 2 cells; A1, A2A, and A3 in DLD1 cells and A1, A2A, A2B, and A3 in 

HT29 cells) rending this panel of cells an interesting model to investigate the 

contribution of each adenosine subtype in cell growth. It has been demonstrated that 

adenosine induces a dose dependent stimulatory effect in Caco2, DLD1 and HT29 cells 

with an EC50 in the range 3– 12 µM.  

Growing evidence suggest that ERK1/2 pathway plays an important role in the 

pathogenesis, progression and oncogenic behavior of human colorectal cancer (Fang 

and Richardson, 2005). Therefore our group evaluated the A3-mediated stimulation of 

ERK/MAPK pathway in colon cancer cell lines. The involvement of ERK1/2 kinases on 

Cl-IB-MECA-induced cell proliferation was investigated by using a specific inhibitor of 

MEK, which is the upstream kinase for ERK1/2. Pretreatment of colon cancer cells with 

increasing concentrations of U0126 reduced the DNA synthesis induced by Cl-IB-

MECA, as measured by thymidine incorporation and cell cycle analysis. ERK1/2 

activation was also confirmed by immunoblot analysis revealing MAPK 

phosphorylation. This effect was rapid and transient as it returned almost to the control 

levels within 1 h of treatment, according to which found in transfected cells (Schulte 

and Fredholm, 2000, 2002).  

In conclusion, in line with literature data reporting that adenosine may promote cancer 

cell proliferation (Mujoomdar et al., 2003, 2004), stimulate angiogenesis (Montesinos et 

al., 2004), HIF activation (Merighi et al., 2005b), and inhibit anti-tumor immune 

response (MacKenzie et al., 1994), current data suggest that endogenous adenosine in 

colon cancer cells behaves like a stimulator of tumor growth, through the involvement 

of the A3 adenosine subtype and ERK1/2 phosphorylation and that in colon cancer cell 

lines exist a tonic stimulatory effect on cell proliferation that is mediated by A3 receptor 

activation. 

Recently it was reported that there could be a link between coffe consumption and 

reduced risk of colorectal cancer. The constituents of coffee might have genotoxic, 

mutagenic, or antimutagenic properties, any of which could influence colorectal cancer 

risk. For example, caffeine has been reported to inhibit chemical carcinogenesis and 

UVB light- induced carcinogenesis in animal models (Ramos et al., 2008). Coffee is 

also a major source of the chlorogenic acid that contributes to its antioxidant effect 

(Rodriguez et al., 2002). Intake of chlorogenic acid has been shown to reduce glucose 

concentrations in rats and intake of quinides, degradation products of chlorogenic acid, 

increases insulin sensitivity (Shearer et al., 2003). Chronic hyperinsulinemia and insulin 
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resistance are confirmed markers of high risk for some cancer sites (Renehan et al., 

2008).  Hypermethylation of DNA is a common characteristic in tumor cells and is a 

key epigenetic mechanism for silencing various genes, including those encoding the 

tumor suppressor proteins, DNA repair enzymes, and receptors. Gene-specific 

hypermethylation is known to be associated with inactivation of various pathways 

involved in the tumorigenic process, including cell cycle regulation, inflammatory and 

stress response and apoptosis. It has been demonstrated that caffeic acid, the main 

ingredient of coffee, inhibits DNA methylation in cultured MCF-7 and MAD-MB-231 

human cancer cells (Vucic et al., 2008) . 

Our group reported for the first time results about the in vitro effect of caffeine on 

hypoxic cancer cells. 
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4.1 

 

 

“Caffeine Inhibits Adenosine-Induced Accumulation of Hypoxia- 

Inducible Factor-1, Vascular Endothelial Growth Factor, and 

Interleukin-8 Expression in Hypoxic Human Colon Cancer Cells.” 
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INTRODUCTION  
 
Coffee and tea are the most commonly consumed beverages in the world (Fredholm, 

1999). Results of epidemiological studies have not resolved whether coffee 

consumption is related to colorectal cancer risk. A report by the World Cancer Research 

Fund concluded that the available evidence was not sufficient to draw any firm 

conclusions about a decreased risk of colorectal cancer associated with coffee 

consumption (World Cancer Research Fund/American Institute for Cancer Research, 

1997). However, some researchers contend that a link between high consumption of 

coffee and a low incidence of colorectal cancer has been firmly established (Ekbom, 

1999; Woolcott et al., 2002). Coffee is a leading source of methylxanthines, such as 

caffeine. A cup of coffee contains approximately 100 mg of caffeine (Fredholm, 1999); 

thus, caffeine can be found in micromolar concentrations in the human circulation as a 

result of dietary intake or pharmacological use. Most solid tumors develop regions of 

low oxygen tension because of an imbalance in oxygen supply and consumption. 

Clinical and experimental evidence suggests that tumor hypoxia is associated with a 

more aggressive phenotype (Hockel and Vaupel, 2001). Hypoxic tumor cells are 

resistant to conventional chemotherapy and radiotherapy. It is therefore rational to target 

the hypoxic regions of tumors or disrupt events initiated by hypoxia (Melillo, 2004). 

Interleukin-8 (IL-8), originally discovered as a chemotactic factor for leukocytes, has 

been shown recently to contribute to human cancer progression through its potential 

functions as a mitogenic, angiogenic, and motogenic factor (Xie, 2001). Although it is 

constitutively detected in human cancer tissues and established cell lines, IL-8 

expression is regulated by various tumor microenvironment factors, such as hypoxia, 

acidosis, nitric oxide, and cell density. Furthermore, hypoxia is a potent stimulator of 

vascular endothelial growth factor (VEGF) expression, a key proangiogenic factor, and 

this induction is believed to be mediated primarily through hypoxia- inducible factor-1 

(HIF-1) (Maxwell et al., 1997). HIF-1 is one of the master regulators that orchestrate the 

cellular responses to hypoxia. It is a heterodimer composed of an inducibly expressed 

HIF-1α subunit and a constitutively expressed HIF-1β subunit. A growing body of 

evidence indicates that HIF-1 contributes to tumor progression and metastasis (Giaccia 

et al., 2003; Semenza, 2003). Immunohistochemical analyses have shown that HIF-1α is 

present in higher levels in human tumors than in normal tissues (Zhong et al., 1999). 

HIF-1 is a potent activator of angiogenesis and invasion through its up-regulation of 

target genes critical for these functions (Carmeliet et al., 1998; Kung et al., 2000; 
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Ratcliffe et al., 2000). Such genes share the presence of hypoxia response elements, 

which contain binding sites for HIF-1 (Semenza, 2003). Therefore, because HIF-1α� 

expression and activity seem central to tumor growth and progression, HIF-1 inhibition 

becomes an appropriate anticancer target (Maxwell et al., 1997; Kung et al., 2000; 

Giaccia et al., 2003; Semenza, 2003). It is interesting that VEGF is overexpressed not 

only in advanced colon cancers but also in premalignant colonic adenomas (Wong, 

1999). The factors that may contribute to this enhanced VEGF expression are not 

defined fully. Although the mechanism of the possible protective effect of coffee or its 

products is unclear, potential protective effects could include antagonistic effects of the 

adenosine receptors. In particular, the A3 subtype is highly expressed in tumor cells 

(Gessi et al., 2001, 2002; Merighi et al., 2001) and is able to significantly up-regulate 

the expression of HIF-1 in hypoxic tumors (Merighi et al., 2005a, 2006), suggesting that 

A3 receptor overexpression may be a good candidate as a tumor cell marker (Gessi et 

al., 2004; Madi et al., 2004). Adenosine also plays a role in the promotion of 

angiogenesis (Montesinos et al., 2004). Regulation of expression of VEGF through 

adenosine receptors has been demonstrated in different cell types (Feoktistov et al., 

2002, 2003, 2004; Leibovich et al., 2002). The aim of this study is to determine whether 

caffeine may regulate HIF-1α, VEGF, and IL-8 in colon cancer cells during hypoxia. 

 

 

MATERIALS AND METHODS 

Cell Lines, Reagents and Antibodies 

HT29 human  tumor  colon cells were obtained from American Type Culture Collection 

(Manassas, VA). Human umbilical vein endothelial cells (HUVEC), tissue culture 

media and growth supplements were obtained from Lonza Bioscience (Bergamo, Italy). 

Antiadenosine A2B and antiadenosine A3 receptor antibodies (pAb) were from Alpha 

Diagnostic (Milano, Italy). Human anti-HIF-1α and human anti-HIF1β antibodies 

(mAb) were obtained from BD Transduction Laboratories (Milan, Italy). Anti-human 

vascular endothelial growth factor (VEGF) antibody was developed in goat using 

recombinant human VEGF165 as immunogen. U0126 (inhibitor of MEK-1 and MEK-

2), SB202190 (inhibitor of p38 MAP kinase), human anti-ACTIVE MAPK, and human 

anti-ERK1/2 antibodies (pAb) were from Promega (Milan, Italy). SH5 (inhibitor of Akt) 

was from Vinci-Biochem (Florence, Italy). Human phospho-p38 and human p38 MAP 
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kinase antibodies were from Cell Signaling Technology (Milan, Italy). P11w, a firefly 

luciferase reporter plasmid, comprising the 5-flanking 985 to 939 base pairs of the 

human VEGF gene that include an HIF-1-binding site, and p11m, the mutated version 

of p11w containing a nonfunctional HIF-1-binding site (Forsythe et al., 1996), were 

obtained from the American Type Culture Collection. BriteLite Ultra-High Sensitivity 

Luminescence Reporter Gene Assay System kit was obtained from PerkinElmer Life 

and Analytical Sciences (Milan, Italy). Fugene 6 transfection reagent was purchased 

from Roche Molecular Biochemicals (Milan, Italy). ZM 241385 and [3H]ZM 241385 

(specific activity, 17 Ci/mmol) were obtained from Tocris Cookson Ltd. (Bristol, UK). 

MRE 2029F20, MRE 3008F20, and B64 were synthesized by Dr. Pier Giovanni Baraldi 

(Department of Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy). 

[3H]MRE 2029F20 (specific activity, 123 Ci/mmol) and [3H]MRE 3008F20 (specific 

activity, 67 Ci/mmol) were obtained from GE Healthcare (Chalfont St. Giles, 

Buckinghamshire, UK). [3H]DPCPX (specific activity, 120 Ci/mmol) was obtained 

from PerkinElmer Life and Analytical Sciences (Waltham, MA). Adenosine A2B and A3 

receptor small interfering RNAs (siRNAs) were from Santa Cruz Biotechnology (Santa 

Cruz, CA). Unless otherwise noted, all other chemicals were purchased from Sigma 

(Milan, Italy). 

Cell Culture 

HT29 human tumor colon cells were maintained in RPMI 1640 medium containing 

10% fetal calf serum, penicillin (100 U/ml), streptomycin (100 µg/ml), and L-glutamine 

(2 mM) at 37°C in 5% CO2/95% air. HUVEC used in this study were from passages 2 

to 7. 

Establishment of  Hypoxic Culture Condition 

For hypoxic conditions, cells were placed for the indicated times in a modular incubator 

chamber and flushed with a gas mixture containing 1% O2, 5% CO2, and balance N2 

(MiniGalaxy, RSBiotech, Irvine, Scotland). Maintenance of the desired O2 

concentration was constantly monitored during incubation using a microprocessor-

based oxygen controller. 
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Caffeine Treatment of Cancer Cells 

Exponentially growing cells (70–80% confluence) in complete medium were pretreated 

for 1h with different concentrations of caffeine, followed by continual incubation in 

normal culturing conditions or exposure to hypoxia (1% O2) for indicated time intervals 

according to the purpose of the experiment. 

 

Membrane Preparation 

For membrane preparation, the culture medium was removed. The cells were washed 

with PBS and scraped off of T75 flasks in ice-cold hypotonic buffer (5 mM Tris HCl 

and 2mM EDTA, pH 7.4). The cell suspension was homogenized with a Polytron 

homogenizer (Kinematica, Basel, Switzerland), and the cell suspension was centrifuged 

for 10 min at 1000g. The supernatant was then centrifuged again for 30 min at 

100,000g, and the membrane pellet was frozen at -80°C until the use in competition 

binding experiments. 

 

Competition Binding Experiments at A1, A2A, A2B, and A3 Adenosine Receptors. 
 
Binding of [3H]DPCPX to A1 receptors expressed  in HT29 cells was performed for 120 

min at 25°C in 50 mM  Tris-HCl buffer, pH 7.4, containing 1 nM [3H]DPCPX, diluted 

membranes (100 µg of protein per assay), and caffeine. Nonspecific binding was 

determined in the presence of 1 µM DPCPX and was always ≤10% of the total binding. 

Binding of 1 nM [3H]ZM 241385 to human A2A expressed in HT29 membranes (100 µg 

of protein per assay) was performed using 50 mM Tris-HCl buffer, 10 mM MgCl2 pH 

7.4, and different concentrations of caffeine for an incubation time of 60 min at 4°C. 

Nonspecific binding was determined in the presence of 1 µM ZM 241385 and was 

approximately 20% of total binding. Competition experiments to human A2B expressed 

in HT29 membranes were performed using 3 nM [3H]MRE 2029F20 for an incubation 

time of 60 min at 4°C. Nonspecific binding was defined as binding in the presence of 1 

µM MRE 2029F20 and was 25% of total binding. Binding of [3H] MRE 3008F20 to 

human A3 expressed in HT29 membranes was carried out in 50 mM Tris-HCl buffer, 10 

mM MgCl2, and 1 mM EDTA, pH 7.4, containing 1 nM [3H] MRE 3008F20, 

membranes (100 µg of protein per assay), and caffeine for 120 min at 4°C. Nonspecific 

binding was defined as binding in the presence of 1µM MRE 3008F20 and was 

approximately 25 to 30% of total binding. Eight different  concentrations of caffeine 

were studied. 
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Measurement of cAMP Levels 

HT29 cells in exponential growth were exposed to drugs for 2 h. After the incubation, 

the HT29 cells were collected, washed three times in ice-cold PBS, lysed, and 

centrifuged. The supernatants were assayed for cAMP determination using an R&D 

cAMP assay kit following the manufacturer’s instructions (Parameter kit; R&D 

Systems, Minneapolis, MN). 

 

Conditioned Medium 

To obtain conditioned medium from N6(3- iodobenzyl) 2-chloroadenosine-5’N-

methyluronamide (Cl-IB-MECA)- treated HT29 human tumor colon cells, we plated 

106 HT29 cells in a 10-cm diameter plate containing RPMI 1640 medium with 10% 

fetal bovine serum. After 24 h, the medium of these cells was replaced with fresh 

growth medium containing Cl-IB-MECA (0 or 100 nM). The plates were then incubated 

under normoxic or hypoxic conditions. After 1 day of incubation, conditioned medium 

was removed and centrifuged at 4000g for 20 min at 4°C through an Amicon Ultra-4 

centrifugal filter (Millipore, Billerica, MA) to remove any trace of Cl-IB-MECA. The 

molecular mass cutoff of the filters was 5 kDa, and the molecular mass of Cl-IB-MECA 

is 0.544 kDa. The flow-through containing excess Cl-IB-MECA was discarded, and the 

retentate was collected. Furthermore, to exclude that Cl-IB-MECA itself may have an 

inhibitory effect on the migration assay, we treated HUVECs directly with Cl-IB-

MECA 100 nM, which was insufficient to modulate HUVEC migration. The final filter 

retentate was concentrated 40-fold for use in the migration and proliferation assays. 

 

JAM Test 

This assay measures cell death by quantifying the amount of fragmented DNA. Target 

cells were labeled with 1 µCi/ml [3H]thymidine for 20 h in Dulbecco's modified Eagle's 

medium containing 10% fetal calf serum, penicillin (100 units/ml), streptomycin (100 

µg/ml), L-glutamine (2 mM). The cells were then washed and treated with new unlabeled 

medium containing adenosine analogues for 24 h. At the end of the incubation period, 

the cells were trypsinized and dispensed in four wells of a 96-well plate, filtered through 

Whatman GF/C glass fiber filters using a Micro-Mate 196 cell harvester (PerkinElmer 

Life Sciences). The filter-bound radioactivity was counted on Top Count Microplate 

Scintillation Counter (efficiency 57%) with Micro-Scint 20. The amount of apoptotic 

and necrotic cells, measured as the loss of radioactivity associated with the loss of 
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fragmented and degraded DNA, was detected by filtration and subsequent washing with 

a Micro-Mate 196 cell harvester followed by quantification with a Top Count 

Microplate Scintillation Counter. The percentage of cell death is expressed as 100 x 

(dpm(U) -
 dpm(T))/dpm(U), where dpm(U) represents the radioactivity of untreated cells and 

dpm(T) is the radioactivity of treated cells (Merighi et al., 2005b).  

 

MTT Assay  

The MTS assay was performed to determine colon cell viability and proliferation 

according to the manufacturer’s protocol from the CellTiter 96 AQueous One Solution 

(Promega) cell proliferation assay, as described previously (Merighi et al., 2005b). Cells 

(105) were plated in 24-multiwell plates; 500 µl of complete  medium was added to each 

well with different concentrations of caffeine. The cells were then incubated for 24 h. At 

the end of the incubation period, MTS solution was added to each well. The optical 

density of each well was read on a spectrophotometer at 492 nm. For each experiment, 

four individual wells of each drug concentration were prepared. Each experiment was 

repeated three times. 

 

Migration Assay 

Cell migration was performed with the Transwell system (Chemicon International, 

Temecula, CA), which allows cells to migrate through 8-µm pore size polycarbonate 

membrane. In brief, cells were trypsinized, washed, and resuspended in serum-free 

Dulbecco’s modified Eagle’s medium (5x105cells/ml). This suspension (300 µl) was 

added to the upper chamber of Transwells. The lower chamber was filled with 500 µl of 

conditioned medium. After the incubation (6–24 h), filters were removed, and cells 

remaining on the upper surface of the membrane (i.e., that had not migrated through the 

filter) were removed with a cotton swab. Then, membranes were washed with PBS, and 

cells present beneath the membrane were fixed with ice-cold methanol for 15 min and 

stained with the Cell Stain Solution (QCM Colorimetric Cell Migration Assay; 

Chemicon International). The stained insert was transferred to a well containing the 

extraction buffer. The dye mixture was transferred to a 96-well microtiter plate suitable 

for colorimetric measurement. Analysis was performed on three wells for each 

condition, and each experiment was repeated three times. 
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Western Blotting  

Whole-cell lysates, prepared as described previously (Merighi et al., 2005b), were 

resolved on a 10% SDS gel and transferred onto the nitrocellulose membrane. Western 

blot analyses were performed as described previously (Merighi et al., 2005a) with anti-

HIF-1α (1:250 dilution) and anti-HIF-1β antibodies (1:1000 dilution) in 5% nonfat dry 

milk in PBS/0.1% Tween 20 overnight at 4°C. Aliquots of total protein sample (50 µg) 

were analyzed using antibodies specific for phosphorylated (Thr183/Tyr185) or total 

p44/p42 MAPK (1:5000 dilution), phosphorylated (Thr180/Tyr182) or total p38 MAPK 

(1:1000 dilution), and for phosphorylated Akt (Ser473) (1:1000 dilution). The protein 

concentration was determined using BCA protein assay kit (Pierce, Rockford, IL). 

Membranes were washed and incubated for 1 h at room temperature with peroxidase-

conjugated secondary antibodies against mouse and rabbit IgG (1:2000 dilution). 

Specific reactions were revealed with the Enhanced Chemiluminescence Western 

blotting detection reagent (GE Healthcare). The membranes were then stripped and 

reprobed with antitubulin antibodies (1:250) to ensure equal protein loading. 

 

Densitometry analysis 

The intensity of each band in immunoblot assay was quantify using molecular 

analyst/PC densitometry software (Bio-Rad Laboratories, Hercules, CA). Mean 

densitometry data from independent experiments were normalized to results in cells in 

the control. The data were presented as the mean ± S.E., and analyzed by the Student’s 

test. 

 

Treatment of Cells with siRNA  

HT29 cells were plated in six-well plates and grown to 50-70% confluence before 

transfection. Transfection of siRNA was performed at a concentration of 100 nM using 

RNAiFectTM Transfection Kit (Qiagen, Valencia, CA). Cells were cultured in complete 

media, and at 48 total proteins were isolated for Western Blot analysis for A2B and A3 

receptor protein. A nonspecific random control ribonucleotide sense strand (5'-ACU 

CUA UCU GCA CGC UGA CdTdT-3') and antisense strand (5'-dTdT UGA GAU AGA 

CGU GCG ACU G-3') were used under identical conditions (Merighi et al., 2005b).  
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Enzyme-Linked Immunosorbent Assay 

The levels of VEGF and IL-8 protein secreted by the cells in the medium were 

determined by a VEGF and an IL-8 enzyme-linked immunosorbent assay kit (R&D 

Systems). In brief, subconfluent cells were changed into fresh medium in the presence 

of solvent or various concentrations of adenosine analogs in hypoxia. The medium was 

collected, and VEGF and IL-8 protein concentrations were measured by enzyme-linked 

immunosorbent assay according to the manufacturer’s instructions. The results were 

normalized to the number of cells per plate. The data were presented as mean ±S.D. 

from three independent experiments.  

 

Transient Transfection and Luciferase Reporter Assay 

HT29 human tumor colon cells were prepared for transfection by seeding them into 24-

well plates (30,000 cells/well) in 0.5 ml of standard growth medium. After an overnight 

culture, the cells were transfected with 100 ng of p11w or p11m. Transfections were 

performed with 1.2 µl of Fugene 6 per well. The cells were then treated with drugs or 

the solvent vehicle only, then incubated under hypoxic (1% O2) or normoxic conditions. 

The cells were then prepared for the luciferase-reporter assay according to the 

manufacturer’s instructions. In brief, the cells were lysed at ambient temperature for 2 

min with 200 µl of 1X lysis buffer. The extracts were assayed for plasmids (p11w and 

p11m) and control (Renilla reniformis) luciferase activities with a PerkinElmer Life and 

Analytical Sciences luminometer. Samples were normalized for transfection efficiency 

based on the R. reniformis luciferase activity. 

 

Statistical analysis 

All values in the figures and text are expressed as mean ± S.E. (standard error) from 

three independent experiments except where indicated. Data sets were examined by 

analysis of variance (ANOVA) and Dunnet’s test (when required). A P value less than 

0.05 was considered statistically significant. 
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RESULTS 

Caffeine Inhibits Adenosine-Induced HIF-1α Protein Accumulation in Human 
Colon Cancer Cells. 
 
HIF-1α protein is undetectable in human HT29 colon cancer cells cultured under 

normoxic conditions, whereas it is present in hypoxia (Fig. 1A). Adenosine (10 and 100 

µM) is able to increase HIF-1α protein accumulation in HT29 hypoxic colon cancer 

cells (Fig. 1A). The presence of adenosine receptors was recently investigated in HT29 

cells, which express all four adenosine receptor subtypes. In particular, A1 receptors are 

present with 32 ± 4 fmol/mg of protein, A2A receptors with 49 ± 4 fmol/mg of protein, 

A2B receptors with 52 ± 4 fmol/mg of protein, and A3 receptors with 257 ± 22 fmol/mg 

of protein (Gessi et al., 2007). To evaluate whether A3 receptors may have a functional 

role in HIF-1α protein expression under hypoxic conditions, we tested the effect of 

increasing concentrations (10–1000 nM) of the high-affinity A3 receptor agonist Cl-IB-

MECA (Table 1) (Merighi et al., 2005b). A3 adenosine receptor stimulation promoted 

HIF-1α protein accumulation under hypoxic conditions, whereas it did not modify HIF-

1β expression in normoxia or in hypoxia (Fig.1A). To confirm that A3 receptors have a 

functional role in HIF-1α protein expression under hypoxic conditions, we tested the 

effect of the high-affinity and selective A3 receptor antagonist MRE 3008F20 (Table 1) 

(Varani et al., 2000). MRE 3008F20 (0.1–10 nM) is able to decrease the induction of 

HIF-1α expression under hypoxic conditions obtained through Cl-IB-MECA 10 nM 

(Fig. 1B). These results indicate that adenosine increases HIF-1α protein expression via 

A3 receptors. We next asked whether caffeine, an adenosine receptor antagonist 

(Fredholm et al., 1999), inhibits adenosine-induced HIF-1α protein expression in 

hypoxia. In HT29 cells, 10 µM caffeine was able to inhibit HIF-1α protein 

accumulation induced by 10 to 100 nM Cl-IB MECA (Fig. 1C). Furthermore, we 

observed that pretreatment of HT29 cells with 10 µM caffeine abrogated 10 and 100 

µM adenosine-induced HIF-1α protein accumulation (Fig. 1D). To rule out the 

possibility of a cytotoxic effect on HIF-1α  protein suppression by caffeine, cell 

viability assay using MTS was done. No obvious changes in cell viability were 

observed in HT29 cells after being challenged with different concentrations of caffeine 

(0.1–100 µM) under both normoxic and hypoxic conditions for 24 h (Fig. 1E), 

indicating that the inhibition of HIF-1α protein expression by caffeine was not ascribed 

to nonspecific tumor cell toxicity. To confirm these results, we analyzed the effect of 

caffeine on cell survival by the JAM test. HT29 cells, previously labeled with 
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[3H]thymidine, were treated for 24 h with increasing concentrations of caffeine (0.1–

100 µM). Caffeine did not induce cell death, as shown in Fig. 1F. 

 
Fig. 1. Modulation of HIF-1α expression by adenosine. A, Western blot analysis for HIF-1α and HIF-1β levels of 35 
µg of total protein lysates from HT29 cells treated in normoxia or in hypoxia (1% O2, 4 h) without or with the 
selective A3 agonist Cl-IB-MECA 10, 100, and 1000 nM, and adenosine 10 and 100 µM. B, effect of the selective A3 
antagonist  MRE 3008F20. HT29 cells were treated in hypoxia (1% O2, 4 h) without (lane 1) or with Cl-IB-MECA 10 
nM (lanes 2–6) and MRE 3008F20 0.1 nM (lane 3), 1 nM (lane 4), 3 nM (lane 5), and 10 nM (lane 6). C, effect of 
caffeine on HIF-1α expression induced by Cl-IB-MECA. Western blot analysis for HIF-1α and HIF-1β levels. HT29 
cells were treated in hypoxia (1% O2, 4 h) without (lane 1) or with 10 nM Cl-IB-MECA (lanes 2 and 5), 100 nM Cl-
IB-MECA (lanes 3 and 6), and 10 µM caffeine (lanes 4–6). D, effect of caffeine on HIF-1α expression induced by 
adenosine. Western blot analysis for HIF-1α and HIF-1β levels. HT29 cells were treated in hypoxia (1% O2, 4 h) 
without (lane 1) or with 10 µM adenosine (lanes 2 and 5), 100 µM adenosine (lanes 3, 6), and 10 µM caffeine (lanes 
4–6). The mean densitometry data from independent experiments (one of which is shown here) were normalized to 
the result obtained in hypoxic cells in the absence of drug treatment (control). Plots are mean ± S.E. values (n = 3). *, 
P < 0.01 compared with the control. E and F, HT29 cells were treated with increasing concentrations of caffeine (0.1–
100 µM) for 24 h under both normoxic and hypoxic conditions, and cell viability was assayed by an MTS test (E) and 
a JAM test (F). In MTS, the cell growth is expressed as a percentage of the OD measured on untreated cells (control) 
assumed as 100% of cell viability. Ordinate reports means of four different OD quantifications with standard error 
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(vertical bar). In JAM test, percentage of cell survival is reported in ordinate with standard error (vertical bar). Values 
represent means (± S.E.M.) of  four separate quantifications in the same experiment. During the experiment, cells 
treated with the solvent DMSO served as controls. 
 

 

Caffeine Inhibits Adenosine-Induced Phosphorylation of Akt, ERK1/2, and p38 
MAPK.  
 

HT29 cells were cultured in the absence and in the presence of adenosine analogs for 

0.5 to 4 h in hypoxia. We found that exposure to the A3 receptor agonist Cl-IB-MECA 

(1–100 nM) and to the nonselective adenosine analog NECA (0.1–1 µM) (Table 1) 

resulted in a sustained increase in the phosphorylated p38 and in a transient increase in 

Akt and ERK1/2 phosphorylation levels in colon cells (Fig. 2A). The phosphorylation 

of p38 kinases occurs at early time points after A3 receptor activation (Fig. 2A). 

Furthermore, 10 µM caffeine was able to block the increase in the phosphorylation of 

p38 kinase mediated by A3 receptor stimulation in hypoxic HT29 cells (Fig. 2B). 

Similar results are reported for Akt and ERK1/2 phosphorylation in HT29 colon cancer 

cells (Fig. 2B). These data suggest that caffeine acts as an adenosine receptor 

antagonist. 
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Fig. 2. p38, Akt, and ERK1/2 phosphorylation in hypoxic colon HT29 cancer cells. A, pp38, pAkt, and pERK1/2 

MAPK phosphoprotein levels under the selective A3 agonist Cl-IB-MECA and the adenosine receptor agonist NECA 

treatment in hypoxia (1% O2): dose- and time-relation effect. The mean densitometry data from independent 

experiments were normalized to the results obtained in cells in the absence of Cl-IB-MECA or NECA (lane 0, 

Untreated). Plots are mean ±S.E. values (n =3); *, P < 0.01 compared with the control. B, effect of caffeine on pp38, 

pAkt, and pERK1/2 MAPK phosphoprotein levels under Cl-IB-MECA and NECA treatment in hypoxia. The mean 

densitometry data from independent experiments were normalized to the results obtained in cells in the absence of Cl-

IB-MECA or NECA (lane 0, Untreated). Plots are mean ± S.E. values (n =3); *, P < 0.01 compared with the control. 

 

 
The Site of Action of Caffeine.  
 
To investigate whether caffeine interacts with signaling molecules downstream of 

adenosine receptors such as Akt, mitogen-activated protein kinases, or p38, we treated 

HT29 cells with caffeine (1–10µM) for 4 h in hypoxia, and then we evaluated the 

effects of caffeine treatment on the kinases under study. Figure 3A shows that caffeine, 

at these concentrations, did not interact with the signaling molecules investigated 

because the phosphorylation levels of Akt, ERK1/2, and p38 were unchanged after 

caffeine treatment. Furthermore, we demonstrated that SH5, an Akt inhibitor, 

SB202190, an inhibitor of p38 MAPK, and U0126, which is a potent inhibitor of 

MEK1/2, are selective at a concentration of 10 µM, as shown in Fig. 3A. 

To consider whether caffeine-dependent alterations in cAMP levels could be 

influencing the results obtained, we evaluated potential cAMP modulations in colon 

cells treated with caffeine. HT29 cells were exposed to 2 h of hypoxia alone and in the 

presence of caffeine (1–10 µM). Hypoxia significantly increased cAMP levels from 10 

± 1 to 25 ± 2 pmol/106 cells. The incubation with caffeine in hypoxia did not modulate 

cAMP levels in these cells (Fig. 3B). As positive control, we show that the stimulation 

of adenylate cyclase with 1 to 10 µM forskolin increased cAMP levels up to 5-fold with 

respect to hypoxic control (Fig. 3B). To better address the site of action of caffeine in 

the inhibitory effects of adenosine-induced responses in hypoxic colon cancer cell 

cultures, we performed a series of competition binding assays to human adenosine 

receptors in HT29 cells. Table 2 reports the affinity values versus A1, A2A, A2B, and A3 

adenosine receptor subtypes, expressed as the inhibitory binding constant (Ki) of 

caffeine. The results were obtained through [3H]DPCPX, [3H]ZM 241385, [3H]MRE 

2029F20, and [3H]MRE 3008F20 competition binding experiments performed for A1, 

A2A, A2B, and A3 in HT29 membranes, respectively. We found that caffeine has affinity 

in the micromolar range versus all adenosine receptor subtypes, confirming that this 

antagonist interferes with ligand binding to purinergic receptors. 
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          TABLE 1 
Binding affinity of agonists and antagonists at A1, A2A, A2B, and A3 adenosine receptor subtypes 
Ki values are shown with S.E.M. or 95% confidence intervals in parentheses. 

 
                                       

                                 A1                                    A2A                                A2B                                 A3                              References  

 
NECA                        14 (6.4–29)                       20 (12–35)                                                                6.2 (3.5–11)                    Fredholm et al., 2001 
NECA                                                                                                                 260 ± 30                                                                Varani et al., 2005 
Cl-IB-MECA            115 (114–116)                2100 (1700–2500)   >100,000 (from a cAMP assay)    11 (9.4–13)                  Fredholm et al., 2001 
MRE 3008F20                1120 ±130                         165 ± 18                        1500 ± 165                       0.9 ± 0.1                           Varani et al., 2005 
MRE 2029F20                 200±25                            >1000                             3.2 ± 0.3                           >1000                              Varani et al., 2005 
B64                               708 (598–838)                  495 (402–608)               34 (26–45)                      3.7 (3.2–4.3)                       Baraldi et al., 2002 

 

 
 
Fig. 3. Caffeine signaling in HT29 cells. A, pp38, pAkt, and pERK1/2  MAPK phosphoprotein levels under caffeine 

(1–10 µM) treatment in hypoxia (1% O2, 4 h). The effect of SH5, an Akt inhibitor, SB202190, inhibitor of p38 

MAPK, and U0126, inhibitor of MEK1/2, at the concentration of 10 µM  is shown. Inhibitors were added to the cells 

30 min before hypoxia. B, cAMP levels in normoxia and upon treatment of HT29 cells with caffeine (1–10 µM) or 

forskolin (1–10 µM), or no drug (Ctr) for 2 h in hypoxia. Results shown are mean ± S.E. values (n = 3); *, P < 0.01 

compared with the control (normoxia); #, P < 0.01 compared with the control (untreated hypoxic cells). 

 
 

Caffeine Inhibits Adenosine-Induced HIF-1α Protein Accumulation via Blocking 

of Akt, ERK1/2, and p38 MAPK Phosphorylation.  

To determine whether Akt and MAPK pathways were required for HIF-1α protein 

increase induced by A3 receptor activation, HT29 cells were pretreated with SH5, 

SB202190, or U0126. The cells were then exposed to 100 nM Cl-IB-MECA for 4 h in 



100 
 

hypoxia. As shown in Fig. 4, SH5 (10 µM), SB202190 (10 µM), and U0126 (10 µM) 

were able to inhibit Cl-IB-MECA-induced increase of HIF-1α protein expression. 

 
TABLE 2 
Inhibition of  [3H]DPCPX, [3H]ZM 241385, [3H]MRE 2029F20, and  [3H]MRE 3008F20 binding by caffeine at A1, 
A2A, A2B, and A3 adenosine receptors expressed in human HT29 cells, respectively. 
Data are expressed as the mean ± S.E.M. Ki value represents the concentration of drug able to displace 50% of the 
radioligand. 
 
 
  
                                  [3H]DPCPX                          [3H]ZM2029F20                         [3H]MRE2029F20                       [3H]MRE3008F20 

                                                                                           µM 
Caffeine Ki                      45 ±5                                 18 ±3                                       10 ±1                                       13 ± 2       

 
 

 

 
Caffeine Inhibits Adenosine-Induced VEGF Expression. 
 
The effects of A3 receptor stimulation through the agonist Cl-IB-MECA on secreted 

VEGF levels in HT29 colon cells were determined under hypoxic conditions. Cl-

IBMECA (10 nM) increased VEGF levels after 48 h of hypoxia in HT29 cells (Fig. 

5A). To determine the concentration of caffeine required to inhibit adenosine-regulated 

VEGF protein increase under hypoxia, HT29 cells were treated with caffeine. VEGF 

levels were analyzed after 48 h of hypoxia. Complete abrogation of VEGF 

accumulation induced by 10 nM Cl-IB-MECA was observed with 10 µM caffeine (Fig. 

5A), at which HIF-1α accumulation induced by A3 receptor stimulation was also 

inhibited (Fig. 1C). To define the adenosine receptor subtype involved, HT29 cells were 

treated with Cl- IB-MECA in combination with the A2B antagonist MRE 2029F20 or 

with the A3 receptor antagonist MRE 3008F20 (Table 1) (Varani et al., 2000). When 

used alone under hypoxic conditions, MRE 2029F20 and MRE 3008F20 had no effect 

Fig. 4. Signaling pathway. A, HT29 cells were pretreated 30 min with 

or without SH5, an Akt inhibitor, SB202190, inhibitor of p38 MAPK, 

and U0126, inhibitor of MEK1/2, at the concentration of 10 µM and 

then exposed to the selective A3 agonist Cl-IB-MECA 100 nM (+) for 

4 h in hypoxia (1% O2). The mean densitometry data from 

independent experiments (one of which is shown here) were 

normalized to the results obtained in hypoxic cells in the absence of 

Cl-IB-MECA (lane 1). Plots are mean ± S.E. values (n = 3); *, P < 

0.01 compared with the control. 
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on VEGF protein levels analyzed after 48 h of hypoxia (Fig. 5A). Complete abrogation 

of VEGF accumulation induced by 10 nM Cl-IB-MECA was seen with MRE 3008F20 

10 nM, whereas the antagonist MRE 2029F20 (10 nM) did not block the Cl-IB-MECA 

effect (Fig. 5A), pointing to a role for the A3 receptor. To evaluate whether a different 

A3 receptor antagonist with affinity also for A2B receptors was able to modulate VEGF 

levels induced by Cl-IB-MECA, HT29 cells were treated with the A2B-A3 receptor 

antagonist B64 (compound 44 in Baraldi et al., 2002) (Table 1). When used alone under 

hypoxic conditions, the B64 compound had no effect on VEGF protein levels analyzed 

after 48 h of hypoxia (Fig. 5A). Complete abrogation of VEGF accumulation induced 

by 10 nM Cl-IB-MECA was seen at a concentration of 10 nM B64 adenosine receptor 

antagonist (Fig. 5A), indicating the involvement of the A3 receptor.  

To investigate whether the MAPK pathway was involved in the expression of A3-

induced VEGF protein, HT29 cells were cultured in hypoxia for 48 h after the addition 

of the MEK1/2 inhibitor U0126, the AKT inhibitor SH5, or the inhibitor of p38 MAPK, 

SB202190, 30 min before the treatment of 10 nM Cl-IB-MECA. U0126, SH5, and 

SB202190 (10 M) significantly inhibited the VEGF protein levels induced by 10 nM Cl-

IB-MECA (Fig. 5A). 

 

Caffeine Inhibits Adenosine-Induced IL-8 Expression. 
 
Figure 5B shows that stimulation of adenosine receptors in HT29 cells with increasing 

concentrations of NECA (0.01–10 µM) for 24 h of hypoxia induces secretion of IL-8. 

The relatively low potency of NECA agrees with previous reports of A2B receptor-

mediated IL-8 production (Feoktistov et al., 2003). To better define the adenosine 

receptor subtype involved, HT29 cells were treated with 1 µM NECA in combination 

with the A2B antagonist MRE 2029F20 or with the A3 receptor antagonist MRE 

3008F20 (Table 1) (Varani et al., 2000). When used alone under hypoxic conditions, 

MRE 2029F20 and MRE 3008F20 had no effect on IL-8 protein levels analyzed after 

24 h of hypoxia (data not shown). Complete abrogation of IL-8 accumulation induced 

by 1 µM NECA was seen with 10 nM MRE 2029F20, whereas the antagonist MRE 

3008F20 (10 nM) did not block the NECA effect (Fig. 5C), pointing to a role for the 

A2B receptor. Furthermore, to evaluate whether a different A2B receptor antagonist with 

affinity also for A3 receptors was able to modulate IL-8 levels induced by NECA, HT29 

cells were treated with the A2B-A3 receptor antagonist B64 (Table 1). Complete 

abrogation of IL-8 accumulation induced by 1 µM NECA was seen at a concentration of 
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10 nM B64 adenosine receptor antagonist (Fig. 5C), indicating the involvement of the 

A2B receptor. Based on these results, we have chosen the incubation of 24 h in hypoxia 

with 1 µM NECA in further studies to analyze the effect of caffeine and the signaling 

pathways involved in adenosine-induced IL-8 production. Complete abrogation of IL-8 

accumulation induced by 1 µM NECA was observed with 10 µM caffeine (Fig. 5C). 

Furthermore, we evaluated a potential role of Akt, ERK 1/2, and p38 MAP kinase in 

NECA-induced synthesis of IL-8. As shown in Fig. 5C, 10 µM SH5, 10 µM U0126, and 

10 µM SB202190 completely blocked NECA-induced production of IL-8. 

 

 
 

Fig. 5. Effect of adenosine receptor stimulation on VEGF and IL-8 expression in hypoxic (1% O2) cells. A, VEGF 

release into culture media of  HT29 cells cultured 48 h in the absence and in the presence of the selective A3 agonist 

Cl-IB-MECA (10 nM), caffeine (10 µM), the A2B-A3 antagonist B64 (10 nM), U0126 (10 µM), SH5 (10 µM), SB 

202190 (10 µM), the selective A2B antagonist MRE 2029F20 (10 nM), and the selective A3 antagonist MRE3008F20 

(10 nM); the inhibitors were added 30 min before Cl-IB-MECA, and then the cells were exposed to hypoxia. Plots are 

mean ± S.E. values (n =3); *, P < 0.01 compared with the control (untreated hypoxic cells). B, effect of the adenosine 

receptor agonist NECA (0.01, 0.1, 1, and 10 µM) on IL-8 expression in hypoxic HT29 cells cultured 24 h. C, effect of 

1 µM NECA on IL-8 expression in hypoxic HT29 cells cultured 24 h in the absence andin the presence of 10 µM 

caffeine, 10 nM  B64, 10 µM SH5, 10 µM U0126, 10 µM SB 202190, 10 nM MRE 2029F29, and 10 nM MRE 

3008F20. Plots are mean ± S.E. values (n = 3); *, P < 0.01 compared with the control (untreated hypoxic cells). 

 

A3 Receptors Modulate VEGF Promoter Activity. 

HIF-1 is a transcription factor that mediates the effects of hypoxia on VEGF expression 

by binding to the hypoxia response element of the VEGF promoter. To examine 

whether adenosine interacts with the HIF-1 pathway to upregulate VEGF transcription, 

we used two luciferase reporters described previously. The p11w reporter is regulated 

by a fragment of  the VEGF promoter that includes an HIF-1-binding site. The p11m 

reporter is identical except for a 3-base pair mutation that prevents HIF-1 binding 

(Forsythe et al., 1996). We transfected HT29 colon cells with these reporters and treated 
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the cells with adenosine for different times in hypoxia. As shown in Fig. 6A, hypoxia 

increased luciferase activity of the p11w reporter in HT29 cells in a time-dependent 

manner. The maximum increase in p11w reporter activity is present at 72 h of hypoxia. 

Hypoxia also stimulated activity of the p11m reporter but to a minor extent (Fig. 6A). 

Incubation of the cells for 48 h under hypoxic conditions with adenosine resulted in a 

dose-dependent increase in p11w reporter activity. As shown in Fig. 6B, increasing 

concentrations of adenosine (1–100 µM) up-regulated the p11w reporter up to 41% with 

respect to untreated hypoxic HT29 cells. In particular, the increase induced by 10 µM 

adenosine at 48 h of hypoxia is blocked by 1 to 10 µM caffeine (Fig. 6B). 

 

 

 
Fig. 6. Effect of hypoxia (1% O2) and adenosine on HIF-1-dependent VEGF reporter activity. HT29 cells were 

transfected with plasmids encoding luciferase reporters driven by the VEGF promoter region containing a native HIF-

1-binding element (p11w) or a mutated hypoxia response element unable to bind HIF-1 (p11m). A, transfected cells 

were incubated  under  hypoxia for  24, 48, and 72 h. *, P < 0.01 compared with the control (time 0 from the 

transfection). B, HT29 cells were transfected with p11w for 48 h under hypoxia with adenosine (1–100 µM). The 

effect of 10 µM adenosine in combination with caffeine (0.1–10 µM) is shown. Plots are  mean ± S.E. values (n = 3); 

*, P < 0.01 compared with the control (48 h from the transfection with p11w in the absence of adenosine). 

 

A2B and A3 Receptor Gene Silencing.  
 
To demonstrate more conclusively a role for A2B or A3 receptors in the responses being 

measured, we tried to knock down A2B and A3 receptor expression in hypoxic HT29 

colon cells using siRNA, leading to a transient knockdown of the A2B and A3 receptor 

gene. HT29 cells were transfected with nonspecific random control ribonucleotides or 

with small interfering RNAs that target A2B (siRNAA2B) or A3 receptor mRNA 

(siRNAA3) for degradation. After transfection, the cells were cultured for 48 h in 

complete media, and then total proteins were isolated for Western blot analysis of A2B 

and A3 receptor protein. As expected, A2B and A3 receptor protein expression were 
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strongly reduced in siRNAA2B- and siRNAA3-treated cells, respectively (Fig. 7A). To 

confirm the specificity of the siRNAA3-mediated silencing of A3 receptor, we 

investigated the expression of A2B receptor protein in siRNAA3-treated cells. (Fig. 7A). 

Figure 7A demonstrates that treatment of HT29 cells with siRNAA3 reduced the 

expression of A3 protein but had no effect on the expression of A2B receptor. Similar 

results were obtained when HT29 cells transfected with siRNAA2B were analyzed for the 

expression of the A3 receptor (Fig. 7A). Therefore, at 48 h from the siRNAA3 

transfection, HT29 cells were exposed to increasing concentrations of the A3 adenosine 

receptor agonist Cl-IB-MECA (10–100 nM) for 4 h in hypoxia. We found that the 

inhibition of A3 receptor expression is sufficient to block Cl-IB-MECA-induced HIF-1α 

accumulation (Fig. 7B). Furthermore, HT29 cells were transfected with siRNAA3 and 

exposed to 10 nM Cl-IB-MECA to evaluate VEGF levels after 48 h of hypoxia. 

Complete abrogation of VEGF accumulation induced by Cl-IB-MECA 10 nM was 

observed when the A3 receptor was knocked down in colon cells (Fig. 7C). Likewise, to 

confirm the role of A2B receptors in the regulation of IL-8 expression, HT29 cells 

transfected with siRNAA2B were treated with 1 µM NECA and IL-8 protein levels were 

measured after 24 h of hypoxia. We found that the inhibition of A2B receptor expression 

is sufficient to block NECA-induced IL-8 accumulation. 

 
 

Fig. 7. A2B and A3 receptor expression silencing by siRNA transfection. A, Western blot analysis using an anti-A2B 

and an anti-A3 receptor polyclonal antibody of protein extracts from HT29 cells transfected with control (ctr) 
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ribonucleotides or with siRNAA2B or siRNAA3 and cultured for 48 h. Tubulin shows equal protein loading. B, 

Western blot analysis using an anti-HIF-1α  monoclonal antibody of protein extracts from HT29 cells transfected 

with control ribonucleotides or siRNAA3 for 48 h and cultured with the selective A3 agonist Cl-IB-MECA (0–100 

nM) for 4 h in hypoxia (1% O2). HIF-1β shows equal protein loading. C, VEGF release into culture media of HT29 

cells transfected with control (ctr) ribonucleotides or with siRNAA2B or siRNAA3 and cultured 48 h in hypoxia (1% 

O2) in the absence and in the presence of 10 nM Cl-IB-MECA. Plots are mean ± S.E. values (n = 3); *, P < 0.01 

compared with the control  (DMSO-treated siRNA-ctr transfected hypoxic cells). D, IL-8 release into culture media 

of HT29 cells transfected with control (ctr) ribonucleotides or with siRNAA2B or siRNAA3 and cultured for 24 h in 

hypoxia (1% O2) in the absence and in the presence of the adenosine receptor agonist NECA (1 µM). Plots are mean 

± S.E. values (n = 3); *, P < 0.01 compared with the control  (DMSO-treated siRNA-ctr transfected hypoxic cells). 

 

   Effect of Caffeine on Cell Migration of HT29 Cells. 
 

Recent studies have shown the possible role of HIF-1 in the regulation of colon 

carcinoma cell invasion (Krishnamachary et al., 2003). To investigate whether caffeine 

can inhibit cancer cell migration, an in vitro cell migration assay was done. We 

examined whether hypoxic condition enhances cell migration of HT29 cells and 

whether caffeine can suppress tumor migration. Our results show that exposure to 

hypoxia for 6 to 24 h in the presence of Cl-IB-MECA 100 nM significantly stimulated 

migration of HT29 cells under serum-free conditions (Fig. 8A). The stimulatory effect 

of Cl-IB-MECA induced migration of HT29 cells was completely abrogated by 

pretreatment with 10 µM caffeine. These results indicated that caffeine suppressed the 

Cl-IB-MECA-stimulated migration of HT29 cells. 

 

The  Conditioned Medium of Colon Cancer Cells and the Migration of HUVECs. 
 
To determine the functional importance of Cl-IB-MECA-induced increases in VEGF 

expression, we evaluated the effects of conditioned medium from Cl-IB-MECA-treated 

colon cells on the migration of HUVECs. Conditioned medium was obtained from the 

supernatants of colon cells treated with or without 100 nM Cl-IBMECA for 48 h in 

hypoxia. We prepared three batches of conditioned media for three independent 

HUVEC migration experiments. HUVECs were incubated for 6 h with endothelial basal 

medium or conditioned medium. The conditioned medium from Cl-IB-MECA-treated 

HT29 colon cells significantly enhanced HUVEC migration compared with the control 

conditioned medium from untreated colon cells (Fig. 8B). This effect was completely 

abrogated when conditioned medium from Cl-IB-MECA-stimulated colon cells was 

preincubated with anti-VEGF neutralizing antibodies, whereas 1 µg/ml nonspecific goat 

IgG failed to block the conditioned medium effect (Fig. 8B).  
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In contrast to its effects on migration, Cl-IB-MECA did not significantly modulate the 

compared with the untreated cells (data not shown). Likewise, the conditioned medium 

from Cl-IB-MECA-treated colon cells did not modulate the proliferation of HUVECs. 

Finally, we have shown that a commercial VEGF preparation enhances HUVEC 

migration, but this effect was abrogated when HUVECs were preincubated with the 

anti-VEGF neutralizing antibodies (Fig. 8C), whereas 1 µg/ml nonspecific goat IgG 

failed to lock the VEGF effect. 

 

 

 

 Fig. 8. Cell migration of HT29 and HUVECs. A, cell migration of HT29 cells. The cells were cultured for 6 and 24 h 

at 37°C under hypoxia in the presence of the selective A3 agonist Cl-IB-MECA (100 nM). The effect of 10 M 

caffeine is shown. Plots are mean ± S.E. values (n = 3); *, P < 0.01 compared with the control (hypoxic untreated 

cells). B, cell migration of HUVECs incubated for 6 h without (DMSO) or with conditioned medium from Cl-IB-

MECA-treated hypoxic HT29 cells (Cl-IB-MECA). The effect of treatment of conditioned medium from Cl-IB-

MECA-treated HT29 cells with 1µg/ml anti-VEGF antibodies (anti-VEGF) is shown. Anti-human VEGF was 

developed in goat using recombinant human VEGF165 as immunogen. In this assay, 1 µg/ml anti-VEGF antibodies 

was incubated with conditioned medium from Cl-IB-MECA-treated HT29 cells for 1 h at 22°C. After the 

preincubation, HUVECs were added to the antigen-antibody mixture. The assay mixture was incubated at 37°C for 6 

h. As negative control,  1 µg/ml nonspecific goat IgG (IgG) was used. The plots are mean ± S.E. values (n = 3); *, P 

< 0.01 compared with the control (DMSO-treated HT29 cells). C,cell migration of HUVECs incubated for 6 h 

without (+) or with VEGF 1 µg/ml. The effect of 1 µg/ml anti-VEGF antibodies (anti-VEGF) is shown. Plots are 

mean  ± S.E. values (n = 3); *, P < 0.01 compared with the control (untreated cells). 
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DISCUSSION 

Because substantial amounts of caffeine are ingested by people drinking coffee, tea, or 

caffeinated soft drinks, an understanding of the biological effects of caffeine is of 

considerable importance. The concentrations of caffeine used in this study (10 µM) may 

seem unphysiologically high. In fact, we want to emphasize that even higher 

concentrations are reached in coffee drinkers (Ekbom, 1999). To our knowledge, this is 

the first report examining the in vitro effect of caffeine on hypoxic cancer cells. Taken 

together, our data suggest three potential chemopreventive targets for caffeine: 1) HIF; 

2) VEGF and IL-8; and 3) cell migration. In the current study, we have demonstrated 

that caffeine inhibits the up-regulation of HIF-1α, VEGF, and IL-8 expression induced 

by the adenosine receptor agonist Cl-IB-MECA in human colon cancer cells exposed to 

severe hypoxia. In particular, we have shown that HIF-1α and VEGF are increased 

through A3 adenosine receptor stimulation, whereas the effects on IL-8 are mediated via 

the A2B subtype. We have demonstrated previously that, in hypoxic glioblastoma cells, 

adenosine is able to increase the production of the proangiogenic factor VEGF (Merighi 

et al., 2006) through the A3 receptor subtype. Furthermore, our results indicate that, in 

tumor colon hypoxic cells, adenosine increases VEGF promoter activity via the HIF-1 

pathway and that caffeine is able to block this effect. It has been reported, in previous 

studies, that A2B receptors stimulate IL-8 production in normoxic conditions (Zeng et 

al., 2003). In this study, we found that also in hypoxia, there is a modulation in IL-8 

levels mediated by the adenosine receptor agonist NECA. These effects may seem 

rather modest and were examined only during concomitant hypoxia. However, the aim 

of this work was to study the effects of caffeine on HIF-1 protein accumulation and on 

VEGF and IL-8 expression in the human colon cancer cell line HT29 under hypoxic 

conditions. The signaling pathways involved are Akt, MEK, and p38 MAPK, having a 

key role in A3 receptor ability to enhance HIF-1α and VEGF protein expression. 

Moreover, we have shown that Akt, ERK1/2, and p38 MAPK activities were required 

for the IL-8 expression increase induced by A2B receptor activation. Although caffeine 

did not interact with signaling molecules downstream of adenosine receptor activation, 

such as Akt, mitogen-activated protein kinases, p38, or cAMP, we have demonstrated 

that it interferes with adenosine receptor binding as an antagonist with micromolar 

affinity. As a consequence, we suggest that caffeine may serve as an antagonist of 

adenosine receptor activities in hypoxic cells as a means to retard tumorigenesis in vivo. 
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In particular, it will be of interest to study paraxanthine in future studies. Paraxanthine 

is the main metabolite of caffeine in humans, and, at least in some receptor subtypes, it 

is as potent as the parent compound. As a consequence, when discussing the plasma 

concentrations of caffeine achieved clinically, one underestimates the amount of 

adenosine receptor antagonism, because plasma concentrations of paraxanthine can be 

just as high (Biaggioni et al., 1991). It has been shown that HIF-1α overexpression, 

either as a result of intratumoral hypoxia or genetic alterations, activates the 

transcription of genes, the protein products of which contribute to the basement 

membrane invasion of colon cancer cells. In the present study, we have shown that 

caffeine inhibited the stimulatory effects of the adenosine receptor agonist Cl-IB-MECA 

on the migration ability of hypoxic tumor colon cancer cells (Fig. 8), which could be 

attributed to its potent inhibitory effects on Cl-IB-MECA induced HIF-1α  protein 

accumulation and VEGF expression. Even if these are only “in vitro” results that are in 

accordance with the in vitro observation that caffeine inhibits tumor cell motility 

(Lentini, 1998), they may be indicative of increased tumor migration in vivo. However, 

caffeine was not able even to prevent the effects produced by hypoxia alone. This 

implies that, under the conditions of the assays, not enough endogenous adenosine was 

generated to mediate the effects of hypoxia on markers of tumor growth. In our in vitro 

cell model, the effects demonstrated for caffeine are those related to adenosine receptor 

antagonism. Furthermore, to determine the functional importance of adenosine-induced 

increases in VEGF expression, we evaluated the effects of conditioned medium from 

Cl-IB-MECA treated colon cells on the migration of HUVECs. Our data indicate that 

the increased VEGF expression produced by Cl-IB-MECA-treated colon cancer cells 

stimulates migration of vascular endothelial cells. The finding that the Cl-IB-MECA- 

stimulated increase in VEGF was blocked by caffeine indicates that strategies aimed at 

blocking adenosine receptors will not only affect colon cell migration but also will 

affect surrounding vasculature dependent on tumor-derived VEGF. Although it is well-

known that hypoxia stimulates VEGF levels, hypoxia coordinately stimulates IL-8 in 

tumor cells (Desbaillets et al., 1997), and in tumor xenografts, hypoxic areas of tumors 

coexpressed VEGF and IL-8. Targeting HIF-1α is an attractive strategy, with the 

potential for disrupting multiple pathways crucial for tumor growth. However, recent 

findings have investigated whether the inhibition of HIF-1 alone is sufficient to block 

tumor angiogenesis (Mizukami et al., 2005). In particular, it has been demonstrated that 

HIF-1α deficiency in cancer cells can inhibit proliferation and overall growth but not 
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angiogenesis. The new finding of these studies is that compensatory pathways can be 

activated to preserve the tumor angiogenic response. In particular, it has been 

demonstrated that in the absence of HIF-1, the proangiogenic cytokine IL-8 is induced 

in a compensatory manner to maintain tumor vascularity. The absence of HIF-1 can 

therefore stimulate IL-8 on a transcriptional level, and this is further enhanced in 

hypoxia. Our results provide evidence that an additional role of adenosine in colon 

tumor progression may be the enhancement of angiogenesis via up-regulation not only 

of VEGF, A3-HIF-1- mediated, but also of IL-8, A2B-mediated. It has been suggested 

that strategies that inhibit HIF-1α may be most effective when IL-8 is simultaneously 

targeted. Therefore, we suggest that an A2B-A3 receptor antagonist may be regarded as a 

target for the development of a new antitumor drug through its ability to inhibit HIF-1α, 

VEGF, and IL-8 in the context of tumor hypoxia, a common feature of most invasive 

cancers. 

Although our studies have been performed using tumor cell lines, our finding that 

caffeine is able to prevent HIF-1α, VEGF, and IL-8 accumulation induced by adenosine 

receptor activation provides proof-of-principle that the application of small molecules 

such as caffeine might be used in chemotherapy to reduce morbidity and mortality 

associated with neoplastic disease. This possibility was especially compelling because 

high caffeine intake has been associated with decreased cancer mortality in human 

populations (Michels et al., 2005; Baker et al., 2006). In this context, further studies are 

needed to better investigate possible antitumor effects of caffeine and to clarify the 

involvement of adenosine in the development of tumors. 
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CHAPTER 5 
 
 
 
 
 

 

A3 ADENOSINE RECEPTOR AND MELANOMA 

 

Malignant melanoma is a serious form of skin cancer. Unfortunately, the incidence of 

this disease appears to be increasing, such that currently about 1 in 100 persons in the 

United States can expect to develop this cancer in a lifetime (Ariza et al., 1999). Patients 

with metastases in the liver, brain or bone have a median survival of 3-4 months, 

whereas those with metastases to the skin, subcutaneous tissue, distant lymph nodes or 

the lungs have a better survival ranging from 12 to 15 months. For disseminated uveal 

melanoma the median survival is reported to be about 4 months (Mooy, 1996); notably, 

patients with no hepatic involvement (however, these are the minority) have a far better 

prognosis with a median survival of more than 1 year. Additional prognostic factors 

have been revealed by multivariate analysis (Eton, 1998).  

It is well known that ultraviolet radiation is associated with cutaneous malignant 

melanoma  (Landi et al., 2002) and excessive exposure to ultraviolet among Caucasians 

is the main etiologic factor implicated in the incidence of melanoma (MacKie, 1998). In 

view of these hallmarks, recent advances in the understanding of extracellular 

adenosine-mediated transmembrane signaling through adenosine receptors together with 

the availability of molecular tools to study adenosine receptors will allow more detailed 

and precise evaluation of the effects of extracellular adenosine under well controlled 

conditions and in the pathogenesis of tumors of the skin, such as basal cell carcinoma, 

squamous cell carcinoma, and melanoma. Our group performed a lot of works in these 

years focusing on the role of the adenosine receptors in the melanoma cell line A375. 

In a first work it has been characterized the expression pattern of the adenosine 

receptors on the surface of human melanoma A375 cells and documented the ability of 

these receptors to signal after selective agonists binding (Merighi et al., 2001). A375 

cells are an established human melanoma cell line that belongs to a relatively 
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undifferentiated and highly metastatic class of melanocytic cells with epithelioid shape 

and absence of pigmentation (Okazawa et al., 1998). Our group firstly analysed the 

expression of the human adenosine receptors by checking the production of the RNA of 

all the adenosine receptors known. By RT±PCR it has been detected the expression of 

the transcript of A1, A2A, A2B and A3 receptors. Furthermore,  there have been found 

strong differences on RNA expression being A1 and A3 mRNAs less expressed than A2A 

and A2B mRNAs. 

Then, it has been characterized A1, A2A and A3 adenosine receptors on A375 

membranes by using the selective radioligands [3H]-DPCPX, [3H]-SCH 58261 and 

[3H]- MRE 3008F20. To investigate the kinetic behaviour, the binding was carried out 

under pseudo-first order conditions. Analysis of association and dissociation kinetic 

parameters produced equilibrium constants for A1, A2A and A3 which are in good 

agreement with those obtained from the equilibrium saturation binding assays. In 

saturation experiments the antagonist [3H]-DPCPX labelled a single saturable binding 

site with a good affinity but with a low receptor density (Bmax= 23±7 fmol mg-1 of 

protein) while the radiolabelled [3H]-SCH 58261 identified a large number (Bmax= 

220±7 fmol mg-1 of protein) of high-affinity binding sites in A375 membranes. At the 

same time, [3H]-MRE 3008F20 labelled a single class of recognition sites with binding 

capacity (Bmax) of 291±50 fmol mg-1 protein. Interestingly, despite the ability to 

transcribe A2A and A3 adenosine receptor genes at different levels, A375 cells present 

on the membrane surface similar amounts of receptor protein. Thus, our group 

performed a more detailed pharmacological and biochemical characterization for A1, 

A2A and A3 receptor subtypes with the aim of increasing the evidences in support of the 

conclusion that the [3H]-DPCPX, [3H]-SCH58261 and [3H]-MRE 3008F20 binding sites 

in melanoma membranes are A1, A2A and A3 receptors. This goal comes from the results 

of competition binding assays and functional studies. The agonist and antagonist 

affinities for [3H]-DPCPX, [3H]-SCH58261 and [3H]-MRE 3008F20 binding sites are 

consistent with the identification of these sites as A1, A2A and A3 (Gessi et al., 2000; 

Varani et al., 2000a). Thermodynamic studies were performed and the enthalpic (∆H°) 

and entropic (∆S°) contributions to the standard free energy (∆G°) of the binding 

equilibrium were determined. The linearity of the van't Hoff  plot indicates that ∆Cp° 

values for the drug interaction are nearly zero, which means that ∆H°  and ∆S° values 

are not significantly affected by temperature variations at least over the temperature 

range investigated (Borea et al., 1996). The linearity of van't Hoff plots in a limited 
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range of temperatures (4 ± 25°C) appears to be a common feature of practically all 

membrane receptor ligands so far studied from a thermodynamic point of view (Gilli et 

al., 1994). [3H]-DPCPX, [3H]-SCH 58261 and [3H]-MRE 3008F20 binding to human 

A1, A2A and A3 receptors is enthalpy- and entropy-driven. All these data indicate, for the 

first time, that adenosine receptors present on A375 melanoma cell line have a 

pharmacological and biochemical profile typical of the A1, A2A, A2B and A3 receptor 

subtype.  

Because it has been reported that the activity of Akt or MAPK or both is elevated in 

many cancer cells and is known to play critically important roles in cellular 

proliferation, our group demonstrated in a second work focused on melanoma cells the 

regulation of the signaling pathways mediated by ERK1/2  and/or Akt by the 

stimulation of the A3 receptor (Merighi et al., 2004). In order to investigate the 

functionality of A3 receptors expressed in melanoma cells, it has been used the selective 

adenosine analogue Cl-IB-MECA. 

It has been demonstrated that serum-deprived A375 melanoma cells had no basal Akt 

phosphorylation, whereas Cl-IB-MECA treatment resulted in the phosphorylation of 

Akt at the Ser473 phosphorylation site. Furthermore, Akt phosphorylation matched the 

phosphorylation of Raf at an inhibitory site (Ser259). Serum-deprived A375 cells showed 

high basal levels of ERK1/2 phosphorylation. The high levels of ERK1/2 

phosphorylation in unstimulated A375 cells may reflect a neurospecific characteristic, 

since ERK1/2 is not usually phosphorylated after long periods of serum deprivation in 

cells of muscular and adipose origin (Begum et al., 2000; Ruiz-Hidalgo et al., 2002). 

Interestingly, Cl-IB-MECA stimulation resulted in a time- and dose-dependent 

reduction in ERK1/2 phosphorylation. It is suggested that this mechanism may be 

peculiar for melanoma cells, having a misregulation of proliferative pathways, since A3 

receptors increased ERK1/2 phosphorylation in CHO-A3 cells in a dose-dependent 

manner (Schulte et al., 2000) and induced a biphasic effect on the phosphorylation 

levels of ERK1/2 on microglia cells (Hammarberg et al., 2003). It has been shown that 

the Raf-MEK-ERK pathway can be inhibited by Akt in differentiated myotubes but not 

in their undifferentiated myoblast precursors. The authors suggested that regulation of a 

Raf/Akt interaction, underlying the ERK1/2 inhibition, might be mediated by stage-

specific modification of these proteins or by stage-specific accessory proteins. This 

regulation might be intact in cells of neuronal origin, too. To this end, our group 

examined whether any cross-talk exists between ERK1/2 and Akt pathways in A375 
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melanoma cells. The classical MAPK cascade leads from the Ras kinases to the MAPK 

kinase MEK1/2. There is evidence that Akt is able to phosphorylate Raf, thereby 

efficiently abrogating Raf activity on downstream substrates (Guan et al., 2000; Reusch 

et al., 2001; Zimmermann et al., 1999). We studied the effects of A3 receptor 

stimulation on the proliferation of melanoma cells in the presence of specific inhibitors 

of the PI3K and Akt signal transduction pathways. We could effectively block the Cl-

IBMECA- induced reduction of ERK1/2 phosphorylation with an inhibitor of PI3K. 

Indeed, application of Cl-IB-MECA in combination with PI3K inhibition resulted in a 

clear increase of ERK1/2 phosphorylation when compared with P-ERK1/2 in the 

presence of Cl-IB-MECA alone. These data suggest that the Ras-Raf-MEK-ERK 

pathway is normally activated by A3 receptor stimulation, as is the PI3K-Akt route. It is 

clear that these apparently separate routes should actually interact.  

Pretreatment of A375 cells with a PI3K inhibitor and an Akt inhibitor impaired Cl-IB-

MECA-induced inhibition of cell proliferation and the effects of A3 receptor stimulation 

on Raf, MEK1/2, and ERK1/2 phosphorylation. These data suggest that the A3 

adenosine receptor signals through a pathway including PI3K-Akt. On the contrary, Ras 

was not activated, at least when measured with the pull-down assay. These results 

confirm the hypothesis of this study; in A375 cells, A3 receptors decrease MEK1/2-

ERK1/2 phosphorylation and cell proliferation via the inhibition of Raf by a PI3KAkt 

pathway without affecting Ras. 

In a third work it has been demonstrated that A3 receptor subtype mediates the 

adenosine effects on HIF-1α regulation in A375 melanoma cell line. The effects of 

adenosine on HIF-1α protein accumulation are not mediated by A1, A2A, or A2B 

receptors. In support of this conclusion, DPCPX, SCH 58261, and MRE 2029F20, 

adenosine receptor antagonists for A1, A2A, and A2B receptors, respectively, did not 

block the stimulatory effect of adenosine on HIF-1α protein increase. The conclusion 

that the effects of adenosine on HIF-1α accumulation are mediated through A3 receptors 

is supported by the observation that the stimulatory effects of this nucleoside on HIF-1α 

protein are mimicked by the A3 receptor agonist, Cl-IB-MECA, and inhibited by A3 

receptor antagonists. In particular, the potencies of these drugs are in agreement with 

their inhibitory equilibrium binding constant (Ki) observed in binding experiments for 

the adenosine A3 receptor (Merighi et al., 2001) Furthermore, the inhibition of A3 

receptor expression at the mRNA and protein levels is sufficient to block A3 receptor–

induced HIF-1α protein accumulation. Therefore, our results indicate that the cell 
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surface A3 adenosine receptor transduces extracellular hypoxic signals into the cell 

interior.  

In the present study p44/p42 and p38 MAPKs are necessary to increase HIF-1α levels, 

and these kinases are included in the molecular signaling pathways generated by A3 

receptor stimulation. Based on these data, adenosine, through A3 receptors, is able to 

increase the levels of HIF-1α through p44/p42 and p38 MAPK pathways. In the 

previous study on A375 melanoma cells, A3 adenosine receptor stimulation decreased 

MAPK activity through the inhibition of Raf by a PI3K–Akt pathway (Merighi et al., 

2005).  However, the experimental conditions were quite different, being those 

experiments performed in normoxia and with high concentrations (micromolar) of the 

A3 receptor agonist. Now, the concentration of the agonist is nanomolar and the cells are 

cultured in hypoxic conditions. 

It is recognized that the inhibition of HIF-1 activity represents a novel therapeutic 

approach to cancer therapy, especially in combination with angiogenesis inhibitors, 

which would further increase intratumoral hypoxia and thus provide an even greater 

therapeutic window for use of an HIF inhibitor (Merighi et al., 2005; Giaccia et al., 

2003). Recent studies indicate that pharmacologic inhibition of HIF-1α, and particularly 

of HIF-regulated genes important for cancer cell survival, may be more advantageous 

than HIF gene inactivation therapeutic approaches (Sitkovsky et al., 2004; Mabjeesh et 

al., 2003). In the previous work our group demonstrated the mechanisms of the 

antiproliferative action of A3 receptor stimulation in A375 normoxic melanoma cells 

(Merighi et al., 2005). Now, given the ability of A3 adenosine receptor antagonists to 

block HIF-1α and Ang-2 protein expression accumulation in hypoxia, these data may 

indicate a new approach for the treatment of cancer, based on the cooperation between 

hypoxic and adenosine signals, that ultimately may lead to the increase in HIF-1 

mediated effects in cancer cells. 
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INTRODUCTION  

The incidence and mortality of cutaneous melanoma are still on the rise [1]. Overall, 

melanoma accounts for 1% to 3% of all malignant tumors and is increasing in incidence 

by 6% to 7% each year. The prognosis of metastatic melanoma remains poor. Once the 

metastatic phase develops, it is almost always fatal [2]. Different therapeutic approaches 

for metastatic melanoma have been evaluated, including chemotherapy and biologic 

therapies, both as single treatments and in combination [3]. To date, however, none 

have had a significant impact on survival. Systemic chemotherapy is still considered the 

mainstay of treatment of stage IV melanoma and is used largely with palliative intent 

[3]. Numerous chemotherapeutic agents have shown some activity in the treatment of 

malignant melanoma with dacarbazine (DTIC) being the most widely used [4]. DTIC is 

a nonclassical alkylating agent, generally considered the most active agent for treating 

malignant melanoma [4]. However, response rates for single-agent DTIC are 

disappointing [5,6]. 

A major obstacle to a successful treatment of metastatic melanoma is its notorious 

resistance to chemotherapy [7]. Chemoresistance is widely explored in cancer research, 

and many mechanisms have been described by which a tumor can evade cell killing in a 

variety of malignancies [8]. However, the mechanisms of chemoresistance of malignant 

melanoma are not established. 

The aggressive nature of human melanomas is related to several abnormalities in growth 

factors, cytokines, and their receptor expression. For example, metastatic melanoma 

cells constitutively secrete the cytokine interleukin-8 (IL-8), whereas nonmetastatic 

cells produce low to negligible levels of IL-8  [9–11]. In fact, IL-8, originally 

discovered as a chemotactic factor for leukocytes, may play an important role in the 

progression of human melanomas [10]. Serum levels of IL-8 are elevated in patients 

with malignant melanoma [12], and several studies have demonstrated that the 

expression levels of this interleukin correlate with disease progression in human 

melanomas in vivo [12–16]. In addition to IL-8, aggressive melanoma cells secrete 

vascular endothelial growth factor (VEGF), which promotes angiogenesis and 

metastasis of human cancerous cells [17]. Cytotoxic therapy, including radiotherapy, 

and other stress conditions such as hypoxia are known to induce IL-8 and VEGF release 

by tumor cells [18,19]. In particular, hypoxic induction of VEGF is mediated by the 

transcription factor hypoxia-inducible factor 1 (HIF-1), which plays a key role in 

regulating the adaptation of tumors to hypoxia [20]. HIF-1 is a heterodimer composed 
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of an inducibly expressed HIF-1α subunit and a constitutively expressed HIF-1β 

subunit. A growing body of evidence indicates that HIF-1 contributes to tumor 

progression and metastasis [20,21]. HIF-1 is a potent activator of angiogenesis and 

invasion through its up-regulation of target genes critical for these functions [20]. 

Therefore, because HIF-1α expression and activity seem central to tumor growth and 

progression, HIF-1 inhibition becomes an appropriate anticancer target [20]. 

Adenosine is a ubiquitous mediator implicated in numerous inflammatory processes 

[22]. Accumulating evidence suggests that adenosine-mediated pathways are involved 

in cutaneous inflammation and epithelial cell stress responses. Most adenosine effects 

are mediated by its interaction with four seven-transmembrane G protein–coupled 

receptor, namely, A1, A2A, A2B, and A3 [23]. Recently, it has been reported that 

epithelial cells release adenosine in response to various stimuli, including adenosine 

receptor agonists [24]. Moreover, we have demonstrated that, in addition to producing 

adenosine, melanoma cell lines also express functional adenosine receptors [25,26]. In 

particular, activation of A2B receptor leads to the production and release of calcium, 

VEGF, and IL-8 [27–29], whereas A3 receptor leads to the production and release of 

calcium, VEGF, and angiopoietin-2 [30–35]. Recently, it has been demonstrated that A3 

receptor induces a prosurvival signal in tumor cells [36]. Furthermore, A3 receptor 

stimulation increases the levels of HIF-1α in hypoxic tumor cells [28,31,33]. Here, we 

investigate whether two chemotherapeutic drugs, etoposide (VP-16) and doxorubicin, 

modulate IL-8 and VEGF production in human melanoma A375 cells. In particular, 

because adenosine is able to modulate HIF-1, VEGF, and IL-8 in cancer cells, we 

analyze the influence of the adenosinergic signaling on the chemotherapeutic drug 

effects in human melanoma cells. We found, for the first time, that A2B receptor 

blockade can modulate IL-8 production, whereas blocking A3 receptors, it is possible to 

further decrease VEGF reduction due to VP-16 and doxorubicin in melanoma cells.We 

thus conclude that adenosine receptor modulation may be useful with chemotherapeutic 

drugs for the treatment of malignant melanoma. 

 
 
MATERIALS AND METHODS 
 
Cell Lines, Reagents, and Antibodies 
 
A375 human melanoma cells were obtained from American Tissue Culture Collection, 

LGC Standards s.r.l., Milano, Italy. Tissue culture media and growth supplements were 
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obtained from Cambrex (Bergamo, Italy). Anti–adenosine A2B and anti–adenosine A3 

receptor polyclonal antibodies (pAbs) were from AlphaDiagnostic (DBA,Milano, Italy). 

Human anti–HIF-1α and human anti–HIF-1β monoclonal antibodies (mAbs) were 

obtained from Transduction Laboratories (Milano, Italy). U0126 (inhibitor of MEK-1 

and MEK-2), SB 202190 (inhibitor of p38mitogen-activated protein kinase (MAPK)), 

human anti-ACTIVE MAPK and human anti–extracellular signal–regulated kinase 1/2 

(ERK 1/2) pAbs were from Promega (Milano, Italy). SH-5 (inhibitor of Akt) was from 

Vinci-Biochem (Florence, Italy). [3H]-Thymidine was from Perkin-Elmer Life and 

Analytical Sciences (Milano, Italy). Anti– human phospho-p38, anti–human p38 MAP 

Kinase, anti–human phospho-Akt and anti–human Akt antibodies were from Cell 

Signaling Technology (Milano, Italy). 4-(2-[7-Amino-2-[furyl][1,2,4,] triazolo[2,3-

a][1,3,5]triazin-5-ylamino]ethyl)phenol was obtained from Tocris Cookson Ltd (Bristol, 

UK). N-Benzo[1,3]dioxol-5-yl- 2-[5-(2,6-dioxo-1, 3-dipropyl-2,3,6,7-tetrahydro-1H-

purin-8-yl)- 1-methyl-1H-pyrazol-3-yloxy]-acetamide (MRE 2029F20) and 5N-(4-

methoxyphenyl-carbamoyl)amino-8-propyl-2-(2-furyl)-pyrazolo- [4,3e]1,2,4-

triazolo[1,5c] pyrimidine (MRE 3008F20) were synthesized by Prof. Pier Giovanni 

Baraldi (Department of Pharmaceutical Sciences, University of Ferrara, Italy) [37]. 

Adenosine A2B and A3 receptors and HIF-1α small interfering RNA (siRNA) were from 

Santa Cruz Biotechnology, D.B.A. ITALIA s.r.l., Milano, Italy. RNAiFect Transfection 

Kit was from Qiagen (Milano, Italy). Unless otherwise noted, all other chemicals were 

purchased from Sigma (Milano, Italy). 

 

Cell Culture 
 
A375 human melanoma cells were maintained in Dulbecco’s modified Eagle medium 

containing 10% fetal calf serum, penicillin (100 U/ml), streptomycin (100 µg/ml), and 

L-glutamine (2 mM) at 37°C in 5% CO2/95% air. 

 

Establishment of Hypoxic Culture Condition 

For hypoxic conditions, cells were placed for the indicated times in a modular incubator 

chamber and flushed with a gas mixture containing 1% O2, 5% CO2, and balance N2 

(MiniGalaxy; RSBiotech, Irvine, Scotland). Maintenance of the desired O2 

concentration (1%) was constantly monitored during incubation using a microprocessor-

based oxygen controller. The cells gassed under hypoxic conditions can reach the  1% 

oxygen concentration in ~ 90 minutes [38]. 
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Cytotoxic Treatment of Cancer Cells 

Exponentially growing cells (70%-80% confluence) in complete medium were treated 

with different concentrations of cytotoxic drugs, followed by exposure to hypoxia (1% 

O2) for different indicated time intervals. 

 

MTS Assay 

The MTS assay was performed to determine cell viability and  proliferation according 

to the manufacturer’s protocol from the CellTiter 96 Aqueous One Solution Cell 

Proliferation Assay as previously described [32]. Briefly, 105 cells were plated in 24-

multiwell plates; 500 µl of complete medium was added to each well with different 

concentrations of cytotoxic drugs. The cells were then incubated for 24 hours. At the 

end of the incubation period, MTS solution was added to each well. The optical density 

of each well was read on a spectrophotometer at 492 nm. For each experiment, four 

individual wells of each drug concentration were prepared. Each experiment was 

repeated three times. 

 

[ 3H]-Thymidine Incorporation: Cell Proliferation Test 
 
Cells were seeded in fresh medium with 1 µCi/ml of [3H]-thymidine in Dulbecco’s 

modified Eagle medium containing 10% fetal calf serum, penicillin (100 U/ml), 

streptomycin (100 µg/ml), and L-glutamine (2 mM). After 24 hours of labeling, cells 

were trypsinized, dispensed in four wells of a 96-well plate, and filtered through 

Whatman GF/C glass-fiber filters using a Micro-Mate 196 Cell Harvester (Perkin Elmer 

Life Sciences,Milano, Italy). The filter-bound radioactivity was counted on Top Count 

Microplate Scintillation Counter (efficiency, 57%) with Micro-Scint 20 (Perkin Elmer 

Life Sciences). 

 

Flow Cytometry Analysis 
 
A375 adherent cells were trypsinized, mixed with floating cells, washed with PBS, and 

permeabilized in 70% (vol/vol) ethanol-PBS solution at 4°C for at least 24 hours. The 

cells were washed with PBS, and the DNA was stained with a PBS solution, containing 

20 µg/ml propidium iodide and 100 µg/ml RNAse, at room temperature for 30 minutes. 

Cells were analyzed with an EPICS XL flow cytometer (Beckman Coulter,Miami, FL), 

and the content of DNA was evaluated by the EXPO-32 program (Becton Dickinson 
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Italia Spa,Milano, Italy). Cell distribution among cell cycle phases and the percentage of 

apoptotic cells were evaluated as previously described [30]. Briefly, the cell cycle 

distribution is shown as the percentage of cells containing 2n (G0/G1 phases), 4n (G2 

and M phases), and 4n > x > 2n DNA amount (S phase) judged by propidium iodide 

staining. The apoptotic population is the percentage of cells with DNA content lower 

than 2n. 

 

          Western Blot Analysis 
 
Whole-cell lysates, prepared as described previously [32], were resolved on a 10% SDS 

gel and transferred onto the nitrocellulose membrane. Western blot analyses were 

performed as previously described [31] with anti–HIF-1α (1:250 dilution) and anti–HIF-

1β antibodies (1:1000 dilution) in 5% nonfat dry milk in PBS/0.1% Tween-20 overnight 

at 4°C. Aliquots of total protein sample (50 µg) were analyzed using antibodies specific 

for phosphorylated (Thr183/Tyr185) or  total p44/p42 MAPK (1:5000 dilution), 

phosphorylated (Thr180/Tyr182) or  total  p38 MAPK (1:1000 dilution), and for 

phosphorylated or total Akt (Ser473; 1:1000 dilution). The protein concentration was 

determined using BCA protein assay kit (Pierce, TEMA ricerca S.r.l., Bologna, Italy). 

Membranes were washed and incubated for 1 hour at room temperature with 

peroxidase-conjugated secondary antibodies against mouse and rabbit 

immunoglobulinG (1:2000 dilution). Specific reactions were revealed with the 

Enhanced Chemiluminescence Western Blotting Detection Reagent (Amersham, Corp, 

Arlington Heights, IL). The membranes were then stripped and reprobed with 

antitubulin antibodies (1:250) to ensure equal protein loading. 

 
Densitometry Analysis 
 
The intensity of each band in the immunoblot assay was quantified using molecular 

analyst/PC densitometry software (Bio-Rad, Milano, Italy). Mean densitometry data 

from independent experiments were normalized to results in cells in the control. Data 

were presented as the mean ± SE. 

 
Treatment of Cells with siRNA 
 
A375 cells were plated in six-well plates and grown to 50% to 70% confluence before 

transfection. Transfection of siRNAwas performed at a concentration of 100nMusing 

RNAiFect Transfection Kit. Cells were cultured in complete medium, and at 48 hours, 
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total proteins were isolated forWestern blot analysis of A2B, A3, and HIF-1α protein. A 

nonspecific random control siRNA was used under identical conditions [32]. 

 

Enzyme-Linked Immunosorbent Assay 
 
The levels of VEGF and IL-8 protein secreted by the cells in the medium were 

determined by a VEGF and an IL-8 enzyme-linked immunosorbent assay (ELISA) kit 

(R&D Systems, DBA, Milano, Italy). In brief, subconfluent cells were changed into 

fresh medium in the presence of solvent or various concentrations of drugs in hypoxia. 

The medium was collected, and VEGF and IL-8 protein concentrations were measured 

by ELISA according to the manufacturer’s instructions. The results were normalized to 

the number of cells per plate. Data were presented as mean ± SD from three 

independent experiments. 

 
Statistical Analysis 
 

All values in the figures and text are expressed as mean ± SE of n observations (with n 

≥ 3). Data sets were examined by Student’s t test or by the analysis of variance 

(ANOVA) and Dunnett test (when required). P < .05 was considered statistically 

significant. 
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RESULTS 

Cytotoxic Activity of Chemotherapeutic Drugs 
  
All the experiments were performed in hypoxic conditions at 1% O2. An assessment of 

growth effects in A375 cells subjected to VP-16 and doxorubicin for 24 hours was 

performed by using the MTS assay that measured viable cell mass. As shown in Figure 

1A, A375 melanoma cells were sensitive to the growth-inhibitory effects of both the 

DNA damaging agents tested. A375 cells were treated with VP-16 and doxorubicin 

(0.01-100 µM). The cell viability was reduced up to 40 ± 4% and 30 ± 4% for VP-16 

and doxorubicin, respectively (control set at 100%, n = 4). A number of different 

mechanisms, such as 1) impaired DNA synthesis, 2) perturbations in cell cycle 

progression, and 3) induction of apoptosis, could contribute to the reduction in viable 

cell mass seen after treatment with cytotoxic agents. DNA synthesis was markedly 

inhibited in melanoma cells treated with increasing concentrations of chemotherapeutics 

(0.01-10 µM). This inhibition was dose-dependent as determined by tritiated thymidine 

incorporation after 24 hours of treatment (Figure 1B). The cytometry investigation 

showed a clear arrest in the G2/M and S cell cycle phases ofmelanoma cells treated with 

VP-16, 1 and 10 µM, respectively, to control cells. In particular, low concentration of 

VP-16 arrested cells in the G2/M phase, whereas higher doses of chemotherapeutic drug 

were needed to accumulate cell cultures in the S phase (Figure 1C). Similar results were 

obtained when melanoma cells were treated for 24 hours with doxorubicin 1 to 10 mM 

(Figure 1C). Furthermore, to evaluate the induction of apoptosis by chemotherapeutic 

drugs, A375 cells were incubated with or without VP-16 and doxorubicin (1-10 µM) for 

24 hours. As shown in Figure 1D, both the chemotherapeutic drugs tested were able to 

significantly induce apoptosis. 
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Figure 1. Effect of chemotherapeutic drugs. (A) A375 cellswere treated with increasing concentrations (0.01-100 

µM) of VP-16 or doxorubicin (Doxo.) for 24 hours under hypoxic conditions, and cell viability was assayed by an 

MTS test. MTS: the cell growth is expressed as a percentage of the optical density measured on untreated cells 

(control, 100%). Ordinate reports means of four different optical density quantifications with SE (vertical bar). 

During the experiment, cells treated with the solvent DMSO served as controls. (B) Antiproliferative activity 

measured by [3H]-thymidine incorporation assay. A375 cells were treated with VP-16 or doxorubicin (Doxo.) at the 

indicated concentrations. [3H]-Thymidine incorporation is reported as percentage of DNA-labeled recovered on drug 

vehicle–treated cells. Ordinate reports means of four different [3H]- thymidine incorporation experiments with 

standard error (vertical bar). (C) DNA content analysis of A375 cells by flow cytometry. Figures show percentage 

cell number of cells in different cell cycle phases. Two representative experiments of A375 cells treated with VP-16, 

doxorubicin (Doxo.), and DMSO (control) are reported. (D) Apoptosis of A375 cells, by flow cytometry, after 

treatment with VP-16 or doxorubicin (Doxo.) at the indicated concentrations (percentage of subdiploid cells). *P<.01 

compared with the control (untreated cells); analysis was by ANOVA followed by Dunnett test. 
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Modulation of IL-8 by VP-16 and Doxorubicin 
 
A375 cells were incubated withVP-16 and doxorubicin (0.1-10 µM), then IL-8 protein 

content was measured. As shown in Figure 2A, VP-16 10 µM and doxorubicin 0.1 to 10 

µM significantly increased the levels of IL-8 in A375 cells after 24 hours of treatment. 

To determine whether Akt and MAPK pathways were required for IL-8 increase 

induced by VP-16 and doxorubicin, A375 cells were pretreated for 30 minutes with SH-

5, an Akt inhibitor, with SB 202190 and U0126, which are potent inhibitors of p38 

MAPK and MEK1/2, respectively. Cells were then exposed to VP-16 10 µM and 

doxorubicin 1 µM for 24 hours. As shown in Figure 2, B and C, SB 202190, U0126, and 

SH-5 1 µM were able to completely inhibit VP-16–induced increase of IL-8 protein 

expression, whereas they inhibited only partially the effect of doxorubicin. Furthermore, 

to evaluate a potential  role for adenosine receptors in the increase of IL-8 induced by 

VP-16 and doxorubicin, A375 cells were treated with the chemotherapeutic drugs in 

combination with 1 µM of adenosine receptor antagonist 1,3-dipropyl-8-

cyclopentylxanthine (DPCPX; for A1), SCH 58261 (for A2A), MRE 2029F20 (for A2B), 

and MRE 3008F20 (for A3). The results indicate that only the A2B receptor antagonist 

MRE 2029F20 was able to significantly reduce IL-8 protein levels in hypoxic A375 

cells. Furthermore, as expected, MRE 2029F20 partially blocked the increase in IL-8 

induced by VP-16 and doxorubicin (Figure 2, B and C), suggesting that the A2B receptor 

induced a signal able to increase IL-8 protein. To confirm this finding, we stimulated 

A2B adenosine receptors in A375 cells with increasing concentrations of 5′-N-

ethylcarboxamide-adenosine (NECA; 1-100 µM) for 24 hours. This drug induced the 

secretion of IL-8 in a dose-dependent manner (Figure 2D). The relatively low potency 

of NECA agrees with previous reports of A2B receptor–mediated IL-8 production 

[28,39].  
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Figure 2. Effect of chemotherapeutic drugs on IL-8 expression in hypoxic (1%O2) A375 cells. (A) IL-8 release into 

the culture medium of A375 cells cultured for 24 hours in the absence (0) and in the presence of increasing 

concentrations of VP-16 and doxorubicin. *P < .01 compared with the control (DMSO-treated hypoxic cells); 

analysis was by ANOVA followed by Dunnett test. (B and C) IL-8 release into the culture medium of A375 cells 

cultured for 24 hours in the absence and in the presence of 1 µM of U0126, SB 202190, SH-5, the A3 antagonist MRE 

3008F20, the A2B antagonist MRE 2029F20, the A2A antagonist SCH 58261, and the A1 antagonist DPCPX 1 µM 

alone (DMSO) or in the presence of the chemotherapeutic drug VP-16 5 µM (VP-16); B) or in the presence of the 

chemotherapeutic drug doxorubicin 1 µM (C); the inhibitors and the antagonists were added 30 minutes before the 

chemotherapeutic drug, then the cells were exposed to hypoxia. Ctrl. Indicates control and represents DMSO in 

empty bar and VP-16 or doxorubicin alone (filled bar) in panels B and C, respectively. Plots are mean± SE values 

(n=3). *P<.05 compared with the control (DMSO-treated hypoxic cells). #P<.05 compared with the control (VP-16–

treated cells in panel B; doxorubicin-treated cells in panel C); analysis was by ANOVA followed by Dunnett test. (D) 

Effect of the adenosine receptor agonist NECA (1, 10, and 100 µM) on IL-8 expression in hypoxic A375 cells after 

24  hours of treatment. *P < .01 compared with the control (0; untreated hypoxic cells). Analysis was by ANOVA 

followed by Dunnett test. 

 
VP-16 and Doxorubicin Modulate Akt, p44/p42, and p38 MAPK Signaling 
Pathways 
 
A375 cells were cultured in the absence and in the presence of VP-16 and doxorubicin 

for 6 hours. We found that exposure of melanoma cells to VP-16 10 µM and 

doxorubicin 1 µM resulted in the increase of p38, Akt, and ERK1/2 phosphorylation 

levels (Figure 3, A and B). Furthermore, we observed that the A2B receptor antagonist 



133 
 

MRE 2029F20 1 µM was able to attenuate the increase in p38, Akt, and ERK1/2 

phosphorylation levels induced by VP-16 and doxorubicin. In particular, we found that 

the A2B receptor antagonist MRE 2029F20 1 µM, when used alone, reduces p38, Akt, 

and ERK1/2 phosphorylation basal levels in A375 cells (Figure 3, A and B). 

 

 

 
Figure 3. p38, Akt, and ERK1/2 phosphorylation in hypoxic (1% O2) A375 cells. (A) pp38, phospho-Akt, and 

pERK1/2 MAPK phosphoprotein levels under VP-16 10 µM and doxorubicin (Doxo) 1 µM treatment in the absence 

and in the presence of the A2B adenosine receptor antagonist MRE 2029F20 1 µM. (B) Densitometric data, means 

from three independent experiments, were normalized to the results obtained in cells in the absence of drugs 

(control). Plots are mean ± SE values (n = 3). *P < .01 compared with the control. Analysis was by ANOVA 

followed by Dunnett test. #P < .01 compared with cells treated with the chemotherapeutic alone; t test. 

 

Modulation of VEGF by VP-16 and Doxorubicin 
 
To investigate VEGF expression, we incubated A375 cells with VP-16 (5 µM) and 

doxorubicin (1 µM) and determined VEGF protein release. As shown in Figure 4A, VP-

16 and doxorubicin significantly decreased the levels of VEGF after 24 hours of 

treatment. To determine whether Akt and MAPK pathways were required for VEGF 

decrease induced by VP-16 and doxorubicin, A375 cells were pretreated with 1 µM SH-

5, SB 202190, or U0126. Cells were then exposed to VP-16 5 µM and doxorubicin 1 

µM for 24 hours. As shown in Figure 4, A and B, differently from what we have 
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observed for IL-8- secretion, SB 202190, U0126, and SH-5 were not able to block VP-

16– and doxorubicin-induced decrease of VEGF protein expression. To evaluate a 

potential role for adenosine receptors in themodulation of VEGF protein levels by VP-

16 and doxorubicin, A375 cells were treated with the chemotherapeutic drugs in 

combination with 1 µM DPCPX, SCH58261, MRE 2029F20 and MRE 3008F20. The 

results indicate that the A3 receptor antagonist MRE 3008F20 was able to further impair 

VEGF production already decreased byVP-16 and doxorubicin in A375 cells (Figure 4, 

A and B). Moreover, the A3 receptor antagonist MRE 3008F20, also when used alone, 

was able to significantly reduce VEGF protein in A375 cells. Furthermore, we studied 

the effect of MRE 3008F20 1 µM in combination with different concentrations of VP-

16 (1, 5, and 10 µM) and doxorubicin (0.1, 0.5, and 1 µM) onVEGF production.We 

found that MRE 3008F20 was able to further reduce VEGF levels already decreased by 

VP-16 1 to 5 µM and by doxorubicin 0.5 to 1 µM (Figure 4C). 

 
Figure 4. Effect of chemotherapeutic drugs on VEGF expression in hypoxic (1% O2) A375 cells. (A) VEGF release 

into the culturemedium of A375 cells cultured for 48 hours in the absence and in the presence (1 µM) of U0126, SB 

202190, SH-5, the A3 antagonist  MRE 3008F20, the A2B antagonist MRE 2029F20, the A2A antagonist SCH 58261 
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and the A1 antagonist DPCPX alone (DMSO) or in the presence of the chemotherapeutic drug VP-16 5 µM (VP-16; 

A) or in the presence of the chemotherapeutic drug doxorubicin 1 µM (B); the inhibitors and the antagonists were 

added 30 minutes before the chemotherapeutic drug, then the cellswere exposed to hypoxia. Plots aremean± SE 

values (n = 3). *P < .05 MRE 3008F20 plus chemotherapeutic drug–treated cells versus chemotherapeutic drug–

treated cells: black filled bar indicates Ctrl.; analysis was by t test. #P < .05 compared with the control (DMSO-

treated cells: empty bar indicates Ctrl.); analysis was by ANOVA followed by Dunnett test. (C) VEGF release into 

the culture medium of A375 cells cultured for 48 hours in the presence of increasing concentrations of the 

chemotherapeutic drug VP-16 (1-5-10 µM) and doxorubicin (0.1-0.5-1 µM) in the absence and in the presence of the 

A3 antagonist MRE 3008F20 1 µM, which was added 30 minutes before the chemotherapeutic drug. Then the cells 

were exposed to hypoxia. *P < .05: MRE 3008F20-treated cells versus DMSO-treated cells; analysis was by t test. # 

P<.05 compared with the control (DMSO-treated hypoxic cells: empty bar indicates Ctrl.); analysis was by ANOVA 

followed by Dunnett test. 

 

VP-16 and Doxorubicin Modulate the Expression of HIF-1α Protein 

 
The levels of HIF-1α and HIF-1β protein in hypoxic A375 cells on drug treatment were 

investigated by Western blot analysis (Figure 5). HIF-1α protein expression was 

increased in a time-dependent manner [31]. In particular, HIF-1α protein expression was 

detected after 4 hours of exposure to hypoxia, and VP-16 10 µM and doxorubicin 1 µM 

strongly inhibited HIF-1α protein expression (lanes 2 and 3). The observed down-

regulation of HIF-1α protein expression by the chemotherapeutic drugs was specific 

because no alterations were detected in the levels of the HIF-1β protein. Because MRE 

3008F20, when used alone, was able to significantly reduce HIF-1α protein in A375 

cells (Figure 5, lane 4), we have evaluated whether the A3 receptor antagonist MRE 

3008F20 was able to modulate HIF-1α protein when used in combination with the 

chemotherapeutic drugs. A375 cells were treated for 4 hours in hypoxia with VP-16 10 

µM or doxorubicin 1 µM alone and in combination with MRE 3008F20 1 µM. As 

shown in Figure 5 (lanes 5 and 6 ), we found that MRE 3008F20 further increased the 

effect of chemotherapeutic drugs by further decreasing HIF-1α protein accumulation. 
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Figure 5. (A) Western blot analysis using an anti–HIF-1α mAb of protein extracts from A375 hypoxic cells (1%O2) 

under VP-16 10 µM and doxorubicin (Doxo) 1 µM treatment (4 hours) in the absence and in the presence of the A3 

adenosine receptor antagonist MRE 3008F20 1 µM. HIF-1β shows equal protein loading. (B) The mean densitometric 

data from three independent experiments were normalized to the results obtained in cells in the absence of drugs 

(control). Plots are mean ± SE values (n = 3). *P < .01 compared with control without chemotherapeutic treatment; 

analysis was by ANOVA followed by Dunnett test. #P < .01 compared with the cells exposed to chemotherapeutic 

alone (2 vs 5 and 3 vs 6 for VP-16 and doxorubicin, respectively). Analysis was by t test. 

 

             
 

Role of HIF-1α 

 
To investigate a possible role for the HIF-1α subunit in the chemotherapeutic-induced 

VEGF inhibition, we have performed a series of experiments in the presence of 

siRNAHIF-1α. HIF-1α protein level was reduced with siRNA at 72 hours after siRNAHIF-

1α transfection (Figure 6, A and B, lane 4 vs lane 1). The results show that when HIF-1α 

protein level was reduced by siRNAHIF-1α transfection, VP-16 10 µM and doxorubicin 1 

µM further decreased HIF-1α protein content in A375 cells. Furthermore, siRNAHIF-1α 

transfection was able to decrease VEGF protein levels (Figure 6C). In particular, when 

HIF-1α protein level was reduced by siRNAHIF-1α transfection, VP-16 1 µM and 

doxorubicin 0.5 µM decreased VEGF secretion levels to a major extent (Figure 6C). 
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  A2B and A3 Receptors Gene Silencing 
 
To demonstrate more conclusively a role for A2B or A3 receptors in the responses being 

measured, we tried to knock down A2B and A3 receptors expression in hypoxic A375 

melanoma cells using siRNA, leading to a transient knockdown of the A2B and A3 

receptor genes. A375 cells were transfected with nonspecific random control 

ribonucleotides (siRNA scramble) or with siRNA that target A2B (siRNAA2B) or A3 

receptor messenger RNA (siRNAA3) for degradation. After transfection, the cells were 

cultured for 48 hours in complete medium, and then total proteins were isolated for 

Western blot analysis of A2B and A3 receptor protein expressions. As expected, A2B and 

A3 receptors protein expressions were strongly reduced in siRNAA2B- and siRNAA3-

Figure 6. (A) Western blot analysis using an anti–HIF-

1α mAb of protein extracts from A375 cells transfected 

with scramble ribonucleotides (siRNActr.) or 

siRNAHIF-1α for 72 hours and cultured with VP-16 10 

µM and doxorubicin (Doxo) 1 µM for 4 hours. HIF-1β 

shows equal protein loading. (B) The means of 

densitometry data from independent experiments were 

normalized to the results obtained in cells transfected 

with siRNActr. Plots are mean ± SE values (n = 3). *P 

< .01 compared with the siRNActr. without 

chemotherapeutic drug treatment. Analysis was by 

ANOVA followed by Dunnett test. #P < .01 cells 

treated with siRNAHIF-1α compared with cells treated 

with siRNActr (2 vs 5 for VP-16; 3 vs 6 for 

doxorubicin). Analysis was by t test. (C) VEGF release 

into the culture medium of A375 cells transfected with 

scramble siRNA or with siRNAHIF-1α for 48 hours and 

then cultured for 24 hours in hypoxia in the absence 

(Control) and in the presence of VP-16 1 µMand 

doxorubicin (Doxo) 0.5 µM. Plots are mean ± SE 

values (n = 3). *P < .01 compared with the Control 

siRNA- scramble–transfected cells (black filled bar); 

analysis was by ANOVA followed by Dunnett test. #P 

< .01 siRNAHIF-1α versus siRNA scramble; analysis by t 

test. 
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treated cells, respectively (Figure 7A). To confirm the specificity of the siRNAA3-

mediated silencing of A3 receptor, we investigated the expression of A2B receptor 

protein in siRNAA3-treated cells (Figure 7A). Figure 7A demonstrates that treatment of 

A375 cells with siRNAA3 reduced the expression of A3 protein but had no effect on the 

expression of A2B receptor. Similar results were obtained when A375 cells transfected 

with siRNAA2B were analyzed for the expression of the A3 receptor. Therefore, at 48 

hours from the siRNAA2B and siRNAA3 transfection, A375 cells were exposed to VP-16 

10 µM and doxorubicin 1 µM for 24 hours in hypoxia. Then, IL-8 protein levels were 

measured. We found that the inhibition of A2B receptor expression was able to reduce 

chemotherapeutic-induced IL-8 accumulation, whereas the inhibition of A3 receptor 

expression with siRNAA3 did not modify chemotherapeutic-induced IL-8 accumulation 

(Figure 7B). In particular, the silencing of the A2B receptor by using siRNAA2B alone 

was able to significantly reduce basal IL-8 protein secretion in hypoxic A375 cells 

(Figure 7B). Furthermore, A375 cells were transfected with siRNAA2B and siRNAA3 and 

exposed to VP-16 5 µMand doxorubicin 1 µM for 24 hours in hypoxia to evaluate 

VEGF levels. No effect in VEGF inhibition induced by the chemotherapeutic drugs was 

observed after the inhibition of A2B receptor expression. On the contrary, the inhibition 

of A3 receptor expression potentiates the reduction of VEGF secretion induced by the 

chemotherapeutic drugs (Figure 7C). In particular, the silencing of the A3 receptor by 

using siRNAA3 alone was able to significantly reduce VEGF protein in A375 cells 

(Figure 7C). 

 
 

Figure 7. A2B and A3 receptor expression silencing by siRNA transfection in hypoxic A375 cells (1% O2). (A) 

Western blot analysis using an anti-A2B and an anti-A3 receptor pAb of protein extracts from A375 cells transfected 

with scramble (control siRNA) ribonucleotides or with siRNAA2B or siRNAA3 and cultured for 48 hours. Tubulin 

shows equal protein loading. (B) IL-8 release into the culture medium of A375 cells transfected for 48 hours with 

scramble ribonucleotides or with siRNAA2B or siRNAA3 and then cultured for 24 hours in hypoxia (1% O2) in the 
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absence (Control) and in the presence of VP-16 10 µM and doxorubicin (Doxo) 1 µM. Plots are mean ± SE values 

(n=3). *P < .01 compared with the control siRNA-scramble transfected cells without chemotherapeutic drug 

treatment; analysis was by ANOVA followed by Dunnett test. #P < .01 siRNAA2B-transfected cells versus siRNA-

scramble–transfected cells; analysis was by t test. (C) VEGF release into the culture medium of A375 cells 

transfected for 48 hours with scramble ribonucleotides or with siRNAA2B or siRNAA3 and then cultured for 24 hours 

in hypoxia in the absence (Control) and in the presence of VP-16 5 µM and doxorubicin (Doxo) 1 µM. Plots are mean 

± SE values (n = 3). *P < .01 compared with control siRNA-scramble–transfected cells without chemotherapeutic 

drug treatment. Analysis was by ANOVA followed by Dunnett test. #P < .01 siRNAA3 transfected cells versus 

siRNA-scramble–transfected cells exposed to VP-16 or doxorubicin; analysis was by t test. 

 

DISCUSSION 

New treatments are urgently needed for the therapy for metastatic melanoma, and much 

effort is being devoted to the development of genetic and immune therapies, but the 

widespread availability of these remains a distant prospect. In the meantime, 

chemotherapy will remain the treatment of choice, and strategies to overcome resistance 

offer a more immediate possibility for improving the lot of these patients. This study 

was undertaken to examine whether two chemotherapeutic drugs, VP-16 and 

doxorubicin, modulate IL-8 and VEGF production in human melanoma A375 cells. In 

particular, because adenosine was able to modulate HIF-1, VEGF, and IL-8 in cancer 

cells, we analyzed the influence of the adenosinergic signaling on the chemotherapeutic 

drug effects in human melanoma cells. The aims of this study were as follows: 

1. to investigate the effect of two drugs used in chemotherapy on cell vitality and on 

cytokine release induced in melanoma cells under hypoxic conditions; 

2. to define a molecular signaling of the cancer cell response to these drugs;  

3. to investigate the putative role of the adenosinergic system in these processes. 

We demonstrated that human melanoma cells produce IL-8 and VEGF. In particular, we 

found that treatment of melanoma cells with the DNA-damaging drugs VP-16 and 

doxorubicin resulted in the upregulation of the proangiogenic cytokine IL-8 (Figure 2). 

These results are in accord with data indicating that in addition to their known cytotoxic 

effects, chemotherapeutic agents can trigger cytokine production in a variety of cell 

types in vitro [40,41].Moreover, our data indicate that the DNA-damaging drugs VP-16 

and doxorubicin inhibit VEGF expression (Figure 4) through the inhibition of HIF-1 

(Figure 5). A further objective of these studies was to assess whether the adenosinergic 

signaling, through its adenosine receptor subtypes, could modulate cytokine production 
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induced by chemotherapeutic agents. Using the human A375 melanoma cell line that 

expresses each of the four adenosine receptor subtypes [25], these studies demonstrated 

that the A2B receptor blockade can modulate IL-8 production, whereas blocking A3 

receptors, it is possible to further decrease VEGF reduction because of VP-16 and 

doxorubicin. In this work, we have demonstrated that the inhibition of the A2B receptor 

results in the reduction of IL-8 production, whereas inhibition of A3 results in the 

reduction of VEGF. According to these results, it has been previously demonstrated that 

stimulation of A2B adenosine receptors increased synthesis and secretion of IL-8, 

whereas A3 receptors are responsible of the increase of VEGF [27,28].We hypothesize 

that the different effects of A2B and A3 adenosine receptors on the synthesis of 

angiogenic factors may imply their coupling to different G proteins. The mechanism of 

how A2B adenosine receptor could decrease chemotherapy-induced cytokine production 

was also examined and was found to be dependent on the activation of MAPK. The 

current findings describe a putative mechanism by which this G protein–coupled 

receptor can decrease the cytokine-producing effects of chemotherapeutic agents in 

human melanoma. 

Hypoxic cancer cells are resistant to chemotherapeutic treatment, leading to the 

selection of cells with a more malignant phenotype. HIF-1 has been shown to be 

responsible for an adaptive response of cells to hypoxia. If VP-16 would influence its 

activity under hypoxia, this could lead to changes in cell survival. To investigate this 

possibility, we measured HIF-1α protein level. The results indicate that hypoxia did 

increase HIF-1α protein level in melanoma cells, and this effect was influenced by VP-

16 (Figure 5). Dacarbazine remains the reference standard treatment of metastatic 

melanoma, but only a minority of patients obtains long-lasting responses [7]. 

Polychemotherapy regimens have been reported to produce various response rates. 

Treatment with VP-16 is more common in lung cancer, leukemia, and testicular tumors 

and has been used in polychemotherapy regimens combined with cisplatin for the 

treatment of melanoma brain metastases, but the response rates remain less than 13% 

[42]. The significance of tumor cell–derived cytokine production in the therapeutic 

effectiveness or adverse effect profile of chemotherapeutic agents is unclear. However, 

significant levels of cytokines, including IL-8, tumor necrosis factor α, and others, can 

be found in patients undergoing chemotherapy for a variety of tumors [43,44]. It has 

been reported that overproduction of chemokines is a potential mechanism for 

melanoma cells to evade cell death and become resistant to chemotherapy. Strategies to 
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inhibit IL-8 signaling may sensitize hypoxic tumor cells to conventional treatments. 

These data may have a significant clinical relevance, justifying the combination of 

conventional chemotherapy with anti–IL-8 and/or anti-VEGF modalities, such as A2B or 

A3 adenosine receptor antagonists, for the treatment of malignant melanoma. 
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