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1 General Introduction 

1.1 Nanoparticles and Nanomaterials Definition 

1.1.1 First Mentioning of Nanoparticles 

The introduction of the concept of nanotechnologies could be assigned to the Nobel prize in 

physics Richard Feynman, who described in a lecture entitled “There’s plenty of room at 

the bottom” dated December 1959 the problems of manipulating the matter at very small 

scale level but also the enormous possibilities offered by this technological improvement, 

in particular he thought what would happen if we could arrange the atoms one by one the 

way we want them. 

He also anticipated the idea of how difficult the manipulation and the control of things at 

this small scale are because atoms at this scale behave like nothing on a large scale, for they 

satisfy the law of quantum mechanics. “We are working with different laws and we expect 

different things. At the atomic level, we have new kinds of forces and new kind of 

possibilities, new kind of effects” (Feynman, 1959). 

1.1.2 Definition of Nanoparticles 

The term nano is adapted from the Greek word meaning “dwarf.” When used as a prefix, it 

implies 10–9. A nanometer (nm) is one billionth of a meter, or roughly the length of three 

atoms side by side (Figure 1). A NP is defined as a microscopic particle with at least one 

dimension less than 100 nm (Kaushik et al., 2010). 

 

Figure 1: Logarithmical length scale showing size of nanomaterials compared to biological 

component and definition of 'nano' and 'micro' sizes (USEPA, 2005). 
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1.1.3 Definition of Nanomaterials 

When two or more NPs are stick together, they are defined nanomaterial (NM). The 

European Commission has recently (2011) adopted a recommendation on the definition of 

NM. According to which ‘nanomaterial’ means a natural, incidental or manufactured 

material containing particles, in an unbound state or as an aggregate or as an agglomerate 

and where, for 50 % or more of the particles in the number size distribution, one or more 

external dimensions is in the size range 1-100 nm. In specific cases and where warranted 

by concerns for the environment, health, safety or competitiveness the number size 

distribution threshold of 50 % may be replaced by a threshold between 1 and 50 % 

(Savolainen et al., 2013). NPs in the dry state can be in two forms: agglomerated (held by 

weaker van der Waals forces) and aggregated (hard bonds between primary particles due 

to sintering) (Figure 2) (Jiang et al., 2009). 

 

Figure 2: Various states and configurations of particles in dry state. 

1.2 Nanoparticles Characteristics 

The small scale of the nanoparticles gives to them their prominent physical characteristic; 

the increase in their surface-to-volume ratio with the decrease in size (Maskos and Stauber, 

2011) (Figure 3). 

 

Figure 3: Change of the surface area by miniaturization of a solid cube assuming the solid density 

of 1 g/cm3 (Yokoyama et al., 2012). 
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This feature gives to the NPs and their corresponding NMs characteristics such as physical, 

chemical, electronic, electrical, mechanical, magnetic, thermal, dielectric, optical and 

biological properties opposed to bulk materials (Schmid, 1992; Daniel and Astruc, 2004). 

1.2.1 Morphological Properties 

The biological properties are related to the morphological ones, the NPs result to be 

absorbed more easily through the biological membrane. This characteristic is reflected on 

the Enhanced Permeation and Retention (EPR) effect, which is the property of the NPs to 

accumulate in tumoral tissues much more than they do in normal tissues because the 

affected cells have enlarged cell gap of this part. 

Other NPs properties related to their morphological characteristic, in particular with their 

large specific surface area, are the increase of their reactivity, solubility and sintering 

performances related with the mass, heat transfer between the particles and their 

surroundings from the morphological viewpoint apart from the control of the surface and 

inner structures of the nanoparticles. Furthermore, the crystal structure of the particles may 

change with the particle size in the nanosized range in some cases. 

1.2.2 Thermal Properties 

Another intrinsic characteristic of the elements, which changes at the nano size level, is the 

melting point. This is due as the atoms and molecules that are located at the particle surface 

become influential in the nanometer order. The melting point of the material decreases from 

that of the bulk material because atoms tend to be able to move easier at the lower 

temperature. 

1.2.3 Electromagnetic Properties 

The NPs differ from the bulk materials also for the electromagnetic properties: the dielectric 

constant, defined as the capacity of an element to screen the electrostatic interaction, tends 

to increase considerably as the particles become smaller than about 20 nm. 

Another intrinsic elemental electromagnetic property, which changes, is the Curie point, 

defined as the point changing from the ferroelectric material to the paraelectric phase, and 

which reduces drastically with the decreasing particle size below 20–30 nm. 

As a result of such change in the electromagnetic properties of nanoparticles, a stable 

element like gold as a bulk shows unique catalytic characteristics as nanomaterials (Verma 

et al., 2002). 
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1.2.4 Optical Properties  

As the size of particles becomes in the several nanometers range, they absorb the light with 

a specific wavelength as the plasmon absorption (Handy et al., 2008) caused by the plasma 

oscillation of the electrons and the transmitted light with different color depending upon 

the kind of metal and particle size is obtained (Pacheco-Blandino, 2012). 

Thanks to this physical property, the NPs show the color phenomena with splendid tinting 

strength, color saturation and transparency compared with the conventional pigments for 

the paint in the submicron size and the tinting strength per unit volume higher than that of 

organic pigments. Furthermore, since the nanoparticles are smaller than the wavelength of 

visible light and the light scattering by the particles becomes negligible, higher 

transparency can be obtained with the nanoparticles than the conventional pigment. 

Concerning the light emitting performance, the indirect transition type substances like 

silicon and germanium, which do not emit the light as bulk material, give high light emitting 

efficiency as the direct transition type substances as a result of quantum effect, when the 

particle size is reduced down to several nanometers. 

1.2.5 Mechanical Properties 

The hardness of the crystalline materials generally increases with the decreasing crystalline 

size, and the mechanical strength of the materials considerably increases by micronizing 

the structure of the metal and ceramic material or composing them in the nano range (Roger 

et al., 2005; Seames et al., 2002). 

Furthermore, with the ceramic material having crystalline size less than several hundred 

nanometers, the unique super-plastic phenomenon is seen extended several to several 

thousand times from the original size at the elevated temperature over 50 % of the melting 

point (Linak et al., 2000), which may provide the possibility of forming and processing of 

ceramics like metallic materials. 

1.3 NPs Tipologies 

Particles in the nano-sized range have been present on earth for millions of years and they 

were used by mankind for thousands of years (Nowack and Bucheli, 2007) (Figure 4). 
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Figure 4: Categories of nanoparticles present in the environment (Bhatt and Tripathi, 2011). 

1.3.1 Natural Nanoparticles 

The existence of naturally occurring NPs in water, air and soil is known from the beginning 

of earth’s history as they have been recorded from 10,000 years old glacial ice cores (Murr 

et al., 2004) and there is evidence of natural NP formation in sediments at the Cretaceous-

Tertiary (K-T) boundary (Elsila et al., 2005). 

Several mechanisms create NPs in the environment and these can be either geological or 

biological. 

Geological mechanisms include physicochemical weathering, authigenesis/neoformation 

(e.g., in soils) and volcanic activity (Handy et al., 2008). These geological processes 

typically produce inorganic NPs. 

Weathering is the result of physical (abrasion) or chemical (dissolution) decomposition of 

rock material, to produce a powder. Part of this powder will naturally exist as NP, either as 

a primary effect of the decomposition, or through further physical/chemical weathering. 

Authigenesis/neoformation is the reverse of the previous process. It takes place when 

chemical degradation eventually results in high enough concentrations of certain dissolved 

species to exceed the saturation in solution of a phase, leading to its nucleation and growth. 

The early forming nuclei of authigenic or neoformed phases are sub-nanometric in size and 

may either re-dissolve, grow to form larger particles, or remain nanosized. 
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Volcanic eruptions, including also geysers and other geothermal/hydrothermal activities 

produce a variety of particle sizes, which include NPs. Meteorite impacts may also result 

in NPs formation (Handy et al., 2008). 

Another big source of natural inorganic NPs is sea salt aerosols emitted from seas and 

oceans around the world. These aerosols are formed by water evaporation and when wave-

produced water drops are ejected into the atmosphere. Their size ranges from 100 nm to 

several microns. 

Nanoparticles can also form in bodies of water through precipitation, as a result of 

temperature changes and evaporation (Buzea et al., 2007). 

Another natural NPs source is represented by biological mechanisms that typically produce 

organic nanomolecules, although some organisms can produce mineral granules in cells. 

Many biological processes typically operate at the nanoscale and many biological entities, 

from proteins/peptides, DNA/RNA, ATP, to viruses are nanosized. Some of these are 

clearly released into the environment directly from the organism (e.g., mucoprotein 

exudates from algae and animals, dispersion of virus particles), and in addition may also 

be released during the degradation of biological matter in the environment (Handy et al., 

2008). 

1.3.2 Anthropic Nanoparticles 

Humans have created NMs for millennia, as NPs are byproducts of simple combustion 

(with sizes down to several nm) and food cooking (Buzea et al., 2007). More recently, the 

principal sources of anthropic NPs are represented by chemical manufacturing, welding, 

ore refining and smelting, combustion in vehicle and airplane engines (Rogers et al., 2005), 

combustion of treated pulverized sewage sludge (Seames et al., 2002), and combustion of 

coal and fuel oil for power generation (Linak et al., 2000). 

1.3.2.1 Byproduct NMs 

One of the principal NMs byproduct is the soot for instance that is a product of the 

incomplete combustion of vegetation and coal and it has a particle size in the nanometer-

micrometer range and therefore falls partially within the ‘‘nanoparticle’’ domain (Nowack 

and Bucheli, 2007). 

Nowadays the principal source of byproduct NPs is represented by diesel and automobile 

exhaust; they are the primary source of atmospheric nano- and microparticles in urban areas 

(USEPA, 2002). Most particles from vehicle exhaust are in the size range of 20-130 nm for 

diesel engines and 20-60 nm for gasoline engines and are typically approximately spherical 
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in shape. Carbon nanotubes and fibers, already a focus of ongoing toxicological studies, 

were recently found to be present in engine exhaust as a byproduct of diesel combustion 

(Evelyn et al., 2002) and also in the environment near gas-combustion sources (Soto et al., 

2005). Nanoparticles constitute 20% of the particles mass but more than 90% of the number 

of diesel generated particles (Kittelson, 2001). 

Another chronical source of NPs is represented by indoor activities, which generate 

considerable amounts of particulate matter. NPs are generated through common indoor 

activities, such as: cooking, smoking, cleaning, and combustion (e.g. candles, fireplaces). 

Examples of indoor nanoparticles are: textile fibers, skin particles, spores, dust mites 

droppings, chemicals, smoke from candles, cooking, and cigarettes (Buzea et al., 2007). 

Occupational activities, such as welding, mining, or building demolition (Buzea et al., 

2007; Rosati et al., 2005) are also an important source of nanoparticle (Pacheco-Blandino 

et al., 2012). Particulate matter concentrations can rise to very high levels when large 

buildings are demolished, especially the respirable ones with diameter smaller than 10 

microns and the dust cloud can travel tens of kilometers and affect the neighboring regions 

of the collapsed building site (Bhatt and Tripathi, 2011). 

1.3.2.2 Engineered NMs 

While byproducts NMs are created by human activity from millennia, the engineered 

nanoparticles (ENPs) have been on the market for some time and are commonly used in 

cosmetics, sporting goods, tires, stain-resistant clothing, sunscreens, toothpaste, food 

additives, etc. These NMs constitute a small minority of environmental NMs (Buzea et al., 

2007). 

Nowadays the ENPs can be divided into several classes, such as, carbonaceous NMs, metal 

oxides, semi-conductor materials, zero-valent metals and nanopolymers (Bhatt and 

Tripathi, 2011). 

1.3.2.2.1 Carbonaceus NMs 

The carbonaceous NMs include fullerene compounds, nanotubes and nanowires. 

The discovery of first fullerene in 1985 marked the origin of this class. Fullerenes possess 

a regular truncated icosahedron, the vertices of which bear the carbon atoms (Kroto et al., 

1985) (Figure 5). 
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Figure 5: Fullerene (C-60). 

Carbonaceus NMs are naturally non-ionogenic, but acquire charge under selective 

conditions. They have a negative zeta potential (Brant et al., 2005) and exhibit unique 

optical, mechanical, elastic and thermal properties (Kroto et al., 1985). 

In 1991, the carbon nanotube (CNT) was synthesized (Klaine et al., 2008). It is a cylindrical 

fullerene derivative, which is formed by sheets of carbon atoms covalently bonded to form 

one-dimensional hollow cylindrical shape (Smart et al., 2005). There are two classes of 

CNTs: single-walled (SWCNTs) and multi-walled (MWCNTs) carbon nanotubes (Figure 

6). 

 

Figure 6: Schematic diagram of single-walled carbon nanotube (SWCNT) (a) and multi-walled 

carbon nanotube (MWCNT) (b) (Choudhary and Gupta, 2011). 

SWCNTs are structurally single-layered graphene sheets rolled up in cylindrical shapes of 

approximately 1 nm diameter and several micrometers of length, whereas MWCNTs 

possess two or more concentric layers with varying length and diameters. 

Carbon nanotubes possess mechanical, thermal, photochemical and electrical properties 

(Arepalli et al., 2001). Together with fullerenes they offer a wide application in human 

health area, plastics, catalysts, battery and fuel electrodes, super capacitors, water 

purification system, orthopedic implants, conductive coating, adhesives and composites, 
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sensors, and components in the electronics, aircrafts, aerospace and automotive industries 

(Klaine et al., 2008). 

1.3.2.2.2 Metal Oxide NMs 

Metal oxides belong to the second class of ENPs and they include both individual ones 

(such as Zinc oxide [ZnO], Titanium dioxide [TiO2], Cerium dioxide [CeO2], Chromium 

dioxide [CrO2], Molybdenum trioxide [MoO3], Bismuth trioxide [Bi2O3]) and binary 

oxides (such as, Lithium Cobalt dioxide [LiCoO2], Indium Tin oxide [InxSnyOz]). Metal 

oxides have specific catalytic, optical and physical properties. 

The ZnO NP has emerged as one of the most promising oxide materials because of its 

numerous industrial applications in the fields of medicine, pigments, catalysts, ceramics, 

and rubber additives (Wang et al., 2010; Kumar and Khare, 2008). ZnO nanostructures 

have also potential applications in solar cells, electrodes, sensors, transparent UV 

protection films, UV light emission, surface acoustic waves, and magneto-optical devices 

(Wang et al., 2010; Kumar and Khare, 2008; Kumar et al., 2009; Zhuge et al., 2010). These 

wide range of applications are due to their electrical, optical, and magnetic properties (Al-

Salman and Abdullah, 2013). 

The TiO2 NPs have been applied in photocatalytic water splitting (Fujishima and Honda, 

1972; Ni et al., 2011), purification of pollutants (Hashimoto et al., 2005; Wold, 1993; Pozzo 

et al., 1997; Carp et al., 2004; Fujishima et al., 2008), photocatalytic self-cleaning, 

photocatalytic antibacterial (Hashimoto et al., 2005; Fujishima et al., 2008; Blake et al., 

1999; Fujishima et al., 2000), photo-induced super hydrophilicity material (Hashimoto et 

al., 2005; Carp et al., 2004; Fujishima et al., 2000). The TiO2 NPs is used also in 

photovoltaics (Carp et al., 2004; Grätzel, 1999; Grätzel, 2001; Grätzel, 2005) and 

photosynthesis applications (Carp et al., 2004). 

The TiO2 NPs have been used in a lot of applications because provide increased surface 

area at which photo-induced reactions may occur, enhancing light absorption rate, 

increasing surface photoinduced carrier density, enhancing photo-reduction rate, and 

resulting in higher surface photoactivity. At the same time, the high surface-volume ratio 

of the NPs enhances the surface absorption of OH− and H2O, increasing the photocatalytic 

reaction rate (Lan et al., 2013). 

The CeO2 has long been employed as a bound catalyst in catalytic converters for diesel 

engines and it is now finding application as a NP additive to diesel fuels. Its usage as a fuel 

additive has been associated with reduced fuel consumption and reduced emissions of 

combustion derived NPs and unburned hydrocarbons (O’Brien and Cummins, 2011). CeO2 
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NPs has recently gained also a wide range of applications that includes coatings, 

electronics, biomedical and energy (Cassee et al., 2011). In particular, like glass polishing 

material (Bekyarova et al., 1998) in the abrasive process of the Chemo-Mechanical 

Polishing (CMP) (Jiang et al., 1998). As a coating for corrosion protection for metals and 

alloys (Hamdy, 2006; Zhong et al., 2008), UV-blockers and filters (Tsunekawa et al., 2000; 

Morimoto et al., 1999; Tsunekawa et al., 2000a Yamashita et al., 2002) high temperature 

oxidation resistant coating (Patil et al., 2002), sunscreens (Masut et al., 2000). 

As an additive to glass to protect light-sensitive material (Lin et al., 1994) or in ceramics 

(Bhaduri et al., 1988; Messing et al., 1993), as an oxidation catalyst (Yakimova et al., 2009) 

or selective hydrogenation catalysis of unsaturated compounds (Fierro et al., 1987; Sim et 

al., 1991). 

In the energy industry like: an oxygen ion conductor in solid oxide full cells (Yahiro et al., 

1988), electrolyzers (Marina and Pederson, 2008; Inaba and Tagawa, 1996), oxygen 

pumps, amperometric monitors (Hirano et al., 1996), solar cells (Corma et al., 2004), 

photocatalytic oxidation of water for the generation of hydrogen gas (Bamwenda and 

Arakawa, 2000; Chung and Park, 1996) and like an anode material for lithium ion battery 

system (Zhou et al., 2007a). 

The CeO2 NPs can be used in biomedical field like protection of primary cells from the 

detrimental effects of radiation therapy (Tarnuzzer et al., 2005), neuroprotection to spinal 

cord neurons, prevention of retinal degeneration induced by intercellular peroxide (Das et 

al., 2007), potent antioxidant in cell culture model (Patil et al., 2007) thanks to free-radical 

scavenger (Babu et al., 2007). 

The CeO2 NPs can be used like slurry in semiconductor fabrication (Jiang et al., 1998), like 

buffer layers with silicon wafer (Tashiro et al., 2002) or gates for metal-oxide 

semiconductor device (Galata et al., 2007). 

Other utilizations of CeO2 NPs are: high temperature oxidation safe guards (Zhou et al., 

2007), and gas sensor (Stefanik and Tuller, 2001), low-temperature water gas shift catalyst 

(Hilaire et al., 2001), removal organics from wastewater (Matatov-Meytal and Sheintuch, 

1998), photodegradation of toluene in the gas phase (Hernández-Alonso et al., 2004), 

photocatalytic behavior under sunlight irradiation to degrade dyes (Zhai et al., 2007; Borker 

and Salker, 2007). 

The CeO2 NPs have been used in these wide range of applications because it shows 

absorption properties in the UV, low photocatalytic, antioxidants properties (Truffault et 

al., 2013), high thermal stability (Trovarelli et al., 1999), facile electrical conductivity and 
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diffusivity (Zhou et al., 2007b), high hardness, specific chemical reactivity (Chen and 

Chang, 2005), ability to store and transport oxygen as large oxygen storage capacity 

(Shahin et al., 2005) and high refractive index (Goharshadi et al., 2011). 

The last two metal oxide NPs represent the most produced ones (Table 1).  
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Table 1: Safety of Manufactured Nanomaterials: About, UOECD Environment Directorate, OECD.org, 18 July 2007. Small Sizes that Matter: Opportunities 

and Risks of Nanotechnologies, Joint report of the Allianz Center for Technology and the OECD International Futures Programme, ed. Dr. Christoph 

Lauterwasser, OECD.org 18 July 2007 (modified from Brar et al., 2010). 

Source Type of nanoparticle Quantity tons Application 

Metals and 

alkaline earth 

metals 

Ag/Fe/Pt groups metals High 
Antimicrobials, paints, coatings, medical use, food packaging/Water 

treatment/Catalysts 

Sn/Cu Unknown Paints/microelectronics 

Al High Metallic coating/plating 

Zr High  

Se/Ca/Mg Low Nutraceuticals, health supplements 

Metal oxides 

TiO2/CeO2/SiO2 High Cosmetics, paints, coatings/Fuel catalyst/Paints, coatings 

ZnO/Al2O3 Low Cosmetics, paints, coatings/Usually substrate bound, paintings 

Carbon 

materials 

Carbon black High Substrate bound, but released with tyre wear 

Carbon nanotubes/Fullerenes (C60-C80) Medium–High Used in a variety of composite materials/Medical and cosmetics use 

Miscellaneous 

Nanoclay/Ceramic High Plastic packaging Nanoclay High Plastic packaging/Coatings 

Quantum dots/Organic nanoparticles Low 
Different compositions/Vitamins, medicines, carriers for medicines and 

cosmetics, food 
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1.3.2.2.3 Semi-conductor Materials 

The third class of ENPs constitutes nanometer sized semi-conductor nanocrystals, known 

as quantum dots (QDs) with their size ranges between 2 and 10 nm (Schmid, 2004). 

Quantum dots refer to the quantum confinement of electrons and whole carriers at 

dimensions smaller than the Bohr radius. They possess a reactive core consisting of metal, 

like iron (Fe) or semi-conductor from groups II and IV, like Cadmium selenide (CdSe) and 

Zinc selenide (ZnSe), or III and V, like Indium phosphide (InP). The core is protect by a 

shell, made up of a Silica or ZnS monolayer that protects the core from oxidation and 

enhances the photoluminescence yield (Klaine et al., 2008) (Figure 7). 

 

Figure 7: Quantum dots. 

Although to QDs have been largely used in medical applications such as medical imaging 

and targeted therapeutics, they are now being extended to include solar cells and 

photovoltaics, security inks, photonics and telecommunications (Alivisatos et al., 2005). 

Quantum dots possess unique optical, in particular high luminescence and stability against 

photobleaching, electrical (Logothetidis, 2006; Hoshino et al., 2004), magnetic and 

catalytic properties (Murray et al., 2001). 

1.3.2.2.4 Zero-valent Metals 

The fourth class of ENPs includes zero-valent metals that are usually prepared by reduction 

of metal salts to the zero valency state (Bhatt and Tripathi, 2011). 

Zero-valent metals, have found usage in nitrate removal from water, soil and sediments and 

also for detoxification of organochlorine pesticides and polychlorinated biphenyls (Zhang, 

2003), textile products, baby-products, vacuum cleaners, washing machines, toothpastes, 

as vector in tumor therapy, in electronics and catalyst (Klaine et al., 2008). 
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Zero-valent metal nanoparticles exhibit an important phenomenon called as Surface 

Plasmon Resonance (SPR), which is caused the interaction of incident light and free 

electrons in the materials (Noguez, 2007) and this imparts to metal ENPs unique optical 

properties (Bhatt and Tripathi, 2011). These particles are also characterized by high surface 

area to volume ratio, high level of stepped surface and high surface energy (Zhang et al., 

1998). 

1.3.2.2.5 Nanopolymers 

The fifth class of ENPs is represented by dendrimers. Dendrimers are globular, nano-sized 

(1–100 nm) macromolecules with a particular architecture constituted of three distinct 

domains. (i) a core at the center of dendrimer consisting of an atom or a molecule having 

at least two identical chemical functions; (ii) several branches, emanating from the core, 

constituted of repeat units having at least one branch junction, whose repetition is organized 

in a geometrical progression that results in a series of radially concentric layers called 

“generations”; and (iii) many terminal functional groups, generally located at the surface 

of dendritic architecture. These surface groups are vital in determining the properties of 

dendritic macromolecules (Kesharwani et al., 2014) (Figure 8). 

 

Figure 8: Schematic representation of general structure of dendrimer (Kesharwani et al., 2014). 

Dendrimers are three-dimensional (3D), hyperbranched, nanoscale polymeric architectures 

(Hasanzadeh et al., 2014). Since they assume highly asymmetric shapes and with increase 

in branching they adopt a globular structure (Watkins et al., 1997). 

Dendrimers can be used for many applications in different fields ranging from biology, 

material sciences, and surface modification to enantioselective catalysis. These include 
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macrocapsules, nanolatex, colored glasses, chemical sensors, modified electrodes, DNA 

transfecting agents, therapeutic agents for prion diseases, hydrogels, drug delivery, and 

DNA chips (Klaine et al., 2008). 

The principal characteristic of dendrimers is their monodispersity hence the capacity to 

construct them with a well-defined molecular structure unlike linear polymers. 

Monodispersity offers researchers the possibility to work with a tool useful for well-defined 

and reproducible scalable size (Kesharwani et al., 2014). 

Dendrimers have also improved physical, chemical, and biological properties compared to 

traditional polymers (Logothetidis, 2006), like high surface functionality, hydrophilicity 

and high mechanical and chemical stability (Hasanzadeh et al., 2014) and some unique 

properties related to their globular shape and the presence of internal cavities offering the 

possibility as medical nanovehicles (Logothetidis, 2006). 

1.4 NPs Production 

In general, there are two ways for the production of NPs: top-down or bottom-up 

methodology. 

– Top-down approaches are defined as those by which NPs or well-organised assemblies 

are directly generated from bulk materials via the generation of isolated atoms by using 

various distribution techniques. 

– Bottom-up strategies involve molecular components as starting materials linked with 

chemical reactions, nucleation and growth process to promote the formation of more 

complex clusters. 

The majority of the top-down strategies involve physical methods while the bottom-up 

involve chemical and organic methods (Ju-Nam and Lead, 2008) (Figure 9). 
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Figure 9: Top-down and bottom-up strategies (Ju-Nam and Lead, 2008). 

1.4.1 Physical Methods 

In the physical methods, which do not change the initial chemical composition, the bulk 

materials are transformed into the nano scale via their interaction with photons, heat or ions 

or even by mechanical milling (Wendera et al., 2013). In the case of photons, it is possible 

to highlight the laser-based techniques, such as laser ablation, Pulsed Laser Deposition 

(PLD) and laser-induced particle fragmentation (Gelesky et al., 2005). Laser ablation 

(Mafuné et al., 2001) enables to obtain colloidal NPs solutions in a variety of solvents. 

Nanoparticles are formed during the condensation of a plasma plume produced by the laser 

ablation of a bulk metal plate dipped in a liquid solution. This technique is considered as a 

‘green technique’ alternative to the chemical reduction method for obtaining noble metal 

nanoparticles (MNPs). However, the main drawback of this methodology is the high energy 

required per unit of MNPs produced and the little control over the growth rate of the MNPs 

(Nath and Banerjee, 2013). 

When matter is transformed by heat, the bulk material is evaporated and recrystallized on 

the nano scale (Dai et al., 2003). On the other hand, as it is implicit in its name, mechanical 

milling is based on milling the bulk particulate starting material until it is finely divided 

into nanometric particles. The transformation of matter via interaction with ions is based 

on the moment transfer between ions that collide on the surface of bulk materials, pulling 

out atoms or small clusters of the target material that are then directed to a substrate, where 

they begin to nucleate and grow (Wendera et al., 2013). These techniques allow a 
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preparation of highly ordered NPs with a narrow shape and size distribution on substrates 

(Aeschlimann et al., 2009; Lamprecht et al., 1999; Berndt et al., 2009). 

1.4.2 Chemical Methods 

In the chemical methods, which change the initial chemical composition, the molecular 

species are transformed into NPs. The chemical methods can be divided into two major 

techniques: Chemical Vapor Deposition (CVD) with liquid phase synthesis and colloidal 

synthesis (CS). 

In the CVD process, the vaporized precursor compounds react in the gas phase, usually at 

high temperatures, and the nanostructures are obtained as powders or as films over 

substrates (Hao et al., 2005; Okumura et al., 1998; Reina et al., 2009; Sivula et al., 2009). 

The control of the size of the materials in the CVD process is achieved by tuning the 

reaction parameters, such as temperature, flow rate and relative precursor quantities 

(Wendera et al., 2013). An example of CVD process is the technique Inert Gas 

Condensation (IGC) which is the most widely used method for MNPs synthesis at 

laboratory-scale. In IGC, metals are evaporated in ultrahigh vacuum chamber filled with 

helium or argon gas at typical pressure of few hundreds Pascal. The evaporated metal atoms 

lose their kinetic energy by collisions with the gas, and condense into small particles. These 

particles then grow by Brownian coagulation and coalescence and finally form nano-

crystals (Nath and Banerjee, 2013). 

The CS method is based on reactions between reactants in solution (Burda et al., 2005). In 

this case, the size and shape of NPs are controlled via reaction conditions and stabilizing 

agents (Wendera et al., 2013). The crystallographic control over the nucleation and growth 

of noble MNPs has most widely been achieved using colloidal methods (Tao et al., 2008; 

Turkevich et al., 1951; Frens, 1972; Brust and Kiely, 2002). In general, MNPs are 

synthesized by reducing metal salt with chemical reducing agents like borohydride, 

hydrazine, citrate, etc., followed by surface modification with suitable capping ligands to 

prevent aggregation and to confer additional surface properties. Occasional use of organic 

solvents in this synthetic process often raises environmental questions. At the same time, 

these approaches produce multi-shaped NPs that require purification by differential 

centrifugation and consequently have low yield. Thus, the development of reliable 

experimental protocols for the synthesis of NMs over arrange of chemical compositions, 

sizes, and high monodispersity is one of the challenging issues in current nanotechnology. 

In this context, current efforts are focused on the development of green and biosynthetic 
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technologies for production of nanocrystals with desired size and shape (Nath and Banerjee, 

2013). These techniques yield a mass production of small NPs (Ju-Nam and Lead, 2008). 

Both chemical and physical methods have their advantages and can be complementary but 

each methodology has got some disadvantages (Wendera et al., 2013). The NPs ensembles 

obtained with the chemical techniques have a broad size and shape distribution (Ouacha et 

al., 2005; Hubenthal, 2009; Stietz, 2001; Binns, 2001) and harmful byproducts are released. 

On the other hand, the NPs ensembles with the physical techniques are extremely time-

consuming and expensive (Wendera et al., 2013). For these reasons there is a significant 

interest in the development of environmentally friendly and sustainable methods 

(Narayanan and Sakthivel, 2011). 

1.4.3 Green Chemistry 

Recently, biosynthesis of NPs, especially MNPs, with the aid of novel, non-toxic, eco-

friendly, and convenient biological materials namely bacteria (Shivaji et al., 2011), yeast 

(Questera et al., 2013), fungi (Rajakumar et al., 2012), biomolecules (Venkatpurwar et al., 

2011), and plant extracts (Kaviya et al., 2011) are under much investigation (Mortiz and 

Geszke-Mortiz, 2013). 

1.4.3.1 Bacteria 

Bacteria are the most abundant microorganisms on Earth; they are prokaryotic cells greatly 

diversified in size, shape, and means of gaining energy and live in all kinds of habitats, 

including extreme environments that exhibit, for example, extremely high or low 

temperatures, acidity, alkalinity, and salt or sulfur concentrations. The organisms that 

inhabit these extreme habitats, referred to as extremophiles, are so well adapted that they 

readily grow and multiply. 

Some species of bacteria have developed the ability to resort to specific defense 

mechanisms to quell stresses like toxicity of foreign metal ions or metals; even at high 

metal ion concentrations some of these organisms can survive and grow. (Questera et al., 

2013). For this characteristic and their relative ease of manipulation the bacteria have been 

most extensively researched for synthesis of metallic NPs (Thakkar et al., 2010). 

Studies have shown some bacteria are able to reduce metal ions and deposit them as NPs 

inside the cell, others can synthesize them both intra- and extracellularly. 

The extracellular synthesis of metal NPs, in particular silver, by reduction of silver ions to 

nanometer range involves NADH- dependent reductase enzyme. The reductase enzyme 
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gets its electrons from NADH, which is then oxidized to NAD+. The enzyme too gets 

oxidized at the same time by the reduction of silver ions to nanosilver. 

The intracellular method involves a special ion transportation in the microbial cell. The cell 

wall of the micro-organisms plays an important role. The mechanism involves electrostatic 

interaction of the positive charge of the metal ions with negative charge of the cell wall. 

The enzymes which are present within the cell wall reduce the ions to nanoparticles and 

these nanoparticles get diffused off through the cell wall (Hulkoti and Taranath, 2014). 

Independently of the bacterial species used as a reducing agent, the majority of the resulting 

synthesized NPs present polydispersity. Nevertheless, some studies report promising 

results with narrower particle size ranges. Attempting to optimize or control size and shape 

of synthesized NPs, studies have reported incubation assays using different ambient 

conditions varying temperature and pH, changing incubation time, and/or metal precursor 

concentration (Questera et al., 2013). 

1.4.3.2 Yeast 

All yeast genera can accumulate different heavy metals. They have the ability to accumulate 

significant amounts of highly toxic metals. Enzymatic oxidation or reduction, absorption at 

the cell wall and in some cases consequent chelating with extracellular peptides or 

polysaccharides, controlled cell membrane transport of heavy metals towards or their active 

efflux from the cell are the different mechanisms developed by these species overcoming 

the toxic effects of heavy metals (Breierová et al., 2002). 

Detoxification mechanisms in yeast cells is brought about by glutathione (GSH) and two 

groups of metal-binding ligands-metallothioneins and phytochelatins (PC). 

The yeasts can also synthetize MNPs at the extracellular level with the involvement of 

carboxyl, hydroxyl, and amide groups on the cell surfaces (Questera et al., 2013). 

In most of the yeast species studied, these molecules determine the mechanism for the 

formation of nanoparticles and stabilize the complexes. Yeasts are mainly known for their 

ability to synthesize semiconductor nanoparticles, particularly cadmium sulfide (CdS). 

Recent studies have shown the ability of yeasts to form other nanoparticle as well (Hulkoti 

and Taranath, 2014). 

The advantages of using yeast is that the obtained NPs are dense aggregate of nearly 

monodisperse, spherical, homogenous particles (Questera et al., 2013). Moreover the 

peptides produced by yeasts form a coating which avoids the particles to clump together 

and also do not cause Ostwald ripening, resulting in a higher stability than the chemically 
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synthesized nanoparticles. Finally the presence of peptide-coating provides the 

nanoparticles with a hydrophilic surface without additional preparation steps. 

The problem of NPs production with yeasts is due to the stringent control of intracellular 

metal ions required by them to avoid negative or lethal effects (Hulkoti and Taranath, 

2014). 

1.4.3.3 Fungi 

Fungi as well as eukaryotic organisms that live in a wide variety of natural habitats 

(Questera et al., 2013). 

Thanks to their tolerance and metal bioaccumulation ability, fungi are taking the center 

stage of studies on biological generation of MNPs (Sastry et al., 2003) and semiconductor 

NPs (Hulkoti and Taranath, 2014). 

Fungi like bacteria and yeasts can synthesize metal NPs both extracellularly and 

intracellularly. 

A lot of cases were reported in which different genera of fungi can synthesize 

semiconductor NPs extracellularly by the release of reductase enzymes into the solution 

(Hulkoti and Taranath, 2014) or metal NPs by using both NADH-dependent reductases and 

a shuttle quinone extracellular process (Questera et al., 2013). Moreover fungi are able to 

exudate a wide range of proteins, polysaccharides and organic acids which have the ability 

to differentiate the different crystal shapes and were also able to direct their growth into 

spherical crystals and the coating of proteins moiety brought about a stabilization of the 

NPs (Hulkoti and Taranath, 2014). 

The fungi can also synthesize metal NPs intracellularly, the process start with the 

electrostatic interaction between the metal ions and the positively charged groups such as 

lysine residues in enzymes (Mukherjee et al., 2001) or negatively charged carboxylate 

groups mediated by enzymes present in the cell wall of the mycelia. After the metal ion is 

bioreducted to produce metal NPs followed by stabilization and/or encapsulation of the 

same by a suitable capping agent (Thakkar et al., 2010). 

The bioreduction is made by the enzymes present in the cell wall which reduce the metal 

ions and resulting in the formation of metal nuclei, that grows by further reduction of metal 

ions and accumulation on these nuclei. 

Then after the incapsulation process, the metal nuclei diffuse through the cell wall (Nath 

and Banerjee, 2013; Hulkoti and Taranath, 2014). 

A distinct advantage of using fungi in nanoparticle synthesis is the ease in their scale-up. 

Further advantages of using a fungal-mediated green approach for synthesis of metal NPs 
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include economic viability and easiness in handling biomass (Kaushik et al., 2010). In 

addition, using fungi it is possible to obtain monodisperse NPs with well-defined 

dimensions. 

Compared to bacteria, fungi could be used as a source for the production of large amount 

of NPs. This is due to the fact that fungi secrete more amounts of proteins which directly 

translate to higher productivity of NPs formation (Mohanpuria et al., 2008). 

A significant drawback of using these bio-entities in nanoparticles synthesis is that the 

genetic manipulation of eukaryotic organisms as a means of overexpressing specific 

enzymes is relatively much more difficult than that in prokaryotes. 

Another disadvantage is that the majority of the filamentous fungi (eg, Aspergillus 

fumigatus) that have reportedly been used for the purpose of extracellular biomass free 

synthesis of metal NPs are pathogenic to plants and/or humans. This makes handling and 

disposal of the biomass a major inconvenience toward commercialization of the process 

(Kaushik et al., 2010). 

Microorganisms can be utilized to produce NPs but the rate of synthesis is slow and only 

limited number of sizes and shapes are amenable (Kharissova et al., 2013). 

1.4.3.4 Plants 

Among the organisms mentioned above, plant based materials seem to be the best 

candidates, mostly because they are suitable for large-scale ‘biosynthesis’ of NPs (Iravani, 

2011) and in contrast with microbial cultures and downstream processing plants do not 

need expensive methodologies for maintaining their productivity (Narayanan and 

Sakthivel, 2011). Finally, comparing to fungi and bacteria they do not require a long 

incubation time for the reduction of metal ions. Therefore, compared to bacteria and fungi, 

plants are better candidates for the synthesis of NPs (Nath and Banerjee, 2013). The 

production of NPs with plants can be done with two different approaches. The first 

approach uses the whole plant and the second uses the plant extracts. 

1.4.3.4.1 In-planta 

The idea to utilize plant on purpose to NPs production became from the knowledge of plant 

scientist who have known for a long time that certain metals are essential for normal 

biological function. More recently it has been determined that some plants are able to 

hyperaccumulate metals, up to concentrations several hundreds of times more of those 

found in non hyperaccumulating plants (Brooks et al., 1998; McGrath and Zhao, 2003). It 

is thought that this provides a measure of protection for the plant from insects and others 

herbivores. This observation is the basis for the technology known as phytoextraction, i.e. 
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the process of using plants to beneficially absorb mineral species from groundwater, soil 

and sediments. There are four broad applications of phytoextraction: (i) phytomining, 

where valuable naturally occurring elements are harvested (Brooks et al., 1998; Anderson 

et al., 1999), (ii) phytoremediation, where non-naturally occurring contaminants are 

stabilized or recovered for secure disposal or reuse (McGrath and Zhao, 2003; Salt et al., 

1998), (iii) functional foods, where essential minerals are added to a crop whilst it is 

growing (Guerinot and Salt, 2001), and (iv) phytosynthesis, where plants are used as 

biological factories for synthesis of MNPs (Gardea-Torresdey et al., 2002; Gardea-

Torresdey et al., 2003). The capacity of plants to uptake even very low levels of metals ions 

from large volume of soil and bioconcentrate them into their biomass and accumulate in 

tissues (Narayanan and Sakthivel, 2011) have attracted the curiosity of scientists. Recent 

experiments have demonstrated that in some cases live plants show the ability to absorb 

metals from the outside and accumulate them in their tissues in the form of nanostructures 

(Gardea-Torresdey et al., 2002; Gardea-Torresdey et al., 2003; Armendariz et al., 2004; 

Harris and Bali, 2008). The reduction process was presumed to be mediated by the presence 

of secondary metabolites present in the cells (Narayanan and Sakthivel, 2011). 

1.4.3.4.2 Ex-planta 

The plant extract is the most commonly used agent to produce MNPs (Questera et al., 2013) 

because it is readily scalable and may be less expensive (Iravani, 2011) compared with the 

utilization of whole plants (Armendariz et al., 2004; Beattiew and Haverkamp, 2011; 

Kumar and Yadav, 2009; Marshall et al., 2007). Plant extracts may act both as reducing 

and stabilizing agents in the synthesis of NPs. The source of the plant extract is known to 

influence the characteristics of the NPs (Kumar and Yadav, 2009). This is because different 

extracts contain different concentrations and combinations of organic reducing agents 

(Mukunthan and Balaji, 2012). Typically, a plant extract-mediated bioreduction involves 

mixing the aqueous extract with an aqueous solution of the relevant metal salt. The reaction 

occurs at room temperature and is generally complete within a few minutes. Regarding the 

number of different chemicals involved, the bioreduction process is relatively complex 

(Mittal et al., 2013). 

The plant initially tested and most widely used is alfalfa (Medicago sativa). By using alfalfa 

extract, distinctive metallic nanostructures were synthesized under diverse environmental 

conditions. For instance, using the same protocol for synthesis but under varying pH, 

differences in NP shapes and sizes are achieved (Ascencio et al., 2003; Herrera-Becerra et 
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al., 2007). Besides alfalfa, a number of other plants were successfully employed for the 

production of metallic NPs. 

Silver and gold are the two most extensively applied metals in NP production, and the use 

of plant extracts of discrete species resulted in a wide variety of shapes and sizes. The 

incubation of metal ions with plant extracts under changing environmental conditions or in 

altered ratios led to some interesting results as well. While some authors found that the size 

and shape of NPs are not significantly influenced by incubation time, temperature, or 

extract concentration (Cruz et al., 2010), others found that varying the amount of extract 

resulted in differences in nanoparticle size and shape (Shankar et al., 2005; Kasthuri et al., 

2009). Distinctive concentrations of ionic solution led to the formation of different sized 

particles as well, and additionally, variation in temperature influenced the shape and size 

of resulting NPs (Jia et al., 2009; Song et al., 2009). Changing the pH value affects the 

absorption rate and results as well in varying nanoparticle size and shape (Philip, 2010). 

Thus, the size and shape of NPs synthesized by using plant extracts depends on several 

factors such as plant species, ratio of metal salt to extract in the reaction medium, pH, 

temperature, and/or reaction time. Moreover, plant waste material like banana (Bankar et 

al., 2010), Citrus sinensis (Kaviya et al., 2011), pomegranate (Ahmad et al., 2012), and 

Annona squamosal (Kumar et al., 2012) peel were used to prepare extracts and successfully 

produced MNPs (Questera et al., 2013). 

Recently much work has been done with regard to plant assisted reduction of MNPs and 

the respective role of phytochemicals. The main responsible phytochemicals have been 

identified as terpenoids, flavones, ketones, aldehydes, amides and carboxylic acids. The 

main water soluble phytochemicals are flavones, organic acids and quinones which are 

responsible for immediate reduction. 

The phytochemicals present in Bryophyllum sp. (Xerophytes), Cyprus sp. (Mesophytes) 

and Hydrilla sp. (Hydrophytes) were studied for their role in the synthesis of silver NPs. 

The Xerophytes were found to contain emodin, an anthraquinone which could undergo 

redial tautomerization leading to the formation of silver NPs. The Mesophytes contain three 

types of benzoquinones, namely, cyperoquinone, dietchequinone and remirin. It was 

suggested that gentle warming followed by subsequent incubation resulted in the activation 

of quinones leading to particle size reduction. Catechol and protocatechaldehyde were 

reported in the Hydrophytes studied along with other phytochemicals. It was reported that 

catechol under alkaline conditions gets transformed into protocatechaldehyde and finally 
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into protocatecheuic acid. Both these processes liberated hydrogen and it was suggested 

that it played a role in the synthesis of the NPs (Jha et al., 2009). 

1.5 Nanotoxicology 

Nanotechnology is one of the fastest growing and most promising technologies in our 

society (Simon et al., 2011). Possible fields for the use of ENM include advanced materials, 

display technologies, electronics, nutrition, cosmetics, medical drug designing, and 

numerous other applications. 

On the other hand, this exciting technological progress may also be associated with risks 

(Piccinno et al., 2012). 

ENM may undergo a wide range of weathering or “aging” processes that will alter their 

surface chemistry and, therefore, transport and potential exposure routes. These 

transformations occur through processes such as redox reactions, interactions with organic 

macromolecules such as Natural Organic Matter (NOM) or cellular material, dissolution, 

or adsorption of known pollutants (e.g., As, Hg, Polychlorinated Biphenyls (PCBs), 

Polycyclic Aromatic Hydrocarbons (PAHs)). In air, manufactured and incidental NPs 

might be expected to condense low volatility compounds (organics and sulfate) (Robinson 

et al., 2007). 

Photocatalytic NPs (e.g., TiO2) might in turn photooxidize the condensed material. 

Interactions between NPs and organic macromolecules (Saleh et al., 2005; Hardman, 2006) 

such as NOM, proteins, surfactants, and polyelectrolytes modify aggregation and 

deposition kinetics and therefore transport and potential exposure routes. 

Environmental and physiological conditions also modify reactivity of NMs as evidenced 

by changes in the toxicity of manufactured, natural, and incidental NPs (Maynard and 

Kuemple. 2005; Oberdörster et al., 2005), the generation of Reactive Oxygen Species 

(ROS) (Wiesner et al., 2009; Lee et al., 2007), and reduced redox activity (Phenrat et al., 

2008; Phenrat et al., 2009). Additionally, other chemical species that interact NMs with 

may themselves be altered in the process. For example, NPs may alter the conformation of 

proteins (Chen and Mikecz, 2005; Linse S at al., 2007) interfering with cell signaling and 

possibly gene transcription. Likewise as NPs may impact organisms, organisms may impact 

NPs. The accessibility of adsorbed or chemically bound macromolecules that stabilize NPs 

against aggregation may also prevent biological attack and increase NPs persistence. 

Alternatively, bacteria may enhance the solubility of iron oxide NPs (Ha et al., 2006) or 
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enhance the bioavailability of adsorbed heavy metals such as mercury (Hg) (Jew et al., 

2006). Photolysis, oxidation, and subsequent dissolution (in the case of inorganic NPs) can 

release toxic metals into the environment, alter NP morphology and other properties 

(Derfus et al., 2004; Jin et al., 2001; Zhang et al., 2007), and ultimately provide removal 

mechanisms for NPs in the environment. 

Predicting the ecosystem impacts of NMs requires significant empirical progress in 

understanding (i) abiotic interactions between NMs and natural substrates and solutions, 

(ii) interactions between NMs and an ecosystem’s primary uptake compartments (plants, 

fungi, and bacteria) and the longevity and reversibility of ecological sources and sinks and 

(iii) the resulting consequences of NMs exposure for productivity, organic matter 

decomposition, and trophic transfer. NMs may also have indirectly detrimental effects on 

ecosystems through their interactions with existing environmental contaminants (Wiesner 

et al., 2009). In particular the uptake, translocation and toxicity of NPs to humans, animals 

and, in a few cases, to plants have been studied in diverse experimental setups. The 

accumulation, persistence and impact of NPs on plant metabolism and development depend 

on the size, concentration and chemistry of NPs, as well as the chemical milieu of the 

subcellular sites to which the NPs are deposited. NPs can be toxic to plant tissues, owing 

to chemical or physical effects. Thus, NPs act as catalysts and interactors or, upon 

dissolution, as soluble metal ions. Physical toxicity is linked to association with cell 

structures or mechanical clogging. 

NPs interact with biological systems by five main modes: (i) chemical effects as metal ions 

in solution upon dissolution; (ii) mechanical effects owing to hard spheres and defined 

interfaces; (iii) catalytic effects on surfaces; (iv) surface effects owing to binding of proteins 

to the surface, either by non-covalent or covalent mechanisms or oxidative effects; and (v) 

changes in the chemical environment (pH) (Dietz and Herth, 2011). 

1.5.1 Chemical Effects 

Toxic metals interference with cellular processes often causes redox imbalances and 

oxidative stress in metal-exposed plants. Some metals, such as Cu and Fe, transfer electrons 

to O2 as acceptors to form O2– or to H2O2 to form the extremely reactive ·OH radical. These 

Reactive Oxygen Species (ROS) may lead to unspecific oxidation of proteins and 

membrane lipids or may cause DNA injury (Schnützendübel and Polle, 2002; Sharma and 

Dietz, 2008). These reactions enhance oxidative stress in the affected cells (Dietz and 

Herth, 2011). 
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1.5.2 Mechanical Effects 

Mechanical effects depend on particle size and not on particle chemistry. They include the 

filling of pores, which are then unavailable for other transport processes. An example is the 

inhibition of water transport in the presence of high NP concentrations in the soil. The 

reduced water availability caused by external nanoparticles appeared to involve a rapid 

physical inhibition of apoplastic flow through nanosized root cell wall pores and 

consequently inhibited leaf growth and transpiration (Asli and Neumann, 2009). 

1.5.3 Catalytic Effects 

Many metals, including Ag, Pt, Pd, Au, Fe and Co, catalyze chemical reactions, such as 

reduction–oxidation reactions (Dietz and Herth, 2011). Metal ions at cell-compatible low 

concentrations are usually bound to constitutive or inducible chelators, including 

phytochelatins, organic acids, metallothionein and ferritin (Hall, 2002) or they are 

compartmentalized by transport processes (Hall and Williams, 2003). The toxicity 

symptoms seen in the presence of excessive amounts of heavy metals may be due to a range 

of interactions at the cellular/molecular level. Toxicity may be result from the binding of 

metal to sulphydryl groups in proteins, leading to an inhibition of activity or disruption of 

structure, or from the displacing of an essential element resulting in deficiency effects (van 

Assche and Clijster, 1990). 

1.5.4 Surface Effects 

Particles with an oxidic surface often form a layer of ·OH groups at the surface, which are 

negatively charged and thereby attract positively charged side groups of proteins (Larsen 

et al., 2005). Once the proteins are bound to the particles, they are either no longer available 

for their function or function with lower efficiency. A more extreme effect occurs if side 

groups of proteins bind covalently to the particles, such as cysteines to Au surfaces, because 

this type of binding is permanent. 

Most published studies on NP toxicity in plants have addressed easily scored parameters, 

such as germination rate and growth-related features with positive, negative or no effects 

(Ma et al., 2010). 

1.6 Plants and Nanoparticles Relashionship 

Plants have evolved in the presence of natural nanomaterials (NMs). However, the 

probability of plant exposure to NMs has increased to a greater extent with the ongoing 
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increasing production and use of engineered nanomaterials (ENMs) in a variety of 

instruments and goods (Pan and Xing, 2010), via the addition of biosolids to agricultural 

fields (Suppan, 2013; Tourinho et al., 2012; Hong J et al., 2013; Colman et al., 2013) or 

through the application of nanoenabled agricultural (Suppan et al., 2013: Gogos et al., 2012; 

Mura et al., 2013) and soil remediation (Pan and Xing, 2010; Liu and Lal, 2012) 

technologies for crop production is not far from reality. This practice repeated overtime 

could result in soil accumulation of ENMs, which opens an important route of ENMs entry 

into the food chain (Gardea-Torresdey et al., 2014). ENMs can also reach the plants 

through, accidental release, contaminated soil/sediments, or atmospheric fallouts. Little is 

known about the impact of ENMs on food crops, and their possible effects in the food chain 

are unknown (Darlington et al., 2009; Pidgeon et al., 2009). 

The NMs go thorugh a wide range of biotransformation in soil and plant tissues and the 

knowledge of this aspect is critical to understanding the physiological, biochemical, 

molecular and genetic modifications in the exposed plants (Dimpka et al., 2012). The 

biotransformation potential of ENMs in crops varies greatly, dependent on both 

nanoparticle type and plant species, as well as potentially other unknown factors. However, 

it is clear that accumulation and translocation within crop species occurs and therefore may 

represent an important route for transfer of ENMs into the food chain, presenting an 

unknown exposure and risk to humans and other species. The accumulation of component 

metals (e.g., Ti uptake from nTiO2 treatment) in plant edible tissues or in seeds for the next 

generation is an important aspect of nanomaterial fate and effects assessment and may have 

implications for human health and agricultural productivity (Gardea-Torresdey et al., 

2014). 

This brought anoter concern about the potential trophic transfer of ENMs within terrestrial 

food webs which is probably the most poorly understood phenomena when assessing ENM 

fate, disposition and effects. Several studies have demonstrated potential trophic transfer 

of ENMs among microscopic organisms or invertebrates in aquatic systems (Ferry et al., 

2009; Zhu et al., 2010; Holbrook et al., 2008; Werlin et al., 2011;. Kulacki et al., 2012). 

Recently some work have started to investigate the terrestrial trophic transfer and 

biomagnification of ENMs. The results certainly demonstrate the potential and perhaps 

probable trophic transfer and accumulation/biomagnification of ENMs in terrestrial 

systems and raise the likelihood of human exposure through dietary uptake as an issue in 

need of rapid and intense investigation (Gardea-Torresdey et al., 2014). 
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The ENMs when take contact with plants could also alter their agronomic traits (e.g., 

growth, biomass production, number of leaves, and chlorophyll content), which can directly 

influence the resulting yield parameters (number of fruit per plant, fruit weight, diameter, 

length) when grown to full maturity (Gardea-Torresdey et al., 2014). 

Recently it has been also demonstrated the ENMs could affect the crop nutritional content 

directly consumed by humans but this aspect has not been fully investigated yet (Gardea-

Torresdey et al., 2014). 

Food crops resulted to be susceptible to ENMs contamination through material 

accumulation in soil from continuous biosolid amendment in agricultural fields, and 

possibly through the application of nanotechnology in agriculture and soil remediation 

efforts. However, there is very limited understanding on the extent of ENMs entry into the 

food supply and the resulting implications on environmental and human health (Gardea-

Torresdey et al., 2014). 

Important questions that need to be resolved by further study. 

First, predictive quantitative modeling ENMs fate and disposition within agricultural soils 

that accommodates both repeated applications of effluent and biosolids from wastewater 

treatment plants, as well as the use of nanoenabled agricultural products and/or soil 

remediation techniques, is needed. 

Second, nanophytotoxicity assessment of ENMs in forms that are being developed for 

agricultural and remediation techniques should be undertaken. 

Third, studies exploring ENMs impacts on plants during different modes of application 

preferably at long-term exposure, should be performed. Longterm studies provide a more 

realistic and holistic approach for determining the implications of ENMs on soil health and 

microbial functions, as well as on the physiological and yield responses of plants. While 

short-term studies give a unique opportunity for understanding the mechanism of ENMs 

impacts in plants, full life cycle studies are critical to understanding plant response to 

chronic and perhaps low dose exposure (Gardea-Torresdey et al., 2014).  
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2 Aims 

The aims of my PhD research are the evaluation of: 

 The plants capacity to synthesize NPs from the ionic form of the element added to the 

growth media and investigate which are the principal metabolites involved in the 

process. 

 The possible toxic effects caused by the interaction between NPs and plants in the early 

plant development stages and also along their entire life cycle. These toxic effects will 

be evaluated at different levels (morphologic, metabolic, genetic and phenologic). 

 The plant capacity to uptake the NPs and translocate them through the plant tissues. 

 The possible nutritional modification in the seeds obtained from plants cultivated in the 

presence of NPs.  
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3 In vivo Synthesis of Nanomaterials in Plants: Location 

of Silver Nanoparticles and Plant Metabolism 
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3.1 Background 

In recent years, remarkable progress has been made in developing nanotechnology. This 

has led to the fast growth of commercial applications that involve the use of a great variety 

of manufactured nanomaterials (Klaine et al., 2008). One trillion dollars' worth of 

nanotechnology-based products is expected on the market by the year 2015 (Hernandez-

Viezcas et al., 2013). Metallic nanoparticles (MeNPs), one of the building blocks of 

nanotechnology, have a variety of applications due to their unique properties. 

Synthesis of MeNPs can be carried out by using traditional technologies that use chemical 

and physical methods with a ‘top-down’ approach (Kawazoe and Meech, 2005). However, 

such methods are expensive and have a low production rate; moreover, they are harmful as 

the chemicals used are often poisonous and not easily disposable due to environmental 

issues (Kowshik et al., 2003). 

A relatively new and largely still poorly explored area of research is the biosynthesis of 

nanomaterials following a ‘bottom-up’ approach (Mohanpuria et al., 2008). Several 

biological systems (fungi, yeasts, bacteria and algae) are able to produce MeNPs at ambient 

temperature and pressure without requiring hazardous agents and generating poisonous by-

products (Iravani, 2011; Kharissova et al., 2012). 

Although a large number of papers have been published on the biosynthesis of MeNPs 

using phytochemicals contained in the extracts of a number of plant species (Haverkamp, 

2011), so far little has been understood about this process when it occurs in living plants. 

The plant-mediated MeNP synthesis that is promoted via plant extracts occurs in three 

different steps (Lukman et al., 2011; Rodríguez-León et al., 2013). 

The first step (induction phase) is a rapid ion reduction and nucleation of metallic seeds. 

Such small, reactive and unstable crystals spontaneously aggregate and transform into large 

aggregates (growth phase). When the sizes and shapes of the aggregates become 

energetically favourable, some biomolecules act as capping agents stabilizing the 

nanoparticles (termination phase). Eventhough this appears conceptually to be similar to 

biomineralization (Skinner, 2003), this process in live plants is still poorly known. In 

particular, the role of plant metabolism is not yet understood in any depth. 

The first experimental evidence of the synthesis of MeNPs in living vascular plants was 

reported by Gardea-Torresdey et al. (2002) who observed the formation of Au nanoparticles 

of different sizes and structures in plants of Medicago sativa (alfalfa) grown on agar 

medium enriched with AuCl4. Brassica juncea (Indian mustard) was the second species in 
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which the synthesis of MeNPs was studied (Haverkamp et al., 2007; Marshall et al., 2007). 

Besides alfalfa and Indian mustard, some other plant species have been tested for the 

capacity to synthesize MeNPs (Iravani, 2011; Quester et al., 2013). 

One of the key questions regarding this process is whether MeNP synthesis occurs outside 

the plant tissues with MeNPs transported through the root membrane into the plant or 

whether MeNPs are formed within plants by the reduction of the metal, previously taken 

up in ionic form by the roots. At present, the second hypothesis is the most accepted one. 

Plant-mediated MeNP formation was demonstrated by Sharma et al., using XANES and 

EXAFS, which provided evidence of Au reduction and the formation of AuNPs within the 

tissues of Sesbania drummondii. 

Interspecific differences (M. sativa vs. B. juncea) in the synthesis of MeNPs in response to 

experimental parameters such as Ag exposure time and concentration have been 

highlighted by Harris and Bali (2008). Finally, Starnes et al. (2010) studied the effects of 

managing some environmental parameters (e.g. temperature and photosynthetically active 

radiation regime) on the nucleation and growth of AuNPs in some plant species, 

demonstrating empirical evidence on the feasibility of in planta NP engineering in order to 

produce nanomaterials of a wide variety of sizes and shape, which therefore have different 

physical and chemical properties. 

The aims of our work were (i) to confirm the in vivo formation of silver nanoparticles 

(AgNPs) in B. juncea, M. sativa and F. rubra and (ii) to observe the location of AgNPs in 

plant tissues and cells in order (iii) to evaluate the possible relationship with plant 

metabolites. 

3.2 Methods 

3.2.1 Seed Germination and Plant Growth 

Seeds of Indian mustard (B. juncea cv. Vittasso), red fescue (F. rubra) and alfalfa (M. 

sativa cv. Robot), previously washed with 1% H2O2 for 15 min and subsequently rinsed 

with deionized water, were placed in the dark in Petri dishes containing germinating paper 

and distilled water. 

Fifteen days after germination, the seedlings were transferred to a hydroponic system (1-l 

pots) containing a half-strength modified aerated Hoagland's solution. The nutrient solution 

was replaced every 7 days. The plants were grown for a cycle of 30 days on a laboratory 

bench lit by fluorescence lamps providing an average photosynthetically active radiation 
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(PAR) at the top of the plants of 500 μmol m−2 s−1 with a 16:8-h (light/dark) photoperiod. 

Ambient temperature was maintained at 22°C ± 2°C. 

At the end of the growth cycle, the nutrient solution was removed and the root mass of the 

plant material was washed three times with deionized water. After washing, the growth 

solution was replaced with 1,000 ppm AgNO3 (99.9999% salt; Sigma-Aldrich, St. Louis, 

MO, USA) solution and with deionized water (control). After 24 h, both treated and control 

plants (n = 6) were harvested. 

3.2.2 Plant Tissue Collection 

Ultrastructural analyses were performed by transmission electron microscopy. Fresh 

samples of plant tissues were collected after 24 h from the roots, along the stems and from 

fully expanded leaves near the primary veins. A subset of plants (three replicates per 

species) were used for inductively coupled plasma optical emission spectroscopy (ICP-

OES) analysis. 

3.2.3 TEM Analysis 

Samples of plant tissues, as reported above, were excised, cut into small portions (2 × 3 

mm) and fixed for 2 h at 4°C in 0.1% (wt/vol) buffered sodium phosphate and 3% (wt/vol) 

glutaraldehyde at pH 7.2. They were then postfixed with 1% osmium tetroxide (wt/vol) in 

the same buffer for 2 h, dehydrated in an ethanol series and embedded in Epon/Araldite 

epoxy resin (Electron Microscopy Sciences, Fort Washington, PA, USA). Serial ultrathin 

sections from each of the species were cut with a diamond knife, mounted on Cu grids, 

stained in uranyl acetate and lead citrate, and then observed under a Philips CM 10 (FEI, 

Eindhoven, The Netherlands) transmission electron microscope (TEM) operating at 80 kV. 

3.2.4 TEM X-ray Microanalysis 

The nature of precipitates observed in plant tissues was determined by TEM (PHILIPS CM 

12, FEI, Eindhoven, The Netherlands) equipped with an EDS-X-ray microanalysis system 

(EDAX, software EDAX Genesis, AMETEK, Mahwah, NJ, USA). The images were 

recorded by a Megaview G2 CCD camera (software iTEM FEI, AnalySIS Image 

Processing, Olympus, Shinjuku-ku, Japan). 

3.2.5 ICP-OES Analysis 

Plant fractions were carefully washed with deionized water. Roots were additionally 

washed in slightly acidic (4% HCl) milliQ water for 10 min and then rinsed three times in 
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milliQ water. The material was then ovendried  at 105°C for 24 h and nitric acid-digested 

in a microwave oven (MARS Xpress, CEM, Matthews, NC, USA) according to the USEPA 

3052 method (USEPA 1995). After mineralization, the plant extracts were filtered (0.45-

μm PTFE), diluted (1:20) and analyzed. 

Total content of Ag was determined by an ICP-OES (Vista MPX, Varian Inc., Palo Alto, 

CA, USA). The accuracy of the analytical procedure adopted for ICP-OES analysis was 

checked by running standard solutions every 20 samples. Yttrium was used as the internal 

standard. A reagent blank and certified reference material (NIST SRM® 1573) were 

included for quality control of analysis. 

3.2.6 Plant Metabolism Parameters 

In control plants, leaf samples were collected (n = 3), immediately frozen in liquid nitrogen 

and stored at −80°C with the aim of determining the following parameters from leaf 

extracts: (i) glucose (GLC) and (ii) fructose (FRU) contents, (iii) ascorbic acid (AA) and 

(iv) citric acid (CA) contents, and (v) total polyphenol (PP) content. 

The content of GLC and FRU in leaves was evaluated by measuring the NADPH absorption 

after successive additions of the coupling enzymes glucose-6-P-dehydrogenase, 

hexokinase, phosphoglucose-isomerase and invertase (Bergmeyer et al., 1974) using a 

UV/visible spectrophotometer (Tecan GENios Microplate Reader, Männedorf, 

Switzerland) at 340 nm. 

AA was estimated by a colorimetric 2.6-dichlorophenol-indophenol (DIP) method (Keller 

and Schwager, 1977). The AA content was estimated using a UV/visible spectrophotometer 

(Novaspec II, Pharmacia Biotech AB, Uppsala, Sweden) at 520 nm. 

CA content was determined by measuring the NADH oxidation after addition of L-malate 

dehydrogenase, L-lactate dehydrogenase, oxaloacetate and pyruvate (Dagley, 1974) using 

a UV/visible spectrophotometer (Novaspec II, Pharmacia Biotech AB, Uppsala, Sweden) 

at 340 nm. 

Finally, according to Marinova et al. (2005), PP leaf content was determined following a 

modified Folin-Ciocalteu method (Singleton and Rossi, 1965). After incubation, the 

absorbance of the leaf extracts was determined using a UV/visible spectrophotometer 

(Novaspec II, Pharmacia Biotech AB, Uppsala, Sweden) at 750 nm. 

The enzymatic test kit was purchased from R-Biopharm AG (Darmstadt, Germany). 
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3.2.7 Data Analysis 

Plants were arranged in a randomized design (nine plants per species per treatment, one 

plant per pot). One-way analysis of variance (ANOVA) was carried out to test the 

differences in the plants' behaviour. The statistical significance of differences between 

mean values was determined using Bonferroni's test (p < 0.05). Different letters in Tables 

1 and 2 are used to indicate means that were statistically different at p < 0.05. Statistical 

analysis was performed using the SPSS program (ver. 17, SPSS Inc., Chicago, IL, USA). 

3.3 Results 

3.3.1 Silver Concentration in Plant Tissues 

We observed a quick Ag root sorption that resulted in a rapid and progressive darkening of 

root tissues and subsequently of the other plant fractions. Preliminary observation 

demonstrated that after 48 h of exposure to a solution of AgNO3 at 1,000 ppm, the cell 

structures in leaf tissues were seriously injured. Since one of the aims of our experiment 

was to observe the distribution of AgNPs within the cell structures of different species, we 

decided to shorten the Ag exposure to 24 h; however, despite the shorter exposure, the Ag 

uptake was very high and these plants also appeared stressed. 

The concentrations of Ag in the plant fractions were determined by ICP analysis. Data for 

roots, stems and leaves are reported in Table 1.  
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Table 1: Concentration of Ag in the roots, stems and leaves of the plants and Ag TF 

Species 

Ag roots 

(mg kg -1 DW) 

Ag stem 

(mg kg -1 DW) 

Ag leaves 

(mg kg -1 DW) 

TF 

(mg kg -1 DW) 

B. juncea 

82.292 a 

(5.394) 

57.729 a 

(598) 

6.156 a 

(516) 

7.48 a 

(0.92) 

F. rubra 

62.365 b 

(1.990) 

2.777 c 

(2.738) 

2.495 b 

(258) 

3.94 b 

(0.36) 

M. sativa 

19.715 c 

(2.369) 

25.241 b 

(5.004) 

4.31 c 

(0.84) 

0.022 c 

(0.003) 

The means (n = 3) with the same letter were not significantly different (Bonferroni's test; p < 0.05). 

The mean standard error (n = 3) is in brackets. TF, translocation factor; DW, dry weight. 

Comparing the behavior of the three species, some statistically significant differences 

can be evidenced. In the roots of B. juncea, the Ag concentration reached its highest value 

compared to the other species (F2,6 = 79.3, p<0.001). However, even the lowest value 

(19,715 mg kg−1 in M. sativa) was almost twice the concentration of Ag in the solution 

provided to the plants. With regard to the shoots (F2,6 = 74.7, p < 0.001), the highest Ag 

level was observed again in B. juncea while the lowest was observed in F. rubra (Table 1). 

As for the Ag accumulation in leaves, ANOVA also showed significant differences among 

the species (F2,6 = 86.3, p < 0.001). 

Analyzing the magnitude of Ag accumulation in the fractions from the different species, 

we can observe three different strategies. In B. juncea, the Ag concentration decreased 

progressively from roots to leaves (Table 1). In the case of F. rubra, about 95% of the Ag 

concentration was held in the roots. In M. sativa, a root-to-shoot Ag translocation was 

allowed while in the leaves the Ag concentration is very low (Table 1). The different 

strategies are briefly summarized by the translocation factor (TF = [Ag]leaves /[Ag]roots); the 

statistical significance of TF values (F2,6 = 43.7, p < 0.001) confirms such different 

behaviour of the species. 
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3.3.2 Plant Metabolism Compounds 

In Table 2, the concentrations of the primary sugars GLC and FRU and the antioxidants 

AA, CA and PP recorded in the studied species are shown. As expected, because the species 

belong to different botanical families, the concentrations of the metabolites were quite 

different. 

Table 2: Content of GLC, FRU, AA, CA and PP in the leaves of the plants 

Species 

GLC 

(mmol kg -1 FW) 

FRU 

(mmol kg -1 FW) 

AA 

(mg kg -1 DW) 

CA 

(mg kg -1 DW) 

PP 

(mg kg -1 DW) 

B. juncea 

1.61 b 

(0.64) 

2.17 b 

(1.07) 

3.878 a 

(548) 

10.2 a 

(0.48) 

711 a 

(48.6) 

F. rubra 

70.4 a 

(12.9) 

57.8 a 

(14.7) 

119 c 

(92.4) 

11.2 a 

(2.59) 

580 b 

(37) 

M. sativa 

8.17 b 

(0.58) 

7.37 b 

(0.57) 

1459 b 

(359) 

5.12 a 

(1.68) 

528 b 

(18.9) 

The means (n = 3) with the same letter were not significantly different (Bonferroni's test; p < 0.05). 

The mean standard error (n = 3) is in brackets. GLC, glucose; FRU, fructose; AA, amino acid; CA, 

citric acid; PP, polyphenols; FW, fresh weight. 

With regard to the primary sugars, ANOVA indicated that the grass, F. rubra, had a 

significantly higher concentration of GLC (70.4 mg kg−1, F2,6 = 25.6, p < 0.01) and FRU 

(57.8 mg kg−1, F2,6 = 13.04, p < 0.01) compared to other species, while in B. juncea and 

M. sativa, considerably lower values of both the sugars were found (Table 2). 

Regarding the content of AA, there were statistically significant differences among the 

species (F2,6 = 24.8, p < 0.01). The AA concentration varied from 3,878 and 119 mg kg−1 

measured for B. juncea and F. rubra, respectively (Table 2). 

The ANOVA also showed significant differences among the species for the content of PP 

(F2,6 = 6.56, p < 0.05). The highest amount of PP was found again in B. juncea, while F. 

rubra and M. sativa had similar low PP contents. 

Finally, no significant differences among the species were recorded for the concentration 

of CA (F2,6 = 3.29, p = 0.108) (Table 2). 
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3.3.3 Ag-like Particle Distribution in Plants and Ultrastructural 

Modifications Induced by Treatment 

The subcellular localization of Ag-like particles was assessed in the different organs (roots, 

stems and leaves) of B. juncea, F. rubra and M. sativa up to 24 h of metal exposure. 

Nanoparticles were visible in the tissues of the treated plants as dark, electron-dense 

roundish aggregates (Figures 1, 2, 3). After 24 h of treatment, TEM observations showed a 

similar distribution of the particles in the three plant species. 

 

Figure 1: Localization of Ag particles in the roots of Festuca rubra (A) and Medicago sativa (B, 

C, D). Electron-dense Ag spots are visible on the plasmalemma of the cortical parenchymal cells 

(A and B, arrows). In (A), arrowheads indicate the detachment of the plasmalemma from the cell 

wall. In (C), small particles are visible on the cell wall (W) and in the lumen of a xylem vessel 

(arrows). In (D), a detail of a xylem vessel showing the beginning of deposition of electron-dense 

Ag particles at the vessel pit (P) is visible (arrows). Bars correspond to 500 nm. 

In the roots, electron-dense Ag spots were present in the cortical parenchymal cells. The 

spots were localized mainly on the plasmalemma (Figure 1A,B, arrows). Small Ag particles 

were also found on the cell wall of the xylem vessels, in the cell lumen (Figure 1C, arrows) 

and in areas corresponding to the pits (P in Figure 1D, arrows). The ultrastructure of root 

tissues appeared significantly modified by Ag treatment even though the different cell 

compartments were still recognizable. The main changes concerned the cortical 

parenchymal cells where the plasmalemma was often detached from the cell wall (Figure 

1A, arrowheads). 
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Unlike the roots, numerous electron-dense Ag particles of different sizes, often forming 

consistent aggregates, appeared in the shoots in association with different cell 

compartments (Figure 2) such as cell walls (Figure 2A,B, arrows), chloroplasts (Chl in 

Figure 2B, arrows), plasmalemma and cytoplasm (Cyt in Figure 2C,D, arrows). 

 

Figure 2: Ag particles in shoots of Brassica juncea (A, C), Festuca rubra (B) and Medicago sativa 

(D). Electron-dense Ag precipitates are found in association with different cell compartments. In 

(A), Ag precipitates appear as big electron-dense accumulations in the extracellular spaces among 

cortical parenchymal cells and as small spots on the cell walls (W) and on chloroplasts (Chl, 

arrows). In the parenchymal cells of vascular tissues, precipitates are found in the chloroplast stroma 

(B, Chl, arrows) and in the cytoplasm (Cyt), which often appears condensed (C and D, arrows). 

Organelles such as mitochondria, endoplasmic reticulum and vacuoles are not distinguishable. Note 

the big starch accumulations into the chloroplasts (B, Str). Bars correspond to 500 nm in (A, B, C) 

and 100 nm in (D). 

In the xylem, Ag precipitates were distributed along the cell wall and, to a lesser extent, in 

the cell lumen (not shown). Ag treatment led to severe consequences in the stem tissues of 

the three plant species. In fact, the parenchymal cells of the stem showed anomalous shapes 

(Figure 2A). Cells had the appearance of being plasmolyzed, and the consequent 

condensation of the cytoplasm (Cyt in Figure 2C,D) made recognition of the organelles 

difficult. The chloroplasts were altered by disorganization of the lamellae (Chl in Figure 

2B) and by anomalous formation of starch granules (Str in Figure 2B). 
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In leaf tissues, Ag-like precipitates with different shapes and sizes (Figure 3A, arrows) were 

observed in association with the cell wall (W in Figure 3A) as well as the cytoplasm (Cyt 

in Figure 3B, arrows) and chloroplasts (Chl in Figure 3C, arrows). 

 

Figure 3: Ag particles in the leaves of Brassica juncea. Precipitates of different sizes are visible in 

the parenchymal cells (A, B, C). They are localized in the inner side of cell walls (A, W, arrows), 

in the condensed cytoplasm (B, Cyt, arrows) and in the chloroplasts (C, Chl, arrows). The wall 

architecture was modified, showing not compacted microfibrils (A, arrowheads). In (D), a xylem 

vessel (Xyl) contains numerous precipitates along the cell wall (W, arrows). In (E), the surrounding 

cells show also numerous precipitates, along the plasmalemma (arrows) and in the condensed 

cytoplasm (Cyt, arrows). Bars correspond to 250 nm in (A, B, C), 1,000 nm in (D) and 500 nm in 

(E). 

Electron-dense particles had also accumulated along the plasmalemma (Figure 3D,E, 

arrows). Similar to the observations in stems, precipitates were also present in the cell walls 

of the xylem elements (Xyl in Figure 3D,E, arrows). Precipitates were never observed in 

the phloem of the three plant species. 

As observed in the stems, Ag treatment also caused severe modifications to the cell 

structures in the leaf tissues. Parenchymal cells also seemed to have been plasmolyzed with 

an associated cytoplasmic condensation (Cyt in Figure 3B,E), chloroplasts contained large 

starch granules (Str in Figure 3C), and the walls were distorted (Figure 3D, arrowheads). 
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3.3.4 X-ray Microanalyses and Ag-like Particle Identification 

X-ray microanalysis was performed on the electrondense Ag-like particles observed in the 

different tissues of the three plant species. Some representative images of electron-dense 

precipitates recovered from the roots of F. rubra are shown in Figure 4 and those from the 

leaves of M. sativa and B. juncea in Figures 5 and 6, respectively. The presence of C, Os, 

U and Pb was due to sample preparation, and Cu was due to the grids used as section 

support. 

 

Figure 4: Electron-dense precipitates recovered from root cortical parenchymal cell of Festuca 

rubra and X-ray spectra of elements. Bar corresponds to 1,000 nm. Insets represent enlarged region 

where X-ray microanalyses have been performed. Bar corresponds to 200 nm. Ag peaks, at 23 keV, 

were well visible.  
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Figure 5: Electron-dense precipitates recovered from leaf parenchymal cell of Medicago sativa and 

X-ray spectra of elements. Bar corresponds to 1,000 nm. Insets represent enlarged region where X-

ray microanalyses have been performed. Bar corresponds to 100 nm. Ag peaks, at 23 keV, were 

well visible. The presence of C, Os, U and Pb was due to sample preparation, and Cu was due to 

the grids used as section support. 

 

Figure 6: Electron-dense precipitates recovered from leaf parenchymal cell of Brassica juncea and 

X-ray spectra of elements.Bar corresponds to 1,000 nm. Insets represent enlarged region where X-

ray microanalyses have been performed. Bar corresponds to 100 nm. Ag at 23 keV, were well 

visible. The presence of C, Os, U and Pb was due to sample preparation, and Cu was due to the 

grids used as section support. 
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3.4 Discussion 

Plants are able to take up silver, although this element has no biological functions (Adriano, 

2001). The typical level of Ag in plant tissue is <1 ppm (Smith and Carson, 1977). When 

the ionic form of Ag occurs in low concentrations in the soil, it accumulates evenly 

throughout the whole plant. At much higher concentrations, Ag accumulation increases in 

the plant roots, but it is poorly translocated to the shoots (Klein et al., 1975). 

This also occurs when plants are grown in hydroponics. Our data confirms the major Ag 

accumulation in plant roots. Also, we demonstrated how different the root-to-leaf Ag 

mobilization can be among different species. According to Harris and Bali (2008), B. 

juncea and F. rubra are much more efficient than M. sativa in Ag uptake and translocation. 

TEM analyses confirmed the presence of AgNPs through all the plant tissues of the three 

species, in the form of single particles and/or intracellular clusters of different sizes and 

shapes. This fact suggests that after entering through the root apparatus, AgNPs are able to 

move to remote positions and to form aggregates throughout the plants. The movement 

probably occurs through the vascular system, but it is unclear whether particles were 

transported as nanosized individuals or as aggregates. Twenty-four hours after treatment, 

roots showed aggregates that appeared to be blocked to further movement at the 

plasmalemma of the cortical tissues, while isolated nanoparticles have been mainly found 

close to the root vascular core, in the xylem pits and in the vessel lumen. This could indicate 

that a small proportion of AgNPs aggregate at the root level and the others move from 

parenchymal cells to the xylem mainly as nanosized individuals, to be subsequently 

transported to the other plant organs where they form clusters. The fact that particles can 

move through the xylem is in agreement with the report of Corredor et al. (2009), who 

suggested that iron-carbon nanoparticles, after injection into Cucurbita pepo tissues, were 

able to spread through the xylem away from the application point. 

AgNP localization inside the cells is widely addressed in the literature. It has been reported 

that Ag is able to displace other cations from electropositive sites located on the cell walls, 

membranes and DNA molecules, thanks to its strong electronegative potential. A long time 

before the current investigations into MeNP biosynthesis, Weier (1938) first reported the 

reduction of Ag to metallic granules in cells of the leaves of Trifolium repens. It was 

discovered that the deposition of such material occurred particularly along the edge of the 

chloroplasts as well inside them and in the starch granules. 



45 
 

This is also in agreement with the localization of AgNPs in the leaves of the three plant 

species reported in this study. Ascorbic acid has been proposed as the reducing agent 

responsible for this process (Weier, 1938). The localization of metallic Ag was later 

confirmed by Brown et al. (1962), who also hypothesized that other compounds beside 

ascorbic acid could accomplish Ag reduction, and thus, the process was proposed to be 

more complex than a single-step reduction reaction. 

TEM observations also revealed ultrastructural changes in different cell compartments. 

These modifications were often observed concomitantly with nanoparticle aggregates. 

Plant cells could respond to the presence of a high density of nanoparticles by changing 

their subcellular organization. The main changes concerned cell membranes 

(plasmalemma, tonoplast, chloroplast thylakoids) as Ag is able to inhibit many enzymes, 

especially those containing sulfhydryl groups, thereby altering membrane permeability 

(Koontz and Berle, 1980). We observed that the severity of ultrastructural changes was 

different in the diverse plant organs. Even though the ICP analyses demonstrated a higher 

metal concentration in the root tissues of plants, the aerial fractions were more damaged by 

Ag treatment than the roots. 

The limited toxic effects observed in the root tissue are probably due to the ability of the 

plants to ‘block’ and store AgNPs at the membrane level. On the other hand, nanosized 

individuals, translocated to the upper levels of the plant, resulted in a higher toxicity, as 

already reported for other metal-based nanoparticles (Aubert et al., 2012). 

AgNP synthesis in living plants has been demonstrated previously in B. juncea and M. 

sativa in hydroponics by Harris and Bali (2008), Haverkamp and Marshall (2009) and 

Beattie and Haverkamp (2011). Our data confirms their findings. Furthermore, the current 

paper demonstrates AgNP formation in the live tissues of F. rubra which has not been 

reported previously. Some experimental evidences demonstrated that metal reduction and 

nucleation (steps both involved in the NP synthesis) can occur in agar/soil-plant system 

(respectively, Gardea-Torresdey et al., 2003; Manceau et al., 2008). For this reason, we 

cannot totally exclude that also in our conditions a fraction of AgNPs can be formed due to 

the release of root metabolites then absorbed by plant roots. 

MeNP synthesis, which occurs in plant tissues very quickly, is influenced by environmental 

conditions. Starnes et al. detected the formation of AuNPs in M. sativa and other species as 

early as 6 h after the start of exposure to KAuCl4. It was also verified that plant growth 

conditions have an effect on MeNP biosynthesis: variations in temperature, pH and 

photosynthetically active radiation (PAR) influence the size and shape of growing AuNPs 
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(Starnes et al., 2010). Theoretically, this suggests the possibility of managing living plants 

as nanofactories and promoting the synthesis of nanomaterials of desired size and shape. 

The most intriguing question about plant MeNP biosynthesis is where and how this 

phenomenon begins. So far, the steps of this process in living plants have not been 

completely clarified. Wherever this occurs, it is highly likely that the key factor is the 

presence of immediately available reducing agents. An investigation by Beattie and 

Haverkamp (2011) demonstrated that in B. juncea the sites of the most abundant reduction 

of metal salts to NPs were the chloroplasts, in which high reducing sugars (i.e. glucose and 

fructose) may be responsible for the metal reduction. This might support the hypothesis 

that plants with the highest concentrations of reducing sugars are the ‘nanofactories’ par 

excellence. 

In our experiment, leaf extracts of the studied species were analyzed to detect the 

concentrations of two reducing sugars (GLC and FRU) and the antioxidants AA, CA and 

PP, assuming that possible differences in the concentration of such substances may have 

some influence on MeNP biosynthesis. If the hypothesis by Beattie and Haverkamp (2011) 

were true, and given our findings regarding the high concentration of GLC and FRU, among 

the species studied F. rubra should be a very promising species because it also translocated 

in its leaves very well. To verify this hypothesis would require a demonstration of a 

quantitative relationship between the concentration of reducing sugars and the amount of 

AgNPs; however, this was beyond the scope of the present study. 

Our data demonstrate that in the leaves of B. juncea and M. sativa (species used as model 

plants by several authors in studies on the biosynthesis MeNPs), there are concentrations 

of AA and PP that are considerably higher than those in F. rubra. In contrast, F. rubra had 

a level of reducing sugars much higher than B. juncea and M. sativa. This leads to the 

concept that there is no substance that is solely responsible for the process. In fact, 

currently, it is thought that polysaccharides, proteins, flavonoids and terpenoids, which 

together promote the total reducing capacity of plant cells, could be involved in the 

biosynthesis of MeNPs and their stabilization (Park et al., 2011; Gan and Li, 2012 and 

references therein). On the other hand, it should be considered that MeNP biosynthesis 

starts in healthy cells, which then rapidly undergo a progressive alteration until they are 

completely disrupted due to Ag toxicity. Thus, it could be that MeNP biosynthesis is 

initiated within the chloroplasts in a healthy cell and ends in the cytoplasm of the same cell, 

which has been damaged. 
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3.5 Conclusions 

The synthesis of AgNPs in living plants was confirmed in B. juncea and M. sativa and 

demonstrated for the first time in F. rubra. We assessed the subcellular localization of 

AgNPs in the plant fractions demonstrating that AgNPs had a similar distribution but 

different sizes. 

Regarding promotion agents, the presence of AgNPs within the chloroplasts suggested that 

primary sugars, at least in the beginning phase, could have a role in the in vivo synthesis of 

AgNPs. However, while the effects of these substances are usually studied individually, it 

is very unlikely that they have an exclusive role. On the contrary, given the complexity of 

plant metabolism, it is most likely that there are synergistic effects between different 

substances. 

We did not verify a clear quantitative relationship between the amount of GLU, FRU, AA 

and PP and the quantity of AgNPs formed. To evaluate if plants can be efficiently exploited 

for their ability to synthesize in vivo MeNPs, further experiments are needed not only to 

define more precisely the mechanism of metal nanoparticle formation in living plants but 

also to better understand if differences in plant behaviour, due to molecular mechanisms, 

result in differences in the amount, forms, dimensions and 3-D structures of the in vivo 

synthesized MeNPs.  
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4 Evidence of Phytotoxicity and Genotoxicity in 

Hordeum vulgare L. Exposed to CeO2 and TiO2 

Nanoparticles 

 

 

 

 



50 
 

 

4.1 Background 

It is estimated that by 2020 about six million people will be employed worldwide in 

industries that use nanotechnologies, which will have the potential to produce goods for a 

market of more than 3,000 billion dollars (Roco, 2011). There is therefore a tumultuous 

development of new materials justified  by a rapid growth of technological and commercial 

applications. Model simulations demonstrated  that flows of engineered nanomaterials 

(ENMs) are able to reach several natural ecosystems (Colman et al., 2013). Cerium oxide 

nanoparticles (nCeO2) and titanium oxide nanoparticles (nTiO2) are among the top ten most 

produced ENMs by mass (Keller et al., 2013) and used in cosmetics industries, in solar 

cells, paints, cements, coatings, in agriculture and the food industry (Gogos et al., 2012; 

Piccinno et al., 2012; Parisi et al., 2015). nCeO2 and nTiO2 were included in the list of 

ENMs of  priority for immediate testing by the Organization for Economic Cooperation 

and Development (OECD, 2010). From point sources (e.g. discharges of wastewaters from 

industries or landfills), such materials will tend to accumulate in sediments and soils, 

exposing the organisms inhabiting these  environments to potential risks (Liu and Cohen, 

2014). 

Plants are able to assimilate metal nanoparticles (MeNPs) largely depending on the type of 

plant and the size of MeNPs (Rico et al., 2011). In addition, the primary particle size of 

MeNPs is relevant for their bioavailability and therefore their toxicity (Van Hoecke et al., 

2009), also raising questions on the potential for MeNPs exposure of crops and food safety 

(Hong et al., 2013). Experimental evidences were reported by Zhang et al (2011). which 

studied the nCeO2 uptake and translocation in cucumber, reporting an higher Ce 

assimilation in plants treated with 7 nm Ce than 25 nm ones. 

Clément et al. (2013) reported similar results for nTiO2 on rapeseed plantlets treated with 

14-25 nm particles. Another functional property that influence the MeNPs plant 

assimilation is the agglomeration/aggregation status that in turn is influenced directly by 

the zeta-potential (Navarro et al., 2008). Song et al. (2013a) demonstrated a negative 

correlation between nTiO2  agglomeration/aggregation and assimilation in tomato. A 

similar behavior could be hypothesized also for nCeO2. 

Although there are potential positive applications of ENMs in agriculture (Parisi et al., 

2015), studies on the toxicity of MeNPs have shown early negative consequences on crops 

due to genotoxic and phytotoxic effects (Miralles et al., 2012; Gardea-Torresdey et al., 
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2014). From an ecological point of view, this raises questions about potential risks due to 

the input of MeNPs in the food chain. Early plant MeNPs toxicity can be measured 

observing seed germination, root elongation, DNA mutations (López-Moreno et al., 2010a; 

Atha et al., 2012) or changes in biochemical parameters (Rico et al., 2013; Schwabe et al., 

2013). 

The aims of this study were to determine the early phytotoxic and genotoxic effects of 

nCeO2 and nTiO2 on barley (Hordeum vulgare L.) plants. The FAO ranks barley 4th in the 

top 5 cereals in the world ordered based on production tonnage (FAOSTAT, 2014) and the 

cereal is one of the major crops grown worldwide for human and animal consumption. 

Suspensions of nCeO2 and nTiO2 were prepared at 0, 500, 1000 and 2000 mg l-1. 

Phytotoxicity of nanoparticles was determined through percentage of germination and root 

elongation, ATP and ROS generation in root and leaf cells. Genotoxicity was investigated 

by the mitotic index and RAPDs. Ce and Ti uptake and translocation within seedling tissues 

were determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES), 

while nCeO2 and nTiO2 within plant cells were detected by transmission electronic 

microscope and energy dispersive x-ray spectrometer (TEM-EDX). 

4.2 Materials and Methods 

4.2.1 Nanoparticles Characterization 

The cerium(IV) oxide (nCeO2) and titanium(IV) oxide anatase (nTiO2) powders with a 

nominal average particle size < 25 nm were purchased from Sigma-Aldrich (Milwaukee, 

WI, USA). The specific surface area of the nCeO2 and nTiO2 was measured by the 

Brunauer–Emmett–Teller (BET) method by using the Surface Area and Pore Size Analyzer 

SA 3100 plus (Beckman Coulter, USA). The nCeO2 and nTiO2 powders were suspended 

in deionized water at a concentration of 1000 mg l-1 and sonicated at 60 °C for 30 min. The 

suspensions were characterized for Z-average size, measured as hydrodynamic diameter, 

zeta potential, via electrophoretic mobility, and polydispersity index (PDI), calculated from 

the signal intensity, by the dynamic light scattering (DLS) method using the Nano ZS90 

(Malvern Instruments, UK). The nCeO2 and nTiO2 powder suspensions at three different 

concentrations (500, 1000 and 2000 mg l-1) were prepared in MilliQ® water by sonication 

for 30 min at room temperature and then stirred for 15 min. The range of concentrations (0, 

500, 1000 and 2000 mg l-1) was chosen according to Yang and Watts (2005), Lin and Xing 

(2007) and López-Moreno et al. (2010a). 
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4.2.2 Seed Germination and Root Elongation 

Caryopses of Hordeum vulgare L. var. Tunika were provided by S.I.S. Società Italiana 

Sementi (San Lazzaro di Savena, Bologna, Italy). The caryopses were sterilized by orbital 

agitation with 70% ethanol for 2 min and then with 5% sodium hypochlorite plus some 

drops of Tween 80 for 30 min. They were rinsed six times with sterilized MilliQ® water. 

All caryopses were transferred in sterile conditions into 15 mm Petri dishes containing filter 

paper (Ø 90 mm Whatman No. 1) soaked with 8 ml of MilliQ® water (control treatment) 

or 8 ml of nCeO2 or nTiO2 suspensions at different concentrations. The Petri dishes were 

taped and placed in the dark at 21 °C for 3 d. The germination percentage was calculated 

as the ratio of germinated seeds out the total seeds of each Petri dish. A second set of 

caryopses were treated for 7 d in the same conditions to evaluate root elongation and Ce 

and Ti uptake. The seedlings were photographed and Image J software (Schneider et al., 

2012) was used to measure roots length. Root elongation was calculated as the average or 

the sum of all roots emerged from each seed. The experiments were performed in triplicate. 

4.2.3 Mitotic Index 

The germinated seedlings with actively growing roots (2.5 cm in length) were placed in the 

nCeO2 and nTiO2 suspensions (0, 500, 1000, 2000 mg l-1) for 24 h. After treatment the root 

tips were fixed in 3:1 alcohol : acetic acid and then, kept in 70% ethanol at 4 °C. The root 

tips were rinsed in deionized water for 5 min, hydrolyzed in 1N HCl for 8 min at 60 °C, 

rinsed in deionized water for 5 min, stained in leuco-basic-fuchsine for 45 min and washed 

in tap water for 5 min. The root tips were then transferred to 45% acetic acid for 1 to 5 min, 

root caps were removed, and the roots were dissected to release the meristematic cells. Ten 

tips per treatment were evaluated and each treatment was replicated three times, for a total 

of about 10,000 cell observations. The mitotic index was evaluated in Feulgen stained 

preparations as the percentage of dividing cells out of the total number of cells scored. 

4.2.4 Random Amplified Polymorphic DNA (RAPD) Analysis 

The genotoxicity of nCeO2 and nTiO2 was investigated by observing the band profile after 

a random amplified polymorphic DNA (RAPD) assay on 6 replicates per treatment 

obtained from seedlings exposed as for mitotic index experiment. Plant genomic DNA was 

extracted from root tips using the DNeasy Plant Mini Kit (QIAGEN®) according to 

manufacturer’s protocol. PCR reactions were performed with 30 ng of genomic DNA as a 

template using six primer pairs: OPA04 (AATCGGGCTG), OPA10 (GTGATCGCAG), 
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OPB01 (GTTTCGCTCC), OPB03 (CATCCCCCTG), OPB12 (CCTTGACGCA) and 

OPB20 (GGACCCTTAC). The PCR conditions consisted of an initial Taq polymerase 

activation at 95 °C for 5 min, followed by 45 cycles of denaturation (95 °C, 1 min), 

annealing (35 °C, 1 min) and extension (72 °C, 1 min) with a final extension for 10 min at 

72°C. The PCR products were subjected to electrophoresis on 1.6% agarose in TBE 0.5%, 

for 2 h at 60 V/cm stained with GelRed® and photographed for band scoring. 

4.2.5 Evaluation of ATP Content 

ATP content was determined by means of the luciferin–luciferase luminometric assay 

(Lundin, 1984). Root and shoot of each seedling were separated, frozen with liquid nitrogen 

and ground to a fine powder. Tissue powder (100 ± 20 mg FW) was suspended in 1 ml of 

50 mM Tris–HCl (pH 7.5), 0.05% (w/v) Triton X-100 and immediately kept at 95 °C for 3 

min to inactivate any possible hydrolytic activity. After cooling, samples were centrifuged 

to obtain the cellular soluble fraction in the supernatant. The sample assays were performed 

in a 96-well plate with ATPlite Luminescence ATP Detection Assay System, 

(PerkinElmer) according to manufacturer’s protocol. Aliquots (20 μl) of soluble fraction 

were mixed with 20 μl of ATPlite buffer in 130 μl of 50 mM Tris–HCl (pH 7.5) and 5 mM 

MgCl2. Signals were detected by a Multilabel Counter (WALLAC, model 1420, 

PerkinElmer Waltham, MA, USA). Actual ATP concentration of each experiment 

(expressed as nmol ATP g−1 FW) was calculated by a calibration curve obtained with 

commercially purchased ATP (Sigma, USA) in a 8–100 nM range. 

4.2.6 Reactive Oxygen Species (ROS) Determination 

The generation of ROS was monitored by the method of Wang and Joseph (1999), using 

2’,7’-dichlorodihydrofluorescein diacetate (H2DCFDA) as a probe. Tissue powder (0.5 g 

FW) obtained from both roots and shoots was extracted in 2.5 ml cold acetone and 

incubated for 4 h at 4°C. After centrifugation at 1000 g for 10 min, the pellet was 

homogenized in 1 ml of 50 mM Tris-HCl (pH 7.5), 0.4 M sucrose and 1 mM EDTA by 

Turrax device. The sample was again centrifuged for 15 min and the supernatant stored at 

-80°C until analysis. Aliquots of sample (20 μl) were incubated in 96-well microplate with 

5 μM H2DCFDA and 180 μl of 50 mM Tris-HCl (pH 7.5). Detection was performed by 

fluorimetric assay using Multilabel Counter (WALLAC, model 1420, Perkin-Elmer) with 

orbital shaking and reading for 1.75 h at 5 min intervals with excitation filter set at 485 ± 

10 nm and the emission filter set at 530 ± 10 nm. Values of relative fluorescence (RFU) 
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were expressed as RFU mg-1 protein. Protein concentration was estimated by the Bradford 

(1976) method. 

4.2.7 Cerium and Titanium in Seedling Tissues 

The seedlings were washed by agitation with 0.01 M HNO3 for 30 min and rinsed 3 times 

by agitation with MilliQ® water for 15 min. The seedling roots and shoots were then oven-

dried at 105 °C for 24 h and 0.5 g material was digested using 10 ml of HNO3 in a 

microwave oven (CEM, MARS Xpress) according to the USEPA 3052 method (USEPA, 

1995).[30] After mineralization, the plant extracts were filtered (0.2 µm PTFE), diluted and 

analyzed. Total content of Ce and Ti was determined by an ICP-OES (Varian Inc., Vista 

MPX). The accuracy of the analytical procedure adopted for ICP-OES analysis was 

checked by running standard solutions every 20 samples. Yttrium was used as the internal 

standard. 

4.2.8 TEM Observations and X-ray Microanalysis 

The morphology of nanoparticles was assessed by direct observation of suspension of 

nCeO2 or nTiO2 nanoparticles under the transmission electron microscope (TEM). Drops 

of suspensions (prepared as described above) were placed on carbon-formvar coated nickel 

grids, dried at room temperature and observed under a Philips CM 10 (FEI, Eindhoven, The 

Netherlands) TEM, operating at 80 kV. 

For microscopic analyses in planta, tissues from seedlings treated with nCO2 or nTiO2 at 

1000 and 2000 mg l-1 were sampled as in the root elongation experiment were sampled. 

Roots and shoots were excised, cut into small portions (2x3 mm) and fixed for 2 h at 4 °C 

in 0.1% (w/v) buffered sodium phosphate and 3% (w/v) glutaraldehyde at pH 7.2. They 

were then post-fixed with 1% osmium tetroxide (w/v) in the same buffer for 2 h, dehydrated 

in an ethanol series, and embedded in Epon/Araldite epoxy resin (Electron Microscopy 

Sciences, Fort Washington, PA, USA). For conventional TEM observations, serial ultrathin 

sections from embedded leaf tissues were cut with a diamond knife, mounted on uncoated 

200 mesh copper grids (Electron Microscopy Sciences, Fort Washington, PA, USA), 

stained in uranyl acetate and lead citrate, and then observed under TEM as reported above. 

For X-ray microanalysis, unstained ultrathin sections were placed on formvar/carbon-

coated 200 mesh nickel grids and dried at room temperature. The nature of nanoparticles 

observed in plant tissues was determined by a TEM (PHILIPS CM 12, FEI, Eindhoven the 

Netherlands) equipped with an EDS-X-ray microanalysis system (EDAX, AMETEK 
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Mahwah NJ, USA, software EDAX Genesis). The images were recorded by a Megaview 

G2 CCD Camera (Olympus; software iTEM FEI, AnalySIS Image Processing). 

4.2.9 Data Analysis 

One-way analysis of variance (ANOVA) was conducted to test differences in the plants’ 

behavior. Tukey’s Multiple Comparison test at 0.05 p level were used to compare means. 

Statistical analyses were performed using the SPSS program (SPSS Inc. Chicago, IL, USA, 

ver. 17). Principal Coordinate Analysis (PCoA) was computed based on the binary genetic 

distance option in GenAlEx v. 6.501 software (Peakall and Smouse, 2012). Graphics were 

produced using CoPlot (CoHort ver. 6.204,Monterey, CA, USA). 

4.3 Results 

4.3.1 Nanoparticles Characterization 

The specific surface values obtained by BET measurements were 46.1 m2 g-1 for nCeO2 

and 61.6 m2 g-1 for nTiO2. The Z-average sizes of the nCeO2 and nTiO2 suspended in 

deionized water were 174 ± 1.2 nm and 925 ± 105 nm, respectively, these values result 

remarkable higher respect the declared producer dimensions. The zeta potentials were 

0.027 ± 0.064 mV for nCeO2 and 19.9 ± 0.55 mV nTiO2. These parameter values put in 

evidence their instability, in fact for both nanoparticle types are included in the range of the 

nanoparticle instability (- 30 mV ÷ + 30 mV) and justify the differences between the 

declared dimension and the measured ones. The PDI of 212 nCeO2 and nTiO2 were 0.339 

± 0.011 and 0.841 ± 0.173, respectively. These values indicate a narrow dimensional 

distribution of nCeO2 respect to nTiO2.  
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4.3.2 Caryopses Germination and Root Elongation 

Effects of nCeO2 and nTiO2 on caryopses germination and root growth are shown in 

Table 1. 

Table 1: Germination percentage of seeds, number of seminal roots and root length in barley 

seedlings treated with 0, 500, 100, and 2000 mg l-1 of nCeO2 and nTiO2. Values are mean ± SE 

(n=3). Different letters indicate statistical difference between treatments at Tuckey’s test (p<0.05). 

 nCeO2 nTiO2 

Treatment 
Germination 

(%) 

Seminal roots 

(n) 

Root length 

(mm) 

Germination 

(%) 

Seminal 

roots (n) 

Root length 

(mm) 

Ctrl 87±1.76 a 5.2 ± 0.18 a 52.7 ± 4.13 a 88 ± 1.20 a 6.6 ± 0.34 a 53.3 ± 3.03 a 

500 mg l-1 83 ± 2.03 a 5.5 ± 0.22 a 39.8 ± 2.24 b 87 ± 1.76 a 6.1 ± 0.27 a 45.4 ± 2.85 b 

1000 mg l-1 80 ± 2.08 a 5.2 ± 0.26 a 45.8 ± 17.8 ab 85 ± 1.45 a 6.5 ± 0.22 a 53.9 ± 3.13 a 

2000 mg l-1 79 ± 1.86 a 4.9 ± 0.25 a 43.8 ± 1.72 ab 87 ± 1.76 a 6.4 ± 0.13 a 58.5 ± 2.97 a 

 

Since there was not a statistically significant effect of concentrations for nCeO2 and nTiO2, 

our results demonstrate that, even at the highest level of concentration, caryopses 

germination is not affected by nCeO2 or nTiO2 (Table 1). At the end of our experiment, the 

barley seedlings had reached coleoptile emergence. At this stage typically has between six 

and seven seminal roots (Knipfer and Fricke, 2011). In our experiment, the number of 

seminal roots was not affected by nCeO2 and nTiO2 (Table 1). On the contrary, in both 

cases the development of root tissues was influenced in a similar manner by the treatments. 

In fact, there was a significant effect of both nCeO2 (p<0.05) and nTiO2 (p<0.05) on the 

average length of the seminal roots. Post hoc comparison tests indicated that root elongation 

in seedlings treated with 500 mg l-1 nCeO2 and nTiO2 was significantly lower than controls 

(-24.5% and -14.8%, respectively). At higher nCeO2 and nTiO2 concentrations we would 

have expected to see a further reduction in the development of seminal roots. However, this 

did not occur since the average length of seminal roots was similar to controls (Table 1). 

4.3.3 Cerium and Titanium in Plant Tissues 

Although without visible symptoms of phytotoxicity, the concentration of total Ce and Ti 

in the issues of barley seedlings showed (i) a dose-response and (ii) a different magnitude 
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of accumulation between Ce and Ti. Table 2 shows the concentration of Ce and Ti in the 

fractions of barley seedlings. 

Table 2: Concentration of total Ce and Ti in roots and shoots of barley seedlings treated with 0, 

500, 100, and 2000 mg l-1 of nCeO2 and nTiO2. Values are mean ± SE (n=3). Different letters 

indicate statistical difference between treatments at Tuckey’s test 

Treatment 

Ce roots 

(mg kg-1 DW) 

Ce coleoptile 

(mg kg-1 DW) 

Ti roots 

(mg kg-1 DW) 

Ti coleoptile 

(mg kg-1 DW) 

Ctrl < d.l. < d.l. < d.l. < d.l. 

500 mg l-1 579 ± 168 b 38.3 ± 5.77 b < d.l. < d.l. 

1000 mg l-1 5262 ± 1751 b 98.1 ± 40.2 b 35.2 ± 17.3 b 7.83 ± 3.3 b 

2000 mg l-1 20,714 ± 5722 a 622 ± 95.1 a 412 ± 127 a 26.2 ± 8.71 a 

 

As expected Ce and Ti accumulated much more within root tissues than in the shoot 

(p<0.05). Ce concentration in the roots increased significantly (p<0.05) as the concentration 

of nCeO2 in the growth medium increased (Table 2). A statistically significant effect of 

treatments in Ce accumulation in the shoots (p<0.001) was verified. Mean comparisons 

showed differences among the treatments. Ce concentration in shoots did not significantly 

differ between the 500 and 1000 mg l-1 Ce treatment (38.3 and 98.1 mg Ce kg-1 DW, 

respectively), whereas at 2000 mg nCeO2 l
-1 a Ce concentration of 622 mg Ce kg-1 DW was 

observed in the shoots, which is significantly different from other values (Table 2). 

Titanium concentrations in barley roots and shoots were one-two orders of magnitude lower 

compared to Ce. However, also in this case a statistically significant dose dependent 

increase was also observed. With the lowest nTiO2 treatment (500 mg l-1) Ti concentration 

in roots was negligible and no Ti was detected in shoots (Table 2). At the intermediate 

nTiO2 treatment (1000 mg l-1) the root tissues had 37.2 mg Ti kg-1 DW which is 

significantly lower (p=0.0001) than 413 mg Ti kg-1 DW found at highest nTiO2 treatment 

(Table 2). Finally, we verified that also Ti concentration in the shoots also responded 

positively to the treatments (p <0.001). The mean Ti concentration detected in barley shoots 

were 7.83 mg kg-1 DW and 26.2 mg kg-1 DW for 1000 and 2000 mg nTiO2 l
-1, respectively 

(Table 2). 
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4.3.4 Ce and Ti Nano-aggregates in Plant Tissues 

The morphology of nCeO2 and nTiO2 NPs is visible in Figure 1A and 1B, respectively. 

 

Figure 1: Transmission electron microscope images of 1000 mg l-1 suspensions of (A) nCeO2 and 

(B) nTiO2. 

Transmission electron microscopy analysis demonstrated that CeO2 particles exhibited an 

approximate equi-axes shape with sharp edges (Figure 1A), while particle sharp edges are 

less evident in TiO2. To assess the possible uptake of nCeO2 or nTiO2 from the culture 

medium to the root tissues and the translocation to the different parts of the plantlets, we 

performed ultrastructural analyses on roots and shoot tissues. Several clusters of NPs were 

found in cortical parenchymal tissues of roots, both in the case of nCeO2 (Figure 2A) and 

nTiO2 treatment, at all concentrations. 
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Figure 2: Representative images of electron dense precipitates recovered in root tissues of Hordeum 

vulgare exposed to 1000 mg l-1 of (A) nCeO2 and (B) nTiO2 and X-ray spectra of elements recovered 

in. Insets represent enlarged regions where X-ray microanalyses have been performed. Presence of 

C, Os were due to sample preparation, Cu to the grids used as section support. 

Clusters were also observed in the xylem, even if in to lesser extent (Figure 2B). EDS-X 

ray microanalysis allowed the identification of the clusters as aggregates of Ce and Ti 

nanoparticles. 

No NPs were detected in the shoots of nCeO2 or nTiO2 treated plantlets. The ultrastructure 

of all observed tissues appeared preserved. No necrosis or damage to membranes, nor cell 

modifications were detected. In general, the cell compartments were not significantly 
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affected by treatments, except for the nuclei of parenchymal cells of root and shoot of 

seedlings treated with nCeO2 (1000 and 2000 mg l-1), which showed compact chromatin 

(Figure 3A-D). 

 

Figure 3: Representative micrographs of nuclei (N) from shoot (A, B and C) and root (D) 

parenchymal cells of H. vulgare. (A) control untreated shoot: nucleus presents regular shape, 

nuclear membranes are intact (arrows), nucleolus (Nu) and chromatin (Chr) appear normally 

dispersed. (B-C) 1000 mg nCeO2 l-1- treated shoot and (D), 1000 mg nCeO2 l-1- treated root: 

nuclei still present normal shape and apparently undamaged membranes, while chromatin shows 

condensation. (Ch, chloroplasts; m, mitochondrion). 

4.3.5 ATP and ROS 

The evaluation of ATP concentration aimed to evidence the energetic status in different 

fractions of barley seedlings exposed to nCeO2 and nTiO2. The different concentrations of 



61 
 

nCeO2 induced a statistically significant effect (Figure 4), with a trend of values peaking at 

500 and 1000 mg l-1, in root and lowering at 2000 mg l-1 in shoot samples. 

 

Figure 4: Determination of ATP concentration in extracts obtained from plantlets of barley roots 

and shoots, grown on wet paper filters, in the presence of different concentrations of nCeO2 and 

nTiO2. 

The highest nCeO2 (2000 mg l-1) reached a low concentration of ATP in roots, statistically 

comparable to control samples. On the contrary, nTiO2 induce no significant changes of 

ATP concentration, since different nTiO2 doses were similar to the controls in both roots 

and shoots (Figure 4). The measurement of ROS was performed as marker for oxidative 

stress. Similarly to ATP content, nCeO2 were able to induce an increase of a ROS formation 

at all the concentrations assayed (Figure 5), in comparison with the control, although no 

statistically significant differences were observed. 
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Figure 5: Evaluation of ROS evolution in extracts obtained from plantlets of barley roots and 

shoots, grown on wet paper filters, in the presence of different concentrations of nCeO2 and nTiO2. 

The analysis was performed by means of a fluorimetric probe. 

Also for this parameter, a trend with a peak at 500 mg l-1 was present in both roots and 

shoots. In the case of nTiO2 (Figure 5), the treatments did not show any difference, if 

compared with the control in roots, whereas a decrease of ROS level was observed at the 

higher dose (2000 mg l-1) in shoots. 

4.3.6 Mitotic Index and RAPDs 

The mitotic index was significantly reduced by nCeO2 2000 mg l-1 (from 4 ± 1.2% in the 

control to 2.4 ± 1.2%). Instead, the nCeO2 500 and 1000 mg l-1 treatments with mean values 

of 4 ± 1.3% were very similar to the control (Figure 6A). The treatments with nTiO2 with 

values of 6.2 ± 3.2%, 4.6 ± 3.2%, 4.9 ± 2.5% for the concentration at 500, 1000 and 2000 

mg l-1, respectively, were not significantly different from the control (4.9 ± 2.8% ) (Figure 

6A). 
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Figure 6: (A) Mitotic index (%) (mean ± SE) observed in root tips of seedlings of barley treated 

with 0-2000 mg l-1 of nCeO2 and nTiO2. Different letters indicate statistical difference between 

treatments at Tuckey’s test (p<0.05). (B-C) Representative RAPD profiles from the roots of barley 

seedlings treated with nCeO2 (B) or nTiO2 (C) at control, 500-2000 mg l-1. The shown RAPD 

profiles were generated using primer OPA04 for nCeO2 (it is shown an enlargement around 

polymorphic zone) and OPB12 for nTiO2. The first line is a 1 kb DNA marker (M). (D) Principal 

coordinate analysis (PCoA) based on RAPD profiles from the barley roots with nCeO2. Values on 

axes indicate the variance explained. 

The six primers used for the RAPD analysis amplified for a total of 40 representative bands 

in controls with a variable number of 3 to 9 (9, 5, 6, 3, 9, 8 bands respectively for OPA04, 

OPB01, OPA10, OPB20, OPB12 and OPB03). Amplification was highly reproducible 

since the same RAPD profile was observed within control replicates. A concentration effect 

was observed for the nCeO2 treatments on the RAPD profiles. The same banding pattern 

as controls was obtained for the nCeO2 500 mg l-1 treatment, whereas new profiles at 1000 

mg l-1 were observed and 3 additional bands appeared and 8 disappeared. Even greater 

variability was observed at nCeO2 2000 mg l-1 with a total of 20 differences (appearing and 

disappearing bands) in treated plants (Figure 6B-C). The results were summarized by 

Principal Coordinates Analysis (PCoA), with almost 94% of the total variability explained 

by the two axes (Figure 6D). The overlap of the control and 500 mg l-1 treatments is notable, 
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while the treatments at 1000 and 2000 mg l-1 are well separated in different quadrants. The 

band polymorphism in the different replicates at the higher concentration (2000 mg l-1) can 

be noticed by the point cloud (Figure 6D). In a similar way to what was observed fro the 

mitotic index, the nTiO2 treatments at each concentration have no effect on the RAPD 

profiles (Figure 6D). 

4.4 Discussion 

Since plant nanotoxicology is a new field of investigation, specific ecotoxicological 

methods for the estimation of toxicity of ENPs have not yet been developed (Jośko and 

Oleszczuk, 2014). According to OECD guidelines, the acute effects of MeNPs on plant 

physiology are currently investigated by adapting the methods already used for traditional 

contaminants (Kühnel and Nickel, 2014). Evidence of MeNPs plant uptake and toxicity are 

still scarce and contradictory (Etheridge et al., 2013). This is likely because, compared to 

their bulk counterparts, MeNPs show particular properties, which are subjected to 

transformations (e.g. redox reactions, aggregation or agglomeration and dissolution) 

according to different environmental factors. These changes might modify the 

ecotoxicological properties of MeNPs and thus, their interactions with the biota (Nowack 

et al., 2012; Maurer-Jones et al., 2013). However, despite these limitations, the 

experimental results obtained so far offer early indications on MeNPs phytotoxicity (Li et 

al., 2015; Rico et al., 2015a). Our data suggests that also in very simple experimental 

conditions, nTiO2, as expected taking into account their intrinsic properties, forms bigger 

agglomerates with a wider dimensional distribution than nCeO2. 

4.4.1 nCeO2 and nTiO2 Affects Seed Germination and Seedling 

Development 

Previous studies carried out in controlled conditions reported that the toxicity of MeNPs in 

the early stages of plant growth is likely due to the following factors: (i) chemical and 

physical properties which influence the release of ions or the aggregation of particles in 

more stable forms and (ii) the size and shape of the particles, which determine the specific 

surface area of MeNPs (Yang and Watts, 2005; Lin and Xing, 2007). 

In agreement with Rico et al. (2015b), we found that germination of barley was unaffected 

by 500-2000 mg l-1 nCeO2. This is in contrast with the results provided by López-Moreno 

et al. (2010a) who reported that suspensions of 2000 mg l-1 nCeO2 significantly reduced 

seed germination in maize, cucumber, tomato, and soybean. Possible explanations could be 
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the greater Ce tolerance of barley to the treatment if compared to other species and/or to 

the very small size of Ce nanoparticles they used (7 nm). Another explanation could be 

related to the chemical and physical properties of nCeO2, in particular his zeta potential 

value. This parameter is the cause of the agglomeration behavior of the nCeO2 that brings 

to a low bioavailability and the absence of phytotoxic effects on the treated seeds regards 

the germination percentage. 

Another important issue that plays a role on seed/nanoparticle interaction, is the 

methodology adopted for seed treatment. In fact, following Lin and Xing (2007), we 

prepared the barley seeds for germination trials by soaking them in distilled water before 

starting treatments, whereas López- Moreno et al. (2010a) soaked the seeds directly in the 

nCeO2 suspensions. This different experimental approach could result in a different 

exposure of germinating seeds to nCeO2. 

As regards Ti, there is a substantial agreement in literature on the fact that suspensions of 

nTiO2 do not affect seed germination, with few exceptions, as reported by Zheng et al. 

(2005) and Feizi et al. (2012). Our results are in accordance with those reported by other 

authors on rice, lettuce, radish, cucumber, tomato and pea (Boonyanitipong et al., 2011; 

Wu et al., 2012; Song et al., 2013a; Fan et al., 2014). 

Besides the germination percentage, we observed a negative influence of the treatments 

with nCeO2 and nTiO2 on root elongation in barley seedlings. However, this did not occur 

in seedlings treated with nCeO2 at the highest concentration, in which the root length was 

very similar to controls. In addition, in this case the literature reports contradictory 

evidence. López-Moreno et al. (2010a) reported that the root growth in maize and cucumber 

seedlings was significantly promoted by nCeO2 (up to 4000 mg l-1) whereas the same 

treatments resulted in a negative effect on root development in alfalfa and tomato. An 

inhibitory effect of nTiO2 on root elongation in cucumber was reported by Mushtaq. (2011). 

A decrease in the number of secondary lateral roots in pea seedlings was verified by Fan et 

al. (2014), whereas Boonyanitipong et al. (2011) did not record any effect on root length in 

rice seedlings exposed to nTiO2. In our case, the different effect of the nCeO2 and nTiO2 

on the root elongation is likely due to their different grade of agglomeration demonstrated 

by the z-average size and PDI values of nTiO2 that results significantly higher than nCeO2. 

It might happen that the quantification analysis of trace metals in plant roots is disturbed 

by external contamination. In this case, the concentration of the element in the plant tissues 

could be significantly overestimated due to a fraction of metal, which is not taken up but 

simply adsorbed onto the external root surface. In our experiment, a concentration of Ce 
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about 60 times greater than Ti, was found in barley root tissues. This substantial difference 

indicates that the procedures for preparation of the samples were conducted properly; 

otherwise, we would also have very high concentrations also for Ti. 

Our results showed that the exposure of H. vulgare to nCeO2, which are smaller and less 

aggregated than nTiO2, resulted in a greater total Ce concentration in roots compared to Ti. 

In can therefore be assumed that, for some still unknown reasons, the model of root uptake 

of the two elements could differ, depending in part on the intrinsic properties of solubility 

and agglomeration properties of nCeO2 and nTiO2. On the other hand, this is in agreement 

with the findings by Zhang et al. (2011), who verified that cucumber roots absorbed higher 

amounts of 7 nm nCeO2 than 25 nm ones. On the other, some studies pointed out the 

possibility of interactions between the root metabolism and MeNPs. Lin and Xing (2007) 

demonstrated that root exudates such as proteins, phenolic acids, and aminoacids have a 

role in the adsorption of ZnO nanoparticles to the root surface of perennial rye grass. More 

recently, Schwabe et al. (2015) observed that root uptake of dissolved Ce(III) was promoted 

by the dissolution of nCeO2 at the medium-root interface in hydroponically growth 

sunflower and maize. A further confirmation about the role of root exudates on the 

adsorption of MeNPs was provided by Ma et al. (2015) and Lv et al. (2015), respectively 

for nCeO2 and nZnO, respectively. However, Lv et al. (2015) reported that a possible access 

of nZnO to the root tissues could be through the root apex or the meristematic zone to the 

lateral root system where the Casparian strip is not yet developed. 

Root-to-shoot translocation of nCeO2 has been previously described in soybean (Priester et 

al., 2012), tomato (Wang et al., 2012), cucumber (Zhao et al., 2013) and cotton (Van Nhan 

et al., 2015) after treatments with nCeO2 suspensions. Different observations have been 

made on nCeO2 root-to-shoot translocation in graminaceous crops. Schwabe et al. (2013) 

reported that wheat does not translocate nCeO2 into the aerial tissues, whereas Rico et al. 

(2013, 2015a) reported the translocation of nCeO2 from roots to rice grains and maize 

kernels, respectively. According to Rico et al. (2015b), we report evidence of Ce 

translocation from roots to the aerial part of barley. As regards Ti uptake and translocation, 

fewer data are available in the literature compared. However, our data are consistent with 

the findings reported by Song et al. (2013b) on tomato seedlings exposed to Ti at 

concentrations ranging from 50 to 5000 mg l-1. 

Finally, we reported that root length in barley seedlings treated with 500 mg nCeO2 l
-1 was 

significantly shorter than controls. This apparent dose-effect was not confirmed at higher 

nCeO2 concentrations, since the root length was similar to that of controls. Similar evidence 
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was reported by López-Moreno et al. (2010a). According to Nascarella and Calabrese 

(Nascarella and Calabrese, 2012) and Bell et al. (2014), such unexpected results might be 

interpreted as a hormetic effect of nCeO2 on root elongation in barley seedlings. 

4.4.2 Plant Stress Induced by Nanoparticle Treatments 

Within the plants, nanoparticles may interact with the host cells, causing different effects, 

ranging from cell death (if the host is sensitive) to not relevant cell modifications (in the 

case of host tolerance), depending on their type, shape and concentration (Rico et al., 2011; 

Gardea-Torresdey et al., 2014). The microscopic observations on barley seedlings indicated 

that both nCeO2 and nTiO2, at the used concentrations used, were able to enter the root 

tissues, being detected in the parenchymal cells and xylem vessels. Even though we did not 

observe Ce and Ti crystalline aggregates in the shoots, ICP analyses suggested a root-to-

shoot mobilization of Ce and Ti ions. At histological level the accumulation of such 

elements induced limited injuries. On the contrary, important differences in the effects of 

treatments were obtained at nuclear level, where only the nCeO2 treatments induced visible 

modifications in the chromatin aggregation in the nuclei of root and shoot parenchymal 

cells. 

Condensed chromatin and fragmented nuclei are described as part of the programmed cell 

death (PCD), occurring in response to different environmental stimuli and stresses, induced 

by pathogens (Lam et al., 2001) and by diverse abiotic factors (White, 1996; Kratsch and 

Wise, 2000) including the exposition to nanomaterials (Shen et al., 2010). PCD plays an 

important role in mediating plant adaptation to the environment. In cells that undergo 

programmed death, chromatin condenses into masses with sharp margins, and DNA is 

hydrolyzed into a series of fragments (Gladish et al., 2006). Dynamic compaction of 

chromatin is an important step in the DNA-damage response, because it activates DNA-

damage-repair signaling (Burgess et al., 2014) in response to injuries. 

The hypothesis of Ce-induced DNA damage in treated seedlings finds further support in 

the results obtained with the RAPD test. RAPD can potentially detect a broad range of 

DNA damage and mutations, so it is suitable for studying MeNPs genotoxicity (Atienzar 

and Jha, 2006). The RAPD modified patterns at high concentrations of nCeO2 (1000-2000 

mg l-1) indicated a genotoxic effect, which could directly influence the cell cycle. This is 

further confirmed by the reduced mitotic index recorded in the samples treated with nCeO2 

2000 mg l-1, which clearly demonstrated the negative effect of high nCeO2 concentrations 

on the cell cycle. Our results are in agreement with López- Moreno et al. (2010b), who 
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demonstrated nCeO2 genotoxicity on soybean plants subjected to treatments similar to 

those reported in our work. 

It is still far too early to conclude if the observed effects were direct or indirect 

consequences of the treatments, since nCeO2 were not found in the nucleus. As it is known 

that increasing oxidative stress leads to DNA damage, the higher presence of ROS in treated 

samples could cause modification in RAPD patterns. However, as our analysis on ROS 

indicated a peak at 500 mg nCeO2 l-1, it can be rationalized that lower concentrations 

triggered an initial oxidative signal, while only higher nCeO2 doses were able to induce 

damage at nuclear level. The oxidative stress peak at 500 mg l-1 dose and could be 

rationalized by the well-known SOD mimetic activity attributable to nCeO2, which could 

cause a dismutation of superoxide anions into H2O2. Since a similar pattern is also found 

for ATP measured in nCeO2 treated tissues, it is suggested that the oxidative burst induced 

by the more effective dose of nCeO2 could be associated to a stimulation of cellular 

respiration and a consequent increase in ATP production. This could be due to a defense 

response signal or an increased requirement for energy (Vranová et al., 2002). 

On the contrary, the nTiO2 treatments did not influence either the mitotic index or RAPD 

pattern. This is in contrast to Moreno-Olivas et al. (2014) who observed nTiO2-induced 

genotoxicity in hydroponically cultivated zucchini. As the size of nTiO2 they reported is 

comparable to that used in our work, the different results obtained can be explained by (i) 

the different cultivation systems (Petri dishes vs. full nutrient solution in hydroponics) and 

(ii) the nTiO2 concentration used by Moreno-Olivas et al. (2014 ten-fold smaller). The latter 

potentially prevents the formation of big nanoparticle agglomerates, making them more 

bioavailable. 

4.5 Conclusion 

Although investigations into the effects of NPs in plants continue to increase, there are still 

many unresolved issues and challenges, in particular at the biota-nanomaterial interface 

(Nowack et al., 2015). In this multidisciplinary work, we studied the phytotoxic and 

genotoxic impact of nCeO2 and nTiO2 cerium and titanium oxide nanoparticle suspensions 

on the early growth of barley. Seed germination was not affected by the nCeO2 and nTiO2 

suspensions, indicating that nCeO2 and nTiO2 are not allowed to enter the seed coatings. 

However, we verified that the concentration of Ce and Ti in the seedling fractions, as well 

as the root-to-shoot translocation, were dose-dependent. Then, we found signals of 
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genotoxicity (RAPD banding patterns and mitotic index) and phytotoxicity in root cells 

(oxidative stress and chromatin modifications) resulting in a shortage of root elongation. 

The different magnitude of bioaccumulation of Ce and Ti suggests a different uptake 

mechanism, likely due to the different behaviour of nCeO2 and nTiO2,. Recent studies have 

shown that plant toxic effects of nanomaterials are not merely due to the particle size and 

concentration of a suspension. Phytotoxicity of metal oxide nanoparticles is related both to 

the direct adsorption of particles onto the root structures and to the aptitude of the metal 

ion to dissolve, possibly mediated by binding molecules roduced by plants in the medium-

root interface. 

Our study had not the objective to investigate the details of the mechanisms by which the 

NPs entering within the roots. However, we verified the presence of both nCeO2 and nTiO2 

into the root cells where an increase in oxidative stress occurred. More research needs to 

be conducted to verify whether germination can be affected by smaller nCeO2 and nTiO2. 

In addition, we need to understand if modification of the physical-chemical properties of 

nanoparticles at the root interface can foster the plant uptake of Ce and Ti forms.  
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5 Changes in Physiological and Agronomical 

Parameters of Barley (Hordeum vulgare) Exposed to 

Cerium and Titanium Dioxide Nanoparticles 
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5.1 Background 

The useful properties of engineered nanoscale materials (ENMs) have resulted in the rapid 

development of nanotechnologies and large-scale production of nanoparticles (NPs) or NP-

containing products (Tourinho et al., 2012). The increasing use of ENMs may result in the 

rise in the flux of ENMs discharged into the environment. Water bodies and soil are 

assumed to be the primary environmental recipients of nanomaterials (Batley et al., 2013). 

Recent estimates included cerium oxide nanoparticles (nCeO2) and titanium oxide 

nanoparticles (nTiO2) among the 10 most commonly produced ENMs that are used 

worldwide. In the cosmetic industry, solar cells, paints, cements and coatings about 10,000 

t of nTiO2 are used per year (Piccinno et al., 2012). A number of applications of nTiO2 are 

in use in the food industry and agriculture, serving as nano-sensors and nano-agents for 

new delivery systems of plant protection products and fertilizers (Gogos et al., 2012; Liu 

and Lal, 2015). Also, nCeO2 have a broad range of industrial application as additives in 

glass and ceramics, fuel-cell materials and the automotive industry (Zhang et al., 2011). On 

the other hand, nCeO2 and nTiO2 are both included in the list of ENMs for immediate 

priority testing by the Organization for Economic Cooperation and Development (OECD, 

2010). Vascular plants should be of particular concern as they interact closely with the 

environment and are conduits for bioaccumulation through the food chain (Rico et al., 

2011; Miralles et al., 2012; Gardea-Torresdey et al., 2014; Capaldi Arruda et al., 2015). 

Even though this subject is of primary importance, to date relatively few studies have been 

carried out on the responses of plants exposed to metal nanoparticles. Most of the currently 

available papers have reported data collected from experiments performed in hydroponic 

conditions (Zhang et al., 2011; OECD, 2010; Rico et al., 2011; Miralles et al., 2012; 

Gardea-Torresdey et al., 2014; Capaldi Arruda et al., 2015; López-Moreno et al., 2010a; 

Larue et al., 2012). Such approaches are not able to account for the complexity of the soil-

plant system (Liang et al., 2013). 

Early studies concerning the relationships between higher plants and nCeO2 were mostly 

focused on the initial developmental stages of plants. López-Moreno et al. (2010a) 

observed seed germination and root elongation in cucumber, tomato, alfalfa and corn 

exposed to 0-4000 mg l-1 nCeO2 with contradictory results. Ma et al. (2010) verified that 

the root growth of cabbage, cucumber, radish, rape, tomato, and wheat were not affected 

by 2000 mg l-1 nCeO2. At the same concentration, the germination of soybean was 

undisturbed but indications of genotoxicity were reported by López-Moreno et al. (2010b). 
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The same authors demonstrated significant species-specific differential levels of plant 

uptake and translocation of Ce in plants exposed to 4000 mg l-1 of nCeO2. Differences in 

root microstructures (e.g. pore size in root hairs) and physical and chemical interactions 

between nCeO2 and root exudates in the rhizosphere could explain the differences. The 

movements of nCeO2 within the morphological structures of soybean plants to the aerial 

tissues were verified by combining ICP-OES and μ-XANES analysis (Majumdar et al., 

2014). More recently it was reported nCeO2 induced compositional modifications in the 

root xylem in seedlings of rice, wheat and barley (Rico et al., 2015a). Finally, a life cycle 

study on barley grown in soil amended with 125-500 μg g-1 nCeO2, reported both beneficial 

and harmful effects of nanoceria (Rico et al., 2015b). 

The information on the effects of Ti nano-forms are controversial because several papers 

have demonstrated positive (Hong et al., 2005; Gao et al., 2006; Yang et al., 2007; Linglan 

et al., 2008; Qi et al., 2013) or negative (Asli and Neumann, 2009; Ruffini et al., 2011; 

Song et al., 2013) effects of nTiO2 on plants. Recently, Frazier et al. (2014) reported that 

in plantlets exposed to nTiO2 (range 1000-25,000 ppm) for three weeks the leaf count, root 

length and plant biomass significantly increased as Ti concentrations were raised. In 

contrast, Pakrashi et al. (2014) observed a dose-dependent decrease in the mitotic index 

and an increase in the number of chromosomal aberrations in root tips of Allium cepa 

exposed to 12.5-100 mg nTiO2 ml-1. 

Modelling studies have predicted that ENMs released to the environment are likely to be 

mostly found in water, sediments, and soils (Keller et al., 2013; Liu and Cohen, 2014). 

Considering the increasing speed of nanotechnology development it is plausible to assume 

that different ENMS might be present simultaneously in the environmental compartments 

(water, sediments, soil and biota). Therefore, living organisms could be exposed to a co-

occurrence of EMNs. However, this issue was poorly explored in literature and we are still 

lacking systematic and reliable information (Singh and Kumar, 2014). Moreover, most 

studies hitherto have only evaluated crop plants to the germination stages, and have not 

examined the complete developmental cycle. 

Currently, nanotechnology is considered as an important tool in agriculture with the 

potential to provide new strategies to improve crop production for human consumption and 

animal feeding and promoting a reduction in the use of pesticides (Servin and White, 2016) 

Since several scientific evidences suggest that nanomaterials may induce harmful 

environmental effects, it is crucial to investigate on the impact of nanomaterials on crops. 
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In our study barley was considered as model crop since it is among the world’s most 

important cereal crops (FAOSTAT, 2014). 

In the present study, barley plants were grown for the whole crop cycle in a soil enriched 

with different levels of nCeO2 and nTiO2 and their combination in a fully factorial design. 

To the authors’ knowledge, this is the first study that reports data on plants exposed 

simultaneously to different metal nanoparticles. We hypothesized that (i) the exposure of 

barley to nCeO2 and nTiO2 (also combined each other) would influence plant growth; that 

(ii) nanoparticles would influence plant physiology and that (iii) the concentration of nCeO2 

and nTiO2 would affect the uptake of Ce and Ti in roots and the translocation of such 

elements in the vegetative plant fractions and in seeds. 

5.2 Experimental Section 

5.2.1 Characterization of nCeO2 and nTiO2 

Cerium(IV) oxide nanopowder and titanium(IV) oxide anatase nanopowder both having a 

nominal average particle size of 25 nm were purchased from Sigma-Aldrich (Saint Louis, 

MO, USA). Particle characterization was carried out at the Facility for Environmental 

Nanoscience Analysis and Characterization (FENAC), University of Birmingham (UK). 

The specific surface area of the nCeO2 and nTiO2 powders was measured by the Brunauer–

Emmett–Teller (BET) method by using the Surface Area and Pore Size Analyser SA 3100 

plus (Beckman Coulter, USA). The samples were outgassed at 300 °C for 180 minutes and 

the nitrogen adsorption-desorption isotherms were recorded at liquid nitrogen temperature 

(77K). The BET values were 46.1 m2 g-1 and 61.6 m2 g-1 for nCeO2 and nTiO2 respectively. 

The size distribution of the nCeO2 and nTiO2 powders were measured by Atomic Force 

Microscopy (AFM) method using PSIA XE100 (Park System, Korea). The samples were 

prepared by spreading the nCeO2 and nTiO2 powder over a mica sheet pre-treated with 

Poly-L-Lysine (Sigma Aldrich, USA). The average height was obtained by measuring at 

least 100 nanoparticles in non-contact mode. The average height of the nCeO2 and nTiO2 

powder were 32.6 ± 20.7 nm and 41.8 ± 24.3 nm, respectively. 

Subsequently, the nCeO2 and nTiO2 powders were suspended in deionized water at a 

concentration of 1000 ppm, sonicated, and simultaneously heated at 60 °C for 30 minutes. 

The suspensions were characterized for z-average size, measured as hydrodynamic 

diameter, and zeta potential, via electrophoretic mobility, by dynamic light scattering 

(DLS) method using the Nano ZS90 (Malvern Instruments, UK).  
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The z-average size of nCeO2 and nTiO2 powder was 174 ± 1.19 and 925 ± 105 nm, 

respectively. The zeta potential of the nCeO2 and nTiO2 powders were respectively 0.027 

± 0.064 mV and 19.9 ± 0.55 mV. 

Finally, the nCeO2 and nTiO2 powders suspension were characterized also with the 

Differential Centrifugal Sedimentation (DCS) method using CPS DC24000 UHR 

(Analytik, UK). The average sizes were 188 ± 5.9 nm and 690 ± 17.5 nm, respectively for 

nCeO2 and nTiO2. 

5.2.2 Addition of Nanoparticles to Soil 

The soil used for this study was collected in Udine, Italy (46°04’52’’ N, 13°12’13’’ E; top 

20 cm) air dried at room temperature and sieved through a 2 mm mesh prior to 

characterization. The soil was classified as clay soil (sand 26%, silt 6.4% and clay 67.6%) 

with pH 7.4, cation exchange capacity (CEC) of 13.9 (cmol kg-1 DM), electrical 

conductivity (EC) of 1235 (µS m-1) and organic matter (OM) content of 4.4%. 

Eight mixtures of soil and nCeO2 and nTiO2 were prepared following the procedure used 

by Priester et al., (2012) The main treatments were made by adding nCeO2 and nTiO2 

directly to the soil and mixing it in a portable concrete mixer previously sealed, to obtain 

a concentration of 2000 mg kg-1 of either nCeO2 and nTiO2. The nCeO2/nTiO2 amended 

soils were stored in the dark at 10 °C for two weeks. After soil equilibration the final doses 

of 500 and 1000 mg kg-1, respectively (Ce 500, Ce 1000, Ti 500, Ti 1000) were prepared 

by serial dilution with soil.  

Four additional treatments were obtained by combining the stock soils to achieve the 

following combinations: nCeO2 500 mg kg-1 / nTiO2 500 mg kg-1 (Ce 500-Ti 500), nCeO2 

500 mg kg-1 / nTiO2 1000 mg kg-1 (Ce 500-Ti 1000), nCeO2 1000 mg kg-1 / nTiO2 500 mg 

kg-1 (Ce 1000-Ti 500) and nCeO2 1000 mg kg-1 / nTiO2 1000 mg kg-1 (Ce 1000-Ti 1000). 

The nCeO2 / nTiO2 -amended soils were stored in the dark at 10°C for two weeks. After 

the equilibration, five pots per treatment were filled for a total of 45 pots. The control 

treatment received no nanoparticle amendment. 

5.2.3 Plant Growth and Harvest 

Eight seeds of spring barley (Hordeum vulgare L., cv. Tunika) obtained from the Italian 

company S.I.S Società Italiana Sementi (San Lazzaro di Savena, Bologna, Italy) were sown 

in microcosms (4L polyethylene pots) containing the nCeO2 / nTiO2 -amended soils. The 

trial was carried out in a semi-sealed greenhouse under full sunlight. Two weeks after seed 



76 
 

planting, the seedlings were thinned to four seedlings per microcosm. At tillering, two 

plants per pot were removed, therefore 90 plants were observed during the experiment (ten 

plants per treatment). During the growth period the microcosms were irrigated to maintain 

the soil at 60% of water holding capacity (WHC). During the barley growth cycle the 

microcosm were singularly weighed and irrigated to compensate for evapotranspiration. 

Phenological stages were monitored by adapting the Decimal Growth Scale (Zadoks et al., 

1974) throughout the growth cycle and were based on 50% of plants within the treatments 

at each stage. Plants were harvested at physiological maturity. Prior to collecting plants, 

plant height was measured from soil surface to the flag leaf using a standard meter stick (1 

m).The plant shoots were severed at the collar with a razor blade and then separated into 

stems, leaves, spikes, and grains. Leaf area was measured using a LI-3100C Area Meter 

(Li-Cor Corporation, Lincoln, NE, USA). Plant samples were thoroughly washed in tap 

water and rinsed three times with distilled water. In addition, roots were washed in 400 ml 

of 0.01 M HNO3 in a shaker bath at 300 rpm for 5 min to remove metal ions adsorbed at 

the surface. The plant fractions were oven dried at 105° C for 24 h and weighed. 

5.2.4 Gas Exchange Parameters 

The photosynthetic rate at saturating light intensity (Amax, μmol CO2 m
-2 s-1), transpiration 

rate (Tr, mmol H2O m-2 s-1), and stomatal conductance (gs, mol air m-2 s-1) were measured 

with a portable gas exchange system (LI-6400, LI-COR, Inc., Lincoln, NE, USA) on the 

youngest fully-expanded leaf of three individual plants per treatment.  

The gas exchanges measurements were carried out on the flag leaf at booting, heading and 

milk maturity on three individual plants per treatment. 

The measurements were made after allowing leaves to reach steady-state conditions at 

saturating photosynthetic active radiation (PAR, 1200 μmol m-2 s-1), at a CO2 concentration 

of 400 ppm, and at a temperature of 25 °C, and were collected between 9 and 14 h with 

evaluation of five measurement periods at intervals of 7-8 days. 

5.2.5 TEM Observations 

A small leaf portion (2x3 mm) was excised close to the central vein of the youngest leaf 

before the emergence of flag leaves.  

The fresh samples were fixed for 2 h at 4°C in 0.1% (wt/vol) buffered sodium phosphate 

and 3% (wt/vol) glutaraldehyde at pH 7.2. They were then post-fixed with 1% osmium 

tetroxide (wt/vol) in the same buffer for 2 h, dehydrated in an ethanol series, and embedded 



77 
 

in Epon/Araldite epoxy resin (Electron Microscopy Sciences, Fort Washington, PA, USA). 

Serial ultrathin sections from each sample were cut with a diamond knife, mounted 100/200 

folding grids, and then observed under a Philips CM 10 transmission electron microscope 

(TEM, FEI, Eindhoven, The Netherlands) operating at 80 kV. 

5.2.6 Spectroscopy Analysis 

Samples of soils were oven-dried (105°C for 48 h) and digested in 11 ml of a 10 to 1 (v/v) 

mixture of 96% (v/v) sulphuric acid and 30% (v/v) H2O2 in Teflon cylinders for 20 min at 

200°C in a microwave (CEM MARS). After digestion, samples were diluted 1 to 20 with 

milliQ water, filtered through 0.45 µm filters and Ce and Ti were determined with an ICP-

OES (Vista MPX, Varian Inc., Palo Alto, CA, USA). Oven-dried plant fractions were acid-

digested in 10 mL of a 1 to 4 (v/v) mixture of 65% (v/v) nitric acid and 30% (v/v) hydrogen 

peroxide in Teflon cylinders for 10 min at 175 °C in microwave oven (CEM MARS 

Xpress). The plant extracts were filtered with Whatman® PTFE membrane filters (0.45 µm 

PTFE), diluted, and analysed. Total Ce and Ti in roots, stems, and leaves were determined 

by an ICP-OES using yttrium as internal standard. The Ce and Ti contents in kernels were 

quantified using an ICP-MS (Aurora M90, Bruker, Bremen, Germany) with an internal 

standard solution of 72Ge and 89Y. Quality control for both ICP-OES and ICP-MS was 

carried out using reagent blank samples, and triplicates reading for each sample. Certified 

standard reference material (NIST 1573a Tomato leaves) was analysed to validate the 

protocol. 

5.2.7 TEM X-ray Microanalysis 

Crystal structure and chemistry of the nanoparticles were studied by using a 2010F UHR 

TEM/STEM (JEOL, Peabody, MA, USA) equipped with a low spherical aberration 

coefficient (Cs = 0.47 ± 0.01 mm) objective pole piece and energy dispersive x-ray 

spectrometer (EDXS). The experiments were performed at an accelerating voltage of 200 

kV corresponding to an electron wavelength of 2.5 pm. The EDXS spectra were acquired 

in scanning transmission electron microscopy (STEM) configuration by rasterizing an 

electron probe of 0.5 nm within the area of interest imaged by a high angle annular dark 

field (HAADF) detector to accurately determine the chemical assessment of the 

investigated nanoparticles. Nanodiffraction were acquired in TEM by illuminating the area 

of interest with a 50 nm parallel electron probe to study the crystal features of individual 

nanoparticles (Carlino, 2014). 
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5.2.8 Data Analysis 

The microcosm study was arranged in a completely randomized factorial design with nine 

treatments (control soil, two levels of nCeO2, two levels of nTiO2 and four nCeO2 / nTiO2 

mixtures) and five replicates. Data were tested for homoscedasticity and normality using 

the Bartlett’s test and the Shapiro–Wilk test, respectively. The differences were statistically 

significant, as determined by one-way and two-way analysis of variance (ANOVA). 

Tukey’s Multiple Comparison test (p=0.05) in case of significant effects were used to 

analyse individual effects. Statistical analysis was performed using the SPSS program (ver. 

16, SPSS Inc. Chicago, IL, USA). 

5.3 Results 

5.3.1 Phenology and Growth of Barley 

A week after sowing, all the plants had germinated, apparently unaffected by the presence 

of metal oxide nanoparticles in the soil and without early symptoms of phytotoxicity in 

treated plants.From the 2nd leaf stage we observed that nCeO2 and nTiO2 treated plants had 

a longer vegetative period than the controls (Figure 1). 

 

Figure 1: Cumulative contribution of vegetative and reproductive phenophases to the phenology 

of plants of barley grown in control soil and nCeO2 and nTiO2-amended soil. DAS = days after 

sowing. Error bars represent ± standard error. * denote significant differences with respect to 

control (p ≤ 0.05). 
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This delay was also verified at the 3rd leaf and tillering stages, even if it was less pronounced 

for the Ce 500/Ti 1000 treatment. The delay in the nanoparticle-treated plants reached its 

maximum extent (about ten days) at heading and during the ripening stages (Figure 1). Milk 

maturity was reached on average 65 days after sowing (DAS) in treated plants. Ti 1000 and 

Ce 1000/Ti 500 plants were the earliest (62 DAS) and the Ce 500/Ti 500 ones were the 

latest (69 DAS) at entering physiological maturity (Figure 1). 

A two-factor analysis of variance (ANOVA) was performed on the following variables: 

plant height, number of tillers, leaf area per plant and number of spikes. 

 

Figure 2: Plant height (A), number of tillers (B), leaf area (C) and number of spikes (D) observed 

in plants of barley grown in control soil and nCeO2 and nTiO2-amended soil. Bars are mean standard 

error (n = 5). Arrows indicate the control. 

Among the morphological traits that we considered, plant height was the least sensitive to 

the nCeO2 and nTiO2 treatments. The interaction nCeO2 X nTiO2 was not significant 

(Figure 2A). The plants treated with nTiO2 were significantly taller than the others (p = 

0.0035), whereas there was no statistically significant effect of nCeO2. 

The formation of secondary shoots was significantly influenced, but in an opposite way, by 

the experimental factors. The number of tillers per plant was significantly stimulated by 

nTiO2 compared to the control (p = 0.009). In fact, in Ce 0 plants nTiO2 1000 promoted, 

on average, the formation of 2.60 secondary shoots more (+25%) than the control plants (p 

= 0.032); a more pronounced effect of 2.60 secondary shoots more (+25%) than the control 
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plants (p = 0.032); a more pronounced effect (2.80 tillers more than controls) was recorded 

in Ce 500 plants (p = 0.026) (Figure 2B). In contrast, nCeO2 had a statistically significant 

(p < 0.001) negative effect on tiller formation (Figure 2B). In particular, on average in Ce 

500 and Ce 1000 plants the number of secondary shoots was about 35% lower than both 

control plants (p = 0.002) and Ti treated ones (respectively p = 0.034, and p < 0.001). 

The number of tillers and the plants’ total leaf area are closely linked. In fact the ANOVA 

showed a significant effect of both nCeO2 (p < 0.001) and nTiO2 (p = 0.001). The 

interaction nCeO2 X nTiO2 was not significant. Multiple comparisons were run for each 

simple main effect. As noted earlier, in absence of Ti, Ce 500 had a strong negative effect 

on plant vegetative growth, in fact the average leaf area per plant was about one-half that 

of the control (166 vs. 356 cm2 of leaf surface per plant) (p < 0.001) (Figure 2C). Such a 

negative influence of nCeO2 in Ce 500 plants appeared to have been mitigated by nTiO2 

which had a positive significant effect (p < 0.001) (Figure 2C). In regards to the plant’s  

response to nCeO2 / nTiO2 mixtures, although the interaction was not statistically 

significant (p = 0.091), we assumed that nTiO2 at respectively 500 and 1000 mg per kg of 

soil was able to remediate the adverse impact on leaf growth of nCeO2 (Figure 2C). 

One of the main yield components in barley is the number of spikes per plant. Two way 

ANOVA revealed a statistically significant effect of the main factor nCeO2 (p = 0.0016) 

and a significant interaction between nCeO2 and nTiO2 (p = 0.0016). The effect nTiO2 in 

this case was not statistically supported, being likely hidden by data variability (Figure 2D). 

The mean number of spikes in Ce 500 and Ce 1000 plants was 4.2 corresponding to a 

reduction of 38% than the controls (2D). Regarding interaction, multiple comparisons of 

the means showed the different main effects of nCeO2 and nTiO2. 

In absence of nTiO2 (Ti 0), the number of spikes per plant were negatively affected by 

nCeO2. There was a statistically significant difference (p = 0.003) between Ce 0 and Ce 

500 plants (6.4 and 2.8 spikes per plant, respectively; - 56%). The negative influence of 

nCeO2 was confirmed at the highest dose (Ce 1000) even though it was lighter in magnitude 

(22% lower than control plants) and not statistically different from Ce 500 (Figure 2D). 

The same effects were verified also in Ti 1000 plants, where both the levels of nCeO2 

determined a reduction of spike number of 32.5% and 60% respectively for Ce 500 (p = 

0.033) and Ce 1000 (p < 0.001). The intermediate dose of nTiO2 (500 mg kg-1) negatively 

affected the number of spikes in plants (- 43.7% than controls, p = 0.020). On the contrary, 

Ti 1000 plants had 8 spikes each (higher that control plants although not statistically 

significant). In other words, in terms of spike formation our data suggest that, in absence 
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of nCeO2, the higher dose of nTiO2 was, at least, harmless to plants. This evidence is in 

contrast with other growth parameters. Moreover, we detected a negative nTiO2 dose-effect 

on plant tillers’ number and leaf area (Figure 2B-D). 

5.3.2 Gas Exchanges 

The leaf photosynthetic rate (Amax), stomatal conductance (gs) and transpiration rate (Tr) at 

three different growth stages (booting, heading, milk maturity) are shown in Table 1. 

Because the treatments affected plant development by causing a shift in phenological 

stages, the gas exchange parameters were evaluated by comparing plants at the same 

phenological phase. 

Both nCeO2 and nTiO2 treatments had a statistically significant effect on the photosynthetic 

parameters, whereas their interaction was not significant at any of the growth stages. Table 

1 reports the data regarding the main factors. At the booting phase, Amax and Tr were 

positively affected by Ce 500 compared to control plants (respectively +26% and + 75%). 

However, Ce 1000 plants behaved like the controls suggesting that the maximum 

concentration for a beneficial effect from nCeO2 had been exceeded (Table 1). As expected, 

in the subsequent phases of the life cycle of barley Amax declined, with no evidence of 

statistically significant differences between treatments and control. At booting Ti 1000 had 

an overall positive effect compared to the control plants: Amax, gs, and Tr significantly 

increased by 37, 89, and 92%, respectively. The Ti 500 treatment had an intermediate effect 

(Table 1). 

5.3.3 Plant Uptake and Accumulation of Cerium and Titanium 

In Tables 2 and 3 present the concentrations of Ce and Ti in the roots, stems, leaves, and 

kernels of barley. In general, the concentration of Ce and Ti in the plant tissues showed a 

dose-response. 

A statistically significant dose-response in Ce concentration was recorded in all plant 

fractions with the exception of kernels. In Ce 500 and Ce 1000 plants, the mean levels of 

Ce in the roots were 45.3 mg kg-1 and 96.9 mg kg-1, respectively (Table 2). The significant 

dose-dependent response in root Ce accumulation was confirmed also in nCeO2 / nTiO2 

treatments. 

Ce concentration in stems was significantly different between Ce 500 and Ce 1000 plants 

both in the case where Ce is individually supplied either when it is associated with the Ti.  
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The Ce root to shoot translocation percentage in treated plants ranged between 1.24 and 

9.1, respectively, for Ce 1000 and Ti 500, indicating that Ce accumulation in the 

aboveground plant fractions occurred at very low magnitude. The highest Ce concentration 

in leaves was recorded in Ce 1000 plants (3.03 mg kg-1). 

As expected, in the leaves of Ctrl plants and Ti 500 and Ti 1000 ones, lower Ce 

accumulation values (0.73, 0.77 and 0.84 mg kg-1, respectively) were observed. 

Despite the increase in concentration of Ti in the soil (p = 0.0001), due to the addition of 

nTiO2, the Ti uptake and accumulation in the plant fractions did not respond to the 

treatment. No statistically significant differences in Ti concentration in roots, as well as in 

stems and leaves, were observed (Table 3). As for Ce, in the case of Ti the root-to-shoot 

translocation percentage was very low, ranging between 1.42 and 1.91.  
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Table 1: ANOVA p value for the main factors (nCeO2, nTiO2) and interaction (nCeO2 × nTiO2) for leaf photosynthetic rate at saturating light intensity (Amax, 
µmol CO2 m-2 s-1), stomatal conductance (gs, mol air m-2 s-1) and transpiration rate (Tr, mmol H2O m-2 s-1) recorded at three different phenological stages 
(booting, heading and milk maturity) in leaves of barley growing in control soil and nCeO2 and nTiO2-amended soil. Values are mean±SE (n=5). Same letters 
indicated no statistical difference between treatments at Tukey’s test. *** p < 0.001; ** p < 0.05; ns = not significant (p = 0.05). 

Treatment Booting Heading Milk maturity 

 Amax gs Tr Amax gs Tr Amax gs Tr 

nCeO2 0.0003*** 0.0335 0.0047** ns ns ns ns ns ns 

nTiO2 0.0003*** 0.0105** 0.0105** ns ns ns ns ns ns 

nCeO2 x nTiO2 ns ns ns ns ns ns ns ns ns 

- - - - - - - - - - 

Ctrl 20.4 ± 1.18 b 0.278 ± 0.05 ab 3.064 ± 0.64 b 19.4±1.8 a 0.350±0.06 a 3.24±0.29 a 15.3±1.6 a 0.298±0.05 a 2.95±0.30 a 

Ce 500 25.7 ± 1.0 a 0.390 ± 0.05 a 5.36 ± 0.71 a 21.2±1.3 a 0.254±0.02 a 4.33±0.58 a 14.4±1.6 a 0.282±0.04 a 2.53±0.24 a 

Ce 1000 19.4 ± 0.9 b 0.249 ± 0.03 b 3.23 ± 0.51 b 19.4±1.7 a 0.220±0.02 a 4.12±0.33 a 17.8±1.1 a 0.349±0.05 a 3.15±0.32 a 

- - - - -      

Ctrl 17.5 ± 1.8 b 0.205 ± 0.06 b 0.205 ± 0.06 b 21.6±1.4 a 0.339±0.04 a 3.79±0.36 a 16.4±1.3 a 0.229±0.03 a 2.29±0.21 a 

Ti 500 22.8 ± 1.5 ab 0.287 ± 0.03 ab 0.287 ± 0.03 ab 18.5±1.6 a 0.229±0.03 a 4.04±0.43 a 15.7±1.4 a 0.327±0.05 a 3.05±0.29 a 

Ti 1000 23.9 ± 1.0 a 0.387 ± 0.05 a 0.387 ± 0.05 a 18.6±1.9 a 0.230±0.03 a 3.64±0.62 a 16.1±1.8 a 0.357±0.05 a 3.16±0.30 a 
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Table 2: Ce concentration observed in roots, stems, leaves and kernels of barley grown in control 

soil and nCeO2 and nTiO2-amended soil. Values are mean ± SE. (n=5). Same letters indicated no 

statistical difference between treatments at Tukey’s test (p≤0.05). 

Treatment Ce soil Ce roots Ce stems Ce leaves Ce kernels 

(mg kg-1) (mg kg-1) (μg kg-1) (μg kg-1) (μg kg-1) 

ANOVA *** *** *** *** ns 

Ctrl 30.9 ± 2.56 c 3.30 ± 0.63 d 642 ± 118 c 734 ± 120 c 0.50 ± 0.19 a 

Ce 500 333 ± 6.39 b 45.3 ± 11.6 cd 1383 ± 209 abc 1623 ± 115 bc 0.87 ± 0.57 a 

Ce 1000 746 ± 19.5 a 96.9 ± 1.42 bc 1751 ± 295 ab 3027 ± 458 a 0.69 ± 0.36 a 

Ti 500 34.2 ± 1.55 c 14.0 ± 0.97 d 862 ± 290 bc 776 ± 114 c 0.98 ± 0.59 a 

Ti 1000 30.7 ± 4.10 c 19.1 ± 1.28 d 810 ± 214 bc 844 ± 95 c 1.22 ± 0.73 a 

Ce 500/Ti 500 298 ± 8.81 b 58 ± 9.61 cd 1392 ± 243 abc 1424 ± 153 bc 0.34 ± 0.12 a 

Ce 500/Ti 1000 376 ± 24.7 b 87 ± 5.60 bc 1692 ± 232 ab 1502 ± 80 bc 1.13 ± 0.52 a 

Ce 1000/Ti 500 683 ± 44.4 a 149 ± 19.4 ab 1982 ± 186 a 1760 ± 136 b 0.75 ± 0.41 a 

Ce 1000/Ti 1000 726 ± 29.2 a 164 ± 32 a 2010 ± 166 a 1795 ± 171 b 0.03 ± 0.01 a 

Table 3: Ti concentration observed in roots, stems, leaves and kernels of barley grown in control 

soil and nCeO2 and nTiO2-amended soil. Values are mean ± S.E. (n=5). Same letters indicated no 

statistical difference between treatments at Tukey’s test (p≤0.05). d.l. = detection limit. 

Treatment 
Ti soil Ti roots Ti stems Ti leaves Ti kernels 

(mg kg-1) (mg kg-1) (μg kg-1) (μg kg-1) (μg kg-1) 

ANOVA *** ns ns ns ns 

Ctrl 1797 ± 119 b 77 ± 3.19 a 260 ± 43.5 a 1003 ± 63 a 1.39 ± 1.39 a 

Ce 500 1971 ± 156 b 66.5 ± 5.15 a 188 ± 19.5 a 1275 ± 316 a 0.48 ± 0.48 a 

Ce 1000 1896 ± 56.3 b 63.9 ± 2.63 a 309 ± 22.3 a 1314 ± 286 a 0.26 ± 0.18 a 

Ti 500 2153 ± 119 ab 66.7 ± 7.49 a 284 ± 32 a 1391 ± 352 a 0.71 ± 0.61 a 

Ti 1000 2537 ± 56.3 a 81.7 ± 4.96 a 389 ± 56 a 962 ± 89.4 a < d.l. 

Ce 500/Ti 500 2070 ± 140 ab 63.9 ± 4.56 a 201 ± 88 a 1335 ± 315 a 3.62 ± 2.60 a 

Ce 500/Ti 1000 2752 ± 113 a 59.4 ± 7 a 215 ± 160 a 1146 ± 273 a 8.14 ± 4.99 a 

Ce 1000/Ti 500 1945 ± 106 ab 69.1 ± 7.92 a 223 ± 69 a 1073 ± 216 a 1.34 ± 1.3 a 

Ce 1000/Ti 1000 2537 ± 138 ab 68.4 ± 5.41 a 186 ± 39 a 895 ± 115 a < d.l. 

 

Barley grains are used as food for humans and animals, as well as for other markets (e.g. 

malting and flour). Thus it is appropriate to examine whether nanoparticles are able to reach 

the kernels during ripening (Tables 2-3). No statistically significant differences among the 

treatments were recorded. In absolute values, the content of both elements in the kernels 

was three-four orders of magnitude lower than those recorded in plant leaves (Ce 0.718 μg 

kg-1 and Ti 1.77 μg kg-1, respectively in Tables 2 and 3). 
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5.3.4 Ultrastructural Analyses 

To verify the root uptake and subsequent translocations of nCeO2 and nTiO2 from roots to 

aerial plant fractions, ultrastructural analyses on plant leaf tissues were carried out. 

Nanoparticles were not present in untreated control leaf tissues, which presented well 

preserved ultrastructure and organelles (Figures 3A-5A). Rare clusters of nanoparticles 

were found in leaves sampled from plants grown in soil enriched with the different 

combinations of nCeO2 and nTiO2, at both concentrations (Figure 3). 

Nanoparticles were observed in parenchyma leaf tissues, in the stroma of the chloroplast 

and in the vacuoles, (Figure 3B-D). Despite the presence of nCeO2 and nTiO2, the 

chloroplasts appeared normal, with preserved ultrastructure, and, in general, the cell 

compartments of the chlorophyll parenchyma did not appear affected by the treatments 

(Figure 3B). This evidence was in agreement with phenotypical/morphological analyses, 

as we did not observe macroscopic cell death at the tissue level after the nCeO2 and nTiO2 

treatments. Nevertheless, at the vascular tissue, some ultrastructural modifications were 

visible, especially those affecting the cellular organelles: some nuclei showed condensed 

chromatin, mitochondria swollen cristae (Figure 4B,C). Only in Ce 1000 and Ti 1000 leaf 

tissues, few secondary veins showed irregular-shaped cells with contorted walls (Figure 

5B). 
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Figure 3: Representative TEM micrographs of leaf tissues from barley plants. In control untreated 

leaf tissues (A) nanoparticles are absent and chloroplast ultrastructure is well preserved. In plants 

grown in nCeO2 and nTiO2-amended soil clusters of nanoparticles are visible in the stroma of the 

chloroplasts (B, Ce 1000; C, Ti 1000) and in the vacuoles of parenchymal cells (D, Ce 1000). 

Chloroplast structure seems not affected by nanoparticle treatment (arrows in A, B and C indicate 

thylakoids). 

 

Figure 4: Representative TEM micrographs of leaf tissues from barley plants. (A) In control 

untreated vascular parenchyma cells mitochondria (arrows) and nuclei appear well preserved with 

regular shape and intact membranes. Nucleolus (Nu) is recognizable and chromatin (Chr) is 

normally dispersed. In plants grown in nCeO2 and nTiO2-amended soil vascular parenchyma cell 

has detached plasma membrane (arrows) and nucleus presents lobed shape and condensed 

chromatin (Chr) (B, Ce 1000). Mitochondria have disorganized, swollen christae (arrows in C, Ce 

1000). 



 

87 
 

 

Figure 5: Representative TEM micrographs from secondary vein tissues of barley plants. (A) 

Control untreated vein tissues appear well structured, cell walls are regular in shape and thickness; 

(B) Ti 1000: secondary veins showed cells with contorted cell walls (W) associated with little 

dark precipitates (arrows). 

5.3.5 Nanostructures in Leaf Tissues 

After verifying the root-to-leaves translocation of Ce and Ti, STEM EDXS observations 

were carried out to detect the presence of nCeO2 and nTiO2 within the leaf tissues. 

Regarding nCeO2, several nanostructure aggregates were observed, with sizes ranging from 

a few nanometers to some hundreds of nanometers. Interestingly, nanodiffraction 

measurements revealed an amorphous structure in most of cases. The compositional 

analysis by EDXS reported in Figure 6 did not show Ce in such aggregates so Ce was 

unlikely to be present in the form of nanoclusters within the leaf tissues of barley. 

 

Figura 6: (A) Brightfield TEM image of representative nanostructures observed in Ce 1000 leaves; 

(B) EDXS spectrum as acquired in the particle area shown in brightfield mode. (C) Brightfield TEM 

image of Ti nanostructures in Ti 1000 leaves; (D) Nanodiffraction pattern as acquired on individual 

nanostructures indicated by the arrow in the brightfield image (see text); (E) EDXS spectrum as 

acquired on the region indicated in the brightfield image. 



 

88 
 

In Figure 6A, a bright field image shows a typical aggregate of clusters with large size 

dispersion. 

No Bragg’s peaks were observed in the relevant nanodiffraction and the EDXS spectrum 

showed no evidence of Ce characteristic X-rays, but only those of light elements (Figure 

6B). Even though we lack direct experimental evidence, it is very likely that the small 

amount of Ce in leaves (Table 2) is aggregated in ionic form to organic molecules. It is also 

worthwhile mentioning that during extensive TEM/STEM sessions, isolated crystalline 

nCeO2 were observed in only two cases. Therefore, we conclude that nCeO2 induces a 

massive formation of amorphous clusters of light elements rather than nanometer-scale 

clusters of CeO2. Such aggregates were abundant in the leaves of Ce 1000 plants but absent 

in control ones (Figure 5). 

Several aggregates of nanoparticles were observed in the leaves exposed to nTiO2. 

In Figure 6C-E, a representative result of the chemical and structural analysis performed 

on a Ti aggregate is shown. Figure 6D shows a brightfield image of several dark aggregates. 

The nanodiffraction pattern acquired demonstrates the crystalline nature of the aggregates 

(Figure 6D). The measured lattice spacing is compatible with TiO2 crystals. Indeed, the 

diffraction intensities belong to TiO2 nanocrystallites with different orientation with respect 

to the primary electron beam. As an example, the arrow in the pattern points to the 

systematic reflection of a TiO2 anatase particle oriented close to the [312] zone axis (Figure 

6D). To identify the chemical signature of the element contained in the nanostructures, the 

EDXS spectrum was acquired in the same area of the nanodiffraction, and the emission of 

characteristic fluorescence X-rays of Ti atoms was recorded (Figure 6E). In conclusion, we 

report the presence of TiO2 nanoclusters in parenchyma leaf tissues—particularly inside 

the chloroplasts—of barley plants exposed to nTiO2. 

5.4 Discussion 

Model simulations have demonstrated that flows of ENMs are currently able to reach 

natural ecosystems (Colman et al., 2013). 

For this reason, questions are rising about the consequences of the interaction of ENMs 

with biota. Plant phenological traits and growth parameters always respond to the physical 

environment, so they can be used to assess the adaptive behaviours of the plants and 

evaluate their relationships to the ecosystem where they grow. 
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It was reported that ENMs have the potential to influence the growth of some crops with 

enhancing or inhibitory effects on plant growth according to their composition, size and 

physical and chemical properties (Gardea-Torresday et al., 2014; Priester et al., 2012; Yoon 

et al., 2014). 

Studying the phenological stages of barley plants, according to the findings of Rico et al. 

(2015b) and Yoon et al. (2014), we verified that nCeO2 and nTiO2 treated plants had a 

longer vegetative period than the controls. This fact per se may not be negative. In fact, a 

longer vegetative phase may promote higher biomass and grain yield because plants are 

allowed to produce more photosynthetically active leaves and therefore more 

photosynthates (Dofing, 1995). 

Our data showed that nTiO2 were associated with effects opposite to those induced by 

nCeO2. First, we observed an nTiO2 dose-response effect on vegetative growth. Second, 

the compensation of the adverse effects of nCeO2 observed in plants grown in nCeO2 / 

nTiO2-treated soils was probably due to the beneficial effects of nTiO2 on plant 

metabolism. Several evidences obtained in different experimental conditions support this 

hypothesis. Studies carried out on Spinacia olearacea have demonstrated that nTiO2 

promote plant photosynthesis increasing light absorbance and transformation of light 

energy (Yang et al., 2006) and enhancing Rubisco activity (Gao et al., 2006). Also, it was 

demonstrated that nTiO2, could significantly improve CO2 fixation by plants, where it 

enhances absorption and transmission of the solar energy into the chain electron transport 

in chloroplasts (Morteza et al., 2013). Our data support such evidences, even though we 

cannot provide a physiological explanation. On the other hand, working with Cucurbita 

pepo grown in soil containing 400-800 mg kg-1 of nCeO2, Zhao et al. (2013) did not observe 

any differences in the photosynthetic rate between treated plants and controls. Such 

different responses suggest that, at least at the intermediate level of concentration, different 

interactions with metabolism occur in various species exposed to metal nanoparticles. 

However, we still lack a systematic study on the effects on basic metabolism of plants 

induced by different nanomaterials and different levels of exposition. 

At the end of the plant life cycle we studied a number of biometric variables observing 

some differences between treated plants and the controls. Recently, observations made on 

plants of barley grown for the entire life-cycle in a soil amended with 125-250-500 mg kg-

1 nCeO2 were reported (Rico et al., 2015b). 

Thus, we can compare part of our data with those presented in that paper. In general, our 

results regarding the effects induced by nCeO2 on plant growth are in contrast with Rico et 
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al. (2015b). One of the most relevant differences was that in our case all the plants were 

able to reach the reproductive stage, whereas Rico et al. (2015a) did not observe the 

formation of spikes in nCeO2 500 mg kg-1 treated plants. Moreover, they observed that 

nCeO2 500 mg kg-1 increased the height of barley plants and the accumulation of dry matter 

in the shoots, whereas in our case the vegetative growth was not stimulated by any level of 

nCeO2. If we consider studies carried out on other crop species, our data partially agree 

with the findings of Priester et al. (2012) in Glycine max, whereas Zhao et al. (2013) did 

not observe statistically significant differences in biometric parameters in plants of 

Cucumis sativum between control plants and those treated with nCeO2. 

With regard to Ce and Ti accumulation in the plant tissues, it must be emphasized that both 

DLS and DCS analyses, carried out for the higher nCeO2 and nTiO2 test suspension (1000 

ppm), indicate agglomeration of nanoparticles. Therefore, the actual bioavailability of 

nanomaterials may be lower than expected. For this reason, we believe that the 

concentrations of Ce and Ti in the plant tissues were underestimated. In addition, similarly 

to what happens in the case of conventional contaminants, soil pH, OM, texture and CEC 

have an important influence on the fate of nanomaterials in soil, (Cornelis et al., 2014; 

Schlich and Hund-Rinke, 2015) and particularly with respect to those, which release ions, 

such as nCeO2 (Schwabe et al., 2015). 

It was demonstrated that after root uptake, Ce was able to reach the plant leaves by moving 

through the vascular system (Zhao et al., 2013). We verified that Ce did not translocate 

easily since only a small fraction of the element moved from the roots to the aerial biomass 

of plants. Our findings and data agree with those obtained in similar studies respectively 

on soybean, cucumber, and wheat (Zadoks et al., 1974; Zhao et al., 2013; Rico et al., 2014). 

The increase in Ti concentration in the roots of Ce 500 and Ce 1000 plants could be due to 

a stimulatory effect of Ce on root growth and the formation of adventitious roots (Zhang et 

al., 2013). Therefore, nCeO2 treated plants were able to explore a greater volume of soil, 

accumulating more Ti and Ce compared to the controls. This raises interesting questions 

about the bioavailability of Ti, which occurs in the soil as nTiO2 from anthropogenic 

sources. It was previously observed that an increase in root assimilation and translocation 

of Ti after exposure to nTiO2 would mean that the nano formulation of Ti makes it more 

bioavailable (Foltête et al., 2001). Other studies have shown that plants could translocate 

nTiO2 into their aerial fractions. Titanium nanoparticles of 5 nm in diameter were found in 

leaves of Arabidopsis thaliana (Kurepa et al., 2010), in addition both the uptake and 

translocation of 100 nm nTiO2 to the leaves of Nicotiana tabacum were observed (Ghosh 
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et al., 2010). However, the soil environment is very different and much more complex than 

artificial conditions. In our case, we observed very different results. 

Macro- and micro-morphological observations indicate that under our conditions nCeO2 

and nTiO2 induced limited cell injuries, at least in the parenchyma tissues. Inside the 

tissues, metal nanoparticles, depending on their type, shape and concentration may cause 

either cell death or other side effects (Sohaebuddin et al., 2010). Alternatively, metal 

nanoparticles can be well tolerated by the cells; however, this does not mean that 

nanoparticles do not affect cellular pathways (Panariti et al., 2012). The primary 

ultrastructural alteration we detected in leaf tissues of plants treated with metal oxide 

nanoparticles was the condensed chromatin in the nuclei and swollen mitochondria of 

vascular parenchyma cells. Condensed chromatin and fragmented nuclei, as well as swollen 

mitochondria, are described in programmed cell death (PCD), reported in cell response to 

different environmental stimuli and stresses, induced by pathogens (Lam et al., 2012) and 

abiotic factors as salinity, cold stress, waterlogging, or hypoxia (White, 1996; Kratsch and 

Wisw, 2000). 

Referring to the literature findings (Asli and Neumann, 2009; Zhao et al., 2012; Hernandez-

Viezcas et al., 2013) we would have expected to find crystalline forms of both elements in 

the plant tissues. Several nanostructures were observed in the leaf tissues of nCeO2 treated 

plants; however, microanalysis did not confirm the presence of Ce in such aggregates. This 

is in contrast with Zhao et al. (2012) which verified the presence of nCeO2 aggregates 

within vascular tissues of corn, thus demonstrating that Ce nanoparticles migrate through 

the xylem under transpiration. In studies on soybean plants grown in nCeO2 amended soil, 

it was observed that most of the Ce stored in the pods was in the form of nCeO2 (Hernandez-

Viezcas et al., 2013). 

We have not investigated the speciation of Ce and Ti in plant tissues, however this evidence 

constitutes a rather strong indication of Ce biotransformation. The biotransformation of 

ceria nanoparticles in plant tissues was demonstrated in soybean (López-Moreno et al., 

2010) and in cucumber (Zhang et al., 2012; Ma et al., 2015a). In our case we hypothesized 

that the formation of the amorphous clusters could be related to the presence of intracellular 

Ce and, a defensive mechanism against Ce-cytotoxicity, as previously demonstrated (Horie 

et al., 2009). To the contrary, Ti nanoparticles were able to cross biological barriers in plant 

tissues. In fact, we report the presence of Ti nanoclusters in parenchymatic cells of barley 

leaves. Early evidence of root to shoot translocation of nTiO2 was found in hydroponically 

grown cucumber seedlings, using micro X-ray fluorescence (µ-XRF) and micro X-ray 
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absorption spectroscopy (µ-XANES) (Servin et al., 2012). Subsequently, the same 

evidence was confirmed in older cucumber plants growing in nTiO2-enriched soil, as well 

(Servin et al., 2013). Our work undertaken with the same method agrees with these findings. 

Furthermore, unlike what was observed for Ce, we did not observe evidence of 

biotransformation, confirming the literature findings (Servin et al., 2013). 

5.5 Conclusions 

ENMs are currently considered as an emerging class of environmental contaminants and 

thus, as mentioned above, neither (i) potential interactions with other pollutants (Balbi et 

al., 2014; Ribas Ferreira et al., 2014) and/or (ii) the possibility of co-occurrence of ENMs 

in the environment can be excluded (Kumar et al., 2014). In other words, there exists a 

chance of simultaneously exposure of target organisms to different types of ENMs. This 

implies that the horizon of knowledge gaps on the relationships between ENM and biota 

has to be moved farther. According to Kumar et al. (2014) “to properly incorporate 

exposure of more than one type of ENM, data on toxicity due to mixture of ENMs for a 

given target organ are required”. 

With regard to plants, it is very likely that several research groups are currently working on 

this topic. However, in literature we found only one paper reporting evidence of stimulating 

effects on germination and early growth of Glycine max induced by a mixture of nSiO2 and 

nTiO2 (Lu et al., 2002). Therefore, we reiterate that this paper is the first to report data on 

the effects of a co-exposure to different metal oxide nanoparticles on a worldwide important 

crop. Moreover, our data were collected at the end of the life-cycle of soil grown barley 

plants. 

Data available on the effects of ENMs in humans, crop plants, and livestock are not enough 

to allow for a thorough evaluation of their potential and of their safety. With respect to the 

aims of this study, although no visual symptoms of toxicity have been detected in plants, 

we demonstrated that the phenology and growth of barley were affected by nCeO2 and 

nTiO2. All plants concluded their life cycle producing seeds. However, in treated plants we 

verified differences in some biometric parameters compared to the control ones. In 

particular, nCeO2 at the lower concentration were associated with a reduction in the leaf 

area, the number of tillers and spikes per plant, and for this reason the number of kernels 

per plant. It can be assumed that this will lead to a reduction in crop production. An 

attenuation of such adverse effects was observed in plants treated with the higher dose of 
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nCeO2. Titanium nanoparticles were associated with positive effects on plants. First, we 

observed nTiO2 positive dose-response effect on vegetative growth. Second, in plants co-

exposed to nCeO2 and nTiO2, it is likely that the beneficial effects of Ti on plant metabolism 

have more than compensated for the adverse effects of Ce. Lacking literature data, at this 

moment we cannot discuss further these results and this part of our experiments should be 

considered simply exploratory. However, we demonstrated that the co-occurrence of 

nCeO2 or nTiO2 in soil determined in barley plants effects other than those observed in 

plants exposed separately to nanomaterials. It is likely that the study on this issue will be 

further dealt in the near future, through developing appropriate experimental protocols to 

study the physiological bases of plant response to ENMS co-occurrence. 

From an ecological point of view, our data suggest that the fate of nCeO2 and nTiO2 could 

be different. In both cases, their bioaccumulation in plants is minute. Cerium nanoparticles 

inside plant tissues seem to dissolve into the ionic form that most likely undergoes a 

subsequent biotransformation. Titanium oxide nanoparticles are found in crystalline form 

in the leaves of barley and also in the seeds, although in small concentrations, so in this 

form the nTiO2 may be able to continue on through the food chain. Further research should 

be carried out on the intricate relationships that exist in the soil-plant system with respect 

the fate of nanomaterials.  
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Abstract 

The implications of engineered nanoparticles in many food crops it is still unknown. The 

purpose of this study was to evaluate effects of cerium oxide nanoparticles (nCeO2) and 

titanium oxide nanoparticles (nTiO2) in soil at 0, 500 and 1000 mg kg-1 on barley (Hordeum 

vulgare) kernels. Mineral nutrients, amylose, β-glucan, amino acid and crude protein (CP) 

concentrations in barley (Hordeum vulgare) kernels were measured. Kernels were analyzed 

by ICP-AES/MS, HPLC and Elemental CHNS Analyzer. 

Results have shown that Ce and Ti accumulation were not enhanced by MeNPs 

trereatments. However, nCeO2 and nTiO2 impacted the nutritional quality of barley kernels 

in contrasting ways. Both MeNPs reduced amylose and increased amino acid and CP 

content. Potassium and S were both negatively impacted by MeNPs, while B only under 

500 mg nCeO2 kg-1. On the contrary Zn and Mn concentrations were improved under 500 

mg nTiO2 kg-1 and Ca at both nTiO2 treatments. 
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6.1 Background 

Nanotechnology is expected to be in widespread use by 2020 promoting a market of three 

trillion dollars' worth of nanotechnology-based products with six million workers (Roco, 

2010). The applications of nanotechnologies in medicine, consumer goods, heavy industry, 

information and communication technologies, electronic devices, and environmentally-

friendly energy systems are developing at a much faster pace than our knowledge of their 

impact (Nadeau et al., 2013). Several questions were raised about the fate of nanomaterials 

(defined as materials with at least one dimension comprised between 1 and 100 nm) (ISO, 

2010) used in the agro-environment and those resulting from uncontrolled or accidental 

flows such as MeNPs. For this reason, Food and Agriculture Organization of the United 

Nations (FAO) as well as many countries adhering to the Organization for Economic Co-

operation and Development (OECD) recognized the need of early consideration of the 

existing gaps in knowledge on toxicity of nanoparticles, their bioaccumulation, oral 

exposure and risks by ingestion of target organisms, which are the key factors needed for 

risk assessment on nanomaterials (Gruère, 2012; Takeuchi et al., 2014). 

Human diets obtain primarily minerals from grains. On the other hand, uptake of nutrients 

by plant roots is affected by abiotic and biotic stressors and so the mineral storage in plant 

organs (Marschner, 1995). Therefore, it is appropriate to examine whether MeNPs in soil 

are able to influence mineral accumulation in grains of food-crops. However, little 

information about accumulation of MeNPs in edible tissues and how MeNPs affect grain 

quality can be found in the literature. Vascular plants and especially crops are of special 

concern as they could be exposed to risks of MeNPs bioaccumulation and their subsequent 

entry into the food chain (Zhu et al., 2008; Miralles et al., 2012). The effects of MeNPs on 

plants will depend, among others, on the soil type and plant species (Zhao et al., 2012), and 

indeed contrasting results are reported among dicot and monocot plants (Rico et al., 2013; 

Schwabe et al., 2013; Peralta-Videa et al., 2014; Rico et al., 2014; Zhao et al., 2014; Zhao 

et al., 2015; Rico et al., 2015). 

Cerium oxide nanoparticles (nCeO2) and titanium oxides nanoparticles (nTiO2) are both 

included in the list of engineered nanomaterials of priority for immediate testing (OECD, 

2010). A number of papers report data collected in the course of short experiments exposing 

plants to nCeO2 or nTiO2 carried out on seedlings in petri-dishes (López-Moreno et al., 

2010; López-Moreno et al., 2010; Gomez-Garay et al., 2014; Mattiello et al., 2015), in 

hydroponic solutions or perlite-containing pots (Schwabe et al., 2013; Hong et al., 2005; 
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Zheng et al., 2005; Asli et al., 2009; Zhang et al., 2011; Larue et al., 2012; Jacob et al., 

2013; Zhang et al., 2015), and in nutrient medium in agar (Dehkourdi and Mosavi, 2013; 

Cui et al., 2014). On the other hand other scientists worked on experiments in pots with 

plants being sprayed on leaves with nTiO2 (Hong et al., 2005; Gao et al., 2006; Yang et al., 

2007; Gao et al., 2008; Linglan et al., 2008). Finally, Wang et al. (2012) and the group of 

Gardea-Torresdey published research on nCeO2 and nTiO2 effects on yield of different 

plant species in soil experiments (Schwabe et al., 2013; Zhao et al., 2015; Rico et al., 2015). 

This paper reports the observations made on barley (Horedum vulgare) kernels produced 

by plants grown in nCeO2 or nTiO2 amended soil. Barley is among the world’s most 

important crops being the fourth cereal after maize, rice and wheat for global grain 

production in 2013 (FAOSTAT, 2015). Due to its adaptation, N uptake and utilization 

efficiency (NUtE) barley is widely cultivated on more than 49 million hectares (FAOSTAT, 

2015; Delogu et al., 1998). It has relevant economic importance for animal feed, malting 

and brewing and it is used as an important food in some parts of the world (FAOSTAT, 

2015). Barley plants were selected also because their seeds contain an high starch 

concentration approximately 65 to 75% of their dry weight. Amylose and amylopectin are 

the two components of starch. Barley can be classified into normal type (25-27% amylose), 

waxy type (below 5% amylose) and high-amylose type (> 35% amylose) (Shu and 

Ramussen, 2014). The barley material (cv. Tunika) was released as a two-row spring 

barley, and marketed in Italy for malt or feed production, as its high-amylose and moderate 

β-glucan traits are functional for both purposes. In general, the high-amylose trait in cereals 

is connected to resistant starch, which in turn has a positive rule in human nutrition (Berry, 

1986). 

The main aims of our experiment were: (i) to evaluate the bioaccumulation of Ce and Ti in 

kernels, (ii) to verify the concentration in mineral nutrients in kernels compared to that of 

control plants, and (iii) to monitor the changes if any in seed quality parameters. 

6.2 Materials and Methods 

6.2.1 Soil Characterization 

The soil used in our pot experiment was collected from the first top 40 cm of an agricultural 

field at the University of Udine, Italy (46° 04’ 53’’ N, 13° 12’ 34’’ E). The soil was air 

dried and sieved through a 2-mm sieve. For the soil characterization, samples (5 replicates) 

were furthermore oven-dried at 40°C for 48 h. Soil samples were then analyzed according 
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to Pansu and Gautheyrou (2006) for particle size distribution (Bouyoucos hydrometer 

method), pH (potentiometric measurements in a 1 to 2.5 of soil and Milli-Q® water 

suspension), electrical conductivity (EC, conductometric measurements in a 1 to 5 of soil 

and Milli-Q® water suspension), cation exchange capacity (CEC), available P (sodium 

bicarbonate extractable P at pH 8.5, Olsen method) and equivalent carbonate (calcimeter 

method). Total organic carbon (TOC) and total nitrogen (TN) contents were determined 

through an Elemental CHNS Analyzer (Vario Micro Cube, Elementar Analysensysteme 

GmbH, Germany) using up to 10 mg fine powder of grounded soil. Carbonates from the 

soil were previously removed by adding drops of hydrochloric acid (18%). The soil was 

classified as sandy clay loam and its characteristics are reported in Table 1. 

Table 1: Characteristics of soil used in this study (n = 5). 

Parameter Mean ± SE 

Clay (%) 26 ± 0.0 

Silt (%) 6.4 ± 0.4 

Sand (%) 67.6 ± 0.4 

pH 7.44 ± 0.01 

EC (μS cm-1) at 25°C 1235 ± 194 

CEC (cmol+ kg-1 dw) 13.87 ± 0.3 

Available P (μg g-1 dw) 61.3 ± 8.4 

Total carbonate (g kg-1) 72 ± 14.3 

Total organic C (%) 2.22 ± 0.27 

Total N (%) 0.17 ± 0.01 

6.2.2 Nanoparticles Addition 

Cerium(IV) oxide nanoparticles (nCeO2) and Titanium(IV) oxide anatase nanoparticles 

(nTiO2) were purchased from Sigma-Aldrich (Milwaukee, WI, USA) (respectively, ID 

product 544841 and 637254) which described them having mean diameters of <25 nm 

(BET). Further characterization studies (to be published in detail elsewhere) showed that 

nCeO2 and nTiO2 are of different shapes mainly rhombus and disks with respectively an 

average size obtained after 100 random observations (± SE) of 22.7 ± 1.3 nm and 24.1 ± 

0.7 nm (TEM), 32.6 ± 2.1 nm and 41.8 ± 2.4 nm (AFM), and of 174.3 ± 0.1 nm and 924.7 

± 10.5 nm in deionized water (DLS). The specific surface area of nCeO2 and nTiO2 resulted 

to be 46.1 m2/g and 61.6 m2/g (BET) respectively. 

Nanoparticles were added to the soil before sowing. Four mixtures of soil with nCeO2 or 

nTiO2 were prepared. The procedure consisted of preparing a 2000 mg kg-1 either nCeO2 

or nTiO2 in soil by adding nano-powder directly into the soil and mixing it in a portable 
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concrete mixer which was properly closed. These mixtures were stored in the dark at room 

temperature for one week. After this period the final concentration of MeNPs 

corresponding to 1000 and 500 mg MeNPs kg-1 were prepared by serial dilution with source 

soil. For equilibration purposes MeNPs amended soils were stored once more in dark at 

room temperature for three days. Finally, five polyethylene pots (4 l each) per treatment 

were prepared (a total of 25 pots were used). The control treatment received no MeNPs. 

6.2.3 Plant Growth and Yield Parameters 

A greenhouse experiment was initiated at the experimental farm of the University of Udine 

(Italy) on 9 April 2014. Seeds of a two-row spring barley (Hordeum vulgare L., var. 

Tunika) obtained from S.I.S. S.p.A. (San Lazzaro di Savena, Bologna, Italy) were sown in 

pots containing soil amended or not with nanoparticles as above. The pots were irrigated to 

maintain the soil at 60% of water holding capacity (WHC). During growth pots were 

singularly weighed and irrigated on a weekly base to compensate for evapotranspiration. 

At Zadoks growth stage 92 (Ripening, kernel is hard and can no longer be dented by thumb-

nail) (Zadoks et al., 1974) kernels were harvested, counted and weighted for 100-caryopses 

weight and grain yield estimation. Flag leaf area was measured using a LI-3100C Area 

Meter (Li-Cor Corporation, Lincoln, NE, USA). Finally, kernels from the main shoot were 

separated for the below analysis. A subsample of kernels were oven-dried at 105°C for 48 

h for ICP-AES analysis while for the other analysis kernels were oven-dried at 60°C for 48 

h and grinded to fine powder. 

Amylose and β-glucan Concentrations Analysis. Amylose and β-glucan concentrations 

were determined by using the enzyme-specific amylose/amylopectin kit and the mixed 

linkage β-glucan assay kit, both from Megazyme (Megazyme International Ltd., Bray, 

Ireland). 

6.2.4 Amino Acid and Crude Protein Analysis 

Acid hydrolysis with HCl at 110°C for 22-24 h was used for total amino acids except for 

sulphur amino acids and tryptophan. For sulphur amino acid performic acid oxidation for 

16 h followed by acid hydrolysis with HCl was used. For tryptophan alkaline hydrolysis 

with sodium hydroxide was performed at 100°C for 4 h. After extraction, samples were 

derivatized at 55°C for 10 min with 20 μl of AccQ-Fluor reagent (6-aminoquinolyl-N-

hydroxysuccinimidyl carbamate) and injected in HPLC (Bosch et al., 2006). All reagents 

were of HPLC grade. Amino acid analysis was performed using a LC 200 Perkin Elmer 
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pump fitted with an ISS-100 auto sampler (20 µl loop) and a fluorimetric detector (Perkin 

Elmer, Norwalk, Connecticut, USA), λ excitation of 250 nm and λ emission of 395 nm. 

Separation was achieved by using one AccQ-Tag amino acid analysis column (Waters 

Corporation Milford, MA, USA) and one Waters pre-column filter. The column was 

thermostatted at 37°C and the flow rate was 800 µl min-1 (Liu et al., 1995). Mobile phase 

A consisted of acetate-phosphate aqueous buffer, mobile phase B was acetonitrile 100% 

and eluent phase C was Milli-Q® water. L-α-amino-n-butyric acid was used as internal 

standard. For the analysis of cysteine, methionine and tryptophan it was necessary in some 

occasions to mix two or three samples to obtain sufficient material for analysis. 

Total content of N was determined through an Elemental CHNS Analyzer (Vario Micro 

Cube, Elementar Analysensysteme GmbH, Germany) using up to 2.5 mg fine powder of 

grounded samples. Finally, crude protein (CP) was estimated by multiplying the nitrogen 

content by 5.45 (Mariotti et al., 2008). 

6.2.5 Elemental Concentrations Analysis 

About 300 mg of material were digested in 10 ml of a 1 to 4 (v/v) mixture of 37% (v/v) 

HCl and 65% (v/v) HNO3 in Teflon cylinders for 10 min at 175°C in microwave oven 

(CEM, MARS Xpress). After mineralization plant extracts were filtered (0.45 m PTFE) 

and diluted. Total content of B, Ca, Cu, Fe, K, Mg, Mn, Na, Ni, P, and Zn were determined 

by an ICP-AES (Varian Inc., Vista MPX) with an internal standard solution of Y. Total 

content of Ce and Ti were determined by an ICP-MS (Aurora M90, Bruker) with an internal 

standard solution of 72Ge and 89Y. The accuracy of the analytical procedure adopted for 

ICP-AES analysis was checked by running standard solutions every 20 samples. Quality 

control for both ICP-AES and ICP-MS was carried out using reagent blank samples, and 

triplicates reading for each sample. Certified standard reference material (tomato leaves 

1573a from the National Institute of Standards and Technology, USA) was treated as the 

samples (n = 3). The recovery of the elements in the standard material was on average 97% 

of the certified values with an RSD average of 1.3%. 

Total content of S was determined through an Elemental CHNS Analyzer (Vario Micro 

Cube, Elementar Analysensysteme GmbH, Germany) using up to 2.5 mg fine powder of 

grounded samples. 
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6.2.6 Statistical Analysis 

The greenhouse experiment was set up as a completely randomized design and each week 

pots were randomly reallocated. Each analysis consisted of five replicates per treatment, 

unless otherwise stated. Two-way mixed effect analysis of variance (ANOVA) (Sokal and 

Rohlf, 2010) were performed for all the data after verification of normality (Kolmogorov-

Smirnov test) (Sokal and Rohlf, 2010) and homogeneity of the variance (Hartley’s Fmax-

test) (Sokal and Rohlf, 2010). The multiple comparisons of means were based on the 

minimum significant difference (MSD) method obtained from the T statistic for equal 

replicates or from the T’ statistic for not equal replicates in the case of cysteine, methionine 

and tryptophan analysis (Sokal and Rohlf, 2010). Pearson’s product-moment correlation 

coefficients and significance were calculated between Ce or Ti content in kernels and all 

the other measured parameters (Sokal and Rohlf, 2010). 

6.3 Results and Discussion 

6.3.1 Barley Biometric and Yield Parameters 

Flag leaf area and 100-kernels weight were unaffected by the presence of CeO2 

nanoparticles (nCeO2) and TiO2 nanoparticles (nTiO2) in the soil (Table 2). 

Table 2: Biometric and yield parameters of barley plants in soil treated with none (control), 500 

mg nCeO2 kg-1, 1000 mg nCeO2 kg-1, 500 mg nTiO2 kg-1 and 1000 mg nTiO2 kg-1 

Treatment 
Flag leaf area 

(cm2) 

Kernels 

(n. plant-1) 

Grain yield 

(g plant-1) 

100-kernels weight 

(g) 

Control 13.36 ± 1.1 a 117 ± 13.2 a 4.4 ± 0.6 a 3.76 ± 0.19 ab 

500 mg nCeO2 kg-1 10.75 ± 2.21 a 53.2 ± 6 b 2.4 ± 0.3 b 4.6 ± 0.08 a 

1000 mg nCeO2 kg-1 10.55 ± 2.98 a 90.6 ± 7.5 ab 3.7 ± 0.3 ab 4.13 ± 0.31 ab 

500 mg nTiO2 kg-1 15.43 ± 2.79 a 66.2 ± 10.6 b 2.1 ± 0.4 b 3.04 ± 0.26 b 

1000 mg nTiO2 kg-1 14.31 ± 1.75 a 129.8 ± 18.3 a 5.1 ± 0.6 a 4.04 ± 0.37 ab 

aValues are means ± SE (n = 5). Different letters indicate significant differences between treatments 
(p ≤ 0.05, T test) for each yield parameter separately. 

With reference to kernel quantity and grain yield, nanoparticles treatments did impact 

plants. However, for these traits the dose-responses are unclear (Table 2). In both nCeO2 

and nTiO2 treatments the 500 mg kg-1 level did impair kernel quantity and plant grain yield 

related to control; conversely, the 1000 mg kg-1 treatments did not cause any significant 

limitation and although not significant a beneficial effect can be envisaged for the 1000 mg 

nTiO2 kg-1 treatment (Table 2). Regarding nCeO2 treated plants, a parallel effect on source- 
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and sink-organs could be in place: the apparent reduction of flag leaf area is tentatively 

mirrored by a severe drop of sinks volume (kernel quantity). The severe reduction of kernel 

quantity, as an effect of 500 mg nCeO2 kg-1 treatment (and to a lesser extent of 1000 mg 

nCeO2 kg-1 one), is associated to an increase of 100-kernels weight, but the compensation 

is not sufficient and plant grain yield resulted negatively affected. Our results are partially 

in agreement with those obtained by Rico et al. (2015) which observed a reduced spike 

production in barley exposed to 0, 125, 250 and 500 mg nCeO2 kg-1. Remarkably authors 

observed that plants exposed at 500 mg nCeO2 kg-1 did not form grains (Rico et al., 2015). 

6.3.2 Amylose and β-glucans Concentrations in Kernels 

The effects of nCeO2 and nTiO2 on amylose and β-glucans concentrations in barley kernels 

are displayed in Table 3. 

Table 3: β-Glucans and Amylose concentrations in barley kernels at ripening from main shoot 

grown in soil treated with none (control), 500 mg nCeO2 kg-1, 1000 mg nCeO2 kg-1, 500 mg nTiO2 

kg-1 and 1000 mg nTiO2 kg-1 

Treatment β-glucans (% dw) Amylose (% dw) 

Control 5.1 ± 0.19 a 52.14 ± 1.34 a 

500 mg nCeO2 kg-1 4.8 ± 0.19 a 43.85 ± 2.1 b 

1000 mg nCeO2 kg-1 4.52 ± 0.11 a 39.74 ± 1.19 b 

500 mg nTiO2 kg-1 4.54 ± 0.13 a 39.59 ± 2.08 b 

1000 mg nTiO2 kg-1 4.94 ± 0.17 a 41.49 ± 1.65 b 

aValues are means ± SE (n = 5). Different letters indicate significant differences between treatments 
(p ≤ 0.05, T test) for each element separately. 

MeNPs treatments had a significant effect over starch composition, as the amylose 

concentration significantly decreased (till 21% on average) compared to control. However, 

there were no specific responses across the different MeNPs treatments. Indeed a decrease 

of amylose as a response of abiotic stress has been in place in our barley experiment. 

Amylose content has been tagged as the most sensitive parameter to heat stress in Japonica 

rice, maize and wheat (Beckles and Thitisaksul, 2013), while there was no conclusive 

evidence for consistent changes in amylose content in barley grains exposed to high 

temperatures (Kiseleva et al., 2003). 

Consistent with our results, Rico et al. (2013) observed a lowered starch content in grain 

from rice treated with 500 mg nCeO2 kg-1 although significantly only in two of the three 

analyzed varieties. On the contrary, Zhao et al. (2014) did not observe significant 

differences in starch content in cucumber fruit after growing plants in soil amended with 
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nCeO2 at concentrations similar to ours. However, beside they analyzed a different species, 

they determined starch content in the full cucumber fruit and not separated for skin, pulp 

and seeds (Zhao et al., 2014). 

The variation in the amounts of amylose can affect the physicochemical and functional 

properties of starch, which may turn affect its utilization in food products or industrial 

applications (Kobayashi et al., 1986; Yan et al., 1993). 

Finally, no significative differences on β-glucans concentration between control and 

MeNPs-treated plants were found. 

6.3.3 Amino Acid Concentration in Kernels 

The effects of nCeO2 and nTiO2 in the soil on amino acid concentration and crude protein 

(CP) concentration in kernels from main shoot are displayed in Table 4. 
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Table 4: Amino acid (mg g-1) and crude protein (CP, g 100 g-1) concentration in barley kernels at ripening from main shoot grown in soil treated with none 

(control), 500 mg nCeO2 kg-1, 1000 mg nCeO2 kg-1, 500 mg nTiO2 kg-1 and 1000 mg nTiO2 kg-1 

Parameter Control 500 mg nCeO2 kg-1 1000 mg nCeO2 kg-1 500 mg nTiO2 kg-1 1000 mg nTiO2 kg-1 

Alanine 5.65 ± 0.23 c 6.06 ± 0.12 bc 6.71 ± 0.31 ac 7.35 ± 0.47 a 6.75 ± 0.07 ab 

Arginine 7.55 ± 0.59 a 8.72 ± 0.33 a 8.51 ± 0.32 a 9.26 ± 0.25 a 9.12 ± 0.37 a 

Aspartic acid 7.18 ± 0.3 b 8.28 ± 0.35 ab 8.5 ± 0.37 a 8.58 ± 0.29 ab 9.09 ± 0.22 a 

Cysteineb 6.85 ± 0.06 b 8.7 ± 0.17 a 8.04 ± 0.15 a 8.07 ± 0.00 a 8.42 ± 0.16 a 

Glutamic acid 31.98 ± 1.6 b 38.97 ± 2.1 a 39.79 ± 1.08 a 40.75 ± 1.67 a 43.05 ± 0.82 a 

Glycine 5.98 ± 0.2 c 6.07 ± 0.24 c 6.79 ± 0.29 bc 7.74 ± 0.13 ab 8.01 ± 0.19 a 

Histidine 3.14 ± 0.23 b 3.54 ± 0.19 ab 3.46 ± 0.15 ab 3.66 ± 0.08 ab 3.89 ± 0.08 a 

Isoleucine 5.29 ± 0.21 b 6.03 ± 0.29 ab 6.02 ± 0.2 ab 6.42 ± 0.16 a 6.77 ± 0.11 a 

Leucine 9.4 ± 0.33 b 10.78 ± 0.52 ab 10.81 ± 0.31 ab 11.24 ± 0.36 a 11.7 ± 0.19 a 

Lysine 3.67 ± 0.14 c 5.02 ± 0.23 b 5.34 ± 0.21 ab 5.85 ± 0.15 ab 5.98 ± 0.2 a 

Methionine 2.39 ± 0.06 b 2.72 ± 0.11 ab 2.87 ± 0.09 a 3.08 ± 0.00 a 3 ± 0.09 a 

Phenylalanine 7.48 ± 0.42 b 8.68 ± 0.53 ab 8.66 ± 0.22 ab 9.12 ± 0.29 ab 9.37 ± 0.2 a 

Proline 14.85 ± 0.75 b 19.23 ± 1.29 a 20.16 ± 0.55 a 20.44 ± 1.36 a 21.44 ± 0.63 a 

Serine 5.84 ± 0.24 b 6.57 ± 0.38 ab 6.71 ± 0.16 ab 6.78 ± 0.16 ab 6.84 ± 0.08 a 

Threonine 4.31 ± 0.14 c 4.7 ± 0.22 bc 5.12 ± 0.14 ab 5.11 ± 0.16 ab 5.35 ± 0.04 a 

Tryptophan 1.15 ± 0.3 a 0.89 ± 0.19 a 0.94 ± 0.26 a 0.53 ± 0.00 a 0.74 ± 0.08 a 

Tyrosine 3.36 ± 0.19 b 3.39 ± 0.18 b 3.78 ± 0.16 ab 4.34 ± 0.09 a 4.22 ± 0.16 a 

Valine 7.04 ± 0.22 b 7.8 ± 0.35 ab 7.8 ± 0.24 ab 8.29 ± 0.29 a 8.68 ± 0.18 a 

Total 133.22 ± 5.01 b 155.98 ± 6.81 a 160.17 ± 4.01 a 166.58 ± 4.77 a 172.46 ± 2.36 a 

CP 12.08 ± 0.45 b 13.34 ± 0.65 ab 14.55 ± 0.3 a 14.3 ± 0.64 a 15.17 ± 0.3 a 

aValues are means ± SE (n = 5 except for Cysteine, Methionine and Tryptophan were n = 2 or 3). Different letters indicate significant differences between 
treatments (p ≤ 0.05, T or T’ test) for each amino acid separately. bCysteine is expressed as cysteic acid. 
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Overall, glutamic acid, proline and leucine were the most abundant amino acids in kernels 

with concentration intervals of 32-43, 15-21 and 9-12 mg g-1 respectively (Table 4), a 

ranking consistent with other barley kernel composition studies (Pomeranz et al., 1976; 

Newman and Newman, 2008). 

More in details, nCeO2 and nTiO2 did not significantly modify concentrations of arginine 

and tryptophan but they significantly and similarly increased cysteine, glutamic acid lysine 

and proline concentrations in all treatments in respect to control. Aspartic acid 

concentration was unaffected at 500 mg kg-1 of both nCeO2 and nTiO2 treatments while 

significantly and similarly increased at 1000 mg kg-1 of both nCeO2 and nTiO2 treatments. 

The other amino acid responses varied depending on which MeNPs were added in soil. In 

particular, nCeO2 treatments did not modify concentrations of alanine, glycine, histidine, 

isoleucine, leucine, phenylalanine, serine, tyrosine and valine. On the contrary, methionine 

and threonine significantly increased only at the highest nCeO2 treatment. Both nTiO2 

treatments significantly increased concentrations of alanine, glycine, isoleucine, leucine, 

methionine, threonine, tyrosine and valine. Conversely, only the highest nTiO2 treatment 

significantly increased histidine, phenylalanine and serine concentrations. However, in 

most amino acids the largest concentration was consistently measured at 1000 mg nTiO2 

kg-1 treatment. 

In general, a total of 18 amino acids have been identified in barley proteins: with respect to 

animal growth requirements, lysine and threonine are the first and second most limiting 

amino acids, with methionine and tryptophan in third and fourth positions, respectively 

(Newman and Newman, 2008). Since lysine is the first limiting amino acid in cereal grain 

protein, an improvement in the level of lysine results in an improved nutritional quality.  

However, high lysine strains and mutants (as Hiproly barley, found in the world barley 

collection in 1969) have been found to be associated with reduced grain weight, and lower 

yields. Also the threonine increasing resulted in an improvement of nutritional quality of 

the kernel. However, these increments of limiting aminoacids are not sufficient to reach the 

concentrations required for human nutrition (Newman and Newman, 1992). 

The barley cultivar Tunika is principally employied in malt production for brewing scope, 

these increments of aminoacid, related with decreasing of amylose content resulted in a 

quality decreasing of kernels for beer production. 

As for proline, a positive correlation between proline in leaves and plant stress is supported 

by a large body of data. Besides acting as an excellent osmolyte, proline plays different 

roles during stress, as a metal chelator, an antioxidative defense molecule and a signaling 
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molecule (Hayat et al., 2012). An overproduction of proline, which in turn imparts stress 

tolerance by maintaining cell turgor or osmotic balance, is a common observation in 

stressful environments. We did not follow proline in leaf tissues, however, MeNPs-treated 

plants on average added 37% more proline in kernels compared to controls, which is the 

second largest increase, after the 51% increase of lysine. Therefore, MeNPs-treatments are 

supposedly operating as abiotic stressors on barley plants, and observed proline increase in 

kernels could be related to the in-season proline evolution in green tissues. 

Differently from our observations, Rico et al. (2014, 2015) reported contrasting results for 

different amino acids in both barley and wheat exposed to 0, 125, 250 and 500 mg nCeO2 

kg-1. 

Finally, CP in kernels was significantly increased by approximately 19% in MeNPs-treated 

plants compared to control (Table 4). The increased CP is in line with the increased total 

amino acids concentrations under MeNPs-treatments (Table 4), on average 23% higher 

related to controls (Table 4). Apart for tryptophan, similar effects were observed for each 

amino acid separately. Indeed, the magnitude of MeNPs-treatments over CP, total amino 

acid and single amino acids concentrations were comparable. 

6.3.4 Elemental Concentrations in Kernels 

The effects of nCeO2 and nTiO2 in the soil on Ce and Ti, macronutrient and Na, and 

micronutrient concentrations in barley kernels from main shoot are displayed in Table 5, 

Table 6, and Table 7 respectively. 

Table 5: Cerium and Titanium concentrations in barley kernels at ripening from main shoot grown 

in soil treated with none (control), 500 mg nCeO2 kg-1, 1000 mg nCeO2 kg-1, 500 mg nTiO2 kg-1 

and 1000 mg nTiO2 kg-1 

Treatment Ce (mg kg-1 dw) Ti (mg kg-1 dw) 

Control 0.5 ± 0.2 a 2.19 ± 1.19 a 

500 mg nCeO2 kg-1 1.03 ± 0.84 a 1.27 ± 0.29 a 

1000 mg nCeO2 kg-1 0.7 ± 0.37 a 0.85 ± 0.12 a 

500 mg nTiO2 kg-1 1.08 ± 0.54 a 1.7 ± 0.53 a 

1000 mg nTiO2 kg-1 1.16 ± 0.61 a 8.72 ± 4.76 a 

aValues are means ± SE (n = 5). Different letters indicate significant differences between treatments 
(p ≤ 0.05, T test) for each element separately. 
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Table 6: Concentration of macro-nutrients, Na, and Na/K and Na/Ca ratios in barley kernels at ripening from main shoot grown in soil treated with none 

(control), 500 mg nCeO2 kg-1, 1000 mg nCeO2 kg-1, 500 mg nTiO2 kg-1 and 1000 mg nTiO2 kg-1. 

Treatment Ca (mg kg-1 dw) K (mg kg-1 dw) Mg (mg kg-1 dw) Na (mg kg-1 dw) P (mg kg-1 dw) S (mg kg-1 dw) Na/K Na/Ca 

Control 377 ± 21 c 4570 ± 105 a 1881 ± 59 a 187 ± 22 a 4549 ± 335 a 4758 ± 199 a 0.04 ± 0.01 a 0.5 ± 0.05 a 

500 mg nCeO2 kg-1 387 ± 11 bc 3792 ± 82 b 1756 ± 22 a 150 ± 31 a 4519 ± 110 a 4162 ± 266 ab 0.04 ± 0.01 a 0.38 ± 0.07 ab 

1000 mg nCeO2 kg-1 426 ± 19 bc 3755 ± 75 b 1765 ± 57 a 133 ± 18 a 4511 ± 312 a 3620 ± 144 bc 0.04 ± 0.01 a 0.32 ± 0.05 ab 

500 mg nTiO2 kg-1 661 ± 81 a 4187 ± 157 ab 1983 ± 124 a 152 ± 17 a 4867 ± 234 a 3148 ± 80 c 0.04 ± 0.005 a 0.24 ± 0.04 b 

1000 mg nTiO2 kg-1 543 ± 8 ab 3762 ± 77 b 1736 ± 39 a 95 ± 26 a 4359 ± 314 a 3194 ± 220 c 0.03 ± 0.01 a 0.18 ± 0.05 b 

aValues are means ± SE (n = 5). Different letters indicate significant differences between treatments (p ≤ 0.05, T test) for each element separately. 

Table 7: Concentration of micro-nutrients in barley kernels at ripening from main shoot grown in soil treated with none (control), 500 mg nCeO2 kg-1, 1000 

mg nCeO2 kg-1, 500 mg nTiO2 kg-1 and 1000 mg nTiO2 kg-1. 

Treatment B (mg kg-1 dw) Cu (mg kg-1 dw) Fe (mg kg-1 dw) Mn (mg kg-1 dw) Ni (mg kg-1 dw) Zn (mg kg-1 dw) 

control 8.64 ± 1.02 ab 8.91 ± 1.33 a 38.81 ± 6.51 a 18.8 ± 0.64 b 0.44 ± 0.14 a 55.74 ± 5.36 b 

500 mg nCeO2 kg-1 15.12 ± 4.73 a 8.01 ± 0.8 a 37.52 ± 2.61 a 21.87 ± 1.17 ab 0.34 ± 0.07 a 54.07 ± 2.55 b 

1000 mg nCeO2 kg-1 3.32 ± 1.37 b 6.99 ± 0.31 a 28.49 ± 1.67 a 19.84 ± 0.68 b 0.39 ± 0.04 a 56.69 ± 1.18 b 

500 mg nTiO2 kg-1 8.01 ± 1.7 ab 7.52 ± 1.16 a 34.25 ± 2.17 a 25.1 ± 1.06 a 0.75 ± 0.17 a 69.63 ± 2.61 a 

1000 mg nTiO2 kg-1 6.02 ± 1.58 ab 8.24 ± 0.28 a 38.35 ± 4.47 a 21.59 ± 1.23 ab 0.32 ± 0.08 a 59.59 ± 1.34 ab 

aValues are means ± SE (n = 5). Different letters indicate significant differences between treatments (p ≤ 0.05, T test) for each element separately. 
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We did not observe significant differences among the treatments for Ce and Ti 

concentrations in kernels, as reported by our previous observations in vitro (Mattiello et al., 

2015) and other authors who studied different species under nCeO2 (Rico et al., 2014; Zhao 

et al., 2015; López-Moreno et al., 2010), or under nTiO2 exposition in soil (Klingenfuss, 

2014). However, other authors observed that nCeO2 treatments largely increased Ce 

concentration in fruits and seeds of different species (Rico et al., 2013; Wang et al., 2012; 

Priester et al., 2012), among which is also barley (Rico et al., 2015). It was also observed a 

root to fruit translocation of nTiO2 in cucumber after plant exposition to nTiO2 in soil 

(Servin et al., 2013). 

Our results suggest that translocation of manufactured nCeO2 and nTiO2 (at least of 

nominal sizes of 25 nm) into barley kernels is hardly possible, as Ce and Ti concentrations 

in kernels of treated plants were not significantly different from that of the control plants 

(Table 5). 

Regarding nutrient concentrations, nCeO2 treatments did not significantly modify several 

macro-nutrient concentrations (Ca, Mg, and P), Na (a beneficial nutrient) and all 

micronutrients except B. As for the affected macro-nutrients, K was significantly lowered 

under both nCeO2 treatments, while S was significantly lowered only by 1000 mg nCeO2 

kg-1 treatment. Potassium is the most abundant cation in cytoplasm, actively maintaining 

osmotic potential and stabilizing pH between 7 and 8, the optimum range for most enzyme 

activities. Being also necessary for protein synthesis and other metabolic processes 

(Marschner, 1995), its reduction at both nCeO2 levels and at 1000 mg nTiO2 kg-1 treatment 

(see below) could have a negative impact on enzyme activities (and kernel quality). Sulfur 

is a structural constituent of coenzymes and secondary plant products containing amino 

acids cysteine and methionine and can also act as a functional group directly involved in 

metabolic reactions (Marschner, 1995). Therefore the reduction of S which occurred also 

at both nTiO2 treatments (see below) could theoretically affect glutathione synthesis and 

the antioxidant capacity of kernels. However, the expected reduction in cysteine and 

methionine was not observed: conversely they were enhanced (Table 4). We speculate that 

even if S translocation to the kernels was lowered, the amount of available S was anyway 

effectively directed to the protein synthesis and avoiding its use for other purposes like 

precursors for syntheses of glutathione (GSH), co-factors (like iron–sulfur clusters, heme, 

siroheme, molybdenum centers, lipoate), essential vitamins (as biotin, thiamine), sulfur 

esters (coenzyme A) and sulfur derivatives (Beinert 2000; Leustek et al. 2000; Saito 2000; 

Marquet 2001; Gerber and Lill 2002; Mendel and Hänsch 2002; Noctor et al. 2002). 
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Under 1000 mg nCeO2 treatment, B concentration was significantly lowered, 

approximately by 62% compared to the control, the severe reduction of B concentration 

could indicate a restricted permeation of B due to nCeO2 presence. However, the 

mechanisms of nCeO2 restriction to B permeation remain unclear. 

Other authors reported contrasting data and only partially in agreement with our results. 

For example, similarly to our results Rico et al. (2013) observed no changes in 

concentrations of most of the nutrients in grain from three rice varieties grown in soil with 

500 mg nCeO2 kg-1 compared to control. Notable exceptions regarded Al, Fe, K, Na and S 

which varied differently in the three analyzed varieties, which indicates not only a dose 

effect but also a variety response. Also wheat grown on soil exposed at nCeO2 

concentrations lower than 500 mg kg-1 showed no change in kernel nutrients except for S 

and Mn (Rico et al., 2014). Sulfur and Mn had an inverse hormetic response, that is at low 

nCeO2 treatments, S and Mn were significantly lowered while at 500 mg nCeO2 kg-1 S and 

Mn were not different from control (Rico et al., 2014). 

Rico et al. (2015b) observed significant increase in both macro- and micro-nutrients in 

grains from barley plants exposed to nCeO2 at different levels which is in disagreement 

with our observations on the same species. Peralta-Videa et al. (2014) reported no effects 

on S and K content in pods from soybean plants grown at nCeO2 treatments close to ours. 

Different results were obtained also by Zhao et al. (2014) which analyzed mineral content 

of cucumber fruit from plants grown at comparable nCeO2 concentrations to ours. Authors 

did not observe any significant differences between treated and control plants in all 

elements concentrations. Finally, under nCeO2 treatments comparable to ours, significant 

increases of K and Mn at 800 mg nCeO2 kg-1 treatment were observed in undeveloped corn 

cobs but not in developed ones (Zhao et al., 2015). 

Although such a large variation of responses in different species exposed to nCeO2 

treatments, it is safe to say that nanoparticles are influencing nutrients concentration of 

seeds and fruits. This can indicate a breakdown of nutrient homeostasis, due to abiotic stress 

induced by nanoparticles exposition. 

Regarding nTiO2 treatments, Ca was significantly increased and S significantly lowered 

under both nTiO2 treatments, while K was lowered only by 1000 mg nTiO2 kg-1 treatment. 

Calcium is a messenger between environmental factors and plant responses in terms of 

growth and development (Marschner, 1995). The high levels of Ca could be linked to the 

higher yield grain under nTiO2 treatments. nTiO2 (or the released ionic form) could 

potentially have a beneficial effect enhancing absorption and translocation of Ca (Alcaraz-
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Lopez et al., 2003). Moreover, other authors showed that seeds immersed in nTiO2 solution 

and sprayed with nTiO2 over shoots, could enhance plant growth through several 

mechanisms including the enhancement of photosynthesis, enzyme activity and even by a 

supposed new N2 fixation mechanism in the air (Gao et al., 2006; Yang et al., 2007; Gao et 

al., 2008; Linglan et al., 2008; Su et al., 2009). However, in our experiment we include 

nTiO2 into the soil and the observed benefits could be explained by translocation of nTiO2 

in shoots, at least of minimum amounts. 

As for micronutrients, only Mn and Zn reached significantly higher concentrations at 500 

mg nTiO2 kg-1 but not at 1000 mg nTiO2 kg-1 treatment: again a hormetic response. 

Contrary to the nCeO2 only Servin et al. (2013) reported data from a full mineral analysis 

in cucumber fruit. There was no substantial effect on macro- and micro-nutrients in fruits, 

apart for P and K in which a hormetic effect was detected. On the other hand and according 

to our results, Klingenfuss (2014) reported no significant differences in P concentrations in 

wheat grains after exposition of plants in soil exposed to a range of nTiO2 varying from 1 

to 1000 mg nTiO2 kg-1. However, these results could indicate a species-specific response 

and possibly diverse effects on mineral concentrations in eudicots and monocots, with the 

latter more affected. 

The Na/K and Na/Ca ratios are useful indicators of plant response to the stress and can 

indicate the kernels quality as well. In all the treatments the Na/K ratio was unaffected 

indicating no major metabolic disorders (Table 6) (Brady et al., 1984). On the contrary, 

Na/Ca ratio was significantly affected under both nTiO2 treatments with the ratio reduced 

of 2.4 folds on average (Table 6). This is suggesting an increased competitive inhibition 

between absorption of Na and Ca which can possibly mitigate eventually harmful effects 

of Ti – similarly to what was observed for rice under nCeO2 exposition (Rico et al., 2013). 

Alternatively, as Na concentrations did not change significantly from the control whereas 

Ca concentrations increased significantly under nTiO2 treatments this can be due to a 

beneficial effect of nTiO2 which can enhance Ca absorption and translocation as observed 

above. In kernels under nTiO2 treatments, the reduction in Na/Ca ratio and the increased 

concentration of Ca can be beneficial for human nutrition from one side but can also affect 

negatively the eating quality of kernels on the other side. 

6.3.5 Pearson’s Product-moment Correlation 

Pearson’s product-moment correlation coefficients had shown that only Mn (r = 0.859, df 

= 13, p < 0.001) concentration was positively and significantly correlated with Ce 
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concentration in kernels from different concentrations of nCeO2 in soil. Therefore, nCeO2 

interfered with Mn demonstrating the tendency of Mn accumulation at increasing levels of 

Ce in kernels. With respect to the few published articles about Ce correlation with other 

elements in grains of barley and other species, we did not find any evidence of correlation 

between other elements and Ce (Rico et al., 2013; Rico et al., 2014; Rico et al., 2015a). 

Finally, there were no significant correlation between Ti concentration in kernels and all 

the other measured parameters under nTiO2 treatments. 

A separate comment need to be given for the contrasting data reported in the only one 

barley full life cycle study performed (Rico et al., 2015b). A compromised barley 

production from plants cultivated at 500 mg nCeO2 kg-1 in soil and an enhanced storage in 

grains of macro- and micro-nutrients and only a partial increase in amino acid content 

(among which there was no lysine) in lower treatments were observed (Rico et al., 2015b). 

Besides the fact that authors cultivated a different variety of barley in another soil, the 

contrasting results obtained by our experiments can be tentatively explained by different 

nCeO2 sizes (8 nm vs. 22.7 nm) and the methodology used to apply MeNPs into the soil. 

In fact, Rico et al. (2015b) sonicated a nCeO2 solution prior diluting it into soil and mixing, 

thus possibly making nCeO2 more bioavailable. It is also possible that a large ionic Ce 

quantity was released in this solution which is toxic to plants (Zhang et al., 2015; Cui et al., 

2014). 

In conclusion, bioaccumulation results showed a low translocation of Ce and Ti into kernels 

of comparable level to the control treatment. Results had shown that among macro-nutrients 

K and S can represent a threat to food chain if their content is reduced. On the contrary Ca 

in kernels was enhanced by nTiO2 treatments. Among the MeNPs treatments some 

significant effects (on kernel numbers and 100-kernels weight, Zn, and Mn concentrations) 

were visible only on lower concentration while not at higher concentration (hormetic 

response). Therefore, different nanoparticles can influence negatively or positively 

different nutritional values. Although the observed differences between 500 and 1000 mg 

MeNPs kg-1 treatments might be due to MeNPs interactions (agglomeration and/or 

association) with soil constituents, at higher concentrations this hypothesis remains to be 

tested. Indeed, toxicity of MeNP could be closely related to their chemical composition, 

structure, particle size and surface area. Substantial research on MeNP size, their physico-

chemical characteristics and interactions with soil components is largely needed. 

Both MeNPs impacted negatively the amylose content of kernels with a reduction in grain 

yield. This was associated to the increase of CP and of most amino acids. Interestingly, 
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lysine, the essential and largely deficient amino acid in cereal grains, showed the largest 

percent increase. 

In terms of MeNPs impact on barley food production, our data are far from being 

exhaustive; however, a possibly negative impact over kernel energy content, K and S 

concentrations might be counterbalanced by CP and lysine increase. Moreover, nTiO2 

treatments increased also Ca, Mg and Zn kernel concentrations. 

Our findings demonstrate that nCeO2 and nTiO2 are acting differently on the nutritional 

quality of barley kernels. Generally, barley kernels resulted more negatively affected by 

nCeO2 while nTiO2 can potentially have a beneficial effect. This study provides the first 

proof that nCeO2 and nTiO2 NPs can have significant and contrasting impacts on the 

composition and nutritive value of barley kernels. 

7 Conclusions and Future Perspectives 

The majority of green chemistry research has the synthesis of metal nanoparticles (MeNPs) 

by plants extracts (ex-planta) as the principal objective while only a little part of them study 

the MeNPs formation inside the tissue of the living plants (in-planta). This tendency is due 

to the applicative purpose of the experiments. In fact in the majority of paper, researcher 

obtain MeNPs by changing the reaction conditions. Subsequently MeNPs are characterized 

in order to verify their physical-chemical characteristics and whether the methods are 

reproducible. 

From these assumptions, we decided to investigate the green synthesis of MeNPs in planta 

because their mechanism formation and the organic molecules involved in the process are 

less studied. 

The results demonstrate the plant capacity to synthetize MeNPs but among the organic 

molecules analyzed none of them resulted as the principal actor for the MeNPs formation. 

For this reason further experiments are needed to investigate this aspect.  

The clarification of metabolic processes involved in MeNPs synthesis in vivo could open 

new insight in synthetizis of MeNPs.  

One intriguing possibility is screening of metallophyte species for high amount of organic 

molecule or class of organic molecules involved in the MeNPs formation. 

The selected metallophyte species could then be used for a double purpose: 

phytoremediation intervention and also MeNPs synthesis. 
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Regarding the toxic effects caused from the interaction between NPs and plants, the 

obtained results demonstrate the genotoxic and phytotoxic effects of NPs in the early stages 

and phenologic and morphologic effects along the plant entire life cycle but in this case the 

parameters analyzed were affected both in a negative and in a positive way. The effects of 

this interaction was also verified at the level of kernels obtained from the plants treated for 

the entire life cycle. The kernels chemical composition was modified both in this case in a 

positive and in a negative way. In conclusion the effects could be related to the element of 

which is composed the NPs but also on the base of their concentration. In fact, some 

parameters resulted more affected by the treatment at the lowest concentration than the 

highest ones, this concentration effect could be related to the peculiar NPs characteristics 

which differ from their bulk counterpart and consequently the NPs could be more toxic at 

lower concentrations respect to the higher ones. 

This could bring a new kind of issue, as the majority of works done in last years were 

conducted in the presence of high concentration of NPs, and it would be interesting to verify 

what could happen whether the plants grow in presence of low NPs concentration in the 

media and for a period longer than a generation. Moreover, the seeds obtained in this way 

could be studied in order to check how they are affected by these way of treatments in terms 

of germinability. 

On the contrary to the observed toxic effects, the uptake and translocation showed a dose 

response in all experiments. At increase of NPs present in the media the NPs element 

concentration in plant tissues increase as well. For this aspect the NPs behave like their 

bulk counterpart. This effect rising another lack about NPs in their legislation. At the 

present day there are not any European directives which regulate or fix a limit of this new 

kind of material in the environment and more specifically into the soil. 

In the last decade the number of agricultural products based on NPs are increased and they 

will increase more in the next years. Therefore, a prompt action by legislation in order to 

regulate the NPs emissions would be desired. 

Another aspect which is not well studied is how the NPs behave in a complex system, as 

the majority of the experiments were conducted in hydroponic system or in petri dishes. 

For this reason the experiment set up along the entire life cycle were conducted in soil 

spiked with NPs in order to see how they behave in a complex environment. More precisely 

what is happening once the NPs reach the soil and they start to interact with the organic 

matter or the inorganic matrix was studied. The difficult part to achieve this aim is linked 

with the nature of NPs, in particular it is still quite difficult to detect them in a complex 
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environment like the soil and also itself complexity make the investigation quite difficult. 

Hence it could be useful to find some methods to analyze the NPs in a complex matrix. 

Another aspect which needs to be elucidate is related with the “corona” concept. The 

“corona” is the evolving collection of protein or biomolecule associated with NPs which 

confers to them a well define biological/ecological identity. This identity is the combination 

of NPs material-intrinsic properties and the “corona” of a given biological or ecological 

compartment that determine the interactions of NPs with cell and tissues. 

The “corona” could be subdivide in hard and soft “corona”, the tightly bound proteins that 

remained associated with the NPs even following extensive centrifugation and washing 

steps represent the hard “corona” whereas more loosely bind protein associated with the 

hard “corona” represent the soft “corona”. The soft “corona” is in dynamic exchange with 

the surrounding protein while the hard “corona” remain associated for sufficiently long 

timescale that it is the NPs-corona complex that interacts with living system and it is what 

cell “sees”. When the NPs enter in the environment they go through different types of 

transformation as chemical (photooxidation or photoreduction), physical (agglomeration, 

aggregation or dissolution), biological (oxidation and carboxylation)  and interaction with 

biomolecules including natural organic macromolecules (NOM), all of which influence the 

NPs persistence, bioavailability/biouptake, reactivity and toxicity. 

Biomolecule can be any macromolecule produced via biological processes and acquire by 

NPs as it interacts with living systems. An ecomolecule can be any macromolecule formed 

and acquired by the NPs in the environment, generally NOM or secreted biomolecules. 

Two most important types of NOM are humic substances (HS) and polysaccharides (and 

their residues). The NOM in the nanoscale size range and their concentration are orders of 

magnitude higher than the modeled concentration of NPs and so are likely to modify the 

properties and behaviors of NPs. 

From this purposes part of the research was focused on how the NPs o are influenced by 

the ecomolecule nce in the environment and how the secreted biomolecules affect the NPs 

properties and consequently their biovailability. For this purpose, experiments with barley 

plants were grown in a hydroponic system in presence of low cerium nanoparticles 

(nCeNPs) because from the previous works (Mattiello et al., 2015) some parameters were 

more affected at the lowest concentrations than the highest and in presence of gum arabic 

(GA) and because not many studies in the last years have investigated the behavior of NPs 

when they enter in contact with polysaccharides. The experiments were conducted in the 

first seven months of my third year of research at the Facility for Environmental 
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Nanoscience Analysis and Characterization (FENAC) laboratory of School of Geography 

Earth and Environmental Science (GEES) in Birmingham University. There I learnt how 

to use instruments for the NPs characterization like Dynamic Light Scattering (DLS) 

system, Differential Centrifugal Sedimentation (DCS) system, Atomic Force Microscopy 

(AFM), Transmission Electron Microscopy (TEM) and Brunauer-Emmett-Teller (BET) 

instrument. I utilized these instruments for the nCeO2 characterization not and in contact 

with plants exudates at different time in order to analyze if the nCeO2 properties change or 

not between them. 

The obtained data are not display in this thesis because they are still in elaboration but the 

preliminary data show some differences between the nCeO2 were not in contact with plants 

and the nCeO2 in contact with them. 

8 Abbreviations Used 

AA = ascorbic acid 

AFM = Atomic Force Microscopy 

AgNPs = silver nanoparticles 

BET = Brunauer Emmett Teller method 

CA = citric acid 

DLS = Dynamic Light Scattering method 

FRU = fructose 

GLC = glucose 

ICP-OES = inductively coupled plasma optical emission spectroscopy 

MeNPs = metallic nanoparticles 

nCeO2 = Cerium Oxide Nanoparticles 

nTiO2 = Titanium Oxide Nanoparticles 

PAR = photosynthetically active radiation 

PP = polyphenols 

TEM = transmission electron microscope 
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