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Introduction

Flexible regression methods are becoming a topic of primary interest also in
actuarial science.

Insurance business is based on the ability of an insurance company to
undertake risks from policyholders and this is possible only if sufficient assets
are available. The typical characteristic of an insurance company is that the
assumed risks originate liabilities whose effective amount is unknown at the
moment of the subscription of a policy.

In the last decades, insurers began to pay increasingly attention in as-
sessing the risk arising from their activity and thus researchers developed
several methods in order to evaluate it correctly. In the most important
world insurance markets efforts were placed in order to adequate laws and
to lead the companies on this way. Law also defines what is meant by the
requirement of the assets to be ‘sufficient’ by the choice of the risk measure
to adopt.

In some cases such as in the European Solvency 2 directive, the insurance
companies are also invited to develop their own models in order to evaluate
the riskiness of the activity rather than to rely on a standard model that is
calibrated in order to be efficient on the market as a whole, but that may
fail in particular cases.

Modelling the risk of an insurance company is a very complicated task
as a huge number of quantities should be involved both in the computation
of assets and liabilities.

As described, many of those quantities are in general unknown and hence
they should be modelled as random variables whose value is determined by
some kind of event. In some cases those events are unobservable or they are
so rare that the models should rely on experts knowledge rather than on
observed data. On the converse, some other of them are often observed.

The prudent actuary knows that what we observe is affected by vari-
ability, the features of the variables can be studied by sound and refined
statistical models. In several frameworks this is possible by studying -on
the observed data- the relationship between one variable which is the ob-
ject of interest and other non random ones and for this purpose the natural
candidate is a regression model.

One of the most used regression models, the linear model, is a parametric
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model that can be adopted to obtain estimates of the expected value of one
variable as a linear function of one (or many) other(s). In order to implement
those models, however, some assumptions are usually made.

The variables involved may be diverse and -in some cases-, even appar-
ently unrelated. Even if the linearity assumption can be somehow relaxed,
still relying on the same parametric framework, often the relationship could
not be clear a priori and hence flexible regression methods become very use-
ful for these purposes. Moreover the usual assumptions that are made on
the distribution of the response variable may result unrealistic in several
practical situations. Often, the variables involved in the insurance fields
are counts or they are for sure non-negative and hence the usual Gaussian
assumption fail.

The actuary should hence often use in practice such kind of models and
rely on the results obtained in order to assess the risk as well as possible.

Flexible regression models have been widely studied in recent years and
increasing interest emerged as modern computing allows also the researchers
to efficiently implement them.

In the first chapter we will first present some well known methods for
flexible regression, highlighting the main features as well as drawbacks and
practical problems arising. This overview will come to be useful also in order
to contextualize the following steps of this thesis. We will also emphasize
some recent works in the actuarial field on which those models have been
applied even if with the introduction of some modifications.

In the second chapter of this work we will present a novel approach
for non-parametric regression named Generalized Geometrically Designed
Splines regression. We will describe in detail this method and we will intro-
duce some extensions. We will present its generalization to allow the model
to deal with data whose distribution comes from the Exponential Dispersion
family and we will present its extension in the multivariate setting. We will
then study its features, highlighting strengths and weaknesses in a compar-
ison with other methods. This part will also include several examples from
various fields in which this approach provides quite interesting results.

As the aim is to produce a method really available, we will also present
its implementation in an R package, named GeDS. We will then focus also
on some practical aspects of the implementation and we will study the per-
formances of the method in a thorough simulation study.

In the third chapter, we will see a very practical application of non
parametric regression in the non-life insurance framework. We will merge
some of those models with the aim to produce an approach for ratemaking,
whose results can be applied in practice. We will see that these models can
perform better than common practice.



Notation remarks

We provide here a short list of the non immediate notation adopted in what
follows. The meaning of most of the symbols can be evicted from the text,
but still we hope that this page could be useful for the reader.

Throughout this work we will denote vectors with lower case bold (possi-
bly greek) letters. Matrices, on the converse, will be denoted by upper case
bold letters. Unless otherwise defined, vectors will be assumed as column
vectors, hence the vector whose elements are aq, as, ..., an, will be denoted
as a and we will assume a = [al as - aN]T. Both with vectors and
matrices, we will denote their elements using subscripts.

With a slight abuse of notation when we will need to apply the same
univariate function f to all the elements of a vector a we will use the notation
f(a). Hence f(a) i= [f(ar) flaz) - flan)]"

Let us stress the difference between the symbols Ip(-) and I: the first
denotes the index function, i.e., given a set B,

1 ifze B
IB(JC):{

0 ifx¢ B’

while the second denotes the identity matrix. Whenever the dimension of
the matrix is known, we will indicate it as a subscript (e.g. Iy is the h x h
identity matrix).

Note that we will use also the symbol I(-), denoting the Fisher informa-
tion matrix stressing out its dependence on some parameter.

® will indicate the Kronecker product. Hence

a1 B a12B -+ a1,B
A®B = : : : )
am,lB am,ZB ce am,nB

with A and B respectively n X m and p X ¢ matrices and the resulting an
np X mq matrix.

® will denote an operation between two matrices that will be useful in
the computation of tensor product splines. Considering the m X n matrix
A= [al ar, --- am]T and the m x p matrix B := [bl by --- bm]T

)

3
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A ® B = C with C the m x np matrix defined as C = [cl co - cm] ,

with ¢; = a; ® b;.
Other symbols that will appear in the text are:

rk(-):

the set of real numbers;

: the set of natural numbers;

: either the norm of the L' or I' spaces, depending on the argument;
: either the norm of the L? or I? spaces, depending on the argument;
: either the norm of the L* or [*° spaces, depending on the argument;

: {f: D = R|f is mtimescontinuouslydif ferentiableandD C IR};

the rank of a matrix;

tr(-) : the trace of a matrix.



Chapter 1

Introduction to flexible
regression methods

Flexible statistical methods have been introduced in several fields and they
now represent a framework that allows the researcher to study statistical
properties of observed data avoiding the imposition of some strong assump-
tions. Those methods, compared to parametric ones, allow to study data
requiring in general less assumptions on the structure of the model itself,
such as the shape of the dependence structures between variables. The aim
of non-parametric models is to learn this structure directly from the data
themselves.

A wide class of those models is the class of semi parametric and non-
parametric regression methods. As in parametric regression, those models
allow to study the dependence of a variable (the response variable) upon a
set of other variables (the covariates or the terms).

In this chapter we outline the main flexible regression methods that
have been introduced and we will present some applications in the actuarial
framework.

1.1 Parametric regression

A typical regression problem can be represented as a model where a re-
searcher observe couples {y;, z;}7_;, where z; = {z; }?:1 and aims to study
the relationship between y and z by estimating the function f in the model

In parametric regression it is necessary to assume a model for the func-
tion f, that usually is allowed to vary according to a finite number of param-
eters. Hence the resulting estimation procedure will take place in a finite
dimensional space.
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1.1.1 Linear regression

When f is assumed to be a straight line or -more generally- an hyperplane,
the model becomes

y=Zp e (L1)
where 8 = [80,B1, ..., 04" € IR" is the parameter that should be fitted
and Z = [1,21,...,25]T is the matrix that collects the z vectors and it

is augmented with a vector of 1, allowing also an additive constant, the
intercept, to be estimated. The vector € represents the error term and
some assumptions are made on it. The simplest are that E[e] = 0 and
Var [€] = 021, where 0 is constant and I,, is the n x n identity matrix.
The coefficients of this model can be estimated via least squares, i.e.

ﬂ:argminHy—ZﬁHz. (1.2)
BeRM

and, given this approach, it is natural to consider as a Goodness of Fit
measure the Residual Sum of Squares, that is

RSS(8) = ||y — ZB|;-

The farther is the observation y; from its fitted value z;3, the higher is its
contribution to the RSS. However this relationship is not linear as we con-
sider squares, hence this procedure allows the researcher to find an estimate
in an optimal way and the selection of the curve will be performed giving
implicitly a heavier weight to the observed data that are far from the fitted
ones.

A more theoretical justification of this approach can be achieved making
a further assumption on e. Assuming that e ~ NID(0,0%1I,), the least
squares estimator of (1.2) procedure coincides with the Maximum Likelihood
Estimator.

We also point out that, provided that (ZTZ)_1 exists, it is possible to
obtain least squares estimates explicitly as B = (ZTZ )*1ZTy and that it
is possible to get easily the so called hat matrix H = Z(ZYZ)"'Z" such
that the fitted values are y = Hy.

This model structure is simple and very popular, but there are a lot of
practical situations where the linearity assumption should be refused.

In some simple cases, more flexible models can be obtained still within
the parametric framework with some generalizations of the linear regression.
In this case, one can consider a transformation of the response variable that
can linearize the dependence structure. If it is possible to assume a regression
structure such as y = f(BZ + €), with € ~ N(0,02I,) and if the inverse
function f~! is known, it is possible to transform the response variable as

*

y* = fl(y) and to perform a linear regression according to the model
y* =067 +e.
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However those models are still not flexible and the function f or at
least its inverse, should be chosen ex-ante. This may not be trivial in some
applications and care should be taken considering that f~! may even not
exist.

1.1.2 Polynomial regression

More flexibility can be achieved imposing a polynomial structure of the re-
gression but still relying on the parametric framework. This model can be
obtained just modifying (1.1) by substituting the matrix Z with a design
matrix. Supposing we have only one covariate and we aim to estimate f as a
mth degree polynomial, the design matrix should be X = [1, z,2%, ... ,zm]
and estimates of the vector of coefficients 3 can be performed by least
squares.

The flexibility of a polynomial curve can be increased by increasing the
degree. Nonetheless, this increases also the complexity of the model and
there is no guarantee upon whether an higher degree polynomial will fit
better the data or it will result just in a wigglier estimate.

Bias-Variance trade-off

It is now time to introduce a concept we will have to deal with in almost
all the remainder of this thesis. This is the theoretical basis of what we
described just intuitively above.

A simple and understandable presentation of this problem can be found
in [Azzalini and Scarpa (2004)], where it is related to the famous Ockham
razor.

With a simple example of data simulated trough a model similar to the
one presented in Section 1.1 they introduce the problem and then they make
some more general considerations.

Suppose fm is some kind of estimator for f, where the subscript m
denotes its complexity. For instance, in the polynomial regression, m can
denote the maximum degree.

When performing a regression, the aim of the researcher is to obtain an
estimate of f allowing to compute predictions rather than a perfect match
between the model and data observed. Hence, a Goodness of Fit measure is
the prediction error,

B [fn() ~ £ = (B [n(e)] = 79) +Var [fn()] (19

where z* is a new observation, while the estimate is based on the old observed
data. The first term in the RHS of (1.3) is the bias of the model, while the
second is its variance.
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It can be shown that increasing the complexity m, the bias reduces, while
the variance increases. Hence, up to some level of complexity, the prediction
error reduces, while then it increases.

Bias and variance are two conflicting quantities in a model. Some com-
promises has to be done in order to choose an ‘optimal’ value of complexity.

We will see several strategies to take this choice. Some of them are based
explicitly on a minimization problem of this kind, such as the model selection
criteria of Section 1.5.1, while other models address this issue implicitly.

1.2 Interpolation

It is useful to spend also some lines on approximation theory, before consid-
ering the general model for semi-parametric or non-parametric regression.
Our aim is just to provide some ideas that allow and thence that justify
the use of (piecewise) polynomials in order to approximate the unknown
functions that are the objective of the regression.

We refer here to univariate interpolation, hence we refer to the problem
of finding an estimate of a function f based on the observed couples (z,y) =
(z, f(z)), hence we are in a framework where there is no randomness in the
data, or at least where it is considered.

Suppose we aim at approximating a function f where our data are just
couples {r;, f(m;)} ¢ = 1,...,n, such that 7, < 7; if ¢ < j. In order to
get an estimate f of the function f a way to proceed is to sequentially
connect those points by linear pieces, thus considering the so called broken
line interpolation.

fg, where the subscript indicates the order of the approximation can be

defined as

fal@) = f(m) + ——=(f(7i1) = f(7)
i+1 — 7§
for x € (TZ',TZ'_:,_l),i: 1,...,n—1.

This way to interpolate a function is very simple and intuitive, but yet
it has a non negligible property. Using the divided differences notation*,

f(@) = f(r) + (x — 7)[7i, Tl f + (2 — 1) (2 — Tig1)[73, Tig1, 2]g-

*Given the couples z;,g(z;), it =1,...,m,

[x:]g == g(x:),

while
[mi7mj7"'7mk7ml]g :: [mj7...7a:k7xl]g_[mi7mj7...7a:k]g,
Ty — T4

where i, j,k,l € 1,... ,m.
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It can be shown that for x € (7;, Ti41),
"
2

f(.l‘) - f2(x) < (-T - Ti+1) (l‘ - 7',') max
te(Ti,Tit1)

2
T — T
< < i+1 z) max
2 tE(Ti,Ti+1)

assuming f has at least two continuous derivatives [De Boor (2001)].

However the resulting fit lacks of other properties that may be required in
a wide range of situations. It is quite common to require the fitted curve to be
a smooth function, but this in not possible with a piecewise linear function.
There are however some other models that may help in constructing a more
efficient approximation.

One possible strategy to get a smooth approximation is to consider a high
degree polynomial. Considering again the function f, the couples {7;, f(7;)}
i =1,...,n, one can obtain an other approximation f as

()
2‘ (1.4)

n

f@)=>(@—m)-(e—n1)n,. ... 7f

=1

and thus one gets a piecewise polynomial of degree n — 1.

Still some problems arise with this strategy. Considering the Lo, norm
HhHOO = max,<,<p |h(x)| a measure of the approximation error is Hf - f”
and it is possible to show that in some cases it does not decrease at a reason-
able rate or even it increases (see [De Boor (2001)], pag. 19) as n increases.
Moreover, increasing n, also the complexity of the polynomial involved in-
creases. This is indeed the same issue arising when performing a parametric
regression having assumed a polynomial structure of the dependence.

Another approach where smoothness is pledged and generally performs
better than a plain polynomial is to consider a subdivision of the domain
in several smaller intervals. Hence piecewise polynomial approximation can
be built imposing some constraints on the behaviour of single pieces on the
bounds of the intervals in order to ensure the smoothness. Under this ap-
proach, increasing n would not lead to increase the complexity of the model
in the sense that there will not be included higher degree terms. However
it should be taken into account that the number of parameters involved can
match the one of the polynomial approximation. In these models the bounds
of the intervals, that are the locations where two polynomial pieces join, are
called knots.

One popular way to implement it relies in using a piecewise cubic inter-
polant. Given a function f and the couples {7;, f(7:)}, i = 1,...,n, such
that 7; < 7; if i < j, a piecewise cubic interpolant f4 is a function such
that, in each interval [7;, 7i41], fa is a cubic polynomial, fulm) = f(m),
Ja(Tiv1) = f(1is1), fi(m) = s; and fi(Ti41) = si41 fori=1,...,n.
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There are some strategies for the choice of the values s;, among the others
it is worth mentioning the Hermite, the Akima and the Bessel approxima-
tions that prove to be very efficient ([De Boor (2001)]). In particular, in the

Hermite interpolation, it can be shown that ||f — f4‘ = O(n™*), while in

the Bessel interpolation, the order of the error is O(|7|®), where |7| is the
mesh size.

A more refined strategy is to consider the cubic spline interpolation. Here
the parameters so, ..., s,_1 are chosen in order to ensure that the estimated
function belongs to the function space C?), ie. it is twice continuously
differentiable. While the s;, ¢ = 2,...,n— 1 should be chosen according to a
linear system, the choice about the boundary values s; and s,, can be made
according to other conditions.

A widely used choice is to find s; and s, that allow ﬁ’ (1) = ﬁ’ (tn) =0
and it is called the natural cubic spline. There is no theoretical justification
to make this assumption, but we will see in the remainder that those splines
arise as the solution of an optimization in a penalized regression problem.
With this choice, the order of the error of approximation is O(|7|?), but
other strategies can lead to O(|7|%).

Cubic splines can be generalized to polynomial splines of order [. A spline
of order [ defined on the knot mesh 7 = {7}, is a piecewise polynomial
function belonging to the function space C=2) i.e. it can be continuously
differenced [ — 2 times and it corresponds to a polynomial of degree [ — 1 on
the intervals [7;, 7i41], 1 =1,...,m — 1.

1.3 Flexible regression

We will distinguish between two families of flexible regression methods: non-
parametric and semi-parametric regressions.

Both those families represent sets of tools that allow the researcher to
build a flexible regression model and hence to get an estimate the function
f. In some cases a visual inspection of the results may not be sufficient to
understand to which of the two families the method belongs. However this
distinction is important and we will see it is effective in some frameworks,
such as in Bayesian inference.

In a purely non-parametric regression, the fitting procedure should take
place in an infinite dimensional function space. In order to make it feasible
to find the solution, usually some weak assumptions on f are made and in
some cases the estimate can be characterized in terms of a finite number
of parameters. However the number of parameters is not set a priori and
it may depend on the observed data. We discussed in the previous section
how powerful these approximations can be.

On the converse, in semi-parametric regression the estimate belongs to
a finite (but high) dimensional space with the number of dimensions set
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in advance. The high number of dimensions of the parameter space allows
flexibility of these models and the estimates can be summarized in an a
priori defined space.

In both non-parametric and semi-parametric regressions, it is impor-
tant to notice that the parameters in general cannot be interpreted directly.
While, for instance, a positive coefficient in the parametric linear model
means that there is a positive correlation between the variables, here no
meaningful information can be recovered by looking at the value of a single
coefficient.

In what follows, we will see some of the main approaches to build these
kind of models, but let us set here a remark. Although we are still describing
this class of models in general terms, we can already explain it as it arises
from the philosophy underlying these models themselves.

With the flexible regression models we will introduce, we will be able to
obtain estimates in a lot of contexts where parametric models may fail. We
will see that, within the domain of the observed values, those models will
often be very efficient and it is possible to use them to compute predictions.
Nonetheless, they are useless for the purpose of extrapolation outside the
domain.

Conceptually, being the dependence structure an assumption in para-
metric models, the researcher is allowed to take advantage of it also outside
the interval of observed values. Provided this assumption is correct, mean-
ingful predictions can be computed for values outside the interval as well
as for values inside it. In flexible regression models, instead, no structure is
assumed and extrapolation would be in the best case misleading.

1.4 Local Smoothing

Local smoothing is one of the classes that allow to perform a flexible regres-
sion in the non-parametric framework. As discussed previously there are
some technical reasons that explain why local piecewise regressions should
be preferred with respect to a high order polynomial. Here we present some
methods to implement such kind of models, even if they are less refined
compared to the regression splines we will present in the following sections.

These methods do not consider a partition of the domain such as the
ones we introduced for interpolation, but rather a moving window. Hence
each fitted value will be based only on data observed in its neighbourhood,
or on all the observed data, but with a different weighting.

There are three methods that are widely used and that are nowaday in-
cluded as basic estimators in many statistical softwares: Nearest Neighbour,
Local Polynomial and Loess Estimators.
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Nearest Neighbour Estimator

The first class of those estimators, that produces rough results, is com-
posed by the nearest neighbours ones. The estimate is performed according
to f(z) = Avejc y(z)(yj), where Ave is an average operator chosen by the
researcher, while J(z) is the subset of the subscripts identifying the neigh-
bourhood of z. This class is quite flexible, as it is possible to choose both
the averaging operator and the definition of “neighbourhood”, but in gen-
eral continuity of the estimates cannot be ensured. Suppose in a point z; we
obtain the estimate f (z;). The estimate will be the same for all the points
in the window interval interval W = {z|J(z) = J(z;)}, while in general
flz) # f (zj) if z; ¢ Z. The estimate is a piecewise constant function and
continuity can be ensured only in the trivial case where y is a vector of all
equal values.

Local Polynomial Estimator

By means of the Taylor expansion, it is possible to locally approximate
any [-times continuously differentiable function with an /-degree polynomial.
Hence the idea is to fit a polynomial around each observed point (z;,y;)
i =1,...,n. The estimation procedure is, in general performed making use
of the weighted least squares, where the weighting is chosen according to a
kernel function I, with a suitably chosen bandwidth. A kernel function of
limited support (such as e.g. the Epanechnikov one) will result in a local
regression, while with other kernels (e.g. the Gaussian one), all the observed
data will influence the regression, even if their weight will be lower according
to the distance.

Loess

Nearest Neighbour Estimator can be modified in order to achieve smoother
estimates by introducing also in this case weighting chosen according to a
kernel function. When the average operator is the linear regression and
the kernel function is the tricubic one i.e. K(u) = (1 — |u[?)? it is named
after LOESS or LOWESS (that stands for LOcally (Weighted) Estimator).
Choosing the weighting according to a kernel function guarantees continuity
of the estimates. Even if the regression is local, moving the window interval,
the weight of the datapoints will decrease toward zero continuously and
hence jumps will be avoided.

1.5 Regression Splines

We introduced polynomial splines in Section 1.2, defined as a piecewise poly-
nomial function with some properties about the smoothness.
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A spline function can be represented in several ways that allow it to be
practically tractable. We will see the Truncated Polynomial and the B-spline
representations.

For a wide and practical description of spline functions we refer to
[De Boor (2001)], while in the next subsection we will just point out some
basic aspects that are necessary in order to understand what follows.

Truncated polynomial

Any [-order polynomial spline g with knots 7 whose elements are 71, ..., 7y

can be represented as
l+m—1

g(z)= 3 BiBi(2),
=1

where
Bi(z) =1 By(z)=2 --- B(z)=2"" (1.5)
Bia(z)=(z—n){"  Biymo(2) = (2 — mm-1) "
with
(), i {0 ifz<0
z ifz>0
The functions Bjy,...,Bjym,m—1 are called basis functions as it is possible

to represent any polynomial spline g whose knot vector is 7 as a linear
combination of them.

The first [ of those basis functions are positive on the whole function
domain while the [ + 1th is positive everywhere, but in the interval defined
by the first two knots and so forth up to the last one, which is positive
only on the interval defined by the last two knots. Although in the next
section we will see that other functions defined only locally can be a basis
for polynomial splines, this is quite important, as in practice this has some
effects on the estimation results in some particular frameworks, as we will
be able to comment in Section 2.3.1.

B-Splines

B-splines are an other elegant set of bases that allow the representation
of splines in term of a set of coefficients. In this section we give just the
definition and we point out some basic properties that will be useful in the
remainder of this Chapter. We leave for the next Chapter other detailed
properties that will be crucial in the description of the GeDS method.
B-splines were first studied by Schoenberg who gave the first definition
of them. Given a non decreasing set of knots 7, the jth B-spline can be

defined as
Nju(2) = (T = )15, Tl (- — 2)' 0L
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As a first property, we can see that B-splines have a local support, i.e.
Njyl(z):()iffz¢[Tj,...,Tj+l]. (16)

A second property is the so called partition of the unity property, i.e.

> Nju(z) =1 (1.7)
j=r

on the interval [7,1;_1, Ts+1], thus they are in a way “normalized”.
There is also an other way to normalize them as, considering the B-
splines based on the knot sequence 7, the B splines can be normalized ac-

cording to
l
Mj(z) :== ———Nju(2)
birl = b

and it is possible to state that

/ M;i(z)dz =1 (1.8)
R

Another property of B-splines that will be used is the formula that allows
to compute the derivatives. Suppose we have the polynomial spline function
g and it is known its B-splines representation g(z) = > 7, BjN;(z), the
derivative with respect to z is

d - Nji—1(2)  Njt1-1(2)
L= 80-1) - -
dzg ]z; ( )

Tj+l—=1 = Tj  Tj+l = Tj+1

m+1

t-n3 DB ), (1)

T TiH-1 T

having defined £y := By4+1 := 0.

Note also that B-splines can be seen as a tool somehow even more flexible
than the Truncated power splines. Actually, with B-splines it is possible to
achieve also non-smooth or non continuous patterns, if one allows the knots
to coalesce. B-splines based on the coalescent knots will be discontinuous or
have a non continuous derivative, the order depending on the degree and on
the number of coalescent knots. If a spline of order [ > 2 is based on ¢ > 1
coalescent knots, the I — gth order derivative will be discontinuous.

Both the spline representations can be used for semi-parametric and non-
parametric regression. The regression model has exactly the same structure
(1.1), but with the design matrix X. This matrix does not have an inter-
pretation as a dataset, but it is rather a collection of the basis functions
evaluated at the points corresponding to the observed values. Hence if we
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have the basis functions Bj, ..., Bj1y—1 in the remainder we will often refer
to

X :=[Bi(2),. .., Bim_1(2)].

While in interpolation each data point is considered to be a knot, here
there are several possibilities. In semi-parametric regression, m < n and the
knots should be set a priori according to some strategy. In practice, knots
can be set equispaced, spreading on the range of z or, they can match some
quantiles of the z values or they can be chosen subjectively.

In non-parametric regression methods as we described previously, the
number of dimensions of the parameter space, and hence the number of
knots is not placed in advance. Hence, the knots can match the datapoints
as in interpolation or they can be set according to some adaptive procedure.

Some care should be used when performing an {th order B-spline based
regression, on data (z;, y;);;, if the knots are placed uniformly in the interval
[21, 2], the bounds of the resulting f will be constrained. Actually we will
have f(11) = f(7m) = 0. In order to avoid this, we may place the knots

according toa =717 < - < <z <z, < Ty < - <1 = b
In particular, throughout the remainder we will always choose coalescent
boundary knots, such that a =7 = - - =71 <21 < 2z, < Ty = --- =
Tm = b.

The choice of the number of knots and their location is crucial as they
are key factors identifying the resulting spline fit. In general the higher
number of knots will lead to the wigglier fit, but also a too parsimonious
knot selection will lead to oversmoothing. There are two strategies that can
be used to address this issue: one is to consider a penalization proportional
to a measure of the wiggliness of the fitted function while a second one is to
choose the knot locations in an adaptive way.

We will see the first approach in the next section and then we will see
some models that involve an adaptive selection of the knots.

1.5.1 Penalized Splines

One of the most popular strategies adopted with the aim of controlling the
wiggliness of the estimates is to modify the objective function by introducing
a penalization proportional to a measure of wiggliness of the estimate. This
methodology takes the name of Penalized Spline Regression.

An appealing measure of the wiggliness of a function involves its deriva-
tives and in the case of the truncated power basis, this is closely related to
the coefficients of the regression. Considering (1.5), the estimate f is con-
stituted by two parts, the first one up to the first | bases and the second
composed by the others. The local wiggliness of the estimated function is
controlled by the coefficients associated to the last m — 2 bases, while the
others act globally on the whole domain. For this reason usually only the
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coefficients associated to those bases are taken into account in the measure
of wiggliness.

Hence a suitable Penalized Least Squares functional that should be min-
imized to estimate the coefficients is

|ly - £(2)|); + 28T DB,

where
D [lel lek]

Orxi lixk

and A > 0. The introduction of this penalization makes all the estimates
coefficients of the truncated basis to be shrunk toward zero and thus the
fitted curve will result less wiggly than the one obtained via an un-penalized
approach.

It is important to notice that in this situation, the amount of smoothing
is controlled by the parameter A that takes the name of smoothing parameter.
As the higher A leads to the smoother fit, the choice of this parameter is
crucial.

Before discussing some methods about the choice of A, we briefly discuss
Penalized splines based on B-splines. While with the truncated polynomial
basis representation, some coefficients drive the main shape, while others are
divers of the local wiggliness, with the B-splines this is no longer the case.

An appealing penalty that can be introduced is

b A
A / (=),

but it is not trivial in general to state in an explicit way how the integral
should be computed. However, by means of equation (1.9), the integral
over the whole domain of the first derivative of a spline in the B-spline
representation is equal to the sum of differences of the coefficients of the
basis splines. This statement is trivial if knots are equispaced, but also
considering non equispaced knots, it holds, by means of (1.8).

For higher order derivatives, it is not possible to state an equality, but
still it appears that the integrated derivatives are functions of the higher
order differences. Hence a popular choice of D is the matrix that allows
to compute the differences of the coefficients. Such a solution was first
proposed in [Eilers and Marx (1996)], where also the P-splines approach is
introduced.

Note also that the Penalized least squares estimates can be obtained
efficiently by noticing that

2

xoteoron- -, an
Hy H2 0 VAD/? , (1.10)
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where D'/? is any decomposition of the matrix D, such that (D1/2)TD1/2 =
D. Hence in order to get the estimates once A has been selected and once
decomposed D, the estimation procedure is similar to the one of the least
squares and it can be based on the same algorithms.

Selection of the smoothing parameter

The choice of the smoothing parameter \ is crucial as it affects the resulting
estimates controlling the amount of smoothing. The experienced researcher
may prefer to base the choice on visual inspection of the data and of the
resulting fit. If the estimation procedure produces an estimate f considered
too wiggly, it is advisable to enhance A, while if f is too smooth and does
not capture the shape of the data, A should be lowered.

However some optimality criteria have been proposed in literature and
they have been widely implemented in statistical software. We will see three
of them based on a model selection approach and one based on the likelihood.

The first of them is based on the minimization of the Cross Validation
with respect to A. By definition, the Cross Validation is

CV(A) = z”: (yz — foi(z )\))2, (1.11)

i=1

where f_i(zi; A) is the fitted value in z; obtained deleting the ith couple of
data, under the Penalized Spline procedure with smoothing parameter .
Intuitively, this functional measures how a model is able to fit the data by
checking the accuracy of its predictions.

The minimization of this functional cannot be carried out explicitly and
hence it is necessary to evaluate it for several values of A\. Suppose, however
we select a grid of h possible values for A in order to get a reasonably useful
estimate of the shape of CV (). (1.11) as it has been described is inefficient,
as it requires to fit hn slightly different models on almost the same set of
data.

Hence it has been proposed an efficient formula, based on the hat matrix,
i.e. the n x n matrix Sy = {S);;} such that f(z) = S\y. The functional
can be rewritten as

n P £ L. 2
cviy =Y (y’l _féi’fé)) ,
i=1 It

allowing to compute it fitting just one model for each value of A\. Note, in
particular that, by (1.10),

Sy=X(XTX - AD)'xT

and it is a generalization of the hat matrix presented for the standard linear
model. Hence the number of degrees of freedom of the fitted spline can
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be expressed by dff; = tr{S,}, while the residual degrees of freedom are
defined as dfyes = n — 2tr{Sy} + tr{S, 1 S)}.

One popular variant of this criterion is called Generalized Cross Vali-
dation and it is an approximation of it, as the values S} ;; are replaced by
tr{Sx}/n.

A second widely used method we refer to can be found in literature
under the name Mallow’s C}, [Mallows (1973)] or Un-Biased Risk Estimator
[Craven and Wahba (1978)]. This is defined as

. R 2
>im1 (yi — f (= )‘)> 24 2tr{S,}o?

n n

UBRE()) =

where o2 represents the variance of the error term and needs to be estimated.

The third method based on a model selection criterion considers the
minimization of the Akaike Information Criterion (AIC) with respect to A.
As stated before, the degrees of freedom of the fit can be estimated by the
trace of the matrix S\ and hence the formulation of the AIC in the context
of the penalized spline regression is

AIC()\) :log{zn: (y —f(zi;)\)>2} L otriS} (1.12)

X n
=1

In addition to those methods, one of the most popular ones allowing
to choose A is the ML/REML criterion. This method takes advantage of
the mixed model representation of the penalized spline regression as the
minimization of (1.10) corresponds to the maximum likelihood estimation
of the parameters of the model

y=XB+e e~N(0,0%I,), B~N(O,72D"),

with A = 02 /72 that is a linear mixed model.

Unfortunately in general there is no guarantee for D! to exist as D can
be singular. In particular, this is exactly the case if we consider the penalty
matrix proposed in section for truncated power splines, where we have zero-
columns and zero-rows and rk(D) = k < d = dim(D), supposing 3 is a
d-dimensional vector. However we can reparametrize the model considering
the two vectors B and ~ such that

B=V~y+UB,

where V' and U are two matrices respectively d x s and d x (d — s). If
[V, U ] has full rank, the transformation is one-to-one and if V' D = 0, the
~ component of 3 does not penalize the regression.
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If then U DU = I, this allows us to write 87 D3 = ,C:}T,B and
y=XB+e=XVy+XUB+e¢

that is a mixed model where for the random effects B ~ N(0,7%1,4 ).
Computations of matrices U and V requires some matrix algebra, but
once obtained, it becomes possible to choose A taking advantage of the mixed
model representation.
After some calculations, the profile log-likelihood for the matrix 3 :=
Cov(y) = T2 XU(XU)" + %I, can be written as

lp(z) = _1

- - ~\—1 -
> [yTz—l {I _X (XT2—1X) XTE—l} y] +

- % log | — & log(2m), (113)
where X = X V. Once got an estimate for X it is possible to get estimates
for 72 and o2 and hence for \.

However the estimates of the variances computed via this approach are
biased as the number of degrees of freedom is not taken into account prop-
erly (see [Wood (2006)]). Hence a modification of this approach has been
proposed and became very popular. The so called REstricted (or REsidual)
ML criterion [Patterson and Thompson (1971)] considers a transformation
of the data that allow to write the likelihood as a product of two likelihoods
of stochastically independent data, one as a function of ¢ and 7 and the other
as a function of 4. Thus by maximising the first one it is possible to obtain
an estimate of the variances without the bias implied by the loss of degrees
of freedom. While this sounds complicated, the resulting log-likelihood to
be maximized is similar to the profile log-likelihood as it is

1 T 1<
Ir(%) = 1)(%) = 5 log| X3 1X|.

Several other representation of this likelihood have been proposed. Among
the others, [Harville (1974)] gave a Bayesian interpretation, representing it
as a marginal likelihood, while [Smyth and Verbyla (1996)] considered it as
a conditional likelihood.

1.5.2 Adaptive methods

As presented earlier, splines are controlled by two sets of parameters: knots
and coefficients. In the previous section we presented some popular meth-
ods that act in the choice of the coefficients allowing to obtain a sufficiently
smooth estimate f . Here we present the class of the Adaptive smoothers
where the idea is to choose the number and the position of the knots ac-
cording to some optimality criteria, while the estimation of the coefficients
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is carried out without penalization. In this sense, those approaches belong
to the class of non-parametric regression methods.

A well known method of this kind is the Multivariate Adaptive Regres-
sion Splines (MARS) algorithm [Friedman (1991)]. The idea behind the
algorithm is to build a model parsimoniously adding sequentially new knots
in order to get a better fit. The steps of the algorithm are:

i Select a set of basis functions for the regression {B; }jj\il;

ii Fit a minimal model, considering only the minimum number of regres-
SOTS;

iii Extend the model sequentially considering in the regression the ba-
sis B; that optimizes some preset criterion. Iterate this step until a
maximum number of basis has been included in the model;

iv Apply backward deletion eliminating one by one the basis function
whose deletion causes the lowest reduction of the fit according to some
other preset statistic.

Note also that this algorithm was designed in order to apply in multivari-
ate non-parametric regressions. The algorithm described above should hence
consider, in step ii also cross products between the basis already considered
in the model and the candidate ones.

Theoretically this algorithm can be applied with any kind of basis func-
tions, but in general we find it based on reflected pairs of truncated power
basis of order two, i.e. {(z — 7j)4;(7; — 2)+}, having assumed the knot
sequence {7;|j = 1,...,J}. This is because those bases are local, as they
are null on one half of IR and hence cross products between the bases on
different terms, that occur in multivariate analysis, are null on a wide area
of the domain.

The second method we present is the Regression Tree. This method could
be considered as a spline based method, but relying only on the particular
case of first order splines. Hence no continuity assumption is made and the
resulting estimate is a piecewise constant function. Also this method is a
non-parametric one as it implements an adaptive choice of knot locations.
In this kind of models, the estimate of the unknown f is a function of the
form

) M
f(Z) = ZciIRz‘(z)7
=1

where ¢; are constants, Ri,..., R is a partition of IR and I4(z) is the

indicator function, i.e.
0 ifz¢ A
I4(2) = .
a(?) {1 if2eA
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Regression Tree is a method that carries out automatically a partition
and it estimates the constants aiming to find a parsimonious model that
adapts to the data, according to the least squares criterion.

The idea is first to consider a partition of IR of the type R; = {z|z < 7}
and Ry = {z]z > 71} and so to find the parameters characterizing this model
¢1, ¢o and 1 according to

argmin | min (yj — ¢1)? + min (y; — )|,

where J; := {j|z; € R;}, i =1,2.

This procedure is iterated by adding at each step a new knot and hence
by splitting one of the existing regions (the parent one) into two regions (the
leafs or sons) until some stopping criterion is met. Possible criteria are a
minimum number of observations in each region or a maximum number of
splits.

The tree obtained at this stage can be too complex and it can overfit the
data, the procedure provides a successive step, called pruning, that aims to
simplify it. Considering the tree obtained Ty and all the trees obtained by
deleting one branch of the tree, the tree is selected according to the criterion

PS(T) = RSS(T) — AT

where RSS(T) is the Residual Sum of Squares of the tree and |T'| the number
of leafs. This criterion is similar to (1.12) and the parameter A controls the
smoothness and should be selected properly, e.g. with a CV criterion.

Note that also in this case the generalization to the multivariate case is
almost straightforward as it is possible to consider to add new knots in any
of the covariates.

These two methods are really effective in the multivariate framework,
where they are able to simplify a high dimensional regression problem by
combining some basic and widely used statistical tools. Nonetheless, in
some cases where the function to be estimated is wiggly, or if the estimated
function is required to be continuous or smooth, more refined methods are
needed.

1.5.3 Bayesian Approaches

Several of these models have also interesting representations in the Bayesian
framework. In Section 1.5.1 we presented the LMM representation of the
penalized spline regression with automatic selection of the smoothing pa-
rameter and we stated that the usual LMM fitting strategies can be used
also with the smoothing splines. Thus also the Bayesian tools for estimating
LMM can be adopted for this purpose. Generally speaking, once some prior
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distribution is set for the parameters B and the variances, it is possible to
use Gibbs sampling or Metropolis—Hastings MCMC algorithms to estimate
the posterior distributions of the parameters. This kind of Bayesian tool
is effective with semi-parametric spline regression or if the model is a non-
parametric one with all the datapoints assumed to be knots. Instead, with
other classes of non-parametric models, several problems arise that do not
allow to use this approach without any effort.

It is however notable that Bayesian methods have been studied also for
the adaptive approaches. We refer in particular to the Bayesian-MARS
([Denison et al. (1998)] and then extended in [Mallick et al. (1999)]) and to
the Bayesian adaptive splines [Biller (2000)]. Those methods allow auto-
matic selection of the knot positions and also of the number of knots of the
spline fit. This is something hat goes beyond the capabilities of standard
Metropolis—Hastings MCMC methods as the randomness in the number of
knots implies randomness in the number of dimension in the parameter
space. Hence more refined tools are needed, such as the Reversible Jump
MCMC algorithm [Green (1995)].

In order to give a sketch of this kind of algorithm, let us briefly but for-
mally explain what is the concern arising when considering from a Bayesian
perspective non-parametric regression methods. Considering M to be the
number of bases, the parameters to be estimated is a triplet { M, (M) ,B(M)},
where the superscripts stress out that the dimensions of the two vectors de-
pend on the number of bases. Hence, given a certain M, {T(M),,B(M)} €
O ©(M) heing a space whose number of dimensions depends again on
M. Then, one can write

{r.8ye (J o™,

MeM

where M is the set of all possible values for M.

RJ-MCMC is an algorithm that allows to compute estimates taking into
account this issue. Hence, at each step of the chain, the algorithm makes
one of the three type of moves allowed: computation of updated coefficients,
movement of one knot or birth or death of one knot. The last type of move
is the one that allows to switch between two different subspaces.

This approach allows to obtain posterior distributions for the number of
knots and for the smoothing parameter (if considered), but this is not pos-
sible for the knot locations or for the single coefficients. On the converse, it
is possible to consider the posterior distributions for the single fitted values.
Hence the final estimate can be obtained as an average of all the models
selected at different steps (provided the “burning” of the first M iterations).
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1.6 Multivariate Regression

It is possible to generalize several of the algorithms presented previously
in the multivariate context. Both the MARS procedure and the Regres-
sion Tree are designed in order to work properly and to fit models in the
multivariate case considering a quite flexible structure of the model. In the
multivariate case, during the knot addition steps new basis can be multiplied
by any of the basis already considered in the model.

With other spline based methods several tools are available in order to
deal with regression on more than one term. One possibility is to consider
multivariate basis functions and to perform a regression following one of
the strategies described in previous sections. As an example of multivariate
splines we refer to [Curry and Schoenberg (1966)], where the simplex inter-
pretation of B-splines is presented leading to a generalization of them in the
multivariate framework.

Tensor product is a simple tool that allow the researcher to generalize
splines in the multivariate context just considering the products of univariate
splines. Considering the model

y=f(z1,...,29) +€ E(e)=0 Var(e) = o?I,,

where the unknown function f is defined on a d-dimensional domain and the
observed variables are {(v;, i1, ..., 2i4)}. It is possible to estimate f with a

N

function f of the form f(z) = X3, where
X=X1® - ®Xy.

The columns of X are called tensor product splines. Note, however that
in general using these splines, one generates a huge design matrix and hence
estimates can be inefficient. This is however not the only issue arising with
tensor product splines. Consider a researcher who has to deal with spatial
data: the coordinates are arbitrarily chosen and then one should prefer
invariance with respect to a rotation. In general, however tensor product
splines lack of this property.

In order to get multidimensional splines invariant to rotation it is possible
to consider radial bases or thin plate splines.

Given a knot 7 with coordinates (71, ...,74), a radial basis is a function
of the euclidean distance d between t and the observations. This definition
is quite general and it can trivially be used in order to transform e.g. the
truncated polynomial basis functions.

This tool can be used also beyond the polynomial splines framework.
Effectively, probably the most widely used splines are the Thin Plate ones
[Duchon (1977)]. Chosen m > 2d and given the M = (m+§_1) functions ¢;,

defined as the linearly independent polynomials on the space IR? with degree
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less than m + 1, a thin plate spline on the data z1,..., 2, is a function g

such that u
9(z) = Z5mmd (sz - zH;) + Zaj¢j(z)
i=1 j=1

where
(—ymHEt

2m—d
r log(r) d even
22m—17r%(m71)!(m7%)! g( )

77md (r) = 1_,( d —m
r2m—d d odd

2
22m7r% (m—1)!
where a; and J; are constants. Considering the nx3 matrix T', with elements
Ti.a = ¢;(tq), if T =0, g is a natural thin plate spline.
Thin plate splines arise naturally as the solution of an optimization prob-
lem. As described in [Wood (2006)], considering the problem of finding f as
the continuous function that minimizes

ly = £ll5 + Mmalf), (1.14)

where J,,,4 is a penalty functional that measures the wiggliness of the func-
tion f and it is defined as

)= [ [ g N
e R4 VL Ug \Ox1VL - gl z1 Zq-

Vit trg=m

Note also that for all the ¢; functions, it holds J,,4(¢;) = 0, i.e. the ¢;
can be considered as the bases that are not wiggly by means of the chosen
penalization criterion. Hence the problem can be rewritten as

|y — Hé — Talf2 + 26T HS, (1.15)

where o and § are the vectors collecting the coefficients and H is the matrix
with elements H;; = Umd(sz‘ — szQ)T.

Considering that those splines are a solution of (1.14) they are a good
compromise between smoothing and adaptation to the observed data. More-
over, another nice feature of them is that there is no need to select knots
in advance and hence the estimate is less influenced by the choices of the
researcher. Note also that the invariance property is satisfied as data enter
the model only through euclidean distances.

Nonetheless, those splines involve a n+ M parameters and their compu-
tational cost is very high, hence they should not be used in practice exactly
as they are.

This issue of thin plate splines however suggests to switch to semi-
parametric regression methods becoming much more efficient in practice.

fNote that H is a symmetric matrix, as H;; = H;; Vi,j=1,...,n.
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One first method [Wood (2003)] allows to get an approximate « and & ac-
cording to a restricted form of (1.15), considering the eigen-decomposition
H = UDU" with the diagonal matrix arranged so that the higher eigen-
values are in the upper positions. The idea is to approximate the matrix
H by UkaUE where Dy, is the top-right k X k submatrix of D and Uy
the n x k matrix obtained considering only the eigenvectors corresponding
to the eigenvalues in Uy,.
Hence (1.15), can be modified as

Hy - Ukaék - TaH; + Aéngék,

where Uidr = 6. With some algebra it is also possible to include the
constraint T'7d = 0 in the fitting procedure and then it is possible to get an
estimate of d; and « and use it to compute an approximation of 9.

A second way that can be used to make thin plate splines tractable in
practice is indeed quite simple and intuitive. Instead of using all the n data
in the basis computation, one can replace them by k knots 7,...,7, and
then estimate o and 8. Based on the knots it is possible to compute a design
matrix X and estimate the coefficients via penalized least squares, subject
to the constraint that TTé = 0. The penalization matrix D, however, has
to reflect the fact that only the coefficients § are drivers of the wiggliness,
while ¢ should not be penalized.

This method is even simpler than the previous one, but here the re-
searcher is forced to choose the number and the locations of the knots. This
second strategy is less elegant than the previous one, even if it produces an
approximation of the thin plate spline.

1.6.1 Additive models

The models presented in the previous section require the estimation of a high
number of parameters. As an example, consider tensor product splines: if
we introduce h basis functions for each covariate, the number of bases of the
tensor product will be h?.

Also the curse of dimensionality should be taken into account: it is well
known that in order to have a sample that is representative of a problem,
as the dimensionality grows, the sample size should increase exponentially.
Hence in order to get reliable estimates in high dimensional problems, it is
necessary to consider a huge number of observations.

One popular way to model simultaneously the relationship of a variable
upon several others is to consider an additive structure. The model that is
usually assumed is then formalized as

y=f(z1,...,2zq) + €= fi(z1) +- -+ fa(za) + ¢,

where f1,..., fq are smooth functions and € ~ N(0,0%1,). This way all the
dependence structures between the response variable and the covariates are
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modelled singularly and this prevents the arising of all the issues connected
with the dimensionality.

This structure is in fact a special case and it is quite a strong assump-
tion. If e.g. the structure is multiplicative or if there are more complicate
structures underlying the problem, this model will probably not be able to
fit correctly the data.

There is also a second issue arising with these models. If f(z1,22) =
f1(21) + fa(z2), it is trivial to state that f(z1,22) = fi(z1) + f5(22), where
fi = fi+cand f5 := fa —c with ¢ € IR. Hence, if no further restriction on
the functions is introduced, a problem of identifiability of the model arises.

Considering an approximation based on basis functions of all fi,..., fg,
so that all the estimates will have the form

fi=1iz)=X;8; j=1,..4

where X ; is the design matrix collecting all the basis functions on the ex-
planatory variables z; evaluated in the observed data points. Supposing we
have h; bases for the jth covariate, one may be lead to estimate the model
considering, as the design matrix, the augmented matrix collecting all the
bases of the model, but this would not address the issue of identifiability.

Supposing we are using the truncated polynomial representation, all the
matrices X ; will have a column of ones corresponding to the constant basis.
In order to avoid the issue, it is sufficient to consider only once in the model
this basis.

If the we are using another representation, such as the B-spline one,
the constant term may not be considered explicitly for each term and thus
some matrix algebra is required. As in [Wood (2006)], it is possible to
consider the constraint 17X B = 0, loosing one degree of freedom on the
estimate of the coefficients. In order to implement this constraint, it can
be considered the QR decomposition of the h; x 1 matrix (17X ;)T into the
product QR'. Thence if one considers the matrix Q* as Q without the first
column, it is easy to compute that 17X ;Q* = 0 and hence the constraint
is fulfilled. Thus for each term z; in the model, it will be necessary to
consider the design matrix X j = X;Q" rather than X ; and one gets one
coefficient less than the original ones’. Hence, considering the as design
matrix X = [1,5(1, . ,Xh} and as coefficients BT = [61, . ,,C‘jh], the
model is represented in the same form of (1.1).

Usually these models are fitted through penalized least squares and all
the tools we described previously can be adopted in order to produce esti-

1LBy definition and properties of the QR-decomposition, Q is a k; x k; orthogonal
matrix, while R is a k; X 1 upper triangular matrix, i.e. a vector with only the first value
non null.

tOnce estimated the h; —1 unconstrained coefficients of the reparametrized model, say

Bj, one can get the estimate of the original ones as Bj = Q*Bj.
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mates. The objective function can be written as

h
ly = XBI; + 3-8 D;.

j=1

where the matrices b]- = Q*;-FDjQ;'f are transformations of the original
penalty matrix as the penalties are usually chosen as a function of the pa-
rameters in the original parametrization.

As seen in previous sections also in this case care is required in order to
select the penalizing parameters ;. As in the univariate case, those param-
eters can be selected via the model selection criteria or via the ML/REML
criteria.

The use of multivariate bases is surely appealing as it seems a natural
extension of the univariate case. However some consequences of multivari-
ate smoothing should be pointed out. First it is important to notice that
smoothing based on penalized splines, as it was presented, involves the use of
a single smoothing parameter and this is somehow restrictive. We may dis-
cuss an example in order to explain why this is not in general a good choice.
Suppose we are modelling the concentration of a particular substance in the
water in relation to the geographical position, the temperature and the hu-
midity. In this case, covariates are of completely different scales and there
is no reason to assume a similar wiggliness of the dependence structures of
the variables involved. At least because of this intuition, one should avoid
to choose the same smoothing parameter.

On the other hand, the plain additive model is unable to model interac-
tions between different terms and this may be a strong limitation in some
context. In the analysis of geographical data it is in general not advisable
to set an additive relationship between the effect of longitude and latitude
terms, but they should be rather modelled jointly. In the case presented,
the interactions for this couple of terms can be modelled making use of mul-
tivariate splines or with tensor product splines, thus just setting one design
matrix for both of them.

Additive models can be further generalized in order to comprehend more
general structures. They can be handled also in order to include terms
that allow to model the interactions between additive terms originating the
Variable Coefficients models.

1.7 GLM framework

Linear regression models can be generalized in order to allow them to deal
with data coming from a wider variety of situations. In Section 1.1.1 we jus-
tified the use of least squares under the assumption that y ~ N(Z3,021I,,),
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but of course there are a lot of situations in which this assumption is inap-
propriate.

Consider, as an example, the actuarial context. A researcher can be
interested in modelling how many claims will be reported by a policy holder
in MTPL insurance. This variable is discrete and non-negative and hence
modelling it as if it was Gaussian could lead to meaningless results.

Generalized Linear Models [Nelder and Weddernburn (1972)] allow the
distribution of the response variable to be other than the Gaussian one.
Moreover they also introduce some flexibility in the specification of the de-
pendence structure between the response variable and the terms, yet relying
in the parametric framework.

Basically in a GLM the distributional assumption on y is

yi ~ ED(ui; ¢),

where ED is any distribution of the Exponential Dispersion family, i.e. its
density function can be written as

yi0; — b(0;)
a(¢)

where 0; = 0(u;) is the natural parameter, while a, b and ¢ are functions that
characterize the distribution. The function b(6) is crucial as it is possible
to show that Var(y) = b”(0)a(¢). Hence it can be defined the variance
function V' (u) = b”(0) that describes the relationship between the mean and
the variance of the distribution up to a scale parameter. It is also assumed
that

plaisti ) = exp { ) (1.16)

9(pi) = ni = Zi3,

where g is a known function called link function and n; is the linear predictor.
In general MLE can not be obtained explicitly, but they should be com-
puted with a numerical optimization of the likelihood. In this model an
efficient algorithm that is widely used is the Iterative Reweighted Least
Squares, that is closely related to the method of scoring (a very clear expla-
nation can be found in [Dobson (2001)] pag. 64-66).
We will however briefly resume it, as it will be useful in the next chapter.

i Choose starting values fi,, 7 or By, so that g (fig) = g = Z3, and
set 7 =0

ii Compute

iii Compute
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and the weights matrix W ;, whose diagonal is the vector

[(jZ)j Vipy)

iv. Compute Bj solving the system (ZTWjZ)_l,Bj = ZTngj and set
Jj=Jj+1

-1

v Repeat steps 2—4 until convergence of 3

As seen, the formulation adopted is quite general and GLMs can extend
several of the models presented in this chapter. Design matrices developed
in the previous sections can be directly used in the GLM framework allowing
to extend the semi-parametric regression also under different distributional
assumptions.

In these models a Goodness of Fit measure is the Deviance, defined as:

D(p) =2 {yi(@(ys) = 9(u(z0)) = b(I(yi) +b(I(u(=0)))}.  (L.17)
i=1

This can also be considered as a natural extension of the RSS as, if we
consider the distribution of y to be Gaussian as in the previous sections, it
turns out that

RSS(8) = D(u(B))-

Also penalized regression can be implemented in the context of GLMs.
Consider a Generalized Additive Model, that is the generalization of the
models seen in Section 1.6.1 but under the more general assumption that
the distribution of the response variable belongs to the ED family. Given
this assumption, the model structure is

9(B{yi}) = 9(s) = mi = fi(za) + - + fu(zin)-

If the functions fi, ..., fi are smooth functions and the researcher wants to
approximate them through penalized splines, the IRLS should be modified in
order to allow to include a penalized version. Considering the representation
in terms of the unconstrained vector of coefficients 8 and assuming known
the matrices i)j and X and the smoothing parameters \;, the model can
be fitted through

1. Choose starting values Bo for the vector of means and set j =0

2. Compute ﬂj = XBja ﬁj = g(ﬂj)v

<jz>j =g (f1;)
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3. Compute
_ . dn < 2
g; =1+ (y — i) du + X B,
"/
and the weights matrix W;, whose diagonal is the vector

[(j:i)j V(kj)

-1

4. Compute ,[%H as

d
Bj+1 = arg,;nin H\/Wj('gj — Xﬂ)H; + Z)‘lBTDlB
1=1

andset j =7+1

5. Repeat steps 2—4 until convergence of B

1.8 Some applications in Actuarial Sciences

Claims Reserving

Flexible modelling is very appealing in actuarial sciences, where it is of-
ten necessary to study some variables whose interdependencies cannot be
assumed a priori.

An early application of GAMs to an actuarial problem can be found
in [Verrall (1996)]. That paper is a natural refinement of the model pre-
sented in [Renshaw and Verrall (1998)] with the implementation of more
refined semi-parametric models. In [Renshaw and Verrall (1998)] the chain
ladder technique is interpreted view of a GLM, where the incremental claim
amounts are seen as random variables from the exponential (dispersion) fam-
ily. The transformed means of those variables depend as typical in claims
reserving on the accident year and on the development year.

Considering p;; ¢ = 1,...,I and j = 1,...,J to be the expected value
of the incremental paid amount for the claims with accident year ¢ and
development j, [Renshaw and Verrall (1998)] set the model

log(pij) = log(e;) + po + s + f;,

where e; is a known exposure representing the dimension of the portfolio and
some constraints are required in order to ensure identifiability. Accident and
development years are then considered in the models as factors, that is a
naive and simple way to introduce flexibility with the drawback that non
smooth estimates should be accepted. However this allows the actuary not
be forced to assume a linear dependence structure.
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In fact [Verrall (1996)] overcomes this issue yet preserving the flexibility
required. Moreover Chain Ladder models are in general over-parametrized’
and smoothing at least in a direction helps to reduce the degrees of freedom.

Hence [Verrall (1996)] assumes

log(pij) = log(e;) + po + f(2) + Bj,

where f is a smooth function. The smoothing have been introduced on the
accident year effect because, when purified by the exposure, this somehow
represents the claim frequency and it is unlikely to change heavily between
consecutive years in a specific Line of Business.

A further extension of this model, considering smoothing also on the
development year is presented in [England and Verrall (2002)].

Ratemaking

Non-parametric and semi-parametric regression techniques have found a
wide field of application in non-life ratemaking. We will describe this prob-
lem more in detail in Chapter 3. An insurance company has to assess the
premiums in advance and it should be able to discriminate between the pol-
icyholders on the basis of the riskiness of the single contracts. It is known
that, if this is not done properly, several issues that can weaken the stability
of a company may arise, such as the adverse selection of the policyholders.

The use of regression splines in order to assess the pure premiums goes
back at least to [Taylor (1989)], where bivariate splines were used to model
premium rates as a function of the geographical area.

Non-parametric regression tools are now widely used in the actuarial
practice and still research is carried on this field. The use of Bayesian GAMs
in ratemaking was introduced some years ago in [Denuit and Lang (2004)].
In particular the proposed model was applied in order to model both claim
frequencies and claim amounts. More recently [Klein et alt. (2014)] pro-
posed also the use of Generalized Additive Models for Location Shape and
Scale (GAMLSS models), again in their Bayesian variant, ensuring even
more flexibility for the distribution of the response variable. Also in this
case models have been studied for both for frequency and severity.

Mortality tables

In life insurance one of the key aspects that allow the insurance activity to
be stable is to obtain reliable estimates of the mortality on which premiums
can be computed. Raw data about the death counts in a population provide

m* (m+ 1)

$Note in fact that for an m x m square run-off triangle there are observa-

tions and 2m — 1 parameters. Hence, even if this situation allows the parameter estimates
to be identified, information is too poor to consider them to be reliable.
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useful informations, but they cannot usually be used directly in order to
calculate premiums.

Indeed usually quantities such as the mortality rates are smoothed (grad-
uated) in order to avoid to obtain estimates affected also by the erratic
components due to the variability of the data. One simple method that is
sometimes used up to now belongs to the class of the Nearest Neighbour Es-
timators, depicted in Section 1.4: a moving average is applied to the crude
mortality rates in order to smooth them. This simple technique of local
regression is often applied more than once in order to get estimates as re-
fined as possible. In [Gavin et alt. (1993)] we find also a refinement of this
technique based on kernel local regression.

In the last decades, several models have been studied in order to model
mortality rates (or the force of mortality) considering their dependence upon
the age of the individuals and of their cohort. The time horizon of a life
policy contract is usually very long and the prudent actuary should take into
account the fact that mortality rates change in time and hence the premiums
should be based also on predicted rates. Recent and refined models doing
this flexibly can be found e.g. in [Currie (2004)] and [Camarda 2012], where
spline regression methods are applied. Then this methodology can be found
also in [Currie (2016)], where it is compared with a wide set of parametric
models.

Tensor product penalized splines are used in the GLM framework to
model mortality rates in an age-cohort model and remarkably, for these
models it has also been proposed a clever method to produce forecasting
within the estimation procedure. However as one could expect considering
the discussion in Section 1.3, the mortality rates obtained are dramatically
affected by some choices in the specification of the objective function in the
fitting procedure (see Figure 4 in [Currie (2004)]).



Chapter 2

Generalized Geometrically
Designed Spline Regression

In this chapter we aim to introduce the Generalized Geometrically Designed
Spline Regression method. This non-parametric regression method has been
developed as a generalization of GeDS algorithm [Kaishev et al.(2016)] in
order to make it applicable in a wider range of situations, as we will discuss
in the following sections.

Before describing GeDS approach, we give a wide explanation of the in-
tuition on which it relies, presenting some further properties of the B-splines.
The generalization of GeDS is then presented and a detailed description of
its implementation in the R package GeDS is given. This is integrated with
a study of its performances. Then we will depict some inference results, the
extension to the multivariate framework and we will discuss some possible
modifications of the algorithm respectively in Sections 2.4, 2.5 and 2.7.

2.1 Some further properties of the B-splines

In order to introduce GeDS regression, we present some properties of the
B-splines with the aim of justifying the GeDS method. For a detailed and ex-
tensive description of the properties of B-splines from a mathematical point
of view, we refer however to [De Boor (2001)]. Computer Aided Graphical
Design is probably one of fields where they have been most widely employed
and hence, for an even more practical book we refer to [Farin (2001)].
B-splines were originally defined in [Curry and Schoenberg (1947)] and
their relationship with a particular class of probability distributions was
studied. Considering the knot sequence t = {to,...,t;} and defining the
function w(t) = (t — to)(t — t1) - - - (t — t), the B-splines were defined as

k ka:—t
~y Me b

v=0 V

-1

33
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As we can see, here the definition includes the normalization seen in (1.8)
as they are interpreted as probability density functions. Usually, however
Given a non decreasing set of knots ¢, the jth B-spline can be defined as

Njm (@) = (tjgm — t)[tj, - tjm] (- — 2)T 7T,

reflecting the usual normalization (1.7).

An alternative definition comes from the De Boor recurrence formula in
order to find a stable algorithm that allow to compute them. The n order
B-spline is defined as
Tr — tj

ti —x
Njm—1(z) + —2———Nj 1 m1(2) (2.1)

N.
() tj+m — tj+1

C titme1 — t

where

N ( ) 1 tj <z < tj+1
1(2) =
/ 0 otherwise

As we mentioned in the previous Chapter, a spline function of order n
based on the knot vector ¢ can be defined as a linear combination of B-
splines with the same order and the same knots. Hence defining as St ,, the
space of those splines, we can state that it is a linear space of the B-splines.
In addition, by Curry-Shoenberg theorem, it can be stated that B-splines
represent a basis of the space of the piecewise polynomials, if it is considered
the possibility to have coalescent knots.

Before going deeper in the explanation of the properties of B-splines, we
give two definitions of objects that up to here we left unspecified.

A polynomial of order m is a function p,, such that

m
pm(z) = Z a;zi ™t
j=1

and the set of all the n order polynomials is a linear space, denoted by Il.,.
Given a strictly increasing sequence of points £ = {fl}fill, a piecewise

polynomial of order m is a function f such that

and the set of all these functions is the space II.,, . Sometimes we will
also consider a subspace imposing some smoothing conditions as II.., ¢ .,
where v = {Vi}§:2 is a vector of positive integers specifying how many
derivatives are continuous at each of the points &,...,&;. v; = 0 means
that no continuity condition is stated in &;.

In the remainder of the section we will present some properties of B-
splines and we will match them in order to give the reader the intuition
underlying GeDS regression.
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2.1.1 Knot Averages property

One of the properties of the B-splines is the so called Knot Averages prop-
erty. This means that

p(@) = p(&m)Njm(x) Vm >2 and p € Iy,
J

where
_ i1+ tjimat

gj,m :

m—1
are the Greville sites.
We can show the proof of this property considering that, by (2.1), it
holds
T —1; titm—1— X
D 0iNjm(x) = <9jtj + 93‘—1]%1) Njm-1(z) (2.2)
J

j+m—1 = 1; tj+m—1—1;

assuming the knot sequence t to be bi-infinite. Note that this is not a restric-
tive condition as a spline f € Si,,, with ¢ finite and the set of coefficients
denoted by 8 can also belong to that space Sgx ,,, where t* is an extended
version of t obtained adding infinitely many arbitrary knots outside the
bounds of ¢t and associating zero coefficients to the new B-splines.

Hence, considering the sequence 0; = ¥ (7) := (tj41 —7) - (tj414m —
7) and ;1 (7) := 1, we can write the coefficients in the RHS of (2.2) as

xr—t; tivm—1—T
Yjan (1) " - j (1) T =
O ] titm—1 =1
T —1t; titm—1—X
—timr () (o = 1) (- )2 )
j+m—1 1 tjm—1—1;
Now, as
tigma—2 2=t
titm—1—1; Li+m—1 —1;
and as this relationship holds provided that ;11 <z <tj1m_1",
xr—t; titm—1—T
(tj4m-1 —T) L (-1 = (- T) (2.3)
bjpm—1 =1 tj4m—1 =1
as the LHS of (2.3) is the straight line that connects the points (¢j1m,—1 —7)

and (t; — 7).
Hence, it is possible to apply recursively (2.3) in (2.2) obtaining

> i (1) Njm(2) = (& = 7)Y jm-1(T)Njm1 () =
J J

= (@=7)"" Y e (P)Nj(z) = (@ —7)™ ! (24)
j

*Otherwise we would have Nj ,—1(x) = 0.
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as 3 ; Njm(z) =1 Vm. This relation is also known as the Marsden’s Iden-
tity.

Now, considering that (2.4) can be divided on both sides by (m—1)! and
differenced ¢ — 1 times with respect to the arbitrary 7, it follows

dz 1 Nj,m T (-7 m—i
Z dri— — 7 im(T) (_(1))| =(-1) ((m—)z)' (2.5)

By Taylor expansion of a polynomial ¢ € 11,

mzdmz

=i d(7) (2.6)

.’E—T

Ms

i=1
and hence substituting (2.5) into (2.6) and exchanging the sums,
2) =Y AjmgNjm(z)
J

where

m d’l 11 m dmfi
Ajmq = Z( 1) dT( 1!31)( )dfm—iq(T)
i=1

Now, considering p € Ilco, it can be shown that X\;,.p = p(;) as

dTT;L lzp( ) vanishes if ¢ < m — 1, while for i = m — 1 we have that

dm—2 m+1
drm— e Vim(T) = (—1)™ H(n—2)! Z(tj-s-h —7), (2.7)
h=1
and for i = m we have
dm—l
Tt Yim(T) = (=1)"(m — 1)L (2.8)

Hence, as 7 is arbitrary, if we choose 7 = & ;,, also the term 2.7 vanishes,
and we have
)\j7mq = q(é],m)v

from which the property follows.

2.1.2 The Control Polygon

This is a crucial point about B-splines. Consider an m-th order spline func-
tion defined in [a,b] and based on the knot vector ¢ = {t;}71* such that

a=ty ==ty < <tbmyps1 = = tomek = b. (2.9)
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Its B-spline representation is () = E§:1 0;Nj;m with p = m + k and its
plot {z, Q(%)},¢(q- As @ € Il<a, we can write

P
{2, Q) o = Z@ jm (@)Y 03 N5 () (2.10)
J=1 z€la,b]
and hence it is characterized by the sequence of control points {{;,6;}. These
points can also be taken as the vertexes of a polygon that takes the name
of Control Polygon Cg.

Several properties arise from this definition. First, we can state that the
spline function lies in the convex hull of its control polygon as (2.10) implies
that Vo € [a,b], {z,Q(x)} can be expressed as a linear combination of the
vertexes, and we showed in Section 1.5 the partition of unity property, i.e.

b1 Njm(z) =1 and Njm(x) > 0.

We can also be more specific, considering (1.6). Indeed if we take x €
[ti, tiv1], Z; i—ms1 Njm(x) = 1 and this implies that all the polynomial
piece between ¢; and t; 41 is in the convex hull of {£;,6; }] il

Secondly, we can see that the control polygon itself is a second order
spline as

p

p
ny j2(@ Z = a,> 0;Njs(x)

Thirdly, the sphne is an approximation to the control polygon, as it can
be shown that

IQ = Coll < cltf?

)
o

d2
oo@@(x)
where ¢ is some constant. We refer, for the proof of this statement to
[De Boor (2001)], page 135.

2.1.3 Schoenberg’s variation diminishing spline approxima-
tion

Then it is possible to state that the spline is a “shape preserving” curve with
respect to the Control Polygon as it can be seen as a variation diminishing
approximation to it.

In order to explain what this means, we introduce the operator S— de-
fined as the number of sign changes. We use the whether we apply it it a se-
quence or to a function. In this second case, S~ f :=sup S™{f(z1),..., f(z)}
with arbitrary integer r and z; < - < z,.

We also introduce the functional V', the Schoenberg Variation Diminish-
ing Approximation as for a given function f defined on [a, b] as

p
V=Y f(&)Nim

j=1
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with Njn, arbitrary order B-splines based on the knots ¢ and {{;};_; the
Greville sites that can be obtained from t.
If f>0also Vf >0 as B-splines are non-negative. If ' > 0,

an <f<£j> — £(&-1)

VI =m-DY ) Njmor(z) =

= titm—1 —1j
p . —_ .
=m-1) (> (fijjm_f(_gﬂtj)> Njm_1(z) | >0 (2.11)

j=2

because of (1.9) and considering that by (2.9), Nim—1(2) = Npt1,m-1(z) =
0Vz € IR. Similar conclusion can be drawn considering higher order deriva-
tives, hence it preserves some of its features of the original function such as
positivity, monotonicity and convexity.

The functional V is called variational diminishing because it can be
shown that

S (Vf-p)<S (f-p) (2.12)

with an arbitrary p € II.o. Hence the variance diminishing Schoenberg
approximation is a functional that smooths the original function As the
polynomial p in (2.12) is any straight line arbitrarily chosen, this property
means that the approximating curve will in general be less wiggly than the
original function.

2.1.4 Sketch of GeDS Regression

These properties allows us to draw some conclusions about the relationship
between a spline and its control polygon. Considering the m-th order spline
@ and its control polygon Cg, the first can be interpreted as a variation
diminishing transformation of the polygon. Indeed

VCq(x) = Co&§)Njm(x) = 0;Njm(z) = Q(x).
j=1 i=1

We are now able to understand the idea underlying the GeDS regression
[Kaishev et al.(2016)]. The idea is that if we are able to find an estimate of
a spline function via a second order spline, we can use it as a control polygon
of a higher order one.

Suppose we are in a regression problem where, given a sample of obser-
vations {z;,y;}1, we assume that

yi = f(2i) + €,

where E{¢;} = 0 and Var{e;} = 02. Supposing that the true function f
can be approximated by a spline, we may simplify the problem trying to
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find an estimate f belonging to a space St ,, where both ¢ and m should be
estimated.

Hence we can first find fg € Si2 via a knot insertion scheme or an
adaptive fitting and then we can get a smoother fit attaching a higher order
spline to fg, seen as a polygon. The new estimate will be smoother than fz
according to the variation diminishing property, but it will still preserve the
shape of the previous estimate.

Note that the knot addition schemes for second order splines are partic-
ularly appealing, as adding a new knot has a trivial interpretation. Suppose
we already have an estimate f* based on k knots: this is just a polygon with
k vertexes and adding a new knot in position 79 means to introduce a new
vertex in the polygon (to which it should be assigned a coefficient).

2.2 The GeDS estimating algorithm

In this section we present a method allowing to perform non-parametric
regression relying on the properties we presented in the previous section.
The idea of this method was proposed in [Kaishev et al.(2016)] applying to
a model such as (1.1). Here however we present directly its extension to
the GLM framework, that is more general and includes as a special case the
previous one. Hence we will refer to the model presented in Section 1.7.

However, this method aims to perform the non-parametric regression by
assuming f to be a spline and taking advantage of its B-spline representation.
It belongs to the class of the adaptive methods as the knots are not set
ex-ante, but they are selected during the procedure. Moreover, also their
placement and the order of the spline are selected by the method. Often
in this section we will refer to the GLM framework, but it may be more
appropriate to refer to the Generalized Non-linear Models ([Lane (1996)]
and [Turner and Firth (2015)]) as only the B-spline coefficient enter linearly
in the model, while it is not the case considering other sets of parameters.

GeDS methodology is composed by two major stages. At the first stage,
7 is expressed as a linear combination of second order (degree one) B-splines
based on only two couples of coalescent knots. Then, knots are added one
by one in a clever way and 7 is estimated by a piecewise linear fit. At each
step of this sequential knot addition scheme, temporary estimates of the
coefficients are computed with usual GLM tools. The number of iterations
in this stage and hence the number of knots will be selected according to a
stopping rule.

The second stage aims to compute a spline representation of 7 applying
what we presented in the previous section. We will view the estimate as a
control polygon and we will compute Schoenberg’s Variational Diminishing
approximations to it. We will however adjust them refitting the coefficients
(but preserving the knots) in order to have ML estimates rather than ap-
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proximations to a linear spline.

Note that after the selection of the location of the knots, the estimation
procedure requires estimation of the coefficients of the B-splines, at each
step of Stage A an at Stage B. The predictor 7 is linear in these parameters
and hence sub-steps of the algorithm remain in the GLM class. This allows
us to make use of GLM tools for the estimation of the coefficients.

GeDS is essentially a geometrically motivated procedure that at stage
A builds nested GLM spline predictor models. The final one of which is
approximated by higher order GLM fits in stage B, in order to solve the
estimation problem.

2.2.1 The procedure

We can now give a detailed description of the algorithm.

Stage A. This is the knot addition scheme. Starting from a straight
line fit, represented as a spline with only two couples of boundary knots
and adding one knot at a time, the coefficients & are estimated via IRLS
procedure to find the linear spline fit f(d,{,g, Gp;z) = > P 1 6;N;o(z) with
number of internal knots x, number of B-splines (and parameters), p = k+2
and with a set of knots 0,2 = {01 = d2 < I3 < ... < dpy2 < Opy3 = Opya}-
K is selected according to a stopping rule.

Step 0 . Let n =2,k =0, p=m+ k = 2 with initial knot vector dp2 =
{6;}},, such that, a = §; = 63 < 5 = 04 = b. Let also 8 € [0,1]
and ¢ € IN be preset tuning parameters. At the initial step of the

— NONN YU NON '
IRLS procedure, set [ :=0and &’ = (&;7,...,4p" | = (a1,...,0p),
where aq, ..., ap are appropriate initial values and go to Step 1.

Step 1 1. Evaluate the quantity oV (z) = ¢! (f <5k72,&§l);zi>>, where
(1
a

f (ékjg,dg);zi) =37, i)Niyg(Zi), is the linear spline predic-
tor, fitted at the [-th IRLS iteration, and then calculate the trans-
formed responses

9O () ~ 1" = g(1D(z2)) + (s — 1D (2))g (@O (1)), (2.13)

where, i = 1,...,n and ¢ (u) = P
2. Calculate the weights

wl? =1/ arlg ] = 17| (4 GO ) Vv 2] 20

3. Perform a weighted linear regression of gjgl) on z; with weights

/
w?, i = 1,...,n, ie., find o”cz(,l—i_l) = (dglﬂ), ceey dé,lﬂ)) .

7 )
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Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

4. Check if
D(&}):k,2) — D& k,2)

< diris, (2.15)
D(&;l+1),k’2) ris
where the deviance D(dy(,'); k,2) := D(g7(f (8.2, dy(,'); z)) is com-
puted using (1.17) and d;;s is an appropriate threshold level pre-
selected in the IRLS estimation.

If (2.15) is not satisfied then set [ := [+1 and go to sub-step 1, oth-

erwise calculate wglﬂ), using (2.14), then calculate the weighted
residuals
! . "
ri = r(z) = 0™ (= a0 ) o (B0 ()
set d;g,lﬂ) = & and go to Step 2.

If £ > q, check if the stopping rule conditions are fulfilled (see Sec-
tion 2.2.2) and in case it is positive, pass to Stage B setting &, = &,
and 65,2 = tsk_qg.

Group the consecutive residuals r; , ¢ = 1,..., N into clusters by their
sign, finding the number u, 1 < u < n of groups and the integer values
d; >0,j5=1,...,u denoting the number of elements of each group.

Compute for each cluster m;, j = 1,...,u the weighted average of the
absolute residuals within the cluster. Compute also the cluster range

N = Zdj - Zdj71+1, ] = 1,...,u.

Compute the normalize versions of m; and 7; as m; =m; /Mmax and

/
0 =1j /Nmax Where muya = max; m; and nmax = max; 7);.

Compute weights for the clusters defined as
wj=PBm;+1-B)m j=1,...,u. (2.16)
Order the weights w; finding the vector {j,}}'_, so that

Wiy 200 2 Wiy

Among the groups that do not already contain a knot, select the sth,
the one with the higher weight. Find the new knot location §* as a
weighted average of the locations of the observations in the sth group,

hence via e
s—1 S - .
§o = i T 2.17
- dsfl“l‘ds . i : ( ’ )
D imdyy 41 TiWi
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Step 9 Find i*, 0 < i* < k such that 6* € [0;+42,0;+43], set [ := 0 and the
initial values for the parameters,

~ (1 . N ; ARy A .
a;}rl = (al,.. . ,Ozi*+1,f((sk72,ap;5 ),ai*+37...,ap+1)
then set p=p+1and k =k + 1 and go to Step 1.

Let us now summarize stage B of the generalized GeDS, which as in the
Gaussian case consists of two steps.

Stage B1. Given the fit f(d,.g,g, Gp; z), resulting from stage A with
internal knots, for each m = 3,...,mmax, calculate the knot placement

b4 (m—2),m, solution of

arg min Hf (6n,27 Qp; z) — Cf(t
tmf(n72),n

Oit2<titm<6itm

i=1,...,(k—m+2)

(2.18)

n—(m—Q),m)apﬂ) ‘OO

The solution of this optimization gives the knots fﬁ_(m_g)’m whose Greville
sites & coincide with the knots d2,...,0p41.

As has been demonstrated in [Kaishev et al.(2016)], the approximate
solution to 2.18 is achieved according to

tivm = (Oip2 + -+ 0iym)/(m—=1), i=1,...,6— (m—2). (2.19)

and this ensures that f (f,{,(m,z)m, Gy z), the m-th order spline predictor

curve, becomes nearly the VDS approximation to the fit, f (04,2, Gp; 2), from
stage A, i.e. closely follows its shape, as explained in Section 2.1. Therefore
the fit, f (64,2, Gp; ) can be viewed as the control polygon of the predictor
curve f (f,ﬂ_(m_g),m, Gp; z) Error bounds for this VDS approximation and
the optimality properties of the knots can be found in [Kaishev et al.(2016)].

The spline predictor curve f (fﬁ_(m_2)7m,6¢p;z), obtained at stage Bl
has the optimal knots t,_(,,_2),, which make it very close to its control
polygon, f (64,2, 6p; z) and hence close to the data, but still lacks of some
properties, as it is not ML estimate based on the data. This issue can
be easily addressed preserving the optimality property of the knot locations
thanks to stage B2, where its B-spline coefficients, &,, are treated as unknown
parameters, denoted by 0,, p = K + 2, which are then estimated in a final
run of the IRLS procedure as follows.

Stage B2. For each fixed m = 3,..., mmax, find the MLE estimates ép
of the B-spline coeflicients of the spline predictor curve f (fﬁ_(m_g)m, 0,; z)
from stage B1l. For the purpose, set | = 0 and run the IRLS procedure
similarly as in Step 1 of stage A, but with respect to the vector 8,. More

precisely, start by calculating i) (z) = ¢~ (f (5,§72,d$);zi>), and the
transformed responses and weights, substituting () (z;) in (2.13) and (2.14)
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@

respectively. Then perform a weighted linear regression of ;’ on z; with

~ ~ ~ /
weights w), i =1,...,n, to find 8 = (0§” Do aur 1)) . Similarly as
in (2.15) check the inequality
D@5 k,m) = D&, ;. m)|
~(+1) < dirl57
D@, “;k,m)

and if it is not satisfied then set [ := [+ 1 and go to the next IRLS iteration,
otherwise exit with a final estimate 6,.

Among all fits f(fﬁ_(m_g),m,ép;z), of order m = 2,...,mmax, i.e.

including the linear fit, f (04,2, Gp; z) from stage A, choose the one of order
m, for which the deviance computed as in (1.17) is minimal.

In this way in Stage B2, along with the number of knots and their lo-
cations, the degree of the spline predictor is also estimated. This is an
important feature of the proposed GeDS estimation method which is rarely
offered by other spline estimation procedures. Of course, any of the pro-
duced final fits of order m # m could be used, if other features were more
desirable, for example if better smoothness is required.

2.2.2 Stopping Rules

Let us present and discuss three different stopping rules proposed for Stage

A.

Ratio of deviances

In [Kaishev et al.(2016)] it was proposed a rule based on the comparison of
the RSS of the last spline fitted at two different iterations of the algorithm.
If the RSS of the new fit is close to the RSS of the old one, it means that the
last ¢ knots inserted did not improve the fit. As they were computed in a
clever way according to (2.17), this means that the algorithm is not able to
improve the fit setting new knots, hence the model adequately reproduces
the “shape” of the underlying data in the predictor scale. For this reason
the knot insertion procedure should stop.

The generalization of this rule in the GLM framework involves the com-
putation of the deviances. Hence, computing

D(&mk’)

b = ) 2.20
P D(6yp—g; k — q) ( )
defining D(é&p; k) := D(97 ' (f(8k2,Eyp;2)). The strategy is to stop Stage
A if ¢ > dexit, With dexit € [0,1] a chosen and constant threshold. Since

the k — ¢ knots of the older spline are knots also of the new one, any spline
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f(0k—q2, 0p—q; z) is a special case of f(dy 2, ;). Since then the coefficients
G, are estimated via maximum likelihood (so, minimum deviance), we will
always' have ¢, € [0,1].

Exponentially smoothed ratio

If at each step of stage A we store the result of (2.20), we will have a
sequence {op, h}i:q that in general will show a nearly exponential decay
as the number of steps grows. Unfortunately, if we are estimating a wiggly
function, some of its features may require the insertion of many knots to be
properly captured. Hence it may happen to observe some ¢, ~ 1 while for
higher h we observe a lower value. If we chose the previous rule as an exit
strategy from stage A, this will cause an early stopping.

The instability of this rule can be prevented by choosing a “smooth”
version of that.

Indeed, if p > ¢ 4+ 2 we can find least squares estimates 99 and 41 of the
two parameters of the model

¢n =1 —exp{y +11h}, where h =gq,....k . (2.21)

Based on those estimates we can compute the predicted value in A = p as

~

¢p =1 —exp{H0 + 1p} (2.22)

and verify if ngp > Qexit -

The motivation behind selecting an exponential smoothing is based on
the empirical evidence that ¢, in (2.20), grows like 1 —exp{—p} as knots are
added at appropriate locations (c.f Steps 3-8), i.e. when h =1,2,3,.... Ap-
plying (2.22) as an alternative to (2.20) leads to more stability with respect
to the number of inserted knots. This is demonstrated in Section 2.3.1, (see
tables 2.4 and 2.5), where rules (2.22) and (2.20) are compared.

Also under this rule, however, rule (2.20) is applied at the first 2 steps
in the knot inclusion process of Stage A.

Likelihood ratio

There is also a third alternative stopping rule proposed for stage A. Consider
the case we have the spline f(dy—12,0-1;2), where a1 = {ai}?;ll and
we add a knot 0* €]0;,0;41]. If we consider the vector

ap = (041, ey O, a*, [0 7 3 ,Ckp_1>,
with . .
ot — Ozi_l((s — (5,‘) + ai(éiﬂ —) )7 (2.23)
dit1 — 05

tProvided IRLS procedure achieves convergence.
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we have f(dx—12,0p-1;2) = f(dk2, p; 2), where &2 is the vector d;_1 2
augmented with §*. Similar formulas lead to draw the same conclusion also
if we consider more than one consecutive knots.

This allows us to consider splines obtained in consecutive iterations as
nested models and hence we can justify the third rule, based on the likelihood
ratio test statistic. Hence

[D(6p—g; k — q,2) — D(6 k,2)] ~ X (2.24)

which follows from the Wilks’s theorem. Therefore, after each iteration in
stage A, one may test whether the last ¢ coefficients are significant and
decide to exit stage A when they are not at significance level 1 — Pexit. If
the realized difference AD = D(é&yp—q; k — q,2) — D(éyp; k, 2) is such that

Pr[x2 > AD] > 1 — ¢er- (2.25)

one should stop with the knot insertion procedure.

Note that on average, the number of knots selected with (2.25) decreases
if ¢exit increases, in contrast to rules (2.22) and (2.20) where the higher gexit
the more knots are added before exit.

Let us note that Wilks’s theorem holds only under the assumption that
the model is correctly specified, hence assuming that f € Ss, , 2, but this
is in general a strong assumption. In the R implementation we leave this
rule as presented in this section as an approximation, while we discuss in
Section 2.4 how this issue can be addressed.

For convenience, in what follows rules (2.20), (2.22) and (2.25) are re-
ferred to correspondingly as ratio of deviances (RD), (exponentially) smoothed
ratio (of deviances) (SR) and likelihood ratio (test) (LR) and are coded as
RD, SR and LR, respectively.

These three stopping rules represent different model selection criteria
and they lead in general to different results. Hence, although with a proper
choice of ¢exit and g some of the methods give similar results, they can select
a different number of knots. In Section 2.3.1 we will test the three stopping
rules on simulated data and we will make some considerations.

2.3 The GeDS package and its application.

In this section, we illustrate how the GeDS package can be applied to fit
simulated and real data, assuming the response variable has a distribution
from the Exponential Dispersion Family. We make use of real and simulated
Gaussian, Gamma, Poisson and Binomial data in order to demonstrate the
capabilities and numerical properties of GeDS and compare GeDS fits to the
GAM, GSS and SPM fits produced by some other R packages that allow to
perform flexible regression in the GLM framework: mgcv, gss and SemiPar,
respectively.
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We have also performed a thorough simulation study of the impact on the
goodness of fit of GeDS estimates of different assumptions and choices made
namely of: sample size (n = 180, 500); level of smoothness of the underlying
function (smooth, medium smooth and wiggly functions); value of the GeDS
parameter f; alternative model selection criteria (i.e. different stopping
rules). We have tested GeDS on a series of simulated examples based on some
functions adopted in many other studies on variable knot spline methods
although revised in order to be applicable in the GLM framework. We
present here the results for one of the simulated test functions, given in
Table 2.1, first considered by [Schwetlickn and Schiitze (1995)], and a real
data example from materials science, due to [Kimber et al.(2009)].

The GeDS package has been implemented using R ([R Core Team (2015)]),
version 3.2.2 (2015-08-14) on a x86_64-w64-mingw32 platform.All functions
and arguments are fully described within the package manual (see Ap-
pendix A). NGeDS and GGeDS are the main functions of the package and
they implement correspondingly the case described in [Kaishev et al.(2016)],
where estimates are based on the least squares and the generalized case de-
scribed in this chapter, where estimates are based on Maximum Likelihood
criteria and apply properly to response variables whose distribution is one
of the EF (c.f. Section 1.7). Several supplementary functions have been
implemented, providing some utilities and allowing the user to handle the
outputs.

The synopsis of the NGeDS function, including the default values for the
arguments is

NGeDS (formula, data, weights = NULL,

beta = 0.5, alpha = 0.5, min.intknots = 0,

max.intknots = 300, q = 2, Xextr = NULL,

Yextr = NULL, show.iters = FALSE, stoptype = '"classical")

where the arguments are

e formula - in the form y ~ £(x), which indicates that there is a func-
tional dependence f between the response variable and the indepen-
dent variable e.g. denoted respectively by y and x.

e data - typically a data.frame or an environment where the variables,
y and x specified by the formula should be found. If not specified, the
function looks for the variables in the global environment.

e weights - a optional vector of non-negative a priori provided weights
for the observations {z;, y; }I" ;

e beta - the tuning parameter 3 of Step 6 in Stage A.

e phi - the threshold ¢y
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e stoptype the type of stopping rule considered, can be RD (as proposed
[Kaishev et al.(2016)]), SR defined by (2.22) or LR as introduced in
(2.25).

e min.intknots and max.intknots - optional parameters allowing the
user to choose a minimum and a maximum number of internal knots
which are added in the estimation process. By default min.intknots
= 0 and max.intknots = 500, subject to checking that (max.intknots
+m+1)<n

e g - the tuning parameter for the stopping rule

e show.iters - Boolean argument specifying whether information about
iterations should be printed on the screen or not

e Xextr - values of the boundary knots. If unspecified, the range of the
independent variable os supplied.

e Yextr values of the boundary knots, in the second independent variable
in the case of a bivariate regression. We will briefly describe it in
Section 2.5.

The second main function in the GeDS package is the function GGeDS
that computes GeDS estimates in the general case of the response having any
distribution from the EF, based on the algorithm described in Section 2.2.
The call to GGeDS with the default values for the arguments is

GGeDS(formula, data, family = gaussian(), weights = NULL,
beta = 0.5, phi = 0.5, min.intknots = O,

max.intknots = 500, q = 2, maxit = 500,

Xextr = NULL, show.iters = FALSE, stoptype = "exponential")

The arguments of GGeDS are very similar to the ones required by the func-
tion NGeDS, except for the argument family that specifies the distribution of
the response variable. Any family-class object from the stats package is
admitted and it allows to choose a distribution from the exponential family.

The outputs of NGeDS and GGeDS functions are GeDS-Class objects, hence
lists containing several slots and include the final results as well as key in-
termediate informations allowing to reproduce Stage A iterations. However
the user cold see printed on screen only a basic output, made by the function
call, the estimated number of internal knots and the mean of the squared
residuals (in the case of NGeDS) or the deviance (for GGeDS) for the linear,
quadratic and cubic GeDS fits.

Some generic function allow the user to easily access results from the
GeDS-class objects. coef, knots, deviance, predict extract information
correspondingly about, the spline coefficients, the knots, the deviance and
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the predicted values. There are also a couple of functions, derive.GeDS and
integrate.GeDS, that compute the derivative of the final GeDS fit(s) at
specified value(s) of x, and the integral of the final GeDS fit(s) on [z1, z2],
for specified values of 1 and x3. Graphical tools are instead provided by the
generic functions plot and lines. While the second draws a curve corre-
sponding to a fit on an existing (and active) plot, the first plots a comparison
of one of the fitted curves with the observed data. An option of the function
plot allows also the user to choose to produce several plots corresponding
to the Stage A consecutive fits. All the functions which extract output in-
formation require specification of the order (through the argument n) of the
final GeDS fit(s) of interest.

The functions NGeDS and GGeDS and all related supplementary functions
are illustrate on simulated and real data examples in Sections 2.3.1 and 2.3.2.
A standard PC (Intel core i7 CPU, 2.93 Ghz, 8GB RAM) has been used for
all examples and comparisons. Complete and comprehensive description of
all the GeDS functions is available in Appendix A.

2.3.1 Simulated examples and tests

In this section, we illustrate the features of the GeDS package and the prop-
erties of the GeDS fits compared to estimates produced by three alternative R
packages: SemiPar, (c.f.[Wand (2014)]), mgcv, (c.f.[Wood (2006)]) and gss,
(c.f. [Gu(2014)]), respectively. Those three R packages can be downloaded
from CRAN (http://CRAN.R~project.org/package=GeDS).

There are several other R packages that allow to perform a flexible re-
gression, but we chose these three because they guarantee smoothness of the
and because they are designed to be applicable in the GLM framework.

In this section we will run the tests just in the univariate framework,
hence these three packages implement a flexible regression based on penal-
ized splines. We will see in Section 2.3.1 how the penalization is selected, but
here we stress that SemiPar and mgcv implement a semi-parametric regres-
sion, where the number and position of the knots is selected ex-ante, while
in ssanova there is a non-parametric procedure, where all the datapoints will
be knots.

We start with the following simulated test example. We generate pseudo-
random data considering, n(z) = f1(z), where

fiz) = 40@ +4,  2e[-2,2], (2.26)

is a transformed version of a similar function used by [Kaishev et al.(2016)]
to test GeDS under uniform noise (c.f. Section 4.1 therein). We have then
generated four random samples, {z;,y; }I*;, with Poisson, Gamma, Normally
and Binomially distributed response variable, y, and uniformly distributed
independent variable, z, i.e., y; ~ Poi(p;), ;i ~ Gamma(u;, ), with ¢ = 0.2,
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pi = exp{ni}, ni = f1(zi), yi ~ N(pi,0), with o = 0.2, ; = n; = f1(z),
yi ~ Bin(M, p;), with M = 50, p; = exp{n;}/ (1 + exp{ni}), ni = f1(zi) — 4
and z; ~ U [—2,2],7=1,...n, where the sample size is n = 500. Note that
in all the regressions we will perform, we will assume the link function g to
be known.

1)
— GeDS(n=2)
GeDS(n=3)
<= GeDS(n=4)

7= Gedsin=4)

— Gebs(n=2)
GeDS(n=3)
<= GeDS(n=4)

Figure 2.1: The “true” predictor function, fi(z) (black solid line) and, the
linear (m = 2, red solid line), quadratic (m = 3, green dashed line) and cubic
(m = 4, blue dotted-dashed line) GeDS output fits, f(f,{_(m_z)’m,ép;z>
(on the predictor scale), for the four cases of (a)-Poisson, (b)-Binomial, (c)-
Normal and (d)-Gamma samples, (empty circles) generated according to
Example 1.

We use the Poisson, Gamma, Normal and Binomial data sets generated
as described in order to illustrate the use and performance of GeDS. The
following R code implements this for the Gamma case. It first generates
and plots the Gamma data set and the “true” predictor function fi(z) as
follows

R> f1 <- function(x) ((10*x/(1+100%*x°2))*4+4)
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R> set.seed(123456)

R> newX <- sort(runif (500, min = -2, max = 2))

R> means <- exp(f1(newX))

R> newY <- rgamma (500, shape = 1/phi, scale = means*phi)
R> plot(newX, log(means), type = "n")

R> points(newX, log(newY))

R> lines(newX, log(means), lwd = 2)

The last three lines produce the points and the black solid line in the plot
in the bottom-right panel in Figure 2.1. The line corresponds to the “true”
function, while the points are a transformed version of the data. Next, in
order to run GeDS regression and obtain the GeDS-Class object naming it
test.gamma one writes

R> test.gamma <- GGeDS(formula = newY ~ f(newX), beta = 0.1,
+ phi = 0.995, family = Gamma(log),
+ Xextr = c(-2,2))

followed by

R> lines(test.gamma, n = 2, lwd = 2, col = "red")
R> lines(test.gamma, n = 3, 1lwd = 2, col = "green")
R> lines(test.gamma, n = 4, lwd = 2, col = "blue")

which draw correspondingly the linear (m = 2), quadratic, (m = 3) and
cubic (m = 4) GeDS fits on the existing plot with the data and the function
f1. The following code illustrates the output from the functions deviance,
coef, knots, predict, derive.GeDS and integrate.GeDS for the cubic
output GedS fit, i.e, for (m = 4).

R> deviance(test.gamma, n = 4)

[1] 48.46878

R> coef(test.gamma, n = 4)

B_1 B_2 B_3 B_4 B_5 B_6
3.7211894 3.7815624 3.7768225 3.0306911 2.6947412 0.9270338
B_7 B_8 B_9 B_10 B_11 B_12
6.6060879 5.5783854 5.1266436 4.7815038 4.1459069 4.3974614
B_13
4.1285988
R> knots(test.gamma, n = 4, options = "internal")

[1] -0.66268753 -0.33307385 -0.20388520 -0.05806551 0.05443521
[6] 0.17956611 0.30573948 0.52208562 0.74298065
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R> predict(test.gamma, n = 4, type= "link",
+ newdata = data.frame(newX = c(-1,0,1)))

[,1]
[1,] 3.590729
[2,] 3.978793
[3,] 4.390218

R> derive.GeDS(x = c(-1,0,1), test.gamma, n = 4, order = 1)

[1] -0.5545979 31.8329855 -0.4182105

which computes the derivative, f’ (fﬁ_274, ép; ) at (—1,0,1), while the code
R> integrate.GeDS(x = c(-1,0,1), test.gamma, n = 4, from = -2)
[1] 3.713462 6.760717 11.698720

computes the integral fzzf f (55_274, 6,; z) dz for 1 = =2 and 2z = —1,0, 1.

The R code which implements the Poisson, Binomial and Normal cases is
similar and therefore is omitted. Figure 2.1 illustrates GeDS fits in the four
cases. In plots (a),(b),(c) and (d) f (f,@_(m_g)vm, ép; z), of order m = 2, 3,4,
are plotted for the four cases of Poisson, Binomial, Normal and Gamma.
The stopping rule adopted for stage A was SR with ¢exit set to 0.995 in all
four cases. The values of § (the second tuning parameter in stage A) and
the number of internal knots, kK — (m — 2), of the final GeDS fits of order
m = 2, 3,4, are summarized in table 2.1.

Poi(pi) Bin(50, ;) N(pi,0.2) Gamma(p,0.1)
B 0.2 0.1 0.5 0.1
K — (m—2) 14, 13, 12 14, 13, 12 11, 10, 9 11, 10, 9

Ifi— filli 0.08,0.07,0.07 0.22,0.16,0.14 0.11, 0.09, 0.09  0.20, 0.16, 0.15

Table 2.1: Values of 3, number of internal knots, £ — (m — 2) and the L
norm || fi — filj1 for the linear, quadratic and cubic (i.e. for m = 2,3,4)
GeDS fits, (from left to right in each column).

As can be seen from Figure 2.1, in all four cases GeDS produces linear
(m = 2), quadratic (m = 3) and cubic (m = 4) fits, f(f,i_(m_g)m, 0,; m)

of remarkable quality, checked visually but also based on the L! norm,

1A= Fill = /_ 22 \f1<z> —f (E,i_(m_Q),m, 0,; z) \ dz

to the “true” predictor function, fi(z) (c.f. table 2.1). One should note
also looking at table 2.1 that the number of internal knots « is estimated to
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14 in the (discrete) Poisson, Binomial cases and to 11, in the (continuous)
Normal, Gamma cases whereas lower 3 values of 0.1, 0.2 seem to produce
better results when the distribution is not normal. In the normal case GeDS
was run with the default value of 8 = 0.5, which as also noted previously by
[Kaishev et al.(2016)], produced a very good fit in the uniform error case.

Comparisons with competitors

In a second test study we have used the function (2.26) in order to compare
the fits produced by GeDS to fits obtained from some other R packages,
that are designed to perform non-parametric or semi-parametric regression
in the GLM framework: gss, mgecv and SemiPar. For the purpose, for all
four distributions, i.e., Poisson, Binomial, Normal and Gamma, we have run
the four competing models 1000 times, fitting them to 1000 data samples
generated as described in Section 2.3.1 for varying sample size, n = 180, 500.
As previously, we ran GeDS with ¢¢.;+ = 0.995 and all other parameters as
summarized in table 2.1. The “competitors” were run with the default values
of their corresponding tuning parameters. In gss the tuning parameter is «,
and it tunes the stopping rule based on the GCV functional?

n~lyt(I - AN)*y

GCV()‘) = [nil tr(I - OzA()\))}Q’

(2.27)

as defined in [Gu(2014)], where A()) is the hat matrix. By default o = 1
for the binomial case, while & = 1.4 otherwise. In the function spm in
package SemiPar, the tuning parameter is directly the smoothing parameter
A. By default its value is automatically selected by the underlying REML
procedure. For GAM in the package mgcv, the tuning parameters considered
have been the number of knots (hence the dimension of the basis), that is
by default selected internally and the adaptive smoothing parameter (by
default it is set to a constant selected as part of the GCV criterion).

GeDS(n =2) GeDS(n=3) GeDS(n=4) GAM SPM GSS

Normal Mean 0.1588 0.1342 0.1398 0.8260 0.2131  0.2597
Normal Median 0.1554 0.1296 0.1266 0.8125 0.2100 0.2382
Poisson Mean 0.1347 0.1144 0.1159 0.9750 0.1921  0.2335
Poisson Median 0.1311 0.1058 0.1026 0.9377 0.1868 0.1944
Gamma Mean 0.2396 0.2174 0.2699 0.8652 NA 0.3352
Gamma Median 0.2239 0.1928 0.2277 0.8484 NA 0.3200
Binomial Mean 0.2512 0.2328 0.3055 0.8137 0.2869 0.7294
Binomial Median 0.2455 0.2262 0.2715 0.8002 0.2853  0.7292

Table 2.2: Averages and Medians L1 norm of the fits

The results of these comparisons in the case of n = 500 are presented in
Figures 2.2, 2.3, 2.4 and 2.5 where in each case panel (a) presents sample

iNote that this definition is somehow different than the one presented in Section 1.5.1,
as a tuning parameter is introduced in the denominator.
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Normal Poisson Gamma Binomial
Median  14.00 16.00 11.00 12.00
Mean  14.35 16.70 11.26 11.93
SD 3.21 3.31 2.46 3.01
Min 6.00 7.00 2.00 3.00
Max  33.00 30.00 22.00 26.00

Table 2.3: Descriptive statistics for the distribution of number of internal
knots k.

RD1 RD2 SR1 SR2 LR1 LR2
12.61 17.09 16.68 13.65 9.3 15.31

O=01"1) (594) (417) (3.13) (235) (5.25)
B =02 13.05 1745 16.45 13.64 9.48 15.78
24T (5.99) (3.63) (277) (2.33) (5.86)
oo 122 1805 1453 1204 894 1538
© 0 (3.49) (7.91) (3.64) (2.18) (L.76) (5.44)
57 1122 1621 1322 1079 795 153

(4.01) (7.94) (3.67) (2.14) (1.61) (6.25)

Table 2.4: Average number of knots selected by GeDS and their standard
deviations (in parentheses).

curves of the six competing models versus the true predictor function fi;
panel (b) - box plots of the L' distance to fi(z); panel (c) - histogram of
the number of internal knots, k of the linear GeDS fit. Related numerical
results are summarized in Tables 2.2 and 2.3. As can be seen looking at
panels (a) and (b), and at the mean and median of the L' distance to the
true predictor summarized in Table 2.2, for all four distributions the GeDS
fits (of order 2, 3 and 4) outperform those produced by the competitors.
The latter tend to be overly un-smooth wiggling around the true predictor
function with GAM more significantly away from f1, especially around the
origin, where the function is particularly wiggly.

This is mainly due to the global nature of the smoothing procedures
via penalized regression. In this case, where the function is smooth on two
intervals, while it has a wiggly jump on another, selecting just one smoothing
parameter is a limitation of the model. It is apparent that gss captures the
jump at cost of having a wiggly fit, while gam does not, but overall the fit is
smoother.

GeDS method, instead, performs only a local regression, as it is based on
B-Splines with limited positive support and there is no smoothing param-
eter affecting the overall procedure. On one hand this is a strength of the
methodology, as it is not subject to the problem presented. On the other
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RD1 RD2 SR1 SR2 LR1 LR2
0.16 0.141 0.143 0.153 0.188 0.149

F=01"0045) (0.03) (0.033) (0.039) (0.05) (0.037)
5_gp 0198 013 0137 0145 0178 043
“(0.042) (0.026) (0.029) (0.037) (0.048) (0.035)
5 05 OL6T 0L 0161 0167 0185 0157
2 (0.05)  (0.044) (0.051) (0.05)  (0.05) (0.048)
B—07 0.224 0.208 0.216 0.226 0.238 0.207

(0.036) (0.093) (0.039) (0.034) (0.028) (0.045)

Table 2.5: Average L' distance between the true function and the GeDS fit
on the linear predictor scale and the corresponding standard deviations (in
parentheses).

hand an issue arises in some contexts. Suppose we are performing a Poisson
regression with log link function and suppose we observe al the y-values to
be zeroes on an interval. If knots are selected so that the positive support
of one basis lies within this interval, the corresponding estimated coefficient
for that basis will be —oo as it won’t be mitigated by the smoothing param-
eter. This is a typical issue arising when the y are distributed according to a
discrete distribution. In a way this is what data are telling, but an estimate
equal to —oo may not be appealing. In order to address this issue, however
a weighted version of the algorithm should be used, giving lower weight to
the datapoints in that interval. Note also that this happens only on the
f-scale, while on the p-scale the inverse link should prevent this issue to be
effective.

Overall for all four distributions, the quadratic GeDS performs better
than the linear and cubic ones based on the corresponding mean L' values
(c.f. Table 2.2), with the median L' for the cubic GeDS slightly better in
the Normal and Poisson cases. The distributions of the number of knots s
in panels (c) of Figures 2.2, 2.6, 2.3, 2.4 and 2.5 are reasonably compact
suggesting that the stopping rule, (2.22) consistently selects . This conclu-
sion is also supported looking at the corresponding characteristics (mean,
median, standard deviation and range) of the latter simulated distributions
of k, summarized in Table 2.3. It should also be noted that in all four
cases, i.e., Poisson, Binomial, Normal and Gamma samples, GeDS produces
fits with relatively small number of estimated regression coefficients, x 4+ m,
which on average is correspondingly equal to 16 +m, 12 +m, 14 + m and
11 + m, for the GeDS fits of order m = 2,3, 4 (c.f. table 2.3).

This blinded fitting method is not fully coherent as all the packages al-
low the user to set some tuning parameters. Hence we compare also the
performance of all six models by fitting them to 30 Poisson samples, in each
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case appropriately adjusting the corresponding tuning parameters described
above. As can be seen from Figure 2.6 presenting the result of this compar-
ison, GAM and GSS have significantly improved, although as before, GeDS
has remained superior.

The results obtained for the case of smaller sample size m = 180 are
similar and as in the case of m = 500, GeDS produces good quality fits with
low number of knots, compactly distributed around the mean. So, based
on the results for the two choices, m = 180, 500, GeDS is reasonably robust
with respect to the sample size. Further conclusions based on the graphical
illustrations are similar and the corresponding details are therefore omitted.

Time consumption

The test performed in the previous paragraph is in a way not completely
fair as it is not taken into account the time consumption. GeDS is an
adaptive method and it is somehow expected that it is able to produce good
results, but the sequential addition of new knots requires to run several
times the IRLS algorithm (Step 1 of the algorithm), each time iterating
WLS regressions (Step 1.3). In the other three methods, as all the knots are
set ex ante, the model is fitted only once. Hence we run a simple test on our
platform in order to check which is the cost in term of time consumption of
the four regression models.

m GeDS GAM SPM GSS

(100) 005 0.03 019 0.1
(500) 0.4 0.03 0.61 0.58
(1000)  0.33  0.04 0.98 1.43
(5000) 325 023 511 20.75
(10000) 10.37  0.43 13.17 52.26

Table 2.6: Computational times in seconds taken by the regression proce-
dures considering different sample sizes.

We simulate five samples according to the model described, using again
the test function (2.26) and Poisson distribution for the response, but vary-
ing the sample size. We thence consider m = 100, 500, 1000, 5000 and 10000.
On each of those simulated samples we run the four regression models, The
results about time taken by the four regression models are resumed in Ta-
ble 2.6.

As we can see, the implementation of the GAM is very efficient and it
outperforms the other three methods. We see also that the computational
time of all the methods increases with the sample size, but for the GSS this
happens much faster than for the others.

This can be explained if we consider the fact that GSS is a non-parametric
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method and all the datapoints are taken as knots. Hence the model is fitted
considering O(m) basis functions.

Remarkably, in this test, GeDS regression is comparable with the SPM
method. This is something that was unexpected and probably it reflects the
fact that the REML criterion for the selection of the smoothing parameter
is computationally very expensive.

Sensitivity with respect to stopping rule and tuning parameters

In a fourth test study, we have also tested the sensitivity of GeDS regression
with respect to the stopping rule and the tuning parameters 8 € (0, 1),
Gezit € (0,1) and g € IN.

As widely described in Section 2.2.2, the ¢y is the tuning parameter
affecting the stopping rule, which determines when to exit from stage A.
Hence this directly determines the number of knots, x, in the knot set d, 2
of the linear spline fit f (64,2, &; 2) and hence, the number of knots of the
higher order ML spline fits f (EK/_(m_Q)’m, 0; z)

In the algorithm of Section 2.2, the parameter § tunes the weight put on
the clusters, controlling the incidence of the range and mean of the residuals
in each cluster on the cluster weight, according to Step 6 of stage A. It
therefore affects the ordering of the cluster weights and hence it is a main
driver in the knot placement scheme.

Generally speaking, the higher the number of knots inserted, the more
degrees of freedom will have the spline and the wigglier will be the fit. Hence
the behaviour of the algorithm with respect of ¢eyi:, while understanding
the effect of 3 is quite more complicated.

In the case the distribution of the response is assumed to be Gaussian
or Uniform, [Kaishev et al.(2016)] recommend to choose 5 depending on the
Signal to Noise Ratio (SNR), SNR= (var(f))%° /o, hence on a measure of
the wiggliness of the underlying pattern, compared on the noise. However
this approach is not appropriate in the broader framework of GLMs as it is
not possible to separately distinguish a noise component and a signal com-
ponent. Moreover mean and variance in general are not independent and
observations are often significantly heteroscedastic and there is no invari-
ance with respect to a linear transformation of the function f. Therefore,
as also confirmed by our sensitivity tests, the choice of 8 and ¢e. in the
GLM framework depends more complexly and jointly on the particular dis-
tribution (from the EF) of the data and the smoothness/wiggliness of the
underlying function f. Hence it is difficult to derive universally valid rules
for the selection of £, and @eqzit, although some general guidance for the
range of these parameters could still be given, as illustrated in our third
sensitivity test.

In order to explain the influence of ¢ on GeDS regression, we present
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a brief example. Considering the RD rule with tuning parameter ¢ and
q = q/2, according to 2.20 we have

D(éy; k) _ D(éyp; k) D(6p—gik—4q)
D(6p—g;k —q) D(Gp—g;k—q') D(Gpsg; k —2¢")

¢p:

and RHS is in fact the product of two ratios of deviances computed at
iterations p and p — ¢’. If one chooses geyit = d),;/(i, Hence we may conclude
that the rules identified by {¢exit; ¢} and {¢L;; ¢’} are somehow comparable
if one chooses ¢/, ;, = gbi}/(i (even if the first one is in general more restrictive).

Nonetheless, if it happens that
D(éy; k) << D(Gp_gik — q') = D(Gp_ag; k —24),

applying the second rule the algorithm would exit stage A selecting k — 2¢/,
leading to early stop, while the first one would lead to continue the iterations
if D(ép; k) is small enough. More generally, the rule defined by {exit,q}

and {¢exit(q+h)/ 9 q+ h} are comparable in the sense described here. Similar

conclusions can be drawn for the other stopping rules, even if it is not trivial
to state which couples of parameters lead to comparable rules.

For the purpose of the latter test we used function f; defined by (2.26) as
the underlying predictor and generated 200 samples of 500 Poisson observa-
tions as described in Section 2.3.1. On each of these samples, we estimated
f1 using GeDS under the three alternative stopping rules, (2.20), (2.22) and
(2.25), for different choices of 5 € (0,1) and ¢erir € (0,1). The results
of this sensitivity study are summarized in Tables 2.4 and 2.5. We recall
here that rules (2.20), (2.22) and (2.25), are referred to correspondingly as
ratio of deviances, (exponentially) smoothed ratio (of deviances) and likeli-
hood ratio (test) and are coded as RD, SR and LR, respectively. We have
run the RD rule with two sets of parameters, {¢exit = 0.995;¢ = 2} and
{bexit = (0.995)%; ¢ = 4} coded in tables 2.4 and 2.5 as RD1 and RD2, the
SR rule with {@exit = 0.995;¢ = 2} and {@exit = 0.99; ¢ = 2}, coded as SR1
and SR2 and the LR rule with {¢pexit = 0.995; ¢ = 2} and {¢exis = 0.5; ¢ = 2},
coded as LR1 and LR2.

Table 2.4 summarizes the results giving resumes of the number of knots
selected. Means and standard deviations (in parentheses) of the number
of knots estimated by GeDS are reported for different stopping rules and
values of the tuning parameters, ¢exit, ¢ and 5. In Table 2.5 we present the
L' norm of the difference between the true function and the GeDS fit.

Looking at Table 2.4 and comparing column RD1 with SR2 and column
RD2 with SR1, one can see that the mean number of knots are pairwise
similar but the standard deviations under the SR rule are much smaller, in
particular with the second pair. The estimated number of knots is much
less disperse and more stable under the SR rule (2.22). The results (means
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and standard deviations) in column LR2 suggest that by tuning ¢eyit the
LR rule can generate number of knots comparable with those under the
RD and SR rules (c.f. columns RD2 and SR1) but as can be seen, the
corresponding standard deviations in LR2 are much higher, i.e., results are
more volatile. An overall observation based on table 2.4 is that increasing
the tuning parameter § from 0.1 to 0.7 does not significantly affect the
estimated number of knots under the RD and LT stopping rules, whereas
for the SR rule, increasing 8 leads on average to smaller number of knots.
Our experience suggests that the role of 5 may be more significant for other
test functions.

Analysing the results of table 2.5 the minimum L' distance on average
is achieved with 8 = 0.2 all across the columns, i.e. for all three rules and
choices of ¢exit and g = 2. We do not suggest in general to use this value,
but we stress that the choice is important. The best choice varies according
to the distribution chosen. Our experience is that a low value of S should
be chosen when the response variable is discrete.

Best L' distances are achieved under RD2, SR1 and LR2 and the results
in these three columns of Table 2.5 are very close. However, looking also
at the results under RD2, SR1 and LR2 in Table 2.4. One can conclude
that overall, the SR rule, (2.22) performs best considering both goodness
of fit and stability in the selection of the number of knots, measured with
the standard deviation (c.f. SR1, table 2.4). Table 2.5 however shows that
the L' goodness of fit measure is influenced both by the number of knots
selected and by the value of j.

In summary, for this particular test example, we can see that better
GeDS fits are achieved with low values of 5 = 0.1, 0.2, values of ¢exit = 0.995
and ¢ = 2. In [Kaishev et al.(2016)] the SNR was identified as a major factor
influencing the choice of 5. However as mentioned previously in this section,
the SNR measure is not directly applicable within the GLM context and by
analogy, one can compare the variability of y; — u; to the variability of u;.
We recommend that a low value of 3 is chosen when the variability of y; — u;
is high compared to the variability of p;.

2.3.2 Real data examples

In what follows, we illustrate the performance of GeDS on three real data
examples from materials science, coal mining and mortality modelling. The
first couple of examples have been used in literature in order to study prop-
erties of estimators, the first one in [Kaishev et al.(2016)] and the second
one e.g. in [Eilers and Marx (1996)] and [Biller (2000)].
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Neutron diffraction data

Our first data set named BaFe2As2 originates from a superconductivity
study of BaFe2As2 through a neutron diffraction experiment, carried out by
[Kimber et al.(2009)]. The data has been used by [Kaishev et al.(2016)] to
illustrate GeDS in the normal case and is now a dataset distributed together
with the GeDS package. It includes the sample {z;, vy}, of n = 1151 ob-
servations of the neutron diffraction intensity, y; viewed as a function of the
angle of dispersion of the neutrons, z;. As can be seen from Fig. 2.7, this
functional dependence is highly non-linear with numerous intensity peaks
occurring at certain angle values. Smoothing out the noise while at the
same time adequately capturing the peaks is of utmost importance since as
highlighted by [Kimber et al.(2009)], their location, height (and area) carries
information about the structural (conductivity) properties of the BaFe2As2
superconductor. For a more detailed description of the dataset and the
experiment we refer to [Kaishev et al.(2016)] and [Kimber et al.(2009)].

In order to test the NGeDS function, we first show how to reproduce the
normal (quadratic) GeDS fit obtained by [Kaishev et al.(2016)], (see Section
4.2 therein). For the purpose we load the BaFe2As2 dataset by

R> data("BaFe2As2")

and then run NGeDS with the RD stopping rule (which is assumed by default
in NGeDS) and tuning parameters used in [Kaishev et al.(2016)] by calling:

R> (NGeDS.model <- NGeDS(formula =Y ~ f(X), phi = 0.99, q = 3,
+ beta = 0.6, data = BaFe24s2))

Call:
NGeDS(formula = Y ~ £(X), phi = 0.99, q = 3,
beta = 0.6, data = BaFe2As2)

Number of internal knots of the second order spline: 227
Deviances:

Order 2 Order 3 Order 4

121602818 135816393 220441344

As seen, the number of knots estimated by NGeDS is 227 which coincides
with the values obtained by [Kaishev et al.(2016)] (see section 4.2 therein).
The NGeDS quadratic fit is of similar high quality as can be concluded com-
paring panel (a) of Fig 2.7 to panel (a) of Fig 6 from [Kaishev et al.(2016)].

However there is no theoretical reason to consider the response variable to
be Gaussian distributed. Considering that the response is given in arbitrary
units (as often in these experiments), we may consider it as a continuous and
non-negative variable. Hence a more appropriate model as a further test, we
fit the same BaFe2As2 dataset with GGeDS, assuming the response variable, y
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follows a Gamma distribution. This seems reasonable also considering that,
as suggested by the plot, likely there is a dependence mean and variance,
as suggested by the plot. We use the log link function as it provides more
numerical stability than the canonical one. This test is implemented by the
following R code

> (GeDS.model.gen <- GGeDS(formula =Y ~ f(X), data = BaFe24s2,

+ beta = 0.6, phi = 0.995, q = 3,
+ family = Gamma(log), stoptype = "RD"))
Call:

GGeDS(formula = Y ~ f(X), data = BaFe2As2, family = Gamma(log),
beta = 0.6, phi = 0.995, q = 3, stoptype = "RD")

Number of internal knots of the second order spline: 239
Deviances:

Order 2 0Order 3 Order 4

0.1128 0.1262 0.1984

The Gamma GeDS quadratic fit with 238 knots, assuming the RD stopping
rule and tuning parameters ¢e.;+ = 0.995, 8 = 0.6 and ¢ = 3 is illustrated in
panel (b) of Fig. 2.7, and as can be seen comparing the plotted residuals, it
is of similar quality as the normal fit in panel (a). As a benchmark, in panel
(c), we have fitted a quadratic Gamma spline regression with 238 uniformly
spaced knots which is seen to be much worse comparing the residuals in
panels (a)-(c).

We note that we have tested tuning [ starting from 0.1 increasing it
to 0.6 which has significantly increased the number of knots selected and
improved the quality of the fit. One can therefore conclude that for very
wiggly functions with sharp peaks it is natural to put more weight on the
mean of the residuals, i.e. select 8 = 0.5, 0.6 instead of the default value of
B = 0.1 which puts more weight on the residual range (c.f. 2.2).

Overall, given the sharply peaking (un-smooth) nature of the underlying
dependence, in both the Normal and Gamma case GeDS regression performs
very well, capturing the target of the experiment: locations and heights of
the peaks.

Coal Mining Data

In our next example we fit GeDS to the coal mining disaster data from
[Eilers and Marx (1996)], which is available in the GeDS package and can
be loaded by

R> data("coalMining")
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This dataset includes annual number of severe accidents in the United
Kingdom coal mines for the period from 1851 to 1962. We apply the Poisson
GeDS to estimate the expected number of accidents as a function of time.
For the purpose we have run GGeDS under the SR (exponentially smoothed
ratio of deviances) stopping rule assumed by default, with the tuning pa-
rameters set to ¢ezir = 0.99 and 8 = 0.2.

The resulting cubic spline fit with 12 knots is the red solid line in Fig. 2.8
which seems to overfit the data. By decreasing ¢e;;+ to 0.984, we have
obtained the cubic GeDS fit with four knots illustrated by the blue line in
Fig. 2.8 and implemented by the following piece of code:

> data("coalMining")
> (GeDS.coal <- GGeDS(formula = accidents ~ f(years), phi = 0.984,
+ family = poisson(), data = coalMining))

Call:
GGeDS(formula = accidents ~ f(years), data = coalMining,
family = poisson())

Number of internal knots of the second order spline: 6
Deviances:

Order 2 Order 3 Order 4

116.5 117.3 118.1

We note that the resulting GeDS fit is close to the fits produced by the
competitors gssanova and gam from the gss and mgev packages. On the
converse spm from SemiPar package seems to underfit the data and deviates
significantly from the rest of the competitors, (c.f Fig. 2.8).

Mortality data

In our final example, we fit GeDS to the mortality dataset EWmortality
which includes data on mortality of males in England and Wales, from 2000
to 2002. The data, aggregated over this three year period is organized in a
data frame containing the variables Age, Deaths and Exposure. For a given
age z, age ranging from 0 up to 108, Deaths contains the observed number
of deaths, d,, while Exposure is an estimate of the mid-year population size,
ez, (central exposed to risk) at age z. Also this dataset is part of the package
and can be directly loaded using the function

> data(EWmortality)

Two distributional assumptions can be made with respect to the random
variable, D, counting the number of deaths at age z. If at each age the
population is assumed to be homogeneous with respect to the risk, it is
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appropriate to consider that D, is Poisson distributed with parameter p e,
where p, is the force of mortality, i.e.,

D, ~ Poi(u.ey). (2.28)

As stated in Sectionl.8 several parametric models can be implemented in
order to obtain an estimate of u,, but we can model it in a non-parametric
framework.

One can then use GeDS in order to estimate u, as a function of z, i.e. fit

ittod,, z=0,...,108. Alternatively, one can assume that D, is binomially
distributed with parameters F, and ¢, i.e.,
D, ~ Bin(E,, q.), (2.29)

and estimate ¢, by fitting it to d,/E,, z =0,...,108, where E, ~ e, + %dz
is an estimate of the initial number of exposed to the risk.

Assuming the log link function, the predictor component for the model
in (2.28) can be expressed as

n: = log(uzez) = log(p.) + log(e:) = f(2) + log(e:), (2.30)

where the term log(e,) is known and it is not intended to be estimated
as part of the model. Following the usual design of R functions developed
to perform regressions, it is possible to incorporate a known additive term
in the predictor in the model by including in the formula the term as an
offset variable. The specific code is

R> attach(EWmortality)
R> (M1 <- GGeDS(formula = Deaths ~ f(Age) + offset(log(Exposure)),

+ family = poisson(),
+ phi = 0.99, beta = 0.1, q = 2))
Call:

GGeDS(formula = Deaths ~ f(Age) + offset(log(Exposure)),
family = poisson(), beta = 0.1, phi = 0.99, q = 2)

Number of internal knots of the second order spline: 34
Deviances:
Order 2 0Order 3 Order 4

379.3 144.7 189.8

In order to fit the mortality rate ¢, in (2.29), we first need to compute
FE., and raw mortality rates and then the regression. Hence the R code is

R> Exposure_init <- Exposure + 0.5 * Deaths

R> Rate <- Deaths / Exposure_init

R> (M2 <- GGeDS(formula = Rate ~ f(Age),

+ family = quasibinomial(), phi = 0.99, beta = 0.3,
+ weights = Exposure_init, q = 2))
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Call:

GGeDS(formula = Rate ~ f(Age), family = quasibinomial(),
beta = 0.3, phi = 0.99, weights = Exposure_init,

q=2)

Number of internal knots of the second order spline: 28
Deviances:
Order 2 Order 3 Order 4

398.1 157.0 209.4

Here the exposures E, should be included as sizes in the Binomial model,
but, as in input we specified the rates, they enter as weights. As usual in
the Binomial regression, the link function adopted is logit.

The lowest deviance is attained with the quadratic fitted splines in both
models. In order to model the force of mortality p,, the algorithm selects
33 knots, while 27 knots are selected for ¢,. Resulting fits are presented by
the solid red lines in Figure 2.9, in the p, and log(u.) scale, (in panels (a)
and (c)) and in the ¢, and logit(q,) scale, (in panels (b) and (d)). As can
be observed, in both models a reasonable smoothing of the data is achieved
across all ages. This is a real case where we can observe what we discussed
in Section 2.3.1: because of the local nature of the GeDS regression, it is
possible to fit a function with a varying degree of smoothness with more
non-linearity at younger ages. This suggests that GeDS can be successfully
applied in smoothing mortality data.

It is also common practice to model mortality data taking into account
not only the age of the individuals, but also the calendar year, as it is well
known that the mortality is not static and it is useful to study how it evolves.
The regression should hence take place in the two dimensional setting with
dependence of p,; and ¢, on age z and time t.

2.4 Inference

In GeDS regression and, more generally, in spline regression, the researcher
aims to adapt, as much as possible, a spline to a function. More precisely, the
function is unknown and it cannot be directly observed, so the adaptation
has to take place based on some data that are assumed to be realizations
from a model that involves the function.

Let us for a while forget about this problem and let us imagine we aim to
approximate a function whose realizations can be directly observed. Unless
the unrealistic case that the function is itself a spline with the same order
and based on the same knots, a spline can just approximate it. We can then
conjecture that the distance between them -the bias- reduces by adding
knots, but we cannot state that it is equal to zero.
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We can thence interpret the mismatch between the spline model and the
true function in two different ways yielding two different approaches that
lead to different inference results.

In Section 2.4.1 we will see how we can study local asymptotic properties
of GeDS regression splines, based on results of approximation theory. Then,
in Section 2.4.3, we will consider the bias as a misspecification of the model
and we will outline how a consistent version of the LR test can be obtained.
In Section 2.4.2 we will also describe a naive test to check whether the knots
selected are all useful or they can be deleted.

2.4.1 Confidence intervals

In non-parametric statistics inference is not usually an easy task. However
we can make some considerations about the local asymptotic behaviour of
the spline fits under some suitable assumptions.

It is useful to recall a result from [Barrow and Smith (1978)] that will
allow us to quantify the bias due to the polynomial spline approximation to
the function f. Considering the integer m, the knot sequence t = {ti}fzo
and the function f € CM) . Tethyj=1t; —t;_1i= 2,...,k and h = max; h;,
there exists sy € S, such that

1F = b= sy, = olh"), (2.31)

b(z) = f<m)(z)himBm <z }—Lt2> .

Here the function B,, is the Bernoulli polynomial, i.e.

where

B (z)=2"+ <T> Bz 44 (mm 1> B, 1z+B,, 0<z<1,
where B; are the Bernoulli numbers. In what follows, we will refer to o* as
the vector of coefficients of sy in the B-Spline representation.

Based on this result some asymptotic properties of the polynomial regres-
sion splines have been studied in [Zhou et alt. (1998)] and [Huang (2003)],
but they cannot be applied directly to the GLM framework.

It may be tempting to consider the fitted spline as the result of a least
squares regression to the pseudo data g as defined in (2.13) and hence to
apply directly the general results, but we find some problems that can be
solved only by making much more assumptions than the ones in those papers.

Another interesting work in our context is [Yoshida and Naito (2014)]
who studied local asymptotics for the Generalized Additive Models. Thus,
even if considering penalized regression, they extended the methodology
to the GLM framework. Hence we study local asymptotics following their
approach.



CHAPTER 2. GEDS AND GGEDS 65

In this subsection we will just present the sketch of the procedure that
lead to develop the asymptotic confidence intervals, while for the formal
proofs and computations we refer to [Yoshida and Naito (2014)]. Indeed
the results presented here can be obtained by setting in the cited paper the
penalizing parameters A equal to zero and the number of regressors D = 1.
In their paper, it is considered also a correction to the penalized likelihood,
involving a parameter 7,: also in this case we just need to set it equal to
ZEro.

We need also to make the following assumptions:

(i) the covariate z is a random variable and it is distributed on [0, 1]
according to the distribution p,;

(ii) f e and c e C®;
(iii) the number of knots satisfies k,, = o(n'/?)

[Yoshida and Naito (2014)] assume also that the knots are equidistantly
located, in order to simplify the calculations involving the penalization in
the likelihood. For our purposes this assumption is not only unnecessary,
but moreover it is incoherent with the method itself.

Assumption (iii) can be met in GeDS regression with a suitable sequence
of tresholds in the stopping rule. By mimicking the proof of Lemma 2 in
[Kaishev et al.(2006)], we can state that, considering a sequence of random
samples {z;,y;} from {zij,yij}?il, j=1,2,... and nj_1 < n;, there exists
a sequence ¢eyit j, such that k, = o(nl/Q).

Throughout this section we will consider only the case where the canon-
ical link is used. Hence we will consider the log likelihood function

1 & 1
la) = - [log p(yi|zi, )] = - [y ' Xa-1Tc(Xa)],
i=1
the vector of scores
_ 0 Lo T
Ul =U(y;a,z) = %l(a) = ¥y X - X' (Xa)]

and the Hessian matrix

82
dadaT
Note that we presented the log likelihood and its derivatives divided by n.
Even if this is not the usual way to define them, we preferred to keep the
notation consistent with [Yoshida and Naito (2014)].

The sketch of the computation is as follows. First we define the vector
ayf as

H(a)=H(y;a,z) = (o) = %XT diag [¢"(Xa)] X.

p(yilzi, f) ‘z]

R [
af = argmin — E |log
=% nZ Pyl @)
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that is a theoretical version of the maximum likelihood estimator.

Then, denoting by N(z;) the vector [Ny, (2),..., Npm(2:)]T, we let
fo(zj) = N(z;))Yas. Proposition 1 in [Yoshida and Naito (2014)] can be
applied without any effort, yielding

fo(2) = f(2) = b(2) + o(h™).

This proposition is in fact proven by showing that ||fy — sf|loc = o(R™),
from which the result follows immediately.
It is then possible to show that

& - ay = —H(ap) 'Ulay) + Ry(&), (2.32)

with Ry, (&) =op ([n~'h 1] 1).
Considering that E [U(ag)| 2] = 0, it follows then that

E[& —af|z] =E[R,(&)|z] =op (n 'h7")

and then
E[If - fol(2)| 2] = op (070 7)

as f(z) = N(z)Té.
Hence it follows that

B[ = 71(2)| 2] = b(z) + op(h™) + op (n™'n7")
Considering then the variance of f(z), we have
Var | f(2)] 2] = N(2)"H(ay) ™ Var [U(ay) | 2] H(ag) " N(2)(1+ 0p(1)).

In the proof of (2.32) it is shown that |[f — f,](2)| = o(1), hence one can
write

Var [U(ag)| z] = %X Var[y|z] X = %X diag("(f(2)))X =
%X ding(¢" (fo(2))(1 + o(1))) X = %G(l Fo(1), (2.33)
where

G= | UEBpii(2) By ()

Hence we get
Var [f(z)‘ z] = N(z)TH(af)*lGH(af)*lN(z)(1 +op(l) = Op(knnfl).
If we consider the Mean Squared Error, hence, we have that

MSE(f(2)|z) = Op(h™'n™") + Op(h™2n"% + B*™) = Op(n~*/?).
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With these results it is possible to state that, if there exists § > 2 such
that E []y, — c/(f(zi))lﬂa) z} < 00, it is possible to show that

\/Z [f(2) = f(2) — Bias(2)] % N(0,¥(z)),

with
U(z) = lim —N(z)TH(as) \GH(ay) 'N(2)

n—oo ki,
and Bias(z) = b(2).

Therefore approximate local confidence intervals can be computed by
estimating also the quantities Bias(z) and ¥(z). It may be tempting to
compute those quantities directly based on the estimated spline f and its
coefficients &, but, as suggested in [Yoshida and Naito (2014)], it is prefer-
able to consider a higher order spline for this purpose as the computation
of Bias involves an estimate of the m—th order derivative of f.

2.4.2 Single knot

GeDS regression is based on a knot insertion scheme, where new knots are
added sequentially. It may be interesting to check after the fit has been
carried out, whether the parameters and the knots selected are significant
or not. Knots selected at early steps of the knot insertion scheme may
have become obsolete in sequent iterations and it is useful to check whether
they could be deleted. The leading idea is somehow similar to the pruning
procedures we introduced to when we were describing MARS procedure in
Section 1.5.2.

If we consider the knots selected as fixed and hence the columns of the
design matrix X as regressors, we can apply classical inference procedures
on the regression coefficients. We should also assume that the model is
correctly specified, hence that f is a second order polynomial spline. Of
course those assumptions are at least simplistic, and the p—values shall not
be trusted, but the results can be interpreted qualitatively.

As we stated in Section 2.2.2, for each internal knot, the simple formula
(2.23) allows to compute the coefficient that makes the knot non influential.
Hence one can perform a Wald test on each coefficient, testing the null
hypothesis that it should be equal to the coefficient obtained through (2.23).
Under the simplistic assumptions, the Wald test statistic is asymptotically
distributed as a Gaussian random variable.

However a caveat may be useful. The fact that a coefficient is found to
be significant with this test does not imply that the corresponding knot is
useful in the regression. One of the issues that may affect spline regression is
overparametrization. In GeDS regression there is no penalty or smoothing
parameter to address directly this purpose, while the researcher has to choose
properly the tuning parameters.
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This test is inappropriate for this purpose as, when an overparametriza-
tion issue arises, the fitted curve is very likely to be “wiggly” as if too many
knots are added, the spline tends to interpolate the data. Hence the fitted
coefficients may be very far from the null ones and they may result very
significant.

We recommend visual inspection of the results in order to check for over-
parametrization, and in order to address this issue, we suggest to properly
tune the parameters or to use a weighted version of the algorithm.

This procedure is implemented in the function summary.GeDS. However,
given the caveat and the assumptions we made, we prefer to leave it as an
un-exported function of the GeDS package.

2.4.3 Likelihood Ratio

In the above sections we have seen that regression splines are in general
biased estimators and that the bias arises from the fact that a polynomial
spline, once set knots and order, is in the best case just an approximation
of the function f.

This can be interpreted as a model misspecification and hence one could
wonder if it is still correct to state that the likelihood ratio statistic is ap-
proximately chi-squared distributed. This is crucial as the LR stopping rule
of stage A of the algorithm relies on this assumption.

Here we use the result of [Kent (1982)] who studied the behaviour of the
likelihood ratio statistic in the general case of a misspecified model.

Suppose we are running a GeDS regression having set a suitable g. Sup-
pose the algorithm has already selected k internal knots and we want to de-
cide according to the LR rule whether the knot insertion scheme should con-
tinue or not. Hence our parameter is the vector of coefficients e € IR¥+2 and
it can be rearranged and partitioned as o = {1, A}, where 4 is the g—vector
corresponding to the last ¢ selected parameters and A is the (k+2—¢)—vector
of the other coefficients. The algorithm have already computed the uncon-
strained ML estimate & = {1,5, 5\} and, in order to check if the LR stopping
rule is met, we need to test the null hypothesis that ay = ag = {20, 5\0},
where 1pg is computed according to (2.23), while Xo is the constrained ML
estimate, equal in our case to A

We also define

J(a) = n? / U (y: a, 2)U (y: o 2) "ply|z, f)dy

and
K(a)=—n / H(y: . 2)p(ylz. f)dy

and, in order to simplify the notation we write J = J(ap) and K = K ().
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Hence both matrices can be partitioned as

g [Jw Jw] and K — [wa Kw]
B SV BV ’
and we define Kw,/))\ = wa - Kd,)\K)\/\_lKAw.

As it is well known from classical statistical theory, if p(y|z, &) = p(y|z, f),
we would have J(a) = K(a) = I(a) where I(a) is the Fisher information
matrix, but in general, in the framework of misspecified models, those equal-
ities do not hold.

Hence Theorem 3.1 of [Kent (1982)] states that under the null hypothe-
sis,

q
=1

where V; ~ x? and e; are the eigenvalues of the matrix

Ky (KTIKTY)

In practice, as the density p(y|z, f) is unknown, the matrices J and K
have to be estimated by J and K defined as

J =n’Ul(y; &, 2)U(y; &, z)"
and
K = —nH(y; &, z2).

By (2.34), the test statistic W should be compared with a non homo-
geneous Chi-Squared distribution. This in practice is feasible thanks to an
algorithm developed by [Davies (1980)], that allows to compute the survival
function of a non-homogeneous Chi-Squared distributed random variable.
[Duchesne and Lafaye De Micheaux (2010)] provided then a very useful im-
plementation of that algorithm in an R package named CompQuadForm.

However an other practical issue arises. In order to apply this method-
ology we would need to compute the first and second derivatives of the log-
likelihood function, but unfortunately family objects in R do not contain
such derivatives. There are at least three ways we could follow to overcome
this issue, as we could write the code:

¢ implementing tools that allow to compute these derivatives, symboli-
cally or numerically;

e limiting the distribution families and the link functions supported by
the code and supplying derivatives for those cases;

e allowing the user to supply such derivatives.

Probably the best way to proceed is to implement the first procedure, but
allowing the user to specify optionally the derivatives. This is not straight-
forward and, at least for the first version of the package, we implement the
approximate LR rule as exposed in Section 2.2.2.
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2.5 Multivariate extension

GeDS methodology can successfully be extended to the multivariate case.
We give a sketch of how the algorithm can be modified in order to apply
in two dimensions, omitting the straightforward generalization to higher
dimensional settings.

Both stage A and stage B are designed to work in the univariate frame-
work. Step 3 of stage A can be generalized to the bivariate setting by
considering the residuals to be clustered in convex polygons according to
their sign®. Then in step 4 one should substitute the cluster range with the
areas of the regions and other slight modifications allow to generalize stage
A. However with stage B the generalization should be studied more care-
fully. In our knowledge there is no generalization of the properties exposed
in Section 2.1 allowing to develop a similar procedure in the multivariate
framework.

This leads us to consider a generalization relying on tensor product
splines, allowing both to choose the knot locations and to compute the knots
for the higher degree splines in the univariate framework.

Let us set the problem properly, allowing us to describe GeDS method-
ology in the bivariate setting. We suppose we observed triples {z;, z;, y; }icr,
I =1,...,n. We also assume z; are observations from a random variable
whose distribution belongs to the exponential dispersion family (1.16) with
g(pi) = n; = f(xi,y;), where f is a smooth function. Our goal is to esti-
mate f with a bivariate spline function f defined on the rectangular region
R = [a'),b(®)] x [a®),b®)]. Later on we will refer to the simple Gaussian
framework, the only one implemented in the R package GeDS up to now.

Stage A of the algorithm in the bivariate case can be resumed as

i Set k(® = k) = 0 the initial knot vector on z as & 0 2 = {5 —, and

6(y = { }4 such that a) = 5() = 5() < 5() 5() = b(). Let
ﬁ € [0,1], q € ]N and J € IN be the tuning parameters;
ii Compute § = A= (b® — a(®). Slice the rectangle R into .J rectangles
Rg»x) = [0 + (j — 1)8,a® + j] x [a(y) b¥)], j =1,...,h. Consider
the sets I](

Viy, 12 € I(I), Vi, < i, if i1 <.

T

= {i € I|(zi,yi) € R } and permute them so that

iii Compute § = h~1(b® — a®)). Slice the rectangle R into J rectangles
RY = [, @] x [a® + (j —1)0,a® + j6], j = 1,...,h. Consider
the sets Ij(y) = {i € I|(z;,y;) € Rg-y)} and permute them so that
Vit,in € 1Y, iy < 4, if iy < do.

SWe refer e.g. to [Akima (1978)] and [Akima (1996)] for algorithms that allow to
perform this generalization of step 3 with some slight modifications.
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iv Obtain an estimate of f via tensor product spline regression based on

the knots 5($) and 5(y)

k(@ 2 ORE Store the some kind of residuals r; and

weights w;.

v If the conditions required by a stopping rule are fulfilled, exit Stage A
of the algorithm, otherwise move to step wvi.

vi a Setj=1.

; according

to Steps 3-8 of the original algorithm. Store also the weight w;
defined in (2.16).

¢ If j = J move to sub-step d, otherwise set j := j + 1 and go back
to sub-step b.

b Consider triples {(w;, 7, a:i)}iel(y) and place a knot 5
J

d Compute j* = arg min; w;. Then set 6@ = 5;-‘13) and w®) := Wi
vii Compute 6% and w® following the sub-steps described in Step wvi,

but considering the sets I](.I), g=1,....J.

viii Choose the knot 6() corresponding to the higher w() and and add it
to the knot set of the corresponding variable. Set also k() := k() 4 1,
then move to Step v.

Once exited Stage A and obtained the sets of knots 6,(2 and 6%)

K27

B1 can be applied to both sets in order to get the new knot sets f’(f_)(m_Q) m

and T

k—(m—2),m’>
product regression, allowing to obtain a smooth surface f as an estimate of
I
Let us see an example in order to see how this regression has been im-
plemented in GeDS package. We assume that the predictor is the function

Stage

m =3,...Mmax- Then Stage B2 is substituted by a tensor

Ney = f(z,y) = sin(2x) sin(2y), (z,y) € [0,3]?, (2.35)

and we simulate 400 triples {z;, z;,y;};_, according to the model z; =
f(zi,y;) + €;, where ¢, ~ N(0,0.1), z; ~ U(0,3) and y; ~ U(0,3). Thus
we obtain the data set in which (z;,y;) are uniformly and randomly scat-
tered within [0, 3]%.

As mentioned, we implemented Bivariate GeDS methodology only for
the Gaussian case, thus we implemented it directly in the function NGeDS.
We can generate the data and apply the regression running the following R
code

> set.seed(123)
> doublesin <- function(x){
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sin(2 * x[,1]) * sin(2 * x[,2])

3 ,2))
3) ,2))

<- (round(runif (400, min = 0, max
(round (runif (400, min = 0, max
<- doublesin(cbind(x, y))
<- z + rnorm(400, mean = 0, sd = 0.1)
(BivGeDS <- NGeDS(z ~ f(x, y) , phi = 0.9, beta = 0.3,
Xextr = c(0, 3), Yextr = c(0, 3)))

+ VvV VvV VYV + +
N N < X Y
A
|

Call:
NGeDS(formula = z ~ f(x, y), beta = 0.3, phi = 0.9, Xextr =
c(0, 3), Yextr = c(0, 3))

Number of internal knots of the second order spline in the X
direction: 4
Number of internal knots of the second order spline in the Y
direction: 5

Deviances:
Order 2 Order 3 Order 4
4.334 3.722 3.673

The resulting GeDS fit is illustrated in panel (b) of Figure 2.10. Com-
paring it with the true function f plotted in panel (a), we can see that GeDS
has reproduced it remarkably well using 400 observations. In panel (¢) we
draw a simple diagnostic, the contour plot of r(z, y) := f(z,y)— f(z,y). We
can see that the fitted surface crosses the true one several times, while that
this is not related with

2.6 Further test examples and comparisons

In order to provide further insight into the GeDS numerical performance
and how it compares with the GSS, SPM and GAM models, we have used
four additional test functions with varying degree of smoothness; smooth
functions fo and f3, less smooth, f5 and highly oscillating f;. These func-
tions have been used also by other studies on normal GLM regression (see
e.g. [Kaishev et al.(2016)] and references therein). The test functions and
corresponding predictors are summarized in table 2.7.

For each of the entries in the last two columns of table 2.7, we gener-
ated random samples, {z;, y;}7-;, with correspondingly Poisson and Gamma,
distributed response variable, ¢, and uniformly distributed independent vari-
able, z, i.e., y; ~ Poisson(u;), y; ~ Gamma(u;, ), with ¢ = 0.2, u(z) =
exp{n(z)}, n(zi) = nj(z), j = 2,3,4,5 and z; ~ U[0,1], i = 1,...n, for
small and medium sample size, n = 180 and n = 500. In order to ensure
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Test function y ~ Poisson(u) y ~ Gamma(u, p)

fo(2) = 42 — 24 2exp [~16 (42 — 2)°| M) =5+ f2()  ma(z) =4+ fa(2)
f3(2) = 4sin(8z — 4) + 2exp [_16 (42 — 2)2] n3(2) = f3(2)/4+5  m3(z) = f3(2)/2+2

fa(z) = \/2(1 — 2) sin (27 (1 + 0.05) /(= + 0.05)) na(z) = fa(z) +4 na(z) = 2 (fa(z) +1)
f5(z) = 4sin(4nz) —sgn(z — 0.3) — sgn(0.72 — z) ns(z) = f5(2) +5 n5(z) = fs5(2) + 3

Table 2.7: Additional test functions and predictors

consistency with the normal GeDS from [Kaishev et al.(2016)], for f5 we
also generated a normal sample of size n = 2048.

2.7 Some alternatives for the estimating algorithm

2.7.1 Local Scoring procedure

In [Hastie and Tibshirani (1990)], page 141, we find an algorithm that may
be considered to build an alternative generalization of the GeDS procedure
[Kaishev et al.(2016)] in the GLM framework.

This algorithm is very similar to the IRLS algorithm of Section 1.7. In
principle 1 can be expressed by any function if we replace step i with a
procedure that allows to fit an updated version of 7.

In [Hastie and Tibshirani (1990)] this algorithm is presented to fit GAMs,
where the predictor 7 is just an additive model. Replacing step ¢v with an
estimating procedure for an additive model, Local Scoring Algorithm can be
used to fit a GAM.

We could do the same with GeDS algorithm. GeDS for the linear case
could be used to produce estimate of n in step iv and we would get directly
a generalization to the GLM framework.

However we did not include this alternative in the package as we found it
to be less efficient than the one presented in Section 2.2. The knot placement
procedure takes much more time than the IRLS, hence we preferred an
algorithm that performs many times the IRLS, while knots are placed just
once. Moreover we found the alternative algorithm to be less stable and
convergence is not guaranteed.

2.7.2 MARS-GeDS

Stage A of the algorithm may sometimes be too unstable. If parameters are
not tuned properly, the algorithm may stop too early and the resulting fit
may be oversmoothed or it may go too far adding too many knots, returning
a wiggly estimate.

The second issue in particular is in general mitigated when passing to
higher order splines, but the first one requires the user to set different pa-
rameters.
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However, as we discussed in Section 2.1.4, one of the keys of GeDS
regression is the possibility to pass to a higher order spline starting from
the previous one. In principle, when one has a first order spline curve, with
Stage B of the algorithm, one can pass to a higher order spline fitting the
data.

Hence an alternative is to consider a well studied way to fit a broken line
to the data and to use it as an input for stage B. A natural candidate of
that is the MARS procedure, presented in Section 1.5.2.

2.7.3 Variable dispersion GeDS regression

GeDS regression, as it has been presented, considers a constant overdis-
persion parameter all over the range of the data. This may be a strong
assumption in some practical situations and it would include bias in the
estimates. Some of the R packages that perform regressions allow the user
to specify a model for the dispersion parameter, such as the package hglm
([Ronnegard et al. (2010)]).

In principle this is possible also in GeDS regression. In Stage A of the
algorithm, whenever a new knot is added, the fitting procedure in Step 1
should be replaced with a procedure that allows the estimation of a dis-
persion part of the model. Then, also in Step 4 the residuals should be
weighted in order to incorporate the estimated overdispersion, while also
Stage B2 should be modified as Step 1.

This may however sensibly increase the time consumption, hence we
avoid to include this in the first version of the package.
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Figure 2.2: Comparison of the linear, quadratic and cubic GeDS to the gss,
mgcv and SemiPar models, based on fitting 1000 Poisson samples.
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Figure 2.3: Comparison of the linear, quadratic and cubic GeDS to the gss,
mgcv and SemiPar models, based on fitting 1000 Binomial samples.
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Figure 2.4: Comparison of the linear, quadratic and cubic GeDS to the gss,
mgcv and SemiPar models, based on fitting 1000 Normal samples.
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Figure 2.5: Comparison of the linear, quadratic and cubic GeDS to the gss,
mgcv and SemiPar models, based on fitting 1000 Gamma samples.
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Figure 2.6: Comparison of the linear, quadratic and cubic GeDS to the gss,
mgcv and SemiPar models, based on fitting 30 Poisson samples, adjusting

the corresponding tuning parameters.
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Figure 2.7: Estimated spline fits to BaFeyAsy data and their correspond-
ing residuals: (a) Normal quadratic GeDS fit with 227 knots; (b) Gamma
quadratic GeDS fit with 238 knots; (¢) Gamma quadratic spline fit with 238
equispaced knots.
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Figure 2.8: Comparison of the cubic GeDS fits, red (¢ezir = 0.99) and blue
(Pexit = 0.99) lines, with the competitors GAM, (brown dashed line), GSS
(black dashed line) and SPM (orange dotted and dashed line).
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Figure 2.9: Quadratic GeDS spline fits of u, in the pu, and log(u,) scale,
(panels (a) and (c)) and of ¢, in the ¢, and logit(q,) scale, (panels (b)
and (d)). Black circles, in (a) and (b) represent the maximum likelihood
estimates for each age, while on (c) and (d) they are transformed according
to the link functions.

Figure 2.10: Panel (a) - the "true” function f(z,y) from (2.35); panel (b) -
the bi-quadratic GeDS spline fit to the 400 data points obtained by adding
Gaussian noise to f(x,y); panel (c) - contour plot of the difference between
the fitted surface and the true function.
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Figure 2.11: Comparison of the linear, quadratic and cubic GeDS to the gss,
mgcv and SemiPar models, based on fitting 1000 Poisson samples from the
predictors in table 2.7.
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Figure 2.12: Comparison of the linear, quadratic

and cubic GeDS to the gss,

mgcv and SemiPar models, based on fitting 1000 Gamma samples from the

predictors in table 2.7.



Chapter 3

An application of
nonparametric methods:
insurance ratemaking

3.1 Introduction

As mentioned in Section 1.8, ratemaking is one of the most important tasks
for an insurance company.

A correct and precise assessment of the risk associated to a new contract
is the key for a sane business. Insurers should set premiums in order to earn
enough money to make risk assumption activity profitable, but on the other
hand the price of a policy should not discourage potential policyholders.

Moreover it is well known that one of the main curses of the insurance
business is the adverse selection of the policyholders. A premium not enough
personalized may be perceived as too expensive for low-risk possible poli-
cyholders, while it would be convenient for high-risk ones. This happens
because the premium should be a weighted average of the personalized pre-
miums and it should be enough to cover the claims of all the population.
Hence only the low-risk customers would be discouraged from this kind of
contract and the total amount of premiums may not be enough for all the
incurred claims.

From a theoretical point of view, the more an insurer is able to correctly
estimate the risk for each single contract and thus to personalize the pre-
mium, the more its activity will be stable and profitable. Unfortunately in
practice this is difficult or even impossible to achieve for at least two reasons.

Not all the characteristics of each single policyholder are observable. If
we consider an MTPL contract, we may think that the risk depends upon
several variables about the driver (age, sex, zone of residence, driving style)
and the car (age, power, whether it has been correctly maintained). Some of
them are unobservable and hence the insurer cannot take them into account

83
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ex-ante. Strategies to personalize premiums incorporating also unobservable
variables consider a posteriori ratemaking and involve e.g. credibility theory
[Bithlmann and Gisler (2005)]*.

Throughout this chapter however we will concentrate on the a prior:
personalization and hence on the observable variables that can be considered.
Those variables can be either discrete or continuous. Historically, common
practice was to group continuous variables in classes in order make estimates
more reliable ad stable, as a single coefficient would have been based on a
wider dataset. Binning a continuous variable makes the model simpler to
be understood by a policyholder and to be handled by the agent who will
concretely compute the premium.

Prudent actuaries should hence consider a discretization in intervals of
the continuous variables variables and fit a constant risk function on each
of them. The arising model is in fact a stepwise constant risk function to
be estimated from the data instead of a continuous one. This procedure can
be performed in several ways depending on the type of model and on how
much flexible the estimate can be.

It may seem that, nowaday, the requirement of simplicity has become less
pressing thanks to the diffusion of computers and to the knowledge about
smoothing techniques. The necessity of binning continuous variables may
seem to be obsolete and indeed if we consider how major insurers in the
Italian market deal with the age factor of the policyholders in MTPL LoB,
we can find continuous estimates of the risk function.

However, the problem of binning still arises in ratemaking in other ways.
As an example we refer to a major insurer that considers separately the age
of the policyholder and the age of the driver when computing premiums.
Remarkably, the age of the policyholder is modelled continuously!, while
the age of the driver is binned in classes.

3.1.1 Discretizing a risk function

Binning a continuous variable is an operation that leads to a loss of infor-
mation. The discretization of a continuous function introduces some bias
in the model and if this procedure is not performed according to a sound
method, some arbitrariness is introduced.

Let us consider a risk factor measured by a continuous variable and a
monotonic risk function, as in Figure 3.1. Indeed, binning the variable in
categories implies to model the risk with a stepwise constant function.

The choice of the number of categories and of the thresholds is usually
subjective and driven by two conflicting purposes, as usual in statistical

*Moreover some of them e.g. sex, cannot be considered in ratemaking as it would be
seen as a discrimination in many countries.
tMore precisely, it is binned in years.
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Figure 3.1: example of

problems. On one hand, the model should be as simple as possible, while
on the other it should adapt as well as possible to the risk function.

The simple plot in Figure 3.1 easily explains which is the cost of this
practice whenever it is reasonable to assume that the a small variation of
the risk factor implies a small variation in the risk. Hence we will assume,
as usual, that the risk is a function of the continuous variable identified as
the risk factor.

Considering each single bin, the risk will be underestimated for some
policyholders (the grey regions), while it will be overestimated for others
(the green regions). An optimal choice of the thresholds would minimize the
bias in the estimates, but preserve the simplicity of the model. Hence on
one hand, not too many categories should be used, but the binning should
be refined enough to ensure homogeneity with respect to the riskiness.

As usual in many statistical problems, we will try to optimize one of
the two objectives, under a constraint. In the remainder of this chapter, we
will consider cases where the number of categories is fixed and hence we will
concentrate on the choice of the thresholds of the bins.
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3.2 The problem and Existing methods

Several methods have been proposed for the general purpose of choosing
properly the intervals on which to bin a continuous variable and for some of
them statistical software is available, e.g [Bivand (2015)].

The problem can be placed as a particular application of the restricted
problem described in [Fisher (1958)]. In this framework one seeks for an
optimal partition that minimizes a measure of heterogeneity within groups,
but preserves an a priori ordering of the elements. More formally, we suppose
we observe couples {y;, z;}i~,, where y; is the variable of interest and we
assume it depends upon z;, so that

where f has the form
M
f(2) = cilr,(2),
i=1

where ¢; are constants, Ry,..., Ry is a partition of R and I4(z) is the
indicator function, i.e.

I = .
AG) 1 ifze A

{0 if 2 ¢ A

However most of these methods have been proposed for continuous and
monotonous variables and they are not applicable in our problem, as in
general the risk cannot be assumed to have a monotonic behaviour. Consid-
ering again a model for claims frequency with respect to the driver’s age in
MTPL insurance. It is well known that the higher frequency is observed on
young and old drivers, while it will be lower for middle-aged ones. Hence a
monotonicity assumption would be misleading.

3.2.1 Arbitrary Choice

A choice of the thresholds can be made as an arbitrary choice, hence no
rigorous strategy of optimization of an objective function is implemented.

This is quite common practice, as this allows to choose the thresholds
directly incorporating the expertise knowledge or allowing to further simplify
the model choosing bins of equal width. Of course this approach has also
the advantage of stability. The estimates of the constant pieces should be
data driven, but the size of the bins would not be affected.

3.2.2 Tree

If the distribution of y is assumed to be Gaussian, one model that per-
forms this procedure directly is the standard regression tree as presented
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in Section 1.5.2. In this section we will use its R ([R Core Team (2015)])
implementation available in the package rpart ([Therneau et alt. (2015)]).
In rpart, several methods are supported to build the tree. When we will
consider the Distribution of y to be Gaussian we will refer to the method
“ANOVA”, that means that at each step the best split is selected according
to the criterion

arg max [RSS — (RSSL(7, ¢) + RSSr (7, ¢))], (3.1)
T,C
where RSS, RSSt,, RSSy are the residual sums of squares respectively before
the splitting, of the left leaf and of the right one.

Indeed as we will deal with a count variable, we will consider the more
refined Poisson regression tree. rpart implementation considers, instead of
the RSS, the model deviances so that, for the leaf h, where there are ny
observations, whose indices are collected in Jp,

Dp=)_ [yz log (g;) = (yi — Ah)} :

Jj€Jn

where A\p, = n;l Y ic J, Yi- During the pruning stage, it is often necessary
to consider a slight modification as A, may be null and hence Dy, infinity.
Hence in order to have a more stable method, authors considered a slight
modification of Ay, justifying it in a Bayesian framework. Assuming as prior
An ~ Gamma(a, 3), where o™t = n7 13"y and 0—1/2 = k., a known
coefficient of variation, the Bayesian estimate is

T B

and this is used to replace A, in previous formulae. In what follows we will
consider k£ = 1.

3.2.3 (O’Brien’s method

In literature, we find another method in [O’Brien (2004)] that has been
designed to deal with response variables coming from any distribution of
the exponential dispersion family as defined in Section 1.7, assuming the
variable z is limited. Hence the goal is to find a partition of R, Ry,..., Ry
defined by the bounds 7 = {Tj}jj\/ig, with 79 < --- < 7/ that is optimal
according to some rule. For simplicity it is assumed that z € [0, 1], hence
T():OaIldTle.

Setting E(y;) = p; = pu(z) and Var(y;) = a(¢)V (i) = a(¢)v;, the goal
is to find the optimal partition R* that minimizes

AED(r) = E :LG: @RJU_“)Q] , (3:2)
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where j; is the index of the interval to which ith observation is assigned.
Here we see that remarkably the aim is to find an estimate that adapts to
the true mean of the observations rather than to the data themselves.

However to find the optimal partition is in general computationally not
feasible and hence it is preferred to minimize a large sample approximation
to AED. Assuming that

i 2; are constants and their spacing can be expressed by F, 1(i/(n+1)),
where F, is a proper CDF and f, = F} is a density function

ii the cut points can be expressed as 7; = F1(j/M) where F is a proper
CDF and f, = F! is a density function

iii f; and f, are continuous and positive on [0, 1]
iv p/(z) is continuous on [0, 1]
for large n and M,

AED(7) ~ Jg&? + a(qu)M (3.3)

with
o [P b))
J(frip) —/0 g(u)v(u(u))d )

It can then be shown that the density that minimizes J(f-;p) is
(W (D)) } v
F2()v(u(t))

However, given some estimates (f;, 0;) for (u;, v;), a discrete approxima-
tion of (3.3) is minimized by choosing 7 according to

= |

T = min\ﬁ}(z) > ﬁ,
z
where «
. "0l (t
FT(t) — szl T’i REZZ)( )’

—1

Zz’:l 0i
2 -1

with R(z) = {t € Rt < z} and & = (fi; — fi—1)? (6;—1) 3 .

In this section our interest was just to produce an optimal choice of
the partition that may apply in insurance ratemaking, hence we omitted
the parts about the estimation of the optimal number of classes M or of
the partition having set the number of individuals in each class. This can
however be found in [O’Brien (2004)].
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3.3 The model

O’Brien’s approach remarkably relies on the intuition that within-bins ho-
mogeneity should not be considered with respect to the observed values
themselves, but with respect to the characteristics of their distributions and
this lead to the choice of (3.2) as the objective function. More formally,
the objective of the partition is that it should adapt to the pattern of the
expected values p;, rather than on the y;.

Our proposal is then to modify the regression tree approach in order to
implement this idea. Indeed if we have a tool that allows us to compute an
estimate of the pattern of the expectations, we can apply directly on that
estimate the regression tree procedure.

This is in fact the key of the model we propose. As we have seen in
previous chapters, there are several ways to produce estimates for the pattern
of the p;. In general, however, as we are modelling a count variable y;
describing the number of claims reported by ith policyholder, we assume
that

yi ~ ODP(pi; ¢), (34)

and we also assume that log(u;) = f(2;), f being a smooth function.

In Section 1.7, we presented a family of models that allows to compute
estimates for this model and we referred to them as GAM. GAM procedures
are allow to easily estimate f in a stable way?.

3.3.1 Some variants

Of course several variants of this methodology can be developed with slight
modifications. In principle, any other regression procedure can be used in
the fitting process in order to obtain an estimate for the p;. We proposed
to use a GAM procedure as in ratemaking, usually, several variables should
be incorporated and those models provide an elegant way to include them.
In principle, however, also other regression models can be used, such as, in
particular, GeDS methodology.

Several variants of this method can be proposed as, in principle, other
regression models can be used in order to estimate the pattern of p;. In
particular we focus on the variants built including the GeDS regression.

As we discussed in Chapter 2, in GeDS procedure it is suggested to tune
case by case the stopping rule, as it may provide unstable results. Hence we
consider also two sub-variants, including two modifications of stage A of the
algorithm.

The first has been introduced in Section 2.7.2 and it considers to replace
the Stage A procedure by a MARS regression. Relying on MARS procedure

For this purpose, we will take advantage of the mgev R package, [Wood (2006)]. The
estimation procedure will be based on thin plate regression splines and he smoothing
parameter will be selected via GCV criterion.
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guarantees much more stability, even if the knot placement is not chosen in
a geometrical way as claimed by GeDS procedure. A second way is to fix
the number of knots of the estimation procedure. This can be considered
as a minor change if compared to the previous one, as indeed this can be
intended as a replacement of the sopping rule with a trivial one.

Once obtained an estimate f we propose to choose the partition with a
regression tree based on the data {f(z),2}. As these estimates are on a
transformed scale with respect to the observed variable y, there is no need to
apply a Poisson tree, and thus we should rely on the usual one. However, as
we discussed in Section 2.3.1, GeDS regression can produce estimates on the
f scale that are useless if there is a wide interval where the observed values
are all zeroes. The estimate of the function f on an interval can be minus
infinity on the predictor scale and hence the binning cannot be made through
a regression tree on these estimates, as otherwise the thresholds would be
shrunk toward that interval. In order to avoid this, we will consider the
estimates on the u scale and hence we will apply the Poisson regression tree
on the estimates.

3.4 Performances

In this section we aim to show the performances of the estimators we de-
scribed and proposed through a simulation study. Our study is focused on
the study of the statistical properties of the proposed methods and hence
we do not implement a whole ratemaking model, but we consider just a
simplified one, taking into account just one factor.

One of the main drivers of the riskiness of a policy in MTPL is the age
of the policyholder. In general actuaries expect to observe a high claim
frequency for young policyholders as they are less experienced than other
drivers. At the same time, a similar behaviour is expected also for pol-
icyholders beyond a certain age as, while experience increases, alertness
decreases. However the effect is mitigated by the fact that an old person
usually uses the car less often as (s)he has probably already retired.

Modelling this effect through a straight line leads to unreliable estimates
and care should be taken also if other parametric models are considered.
Flexible semi-parametric or non-parametric models should be preferred and
thence we consider this example for our simulation study. Binning the poli-
cyholder age variable has been common practice as it has been a naive way
to model it allowing flexibility.

In our simulation study we will simulate data according to two functions.
In a first test we will consider a simple monotonic decreasing function, ob-
tained from real data, from the dataset distributed within the R package
MASS ([Venables and Ripley (2002)]). In that dataset the age is already

discretized in four categories, but we can recover a monotonic decreasing



CHAPTER 3. INSURANCE RATEMAKING 91

pattern, imposing an exponential decay. Hence the resulting risk function is
the black solid line drawn in Figure 3.2.

In a second test we will use a more reliable risk function. As described,
the pattern of the claim frequency with respect to the policyholder age is
more complicated than a monotonous risk function. Thence we introduce
a function, drawn in the black solid line in Figure 3.3. We obtained this
function directly from a major insurer active in the Italian market. Although
we had the possibility to use just a rescaled version of the true one, we
consider it to be a more realistic situation.

Basically we simulate a set of data according to the model (3.4), where
the values z; represent ages of the policyholders considering the two risk
functions described. We assume we have N = 10000 policyholders aged
between 18 and 95 and we simulate for each of them the number of claims
y?eW’J 1 =1,...,N occurred in a year, the superscript j indexing the simu-
lations. For each policyholder the age is set via pseudo-random simulation,
according to a realistic distribution of ages. For the number of claims, in-
stead, we assume it is Poisson distributed, the rate being implied from the
risk function.

On each vector, we run all the models described in previous sections,
obtaining the thresholds and the estimates of the frequencies for each age
E[Yi|z;]. We will denote them by gjgjk), where the subscript & identifies the
method adopted. 7

Computing premiums based on a smooth estimate f (z) or, more precisely
on exp| f (2)], would be optimal, in the sense that the discrimination of the
policyholders with respect to the age would be carried out as well as possible.
Even if for practical reasons this may not be possible, as discussed, we store
also the results obtained from a GAM and we will use them as a best practice
for the sake of comparison.

3.4.1 Practical implementation of the methods

In practice we will consider nine methods in our simulation. Hence here we
describe the practical aspects of them specifying, in parenthesis, the names
we will use in the remainder.

The simplest model we implement is the traditional one, that considers
a priori fixed thresholds (fixed). In fact we do not expect it to perform well,
but we include it as a minimum benchmark for all the other models and in
order to show that there may be a significant gain in applying a more refined
model.

The second method is O’Brien’s one (OB), that has already been widely
described in Section 3.2.3. The estimate of (fi;,0;) we adopt is obtained
through the GAM with the choice of the amount of smoothing based on the
UBRE criterion. On the estimates of the function f produced by the same
GAM, we also run a standard regression tree (GAM-Tree) in order to select
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Figure 3.2: Claim frequency as a monotonous function of age and partitions
obtained with several models

the thresholds. We use also the standard regression tree (Tree) directly
applied to the simulated data and its Poisson based variant (Tree-Pois).

We then implement four modifications of the regression tree based on
GeDS methodology: the pure GeDS (GeDS), the GedS with five internal
knots (GeDS5), the combination of MARS and GeDS procedures (MARS-
GeDS) and the same imposing to find knots in MARS stage with at least 10
years between them (MARS-GeDS2). As specified above, to all the estimates
it is applied a Poisson-regression tree in order to estimate a partition.

Of course in insurance practice the number of classes should be limited,
so we set M =5, i.e. we will look for 4 splits.

Figure 3.2 shows a partition on the monotonous function recovered from
the Insurance dataset, while Fig 3.3 shows a partition of the wigglier func-
tion adopted by the Italian insurer.

This is the result of a particular couple of samples, but it can already be
shown the issue arising when using the standard regression tree procedure.
As we can see, this procedure selects two very narrow splits of the age
variable and the estimate moves away from the true function. This is due to
the fact that the standard regression tree is designed to work with Gaussian
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Figure 3.3: Claim frequency as a non-monotonous function of age and par-
titions obtained with several models

data, while here data are counts generated from a Poisson distribution.

3.5 Montecarlo Simulation

In order to study properties of the other methods, we need a more thor-
ough approach and hence we implement a Montecarlo simulation. Hence,
considering again the same sample size N = 10000, we draw 2000 samples
according to the models described and we compute the estimates according
to the eight different models.

3.5.1 GoF Measures

Some rigorous measure is necessary in order to study how a method performs
compared to another one. We propose to measure the loss of information
by measuring the prediction error on each single simulated sample.

We define it as
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Figure 3.4: Boxplots of the prediction errors obtained with the models pre-
sented in Section 3.4, with simulations based on a monotonous risk function

el L e

Figure 3.5: Boxplots of the prediction errors obtained with the models pre-
sented in Section 3.4, with simulations based on a non-monotonous risk
function

and overall measure of prediction error is

Note that we measure the error with respect to the single simulated values
rather than to the value of the underlying risk function. Hence we have the
possibility to compare the estimators only if applied to the same simulated
sample.

As we consider the pure GAM fit to be somehow the best but practically
unapplicable estimator, we will consider in our plots the difference between
the prediction error of the methods and the one of the GAM. Hence we will
draw the increase in prediction error due to the model choice. We define it
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é](c]) _ el(fj) _ CE)J),

with eg denoting the prediction error of the pure GAM.

3.5.2 Results

Results are resumed in the boxplots in Figure 3.4 and 3.5. From these
boxplots some interesting and unexpected conclusions can be outlined.

Considering the first Figure 3.4, we see that the worst approaches are
the ones based on the regression tree applied directly to the data. It is
remarkable the fact that their performances are even worse than the ones
we obtain from the a priori fixed thresholds approach. This is a conclusion
that we were somehow expecting, but surprisingly we see that also O’Brien’s
method do not show significantly better results than the fixed coefficients
one.

The best estimator is the GAM-Tree, as it can be seen. However, remark-
ably, also the GeDS and GeDS5 methods show a good behaviour. Consider-
ing the outliers, GeDS5 method seems to be a bit better, and this suggests
that we were correct in fearing that sometimes the algorithm is too unstable
in the selection of the number of knots. We can also see that MARS-GeDS
based estimators give in general worse results. Our experience also suggests
that the number of knots selected by MARS-GeDS procedures is too low to
allow a good approximation of the true underlying function.

Performances of O’Brien’s model are quite good, but they are worse than
the ones obtained from GAM-Tree and GeDS5 methods.

Figure 3.5 shows the boxplots of the prediction error resulting from the
Montecarlo simulation based on the second model.

Also in this case, we see that the Tree and Tree-Pois methods do not
perform well. Considering the other methods, similar conclusions can be
derived.

We also note that, while with the previous model MARS-GeDS and
MARS-GeDS2 showed almost the same results, here the distributions appear
to be different, although they are again very similar. This is a sign that the
constraint that imposes at least 10 years between two knots here is effective,
while for the previous model it didn’t affect the estimates.

Surprisingly, in this case the fixed threshold method gives results that
are sensibly better also if compared with the MARS-GeDS methods.

Table 3.1 resumes some basic statistics of the results we get from the
simulation. While the first column identifies the estimation procedure fol-
lowed, columns 3 and 4 show the means and the standard deviations of the
prediction errors observed when simulating from the monotonous risk func-
tion. Columns 5 and 6, then, resume the same results obtained under the
model that involves the wigglier function.
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Figure 3.6: Density estimates of the distributions of the four thresholds
selected by the eight (non-trivial) methods. The 2000 samples of 10000
observations are simulated according to the monotonous risk function.

This table quantifies what was apparent from Figures 3.4 and 3.5. In
particular we see that also GeDS5 estimator gives better results than the
Fixed thresholds one, both considering the mean and the dispersion of the
distribution of the prediction error.

One interpretation of this is that with a non linear function such as the
underlying one, the optimal choice of the thresholds is not straightforward.
With some methods, the choice of the thresholds is so inaccurate that it is
better to choose them a priori than to rely on estimates.

The last intuition is also supported by the plots in Figure 3.6 and 3.7.
Figure 3.6 shows a comparison of kernel density estimates of the distribu-
tion of the thresholds selected by the eight methods, omitting the trivial
estimator. Density estimates are obtained with Gaussian kernel, setting
the bandwidth parameter equal to 1. In the first panel we plot densities
of the first (lower) threshold estimated and so on, up to the fourth panel,
representing the distribution for the last threshold. In Figure 3.7, then, we
draw the same plot, but based on the results of the simulation involving the
non-monotonous risk function.
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Figure 3.7: Density estimates of the distributions of the four thresholds
selected by the eight (non-trivial) methods. The 2000 samples of 10000
observations are simulated according to the non-monotonous risk function.

By plots in Figure 3.6 we can conclude that all the methods but the
simple regression tree are quite stable in the selection at least of the first
two splits. However, we can see that some of the distributions associated
show heavier tails than others even in the second panel. We note also that
the distributions are more dispersed in the lower panels than in the higher
ones. This effect is due to the fact that the distribution of the ages is not
uniform and we simulate a small number of policyholders and hence of data
at higher ages. Moreover also the underlying risk function .

We also see that the estimates produced by the standard regression tree
are useless considering the nature of the problem. Often the first split is se-
lected around the 75 years and this does not make sense in MTPL ratemak-
ing.

In particular most stable estimates are achieved by GAM-Tree, GeDS
and GeDS5 methods, but we see that the thresholds selected by GeDS-based
methods are in general lower than GAM ones.

Considering Figure 3.7, at a first glance, we see that the density estimates
of the three methods that were performing well in the other simulation
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Monotonic Non-monotonic

Tree-Pois  1.399 (1.110) 0.886 (0.836)
Tree 2.602 (1.831)  1.169 (
OB 0486 (0.635) 0318 (
GAM-Tree 0276 (0.423)  0.097 (
GeDS  0.336 (0.599)  0.171 (
GeDS5 0.349 (0.576) 0.120  (0.400
(0.852) (
(0.852) (
(0.694) (

MARS-GeDS 0.868 0.572
MARS-GeDS2 0.861
Fixed 0.507

0.574
0.176

Table 3.1: resume statistics

appear to be even more leptokurtic and hence the selection of the thresholds
under this function seems to be more stable than under the previous one.
Considering the picture in Figure 3.2, we can see that in fact the risk function
is almost flat from around the age of 60 on. As the observations are discrete,
in finite samples it is very difficult to see the effects of the dissimilarity
between the claims frequency at ages higher than 60.

However, if we consider the other methods, we see the opposite behaviour
for almost all of them. Already in the second panel we see that the distri-
butions are more dispersed.

It is also remarkable that the selection of the last two thresholds in the
O’Brien’s method is the most stable one. However, in practice, setting a
split at the age of 80 may not be reasonable as the number of policyholders
at those ages is low.



Chapter 4

Conclusions

Several flexible regression models are nowaday available as they have been
implemented in most statistical software. This makes these models imme-
diately accessible to the researcher who is aiming to limit the imposition of
constraints and assumptions when studying a problem.

As we have seen in Chapter 1 the class of those models is very wide
as each of them implements different strategies in order to allow to obtain
flexible estimates. Thus, each of them ensures the estimates to fulfil some
properties. It is a task of the researcher to choose among the models, se-
lecting the one that better suits the purposes of the study, ensuring to both
fit the data and at the same time to meet the requirements imposed by
practical aspects involving the aim of the study.

Some “noble” and widely accepted regression models are now part of the
bouquet of tools of researchers and they are often used in several different
fields, but it does not exists a model that outperforms the others in all
possible situations.

In Chapter 2 we introduced GeDS model, a non-parametric approach
that is based on a geometrical interpretation of the placement of the knots
of a polynomial spline. We showed that this model, with some objective
functions, is able to outperform other flexible models, although some of its
features still need to be refined.

It has been possible study some properties of the estimates obtained via
GeDS regression, by setting the framework to obtain asymptotically correct
confidence intervals and a consistent version of the likelihood ratio test. In
this work we presented some theoretical asymptotic results, while the finite
sample properties still need to be studied.

Some efforts were also spent in order to show that this approach can be
efficiently implemented is statistical software. This estimator still requires
some care in order to be applied properly, depending on the data under study.
In order to allow the researcher to calibrate the estimation procedure, we
left in the algorithm several optional inputs that modify some of the features
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and help to get a reliable estimate.

In this thesis we presented several examples of application of flexible
regression models in the actuarial field. In particular in Chapter 3 we devel-
oped some models that can be applied in the ratemaking problem. In this
field, estimators should return estimates as accurate as possible, but, at the
same time, they should be simple and understandable.

We then introduced some models that combine together other more sim-
ple ones and we showed their performances through simulation studies based
first on a theoretical example and then on a more realistic one. We found
that they perform better than other models adopted in common practice,
yet preserving the simplicity of the results. The simulation studies were
applied on univariate data and it would be interesting, as further research
on this field to test them on a multivariate framework. In order to validate
these models, then, it would be necessary to test them on real data, but up
to now we didn’t have the chance to do this.

In summary, we aimed to give our contribution to the flexible regression
modelling by the introduction and validation of some new models. As our
alm was to give a contribution useful from the point of view of an insurance
company, we did not focus only on theoretical aspects, but we also took care
of practical ones. Our work can then be intended as part of the applied
statistics framework.

We hope that the models introduced in this work may become part of
the set of tools used by actuaries in practice, although we have seen that
GeDS model can be useful in a wider range of fields.

We wish that the models presented may become useful in insurance prac-
tice helping the companies to develop their own internal models for the risk
assessment. As we implicitly introduced in the preface, the models we devel-
oped are not intended to cover this task for the companies as a whole, but the
aim was to focus on the basis on which a truly reliable and comprehensive
model can be built.

These models should help actuaries in the construction of several small
bricks of the whole internal model. If the simpler modules of the whole model
are built in order to properly assess and evaluate risks and if the behaviour
of those sub-models is studied, then it is simpler and more efficient the
aggregation in a comprehensive model.
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Package ‘GeDS’

February 17, 2017

Type Package
Title GeDS

Version 0.1
Date 2017-17-02

Author Vladimir Kaishev <Vladimir.Kaishev.1@city.ac.uk>,
Dimitrina Dimitrova <D.Dimitrova@city.ac.uk>,
Andrea Lattuada <Lattuada.Andrea@spes.uniud.it> and
Richard Verrall <R.J.Verrall@city.ac.uk>

Maintainer Andrea Lattuada <Lattuada.Andrea@spes.uniud.it>

Description Implemetation of the Geometrically Designed Spline (GeDS) Regression.
GeDS Regression is a non parametric method with a geometrical interpretation
based on B-splines that authomatically selects number and position of the
knots and the order of the splines to be used. The package includes both
the original version and the generalized one that allow the distribution
of the response variable to be one of the Exponential Family.

License GPL-3
LazyData TRUE

Depends R (>=3.2.2),
Repp (>=0.12.1),
splines,
stats,

Matrix,
methods

LinkingTo Rcpp
RoxygenNote 5.0.1

R topics documented:

BaFe2AsS2 . . . . . . e e e e 108
Bivariatel . . . . . . . . e e e e e e e 109
Bivariate2 . . . . . . .. e e e e e e 110
Bivariate3 . . . . . . .. e e e e e 110
coalMining . . . . . . ... e e e e 111
coef.GeDS . . . . L e e e 111
Derive . . . . . . e e e e e e 112
deviance.GeDS . . . . . .. e e 113
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BaFe2As2
EWmortality . . . . . . ... 113
A 114
Fitters . . . . . . e e e 115
GeDS-Class . . . . . . . e 116
GGeDS . . . e 117
Integrate . . . . . . . L e 120
IRLSAit . . . e 121
knots.GeDS . . . . . e 123
lines,GeDS-method . . . . . . . . . . . 123
NGeDS . . . e 124
plot,GeDS-method . . . . . . . . ... 126
PPolyRep . . . . . . . . e 128
predict.GeDS . . . . L e e 129
print.GeDS . . . L. 130
splineDesign2 . . . . . . ... 131
SplineReg . . . . . . . .. 132

BaFe2As2 Barium-Ferrum-Arsenide powder diffraction data

Description

This dataset collects the results of a neutron diffraction experiment on Barium-Ferrum-Arsenide
powder carried out by Kimber et al. (2009). The neutron diffraction intensity was measured at
several dispersion angles in order to fit the diffraction profile.

Usage

BaFe2As?2

Format

A data.frame with 1151 cases and 2 variables:

X the dispersion angle.

Y the diffraction intensity.

Source

http://openaccess.city.ac.uk/

References

Kaishev, V.K., Dimitrova, D.S., Haberman, S. and Verrall, R.J. (2015). Geometrically designed,
variable knot regression splines. Computational Statistics, [Peer Reviewed].

Kimber, S.A.J., Kreyssig, A., Zhang, Y.Z., Jeschke, H.O., Valenti, R., Yokaichiya, F., Colombier, E.,
Yan, J., Hansen, T.C., Chatterji, T., McQueeney, R.J., Canfield, P.C., Goldman, A.I. and Argyriou,
D.N. (2009). Similarities between structural distortions under pressure and chemical doping in
superconducting BaFe; As,. Nat Mater 8, 471-475.


http://openaccess.city.ac.uk/12418/
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Examples

## Not run:

data('BaFe2As2')

(Gmod2 <- GeDS(Y ~ f(X), data = BaFe2As2, beta = 0.6, phi = 0.99, q = 3))
plot(Gmod2)

## End(Not run)

Bivariatel Simulated data for bivariate examples

Description

Bivariatel, Bivariate2 and Bivariate3 contain simulated data on woch one can run examples
for the bivariate GeDS function.

Usage

Bivariatel

Format

Lists with the following components:

x vector of x values.
y vector of y values.

z vector of response values.

Examples

## Not run:

data("Bivariate1")

ddd<-NGeDS(z~f(x,y),phi=.8,q9=2, data=Bivariatel,show=T, beta=.3)
ddd<-NGeDS(z~f(x,y),phi=.95,9=2, data=Bivariatel,show=T, beta=.3)
plot(ddd)

ddd<-NGeDS(z~f(x,y),phi=.95,9=2, show=T, beta=.3)

plot(ddd)

data("Bivariate2")

cce<-NGeDS(z~f(x,y),phi=.8,q9=2, data=Bivariate2,show=T, beta=.3)
plot(ccc)

data("Bivariate3")

cce<-NGeDS(z~f(x,y),phi=.99,9=2, data=Bivariate3,show=T, beta=.1)
plot(ccc)

## End(Not run)
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Bivariate2 Simulated data for bivariate examples

Description

Bivariatel, Bivariate2 and Bivariate3 contain simulated data on woch one can run examples
for the bivariate GeDS function.

Usage

Bivariate2

Format
Lists with the following components:
x vector of x values.

y vector of y values.

z vector of response values.

Bivariate3 Simulated data for bivariate examples

Description

Bivariatel, Bivariate2 and Bivariate3 contain simulated data on woch one can run examples
for the bivariate GeDS function.

Usage

Bivariate3

Format
Lists with the following components:
x vector of x values.

y vector of y values.

z vector of response values.
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coalMining Coal Mining Disasters data

Description

The dataset records the number of disasters in British coal mines from 1850 to 1962.

Usage

coalMining

Format
A data.frame with 112 entries, corresponding to the years from 1851 to 1962. Each entry has:

accidents number of severe accidents occurred.

years accident year.

References
Carlin, B.P.,Gelfand, A.E. and Smith, A.FEM. (1992). Hierarchical Bayesian analysis of changepoint
problems. Applied Statistics, 41(2), 389-405

Eliers, PH.C. and Marx, B.D. (1996). Flexible Smoothing with B-splines and Penalties. Statistical
Science, 11(2), 89—-121.

coef.GeDS Coef method for GeDS objects

Description

Method for the function coef that allows to extract the estimated coefficients from a fitted GeDS-Class

object.
Usage
## S3 method for class 'GeDS'
coef(object, n = 3, onlySpline = TRUE, ...)
Arguments
object the object from which coefficients should be extracted
n the order of the sline to be considered
onlySpline logical. Should only the B-spline coefficiens be extracted?

potentially further arguments (required by the definition of the generic function).
They will be ignored, but with a warning.
Details

This is a simple method for the function coef. As GeDS objects contain three different fits, it is
possible to specify the order of the spline through the input n.
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Value

A named vector in which each element represents a coefficient associated to one of the B-splines or
to one of the terms linearly modeled.

See Also

coef for the standard definition; NGeDS for examples.

Derive Derivative of GeDS objects

Description

This function computes derivatives of splines fitted via GeDS regression.

Usage

Derive(object, x, order = 1, n = 3)

Arguments
object the GeDS object containing the fitted splines.
X numeric vector containing locations where it is desired to compute the deriva-
tive.
order the order of integration desired. Note that it should be lower than n.
n the order of the spline to be considered.
Details

The function is based on the the function splineDesign and computes the exact derivative of
the fitted spline. It is based on the B-spline representation, hence it is not designed to work on a
transformed scale and it computes the derivative only on the linear predictor scale in the generalized
framework.

Examples

set.seed(123)

N <- 500
f_1 <= function(x) (10*x/(1+100*x"2))*4+4
newX <- sort(runif(N ,min = -2, max = 2))

means <- f_1(newX)

newY <- rnorm(N, means, sd = 0.1)

Gmod <- NGeDS(newY ~ f(newX), beta = 0.6, phi=.995, Xextr = c(-2,2))
Derive(Gmod, x = c(@,-1,1), order = 2, n = 4)
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deviance.GeDS Deviance method for GeDS objects

Description

This method allows the user to extract the deviance from GeDS-Class objects.

Usage
## S3 method for class 'GeDS'
deviance(object, n =3, ...)
Arguments
object the object from which deviance should be extracted
n numeric value indicating the order of the spline to be considered.

potentially further arguments (required by the definition of the generic function).
They will be ignored, but with a warning.

Details

This is a method for the function deviance. As GeDS objects contain three different fits, it is
possible to specify the order of the spline through the input n.

Value

A numeric value corresponding to the model deviance.

See Also

deviance for the standard definition; GGeDS for examples.

EWmortality Death counts in England and Wales

Description
The dataset consists of aggregated informations about the mortality of the English and Welsh male
population between 2000 and 2002.

Usage

EWmortality

Format

A data frame with 109 entries and 3 variables: Age, Deaths and Exposure.

Exposure is a mid-year estimate of the population.
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f Defining non parametric part in a GeDS formula.

Description

Function to be used in the formula of a GeDS regression in order to identify which regressor(s)
should be modeled non parametrically.

Usage
f(x, xx = NULL, ...)
Arguments
X vector containing the first non parametric regressor.
XX vector containing the second regressor in case of a bivariate verision of the al-
gorithm.
further arguments. As only the univariate and bivariate versions have been im-
plemented, specifying these arguments will return an error.
Note

This function is intended to be used only as part of the formula in a GeDS regression.

See Also

NGeDS; GGeDS.

Examples

set.seed(123)

N <- 500
f_1 <= function(x) (10*x/(1+100*x"2))*4+4
newX <- sort(runif(N ,min = -2, max = 2))

means <- f_1(newX)

newY <- rnorm(N, means, sd = 0.1)

regl <- runif(500, min = -0.1, max = 0.1)
reg2 <- runif(500, min = -0.2, max = 0.2)
off <- runif (500, min = -1, max = 1)

formula <- newY ~ f(newX) + regl + reg2 + offset(off)

(Gmod <- NGeDS(formula, beta = 0.6, phi = 0.995, Xextr = c(-2,2)))
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Fitters Functions used to fit GeDS objects.

Description

Fitter functions for GeDS Univariate regression.

Usage

UnivariateFitter(X, Y, Z = NULL, offset = rep(@, NROW(Y)),

weights

max.intknots
tol = as.double(le-12), stoptype

rep(1, length(X)), beta
300, q = 2, extr

0.5, phi = 0.5, min.intknots
range(X), show.iters = FALSE,
C(”SR”, ”RD", ”LRH))

o,

GenUnivariateFitter(X, Y, Z = NULL, offset = rep(@, NROW(Y)),

weights
phi = 0.5,
extr
stoptype =

Arguments

offset

weights

beta

phi
min.intknots
max.intknots
q

extr
show.iters
tol

stoptype

family

range(X), show.iters

rep(1, length(X)), family = gaussian(), beta
min.intknots = @, max.intknots = 300, q = 2,
F, tol = as.double(le-12),
c("SR", "RD", "LR"))

0.5,

a vector of length n containing the regressor to be modeled non-parametrically.
a vector of length n containing the observations.

a design matrix (possibly NULL) containing other regressors, to be modeled lin-
early.

this can be used to specify an a priori known component to be included in the
predictor during the fitting procedure.

an optional vector of ’prior weights’ to be used in the fitting process. Should be
NULL or a numeric vector of length n.

parameter for the GeDS fitting algorith. See documentation.

parameter for the stop criterium. See documentation.

minimum number of internal knots required.

maximum number of internal knots required.

number of iterations considered for the stop criterium. See documentation.
locations of the boundary knots.

logical indicating whether to print or not step by step informations.
tolerance to be used in the knot placement steps.

a character string indicating the stopping rule to be considered. It should be one
of "SR", "RD" or "LR", partial match allowed.

a description of the error distribution and link function to be used in the model.
This can be a character string naming a family function, a family function or
the result of a call to a family function. (See family for details about family
functions).
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Details
Those functions are not intended to be directly used, they should be called through NGeDS and
GGeDS.

References
Kaishev, V.K., Dimitrova, D.S., Haberman, S., & Verrall, R.J. (2015). Geometrically designed,
variable knot regression splines. Computational Statistics.

See Also
NGeDS, GGeDS, GeDS-Class and SplineReg.

Examples

# a couple of examples similar to the ones
# presented in NGeDS and in GGeDS
set.seed(123)

N <- 500
f_1 <= function(x) (10*x/(1+100*x"2))*4+4
newX <- sort(runif(N ,min = -2, max = 2))

means <- f_1(newX)

newY <- rnorm(N, means, sd = 0.1)

(Gmod <- UnivariateFitter(newX, newY, beta = 0.6, phi = 0.995,
extr = c(-2,2)))

set.seed(123)
newX <- sort(runif(N ,min = -2, max = 2))
means <- exp(f_1(newX))
newY <- rpois(N,means)
(Gmod2 <- GenUnivariateFitter(newX, newY, beta = 0.2,
phi = 0.995, family = poisson(), extr = c(-2,2)))

plot(newX, log(newY),xlab = "x", ylab = expression(f[11(x)))
lines(Gmod2,n = 3, col = "red")
lines(Gmod2,n = 4, col = "blue”, 1ty = 2)
legend("topleft”, c("Quadratic”,"Cubic"),

col = c("red","blue"), lty = c(1,2))

GeDS-Class GeDS Class

Description
A fitted GeDS object returned by functions NGeDS or GGeDS inheriting from class "GeDS". Method
functions coef, knots, print, predict, plot, lines and summary are available.

Slots

Type The type of the regression performed. One of "LM - Univ", "LM - Biv" or "GLM - Univ".
Linear.Knots The locations of the knots selected for the second order spline

Quadratic.Knots The locations of the knots selected for the third order spline
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Cubic.knots The locations of the knots selected for the fourth order spline

Dev.Linear Deviance of the fitted second order spline

Dev.Quadratic Deviance of the fitted third order spline

Dev.Cubic Deviance of the fitted second fourth spline

Linear List containing the results form a SplineReg function used to fit a second order spline
Quadratic List containing the results form a SplineReg function used to fit a third order spline
Cubic List containing the results form a SplineReg function used to fit a fourth order spline
Stored Matrix containing the knots selected at each step of stage A.

Args List containing the values passed to the Fitters function.

Call The call to the Fitters functions.

Nintknots number of internal knots selected in Stage A of the algorithm.

iters Number of stage A iterations.

Guesses Starting values for the coefficients used at each iteration of stage A in order to fit the
spline coefficients. As the starting values are used only in the IRLS procedure, this slot is not
empty only if the object is created via GGeDS function.

Coefficients Matrix containing the coefficients fitted at each step of stage A.
deviance Vector containing the deviance for each single IRLS iteration for stage A.
iter Vector containing the progressive number of IRLS iterations for stage A.
stopinfo List of values.

Formula The model formula.

extcall call to the NGeDS or GGeDS functions.

terms terms object containing information on the model frame.

GGeDS Generalized Geometrically Designed Spline regression

Description

GGeDS runs the generalized version of the Geometrically Designed Spline regression.

Usage

GGeDS(formula, data, family = gaussian(), weights, beta, phi = 0.99,
min.intknots = @, max.intknots = 300, q = 2, Xextr = NULL,
show.iters = FALSE, stoptype = "SR")

Arguments
formula a description of the structure of the model to be fitted. See formula for details.
data an optional data frame, list or environment containing the variables in the model.
If not found in data, the variables are taken from environment (formula), typ-
ically the environment from which GGeDS is called.
family a description of the error distribution and link function to be used in the model.

This can be a character string naming a family function, a family function or the
result of a call to a family function. (See family for details of family functions).
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weights an optional vector of ‘prior weights’ to be used in the fitting process. Should be
NULL or a numeric vector of the same length as the other input variables.

beta parameter for the GeDS fitting algorith controlling the knot placement proce-
dure. See documentation.

phi treshold for the stop criterium. See documentation.
min.intknots minimum number of internal knots required.

max.intknots  maximum number of internal knots required.

q number of iterations considered for the stop criterium. See details.

Xextr boundary knots of B-splines.

show.iters logical indicating whether to print or not step by step informations.

stoptype a character string indicating the stopping rule to be considered. It should be one

of "SR", "RD" or "LR", partial match allowed.

Details

GGeDS is one of the main functions of the package and it can be used to perform a GeDS regression
under the assumption that the dstribution of the response variable belongs to the exponential family.
A detailed description of the underlying algorithm can be found in Kaishev et al. (2016).

The argument formula should specify a semiparametric part and (optionally) a parametric part.
The semiparametric part should be specified through the function f. Non specification of the term
to be modeled via spline regression will return an error. Following the same scheme adopted by
other R functions, it is possible to specify one or more offset variables, i.e. known terms with a
fixed coefficient equal to 1. These terms should be identified via the function offset.

Three possible stopping rules for the knot selection are implemented. Setting stoptype equal to
"RD", that stands for Ratio of Deviances, the rule considered is a generalization of the one described
in Kaishev et al. (2015) that was based the sum of squared residuals. Setting "SR", i.e. Smoothed
Ratio, it is adopted the smoothed version of the RD rule, described in Kaishev et al. (2016). The
"LR" (Likelihood Ratio) is the rule based on the difference of deviances rather than on the ratio and
hence it performs a log likelihood ratio test at each iteration in order to decide whether the knot
selection procedure should stop or continue.

Note that with the LR stopping rule the threshold phi has the opposite behaviour compared to the
other cases, i.e. the lower phi will select less knots. Further details on the stopping rules can be
found in Kaishev et al. (2016).

Value

a GeDS-Class object containing several items that resume the main details of the regression. See
GeDS-Class for details. Some S3 methods are available in order to make these objects tractable.

References
Kaishev, V.K., Dimitrova, D.S., Haberman, S., & Verrall, R.J. (2015). Geometrically designed,
variable knot regression splines. Computational Statistics.

See Also

NGeDS; GeDS-Class; S3 methods such as coef.GeDS, deviance.GeDS, knots.GeDS, print.GeDS
and predict.GeDS; Integrate and Derive; PPolyRep.
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Examples

set.seed(123)

N <- 500
f_1 <= function(x) (10*x/(1+100*x"2))*4+4
newX <- sort(runif(N ,min = -2, max = 2))

means <- exp(f_1(newX))

newY <- rpois(N,means)

(Gmod <- GGeDS(newY ~ f(newX), beta = 0.2, phi = 0.995, family = poisson(),
Xextr = c(-2,2)))

plot(newX, log(newY),xlab = "x", ylab = expression(f[1]1(x)))

lines(Gmod,n=3,col="red")

lines(Gmod,n=4,col="blue",1ty=2)

legend("topleft”,c("Quadratic”,"Cubic"),col=c("red"”,"blue"),lty=c(1,2))

predict(Gmod, n = 3, newdata=data.frame(newX = 0))
predict(Gmod, n = 3, newdata=data.frame(newX = @), type = "link")

knots(Gmod)
coef (Gmod)
deviance(Gmod)

knots(Gmod, n = 4)
coef(Gmod, n = 4)
deviance(Gmod, n = 4)

HHHHHHHHHHARERHHHHHEHHHAHR A
# A real data example

data("coalMining")

(Gmod2 <- GGeDS(formula = accidents ~ f(years), beta = 0.1, phi = 0.98,
family = poisson(), data = coalMining))

(Gmod3 <- GGeDS(formula = accidents ~ f(years), beta = 0.1, phi
family = poisson(), data = coalMining))

plot(coalMining$years,coalMining$accidents, ty="h", xlab="Years"”,ylab="Accidents")

lines(Gmod2, tr = exp, n = 4, col = "red")

lines(Gmod3, tr = exp, n = 4, col = "blue”, 1ty = 2)

legend("topright”,c("phi = ©.98","phi = 0.985"),col=c("red”,"blue"),lty=c(1,2))

0.985,

## Not run:
HHHEHHEEHE A A
# The same regression in the example of GeDS
# but with Gamma response

data('BaFe2As2')
(Gmod4 <- GGeDS(Y ~ f(X), data = BaFe2As2, beta = 0.6, phi
family = Gamma(log), stoptype = "RD"))

0.995, q = 3,
plot(Gmod4)

(Gmod5 <- GGeDS(Y ~ f(X), data = BaFe2As2, beta = 0.1, phi = 0.995, ¢
family = poisson(), stoptype = "SR"))

n
w

plot(Gmod5)

## End(Not run)
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S
# Life tables

data(EWmortality)

attach(EWmortality)

(M1 <- GGeDS(formula = Deaths ~ f(Age) + offset(log(Exposure)),
family = poisson(), phi = 0.99, beta = 0.1, q = 3,
stoptype = "LR"))

Exposure_init <- Exposure + 0.5 * Deaths

Rate <- Deaths / Exposure_init

(M2 <- GGeDS(formula = Rate ~ f(Age), weights = Exposure_init,
family = quasibinomial(), phi = 0.99, beta = 0.1,
g = 3, stoptype = "LR"))

op <- par(mfrow=c(2,2))

plot(Age, Deaths/Exposure, ylab = expression(mu[x]), xlab = "Age")

lines(M1, n = 3, tr = exp, lwd = 1, col = "red")

plot(Age, Rate, ylab = expression(q[x]), xlab = "Age")

lines(M2, n = 3, tr = quasibinomial()$linkinv, 1lwd = 1, col = "red")

plot(Age, log(Deaths/Exposure), ylab = expression(log(mu[x])), xlab = "Age")

lines(M1, n =3, 1wd = 1, col = "red")

plot(Age, quasibinomial()$linkfun(Rate), ylab = expression(logit(q[x1)), xlab = "Age")
lines(M2, n =3, 1wd = 1, col = "red")

par (op)

Integrate Integrate GeDS objects

Description

This function computes integrals of splines fitted vie GeDS regression.

Usage

Integrate(object, to, from, n = 3)

Arguments
object the GeDS object containing the fitted splines
to numeric vector containing the upper limits of integration
from optional numeric vector containing the lower limits of integration. Default to
the lower boundary knot of the spline.
n the order of the spline to be considered
Details

The function is based on the formula at page 128 of De Boor (2001), computing the exact integral
of the fitted function. It is based on the B-spline representation, hence it is not designed to work
on a transformed scale and it computes the integral on the predictor scale even in the generalized
framework.
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References
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De Boor, C. (2001). A Practical Guide to Splines (Revised Edition). Springer, New York.

Examples

set.seed(123)
N <- 500

f_1 <= function(x) (10*x/(1+100*x"2))*4+4
newX <- sort(runif(N ,min = -2, max = 2))
means <- f_1(newX)

newY <- rnorm(N, means, sd = 0.1)

Gmod <- NGeDS(newY ~ f(newX), beta
Integrate(Gmod, to = c(-1,1), from
Integrate(Gmod, to = c(-1,1), from

## Not run:

0.6, phi=.995, Xextr = c(-2,2))
1,n=3)
c(1,-1),n=3)

Integrate(Gmod, to = 1, from = c(1,-1),n=3)

## End(Not run)

IRLSfit

IRLS Algorithm

Description

This function performs IRLS algorithm in an efficient way considering the usage required in the

GeDS package.

Usage

IRLSfit(x, y, weights = rep(1, nobs), mustart = NULL, offset = rep(0,
nobs), family = gaussian(), control = list(), etastart = NULL)

Arguments

X

y
weights

mustart

offset

family

control

a design matrix of dimension n * p
a vector of observations of length n.

an optional vector of *prior weights’ to be used in the fitting process. Should be
NULL or a numeric vector of length n.

starting values for the vector of means.

this can be used to specify an a priori known component to be included in the
linear predictor during fitting.

a description of the error distribution and link function to be used in the model.
This can be a character string naming a family function, a family function or the
result of a call to a family function. (See family for details of family functions).

a list of parameters for controlling the fitting process. For glm.fit this is passed
to glm.control.
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Details

This function is a slightly modified version of the glm. fit in package stats to which we refer for
further details. Basically the difference in the inputs is that it admits starting values only for the y;s.

In the output it produces some more slots. We remark that the slots weights, res2 and z contain
values computed after the last iteration, i.e. they are based on the estimated coefficients that will be
returned.

The source code contains some commented lines that produce step by step plots within IRLS iter-
ations. We left them as comments as they are time consuming, but experienced R users may find
them useful.

Value

A list containing:

coefficients
residuals

res2
fitted.values

rank
family

a named vector of coefficients

the working residuals, that is the residuals in the final iteration of the IWLS fit.
Since cases with zero weights are omitted, their working residuals are NA.

the working residuals after the final iteration. They are used in the knot place-
ment procedure in GeDS algorithm

the fitted mean values, obtained by transforming the linear predictors by the
inverse of the link function.

the numeric rank of the fitted linear model.
the family object used.

linear.predictors

deviance
lastdeviance
aic
null.deviance

iter
weights

prior.weights
df.residual
df.null

y

z

converged
boundary

the linear fit on link scale.

a vector of the deviances obtained at each step.

the deviance at the last step.

A version of Akaike’s Information Criterion. See glm.

The deviance for the null model, comparable with deviance. The null model will
include the offset, and an intercept if there is one in the model. Note that this
will be incorrect if the link function depends on the data other than through the
fitted mean: specify a zero offset to force a correct calculation.

the number of iterations of IRLS used.

the working weights after the last iteration, that is the weights in the final itera-
tion of the IRLS fit.

the weights initially supplied, a vector of 1s if none were.

the residual degrees of freedom.

the residual degrees of freedom for the null model.

the y vector used.

the pseudo-data computed after the last iteration.

logical. Was the IRLS algorithm judged to have converged?
logical. Is the fitted value on the boundary of the attainable values?

In addition, non-empty fits will have components gr, R and effects relating to the final weighted

linear fit.

See Also

glm.fit
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knots.GeDS Knots method for GeDS objects

Description

Knots method for GeDS objects

Usage
## S3 method for class 'GeDS'
knots(Fn, n = 3, options = c("all”, "internal”), ...)
Arguments
Fn the object from where the knots should be extracted.
n the spline order.
options a character string specifying whether "all" knots should be extracted (the de-

fault) or only the "internal" ones.

potentially further arguments (required by the generic). only the "internal"
ones.
Details

This is a method for the function knots in the stats package.

The input parameter n can be used to specify the order of the spline fit from which to extract the
knot locations.
Value

A named vector in which each element represents a knot location of the B-splines on which the fit
is based.

See Also

knots for the standard definition; NGeDS and GGeDS for examples.

lines,GeDS-method Lines function method for GeDS-Class objects

Description

Lines function method for GeDS-Class objects

Usage

## S4 method for signature 'GeDS'
lines(x, n = 3, transform = function(x) x,
onlySpline = TRUE, data = data.frame(), ...)
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Arguments

X
n

transform

onlySpline
data

Details

NGeDS

a GeDS-Class object.
the order of the spline that should be drawn.

a function that can be used to transform the Y axis scale. Tipically it can be the
inverse of the link function if the plot is on the scale of the response variable.

logical. Should only the spline be drawn of also the cefficiens be extracted?

an optional data frame where if onlySpline is set to FALSE the values of the lin-
early modeled or known terms are seeked. If left empty the values are extracted
from the object.

further arguments to be passed to the default 1ines function.

This method can be used to add a line in an active plot corresponding to the GeDS fit. As in other
methods provided for GeDS-Class objects, the user is allowed to specify the order of the spline to
be fitted via the argument n.

See Also

NGeDS and GGeDS; lines.

Examples

set.seed(123)

N <- 500

f_1 <= function(x) (10*x/(1+100*xx"2))*4+4

newX <- sort(runif(N ,min = -2, max = 2))

means <- f_1(newX)

newY <- rnorm(N, means, sd = 0.1)

(Gmod <- NGeDS(newY ~ f(newX), beta = 0.6, phi=.995, Xextr = c(-2,2)))

plot(Gmod)

lines(Gmod, n = 2, col = "green”, 1lwd = 2, 1ty = 3)

NGeDS

Geometrically designed spline regression

Description

NGeDS runs the linear version of the Geometrically Designed Spline regression.

Usage

NGeDS(formula, data, weights, beta = 0.5, phi = ©0.99, min.intknots = 9,
max.intknots = 500, q = 2, Xextr = NULL, Yextr = NULL,
show.iters = FALSE, stoptype = "RD")
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Arguments

formula a description of the structure of the model to be fitted. See formula for details.

data an optional data frame, list or environment containing the variables in the model.
If not found in data, the variables are taken from environment (formula), typ-
ically the environment from which NGeDS is called.

weights an optional vector of ‘prior weights’ to be used in the fitting process. Should be
NULL or a numeric vector of the same length as the other input variables.

beta parameter for the GeDS fitting algorith controlling the knot placement proce-
dure. See documentation.

phi treshold for the stop criterium. See documentation.

min.intknots minimum number of internal knots required.

max.intknots maximum number of internal knots required.

q number of iterations considered for the stop criterium. See documentation.
Xextr boundary knots in the first direction of the independent variable.

Yextr boundary knots in the second direction of the independent variable.
show.iters logical indicating whether to print or not step by step informations.

stoptype a character string indicating the stopping rule to be considered. It should be one

of "SR", "RD" or "LR", partial match allowed.

Details

NGeDS is the main function of the package, used to perform a GeDS regression, as described in
Kaishev et al. (2015). This performs both the univariate and the bivariate version of the algorithm,
the latter based on the tensor product of the splines.

The argument formula should specify a semiparametric part and (optionally) a parametric part.
The semiparametric part should be specified through the function f. Non specification of the term
to be modeled via spline regression will return an error. Following the same scheme adopted by
other R functions, it is possible to specify one or more offset variables, i.e. known terms with a
fixed coefficient equal to 1. These terms should be identified via the function offset.

Three possible stopping rules for the knot selection are implemented. Setting stoptype equal to
"RD", that stands for Ratio of Deviances, the rule considered is a generalization of the one described
in Kaishev et al. (2015) that was based the sum of squared residuals (this rule is the default one for
this function). Setting "SR", i.e. Smoothed Ratio, it is adopted the smoothed version of the RD rule,
described in Kaishev et al. (2016). The "LR" (Likelihood Ratio) is the rule based on the difference
of deviances rather than on the ratio and hence it performs a log likelihood ratio test at each iteration
in order to decide whether the knot selection procedure should stop or continue.

Note that with the LR stopping rule the threshold phi has the opposite behaviour compared to the
other cases, i.e. the lower phi will select less knots. Further details on the stopping rules can be
found in Kaishev et al. (2016).

Value

a GeDS-Class object containing several items that resume the main details of the regression. See
GeDS-Class for details.

A GeDS-Class object. See GeDS-Class for details.
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References

Kaishev, V.K., Dimitrova, D.S., Haberman, S., & Verrall, R.J. (2015). Geometrically designed,
variable knot regression splines. Computational Statistics.

See Also

NGeDS; GeDS-Class; S3 methods such as coef.GeDS, deviance.GeDS, knots.GeDS, print.GeDS
and predict.GeDS; Integrate and Derive; PPolyRep.

Examples
set.seed(123)
N <- 500
f_1 <= function(x) (10*x/(1+100*x"2))*4+4
newX <- sort(runif(N ,min = -2, max = 2))

means <- f_1(newX)

newY <- rnorm(N, means, sd = 0.1)

(Gmod <- NGeDS(newY ~ f(newX), beta = 0.6, phi=.995, Xextr = c(-2,2)))
coef(Gmod, n = 3)

knots(Gmod, n = 3)

knots(Gmod, n = 3, options = "internal"”)

deviance(Gmod, n = 3)

## Not run:

data('BaFe2As2')

(Gmod2 <- NGeDS(Y ~ f(X), data = BaFe2As2, beta = 0.6, phi = .99, q = 3))
plot(Gmod2)

## End(Not run)

plot,GeDS-method Plot function method for GeDS-Class objects

Description

Plot function method for GeDS-Class objects

Usage

## S4 method for signature 'GeDS'
plot(x, which, DEV = FALSE, ask = FALSE, main,
legend.pos = "topright”, new.window = FALSE, wait = 0.5, n = 3,

type = c("Polygon”, "CI”, "none"), ...)
Arguments
X an object of class GeDS-Class.
which a vector specifying which iterations of stage A should be plotted. It has to be a

subset of 1:nrow(x$stored). See details.
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DEV

ask

main
legend.pos
new.window

wait

type

Details

127

logical, specifying whether a plot of the Deviance at each step should be pro-
duced or not.

logical, specifying whether the user should be prompted before changing the
plot page.

optional character string to be used as title.

the position of the legend. See legend for details.

logical. Should the plot be shown in a new window?

time, in seconds, the system should wait before plotting a new page. Ignored if
ask is set to TRUE.

degree of the spline regression to be plot. Default to 3 (i.e. quadratic).

character string specifying type of plot required. Should be set either to "Polygon"
if the user wants to get also the control polygon, "CI" if the confidence intervals
should be drawn or "none" if it is desired only the line corresponding to the
fitted values. Applies only when plotting a linear univariate spline regression.

further arguments to be passed to the plot function.

This method plots the fits contained in the GeDS-Class objects.

As GeDS regression algorithm is composed by two main stages and the first one performs the
selection of the number of knots and their placement, it may e interesting to visually inspect how
this procedure sequentially selects the knots. Argument which allows the user to do this inspection.
Specifying a single value it will appear one single plot, while specifying a vector, as many pages as
elements will be sequentially plotted. ask and wait arguments can help the user to manage these
pages. Note that, in order to ensure stability, if the object was produced by the function GGeDS,
intermediate fits of stage A can be plotted only setting n equal to 2.

The confidence interval obtained, available only for GeDS-Class objects fitted through NGeDS func-
tion, are the ones produced by the SplineReg_LM.

See Also

NGeDS and GGeDS; plot.

Examples

set.seed(123)
N <- 500

f_1 <= function(x) (10*x/(1+100*x"2))*4+4

newX <- sort(runif(N ,min = -2, max = 2))

means <- f_1(newX)

newY <- rnorm(N, means, sd = 0.1)

(Gmod <- NGeDS(newY ~ f(newX), beta = 0.6, phi=.995, Xextr = c(-2,2)))

plot(Gmod)

plot(Gmod, which=10)
plot(Gmod, which=1:16)

A

set.seed(123)
N <- 500
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f_1 <= function(x) (10*x/(1+100*x"2))*4+4

newX <- sort(runif(N ,min = -2, max = 2))

means <- exp(f_1(newX))

newY <- rpois(N,means)

(Gmod2 <- GGeDS(newY ~ f(newX), beta = 0.2, phi = 0.995, family = poisson(),
Xextr = c(-2,2)))

plot(Gmod2, n = 2)

plot(Gmod2, which=10, n = 2)
plot(Gmod2, which=1:16, n = 2)

## Not run:

plot(Gmod2, which=1:16, n = 2, ask = T)

## End(Not run)

PPolyRep Piecewise Polynomial Splines Representation

Description

This function converts GeDS objects into a spline object form package splines inheriting from
classes "spline" and "polySpline"

Usage

PPolyRep(object, n)

Arguments

object GeDS-Class object it is desired to be converted.

n the order of the spline fit that should be considered.
Details

The function basically wraps the function polySpline in order to let it accept GeDS objects as the
input. Hence, for a selected order, it computes the piecewise polynomial representation of the fitted
splines.

Value

An object that inherits from classes "spline" and "polySpline". It is a list whose arguments are:

knots a vector of the same length as the number of knots k, containing the (unique)
knots.

coefficients  ak X n matrix containing the coefficients of the polynomials.
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Examples

set.seed(123)

N <- 500
f_1 <= function(x) (10*x/(1+100*xx"2))*4+4
newX <- sort(runif(N ,min = -2, max = 2))

means <- f_1(newX)
newY <- rnorm(N, means, sd = 0.1)
Gmod <- NGeDS(newY ~ f(newX), beta = 0.6, phi=.995, Xextr = c(-2,2))

Polymod <- PPolyRep(Gmod, 4)
require(splines)
class(Polymod)
splineKnots(Polymod)
knots(Gmod,n = 4)
plot(Polymod)

# a plot showing the PP representation
# based on the same example

knt <- splineKnots(Polymod)

coeffs <- coef(Polymod)

plot(Gmod, n = 4, legend = FALSE, main = "Cubic Curves")
cols <- sample(heat.colors(length(knt)), length(knt))
for(i in 1:(length(knt))){
curve(coeffs[i,1]+coeffs[i,2]*(x - knt[i])+
coeffs[i,3]*(x - knt[i])"2+
coeffs[i,4]*(x - knt[i])*3,
add = TRUE, col = cols[il])
abline(v = knt[i])
3

predict.GeDS Predict method for GeDS objects

Description

This is a user friendly method to compute predictions from GeDS objects.

Usage
## S3 method for class 'GeDS'
predict(object, newdata, type = c("response”, "link", "terms"),
n=3, ...)
Arguments

object the object for which the computation of the predicted values is desired.
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newdata an optional data. frame in which to look for variables with which to predict. If
omitted, the input values are used.

type the type of prediction required. The default ("response") is on the scale of the
response variable. The alternative "1ink" is on the linear predictor scale.

n the spline order.

potentially further arguments (required by the generic function definition).

Details

This is a method for the function predict that allows the user to handle GeDS-Class object.

In analogy with the function predict. glmin stats package, the user can specify the scale on which
the predictions should be computed through the argument type. If the predictions are desired on the
scale of the response variable, the user should set type = "response”, that is the default . While
if one wants the predictions on the predictor scale, it is necessary to set type = "link". The user
can also specify type = "terms” if the user aims to inspect the effect of each single variable on
the predictor.

As GeDS objects contain three different fits, it is possible to specify the order of the spline to be
considered through the input n.

Value
A numeric vector corresponding to the predicted values (if type = "1link"” or type = "response”).
If type = "terms" a numeric matrix with a column per term.

See Also

predict for the standard definition; GGeDS for examples.

print.GeDS Print method for GeDS objects

Description

This is the print method for GeDS objects.

Usage
## S3 method for class 'GeDS'
print(x, digits = max(3L, getOption("digits"”) - 3L), ...)
Arguments
X the object for which the prediction is desired.
digits number of digits to be printed on screen

potentially further arguments (required by the generic).

Details

This method allows to print on the screen just some basic information such as the function call,
the number of internal knots selected by the GeDS algorithm and the deviances for the three fitted
splines.
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Value

This function returns (invisibly) the same input object, but adding the three arguments:

Nknots the number of internal knots
Deviances the deviances for the three splines
Call the function call

See Also

predict for the standard definition.

splineDesign?2 Design Matrix for B-splines

Description

Evaluate the design matrix for the B-splines defined by knots at the values in x.

Usage

splineDesign2(knots, x, ord = 4, derivs = rep(@, length(x)),
outer.ok = FALSE, sparse = FALSE)

Arguments
knots a numeric vector of knot positions with non-decreasing values.
X a numeric vector of values at which to evaluate the B-spline functions or deriva-
tives. Unless outer.ok is true, the values in x must be between knots[ord]
and knots[ length(knots) + 1 - ord 1]
ord a positive integer giving the order of the spline function. This is the number of
coefficients in each piecewise polynomial segment, thus a cubic spline has order
4. Defaults to 4.
derivs an integer vector of the same length as x and with values between 0 and ord - 1.
The derivative of the given order is evaluated at the x positions. Defaults to a
vector of zeroes of the same length as x.
outer.ok logical indicating if x should be allowed outside the inner knots, see the x argu-
ment.
sparse logical indicating if the result should inherit from class sparseMatrix (package
Matrix).
Value

A matrix with length( x ) rows and length( knots ) - ord columns. The i’th row of the
matrix contains the coefficients of the B-splines (or the indicated derivative of the B-splines) defined
by the knot vector and evaluated at the i’th value of x. Each B-spline is defined by a set of ord
successive knots so the total number of B-splines is length(knots)-ord.
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Note

This function is basically the same as the function splineDesign in package spline but this is based
on the C function spline_basis2. This avoids getting NaNs the resulting matrix in some particular

cases.
See Also
splineDesign
Examples
X <- ¢(0,1,2)
kn <- ¢(0,0,0,2,2,2)
n<-2
require(splines)

splineDesign(kn, X, n, derivs = rep(@,3))

# Here one gets NaNs

splineDesign2(kn, X, n, derivs = rep(0,3))

# Here it doesn't, even if there are two zero-columns

SplineReg Univariate B-Spline Regression functions.

Description

Functions used to compute regressions at various steps of the GeDS algorithm.

Usage

SplineReg_LM(X, Y, Z = NULL, offset = rep(@, NROW(Y)), weights = rep(1,
length(X)), InterKnots, n, extr = range(X), prob = 0.95)

SplineReg_GLM(X, Y, Z, offset = rep(@, nobs), weights = rep(1, length(X)),
InterKnots, n, extr = range(X), family, inits = NULL, mustart,
etastart = NULL)

Arguments

X a vector of length n containing the regressor to be modeled non-parametrically.

Y a vector of length n containing the observations.

Z a design matrix (possibly NULL) containing the other regressors.

offset this can be used to specify an a priori known component to be included in the
linear predictor during fitting.

weights an optional vector of "prior weights’ to be used in the fitting process. Should be
NULL or a numeric vector of length n.

InterKnots a vector of internal knot locations.

n order of the spline to be used.

extr boundary knots to be used.
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prob the confidence level to be used for the confidence bounds in the SplineReg_LM
fit.

family a description of the error distribution and link function to be used in the model.
See family for details of family functions.

inits a vector of length length(InterKnots) + n + NCOL(Z) starting values for the
coefficients to be used in the IRLS algorithm.

mustart starting values for the vector of means. Must be a vector of length length(X).

Details

These functions perform unpenalized spline regression, given the order, the set of knots and the
family of the distribution of the response variable.

SplineReg_LM appears in Stage B of the GeDS algorithm, while stage A is performed via an un-
exported (faster) implementation. This function basically performs least squares regression and
computes some useful tools such as the confidence intervals and the Control Polygon.

SplineReg_GLM is intesively used in Stage A of the GeDS algorithm and in order to make it as
fast as possible input data validation is mild. Hence the user should be careful when using it. The
"Residuals" in the output of this function are similar to the so called "working residuals" in the
glm function. They are the residuals r; used in the knot placement procedure, i.e.

N
ri = (yi */M)dl;i,
but they consider the very last fitted i;s.
Value
A list containing:
Theta the fitted coefficients.
Predicted the predicted values.
Residuals the residuals to be used in the knot placement procedure. See details.
RSS the deviance.
CI a list containing the confidence bands (computed only with the SplineReg_LM).
Basis the design matrix, including the B-splines and Z columns.
Polygon a list containing vertices and coefficients of the Control Polygon.
deviance a vector containing the deviance computed at each IRLS step (computed only

with the SplineReg_GLM).

The slot temporary of the output is the result of the function 1m if SplineReg_LM is used. If it is
used SplineReg_GLM, temporary is the output of the function IRLSfit, which is similar to the .
glm. fit output, but with some slight differences.

See Also

NGeDS, GGeDS, Fitters, IRLSfit, Im and glm.fit.
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